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Abstract: Radiation therapy relies on quality assurance (QA) to verify dose delivery accuracy.
However, current QA methods suffer from operation lag as well as inaccurate performance. Hence,
to address these shortcomings, this paper proposes a QA neural network model based on branch
architecture, which is based on the analysis of the category features of the QA complexity metrics.
The designed branch network focuses on category features, which effectively improves the feature
extraction capability for complexity metrics. The branch features extracted by the model are fused
to predict the GPR for more accurate QA. The performance of the proposed method was validated
on the collected dataset. The experiments show that the prediction performance of the model
outperforms other QA methods; the average prediction errors for the test set are 2.12% (2%/2 mm),
1.69% (3%/2 mm), and 1.30% (3%/3 mm). Moreover, the results indicate that two-thirds of the
validation samples’ model predictions perform better than the clinical evaluation results, suggesting
that the proposed model can assist physicists in the clinic.

Keywords: branch architecture; quality assurance (QA); gamma passing rate (GPR); multi-branch
neural network (MBNN); radiation therapy

1. Introduction

In recent years, cancer mortality and incidence rates have been increasing year by
year. Radiation therapy is an important cancer treatment method, and quality assurance
(QA) is critical to ensuring the efficacy of the treatment and the safety of patients [1,2].
Patient-specific QA compares the measured and planned dose distribution using gamma
analysis [3], including positional accuracy and dose accuracy. The general evaluation index
for QA is the gamma passing rate (GPR) [4]. The GPR considers two types of error: dose
deviation and distance to agreement. There are three combinations of dose deviation and
distance-to-agreement commonly used for GPR: (2%/2 mm), (3%/2 mm), (3%/3 mm). 2%
indicates that the dose deviation between measured and planned dose distributions within
2% is acceptable. A statement of 2 mm represents the distance between the measured and
planned treatment point, whereby 2 mm is adequate. It can be seen that the error tolerance
of the three sets of GPR increases successively. The GPR of the same plan will increase
successively under the three sets. The value of the GPR ranges from 0% to 100%; when the
GPR is closer to 100%, it means that the measured dose distribution is close to the planned
dose distribution. The therapeutic effect of this plan is very good. Conversely, the closer
the GPR is to 0%, the more unreliable the radiation therapy plan.

However, patient-specific QA measurement consumes a lot of time and effort for
physicists, and this can lead to situations where it may be too late to react without this,
resulting in treatment delays [5]. Due to resource constraints, patient-specific QA is difficult
to complete. Most hospitals sample some treatment plans for patient-specific QA, and
based on these sampling results, they evaluate for whole plans. If the GPR of the majority
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of samples is qualified, it indicates that the linear accelerator (Linac) is operating well,
with stable performance and high treatment accuracy. On the contrary, if the sampling
shows a low GPR and unqualified samples, it means that Linac is running in poor condition
and needs to be corrected. Sampling QA uses as few resources as possible to ensure the
overall effectiveness of treatment. However, there are still some unqualified radiation
therapy plans that cannot be detected. Therefore, it is helpful to employ computer-aided
diagnosis (CAD)-based QA methods to assist in patient-specific QA.

Since the complexity metrics of the Linac parameters and plan properties can affect the
effect of radiation therapy, the CAD-based QA methods for intensity-modulated radiation
therapy (IMRT) technology can achieve good performance by using machine learning
methods to extract complexity metric features [5–7]. A novel IMRT known as volumetric
modulated arc therapy (VMAT) was introduced by Otto et al. [8] in 2007. Thanks to the
benefits of shortening treatment time, highly conformal dose distribution, and the expec-
tation of toxicity limitation, VMAT became the commonly used and extremely important
technique in radiation therapy, especially for head and neck (H&N), pelvis, and rectum
tumors. However, VMAT is more complex, with more treatment control points and faster
dose delivery. As a result, there are a greater number of complexity measures that affect QA,
and they are more complex. The inefficient extraction of VMAT complexity metric features
causes the IMRT-based QA approach to perform poorly in VMAT. Thus, it is imperative to
propose CAD-based QA for VMAT technology.

Recently, the development of deep neural networks (DNNs) has created breakthroughs
in various kinds of research because of their strong representation ability. They also have
great significance implications for QA studies [9–11]. Despite having more powerful feature
extraction capabilities, DNNs are still unsatisfactory in terms of reported performance.
The QA performance enhancement effect is limited by relying only on the powerful feature
extraction capability of DNNs. Neural network research on QA features adapted to VMAT
is the way to enhance QA prediction performance.

Based on analyzing the features of the complexity metrics of VMAT, they can be
classified into two different categories: one relates to the Linac, and the other relates to the
plan properties. The two categories of complexity metrics work together to create the Linac
error. The complexity metrics in the same category have strong intra-class dependencies
between them, while the dependencies between complexity metrics in different categories
are weak. While several studies have shown that branching networks are better for multi-
category representation learning and feature fusion [12–15], no studies have focused on
the features of VMAT complexity metric category features. Therefore, it is necessary to
strengthen the intra-class feature extraction capability of the same category of complexity
metrics, which is of great significance for the improvement of model performance.

In order to assist the patient-specific QA for VMAT technology, this paper proposes a
neural network model based on the branch architecture for the QA of VMAT. The proposed
neural network model mainly contains a branch feature extraction module and a multi-
branch feature fusion module. The branch feature extraction module is designed with
three branches for learning the features of the complexity metrics of Linac parameters, plan
properties, and all complexity metrics, respectively. When compared to models without
designed branches, different branches learn different categories of complexity metrics,
which reduces the difficulty of learning complexity metrics within categories and makes it
easier to achieve good learning results. The multi-branch feature fusion module merges the
features extracted from the three branches for GPR prediction.

The main contributions of this paper can be summarized as follows:

1. By designing different branches to build the multi-branch network, it adopts differ-
ent branches to learn different complexity metrics to predict the GPR. This brings
two benefits: on the one hand, each branch focuses on learning intra-class features,
and on the other hand, each branch needs to focus on fewer features. The branching
design enhances the feature extraction capability of the model: each branch extracts
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different category complexity metric features, and these features are fused as a more
comprehensive feature to the predictor for GPR prediction.

2. The prediction results contribute to improved clinical application. Samples with large
errors between model predictions and clinical evaluations are revalidated. The results
show that the model predictions of two-thirds of the validation samples outperform
the clinical evaluation results, suggesting that the proposed model can assist physicists
in the clinic.

3. A QA dataset of VMAT containing 850 samples with more than 10 cancers was constructed.

2. Related Work

With the rapid development of DNNs in recent years [16], there have been significant
breakthroughs in computer vision, natural language processing, etc. This also aroused great
interest among researchers and led to many related advances in the field of medicine [17].
Moreover, DNNs have made significant breakthroughs in radiation therapy [18,19], includ-
ing treatment outcome prediction [20] and treatment optimization [21,22] et al. However,
there are few DNN studies on QA, and the success of DNN methods in radiation therapy
shows its strong potential in QA.

The essential task of the QA study is to predict the GPR, which is used to ensure
the feasibility and safety of the treatment plan. The most reported QA studies are those
that predict the GPR through the complexity metrics of the Linac parameters and plan
properties [6,7,23]. Such studies extracted the complexity metrics of the Linac parameters
and plan properties from the radiation therapy plan, preserving as much important in-
formation as possible and significantly reducing the number of parameters. For example,
Gilmer et al. [6] used 498 IMRT plans to learn the characteristics of the plans through
regression methods to predict the GPR. Tomohiro et al. [10] compared the GPR prediction
performance among regression tree analysis (RTA), multiple regression analysis (MRA),
and the DNN method. DNNs performed slightly better than RTA and MRA in terms of
prediction error. Li et al. [7] used the Poisson lasso (PL) regression model to predict the
GPR. Its performance at 3%/3 mm and 3%/2 mm is acceptable, but it is not acceptable at
(2%/2 mm). Granville et al. [5] used SVM to predict the GPR, but the predicted outcomes
were not prominent. However, they found that all complexity metrics are important in
predicting outcomes.

Some studies try to reconstruct the flux map from the radiation therapy plan to predict
the GPR [9,11]. The flux maps cover more parameters of therapy than the complexity
metrics. However, the dataset of radiation therapy plans is usually very small, which
makes it difficult for models to learn characteristics effectively. Yannet et al. [9] compared
the performance of DNNs against a technique designed by domain experts in the prediction
of the GPR for IMRT. The results showed that DNNs could achieve performance similar
to that of a technique designed by domain experts. While DNNs are great for feature
extraction, the small sample size of the dataset becomes a limitation to their performance.
Noriyuki et al. [11] developed a CNN-based prediction model for the patient-specific QA
of dose distribution in prostate treatment. The results suggested that deep learning may
provide a useful prediction model for the gamma evaluation of patient-specific QA in
prostate treatment planning. However, the performance of these studies is not enough
to meet clinical needs, and QA may still lag behind the clinical treatment. Hu et al. [24]
proposed the construction of a 3D convolutional neural network model using multimodal
data. Fusing flux map features and dose features with its powerful feature extraction
capability achieves good performance. However, it requires a large sample size, which is
more difficult to collect.

Several studies show that branching networks are better for multi-category represen-
tation learning and feature fusion. Zhou et al. [12] proposed a bi-lateral-branch network
(BBN), which consists of two branches: the conventional learning branch and the rebalanc-
ing branch; each branch performs its representation learning and classifier learning tasks.
In the two-branch framework [13], the two branches maintain independent computational
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processes and receive different categories of data to co-learn. The bi-lateral segmentation
network (BiSeNet) [14,15] consists of two branches: a spatial path network and a context
path network, which are designed to respond to the loss of spatial information and the
reduction in the sensory field, respectively. These studies indicate that decomposing the
task into different branches makes the task simpler for each branch of the network. Hence,
it is easier to train the model for good feature representation and pool these features for
re-representation via feature fusion.

This paper aims to address the inefficiency of measuring QA and the poor performance
of machine learning-based QA. A neural network model based on the branch architecture
is proposed based on the complexity metrics of the Linac parameters and plan properties.
It uses different branches to learn different categories of complexity metrics, leading to
better feature extraction performance.

3. Materials and Methods
3.1. Dataset

The dataset for this study was collected at the West China Hospital of Sichuan University.
All the VMAT plans were calculated and optimized with the Raystation treatment planning
system (version 4.7, RaySearch Medical Laboratories AB, Stockholm, Sweden) with a 6 MV
flattening filter. Treatment plans were delivered on Linac 1, Elekta Versa HD™ with the
Agility multileaf collimators (Elekta, Crawley, UK), Linac 2, and Linac 3, Elekta Synergy Linac
Systems with the Agility multileaf collimators (Elekta, Crawley, UK), respectively. The 6 MV
photon beams of three Linacs were matched with the acceptance criterion that the difference
in PDD10 among the matched Linacs was within ±1%, and any point dose within 80% of the
FWHM region fell within a 2% different window for the flatness and symmetry of the beam
profiles. The patient-specific QA was performed using the ArcCHECK detector array with
a Cavity plug and chamber insert (Sun Nuclear Corporation, Melbourne, FL, USA), and it
was analyzed using the SNC Patient software (version 6.7). The dose calculation algorithm
for the VMAT plan was collapsed cone convolution (CCC, Raystation, version 4.7) with a
calculational grid of 3.0 mm. The dose effect of the treatment couch was taken into account in
the dose calculation. In accordance with the recommendations of the AAPM TG-218 report,
gamma criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm with a 10% dose threshold, absolute
dose mode, and global normalization were used for computing the gamma passing rate (GPR)
by comparing the measured dose planes with the calculated dose planes.

The dataset used in this study contains 850 samples of radiation therapy plans, which
were collected from the West China Hospital at Sichuan University. Table 1 shows the
number of samples for each cancer in the dataset. While most datasets only focus on single
cancers, ours covers the common cancers in the human body, including the abdomen, brain,
breast, head and neck (H&N), nasopharyngeal carcinoma (Npc), pelvis, prostate, rectum,
stomach, and others.

Table 1. Number of cancer samples in the dataset.

Cancer Sample Number

Abdomen 80

Brain 28

Breast 4

H&N 117

Npc 127

Pelvis 162

Prostate 56

Rectum 186
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Table 1. Cont.

Cancer Sample Number

Stomach 42

Other 48

Total 850

In this study, each sample contains 47 complexity metrics. According to the correlation
between complexity metrics, they are divided into two categories: the Linac parameters
and plan properties [25]. Table 2 shows the complexity metrics of the Linac parameters,
including 25 complexity metrics in five categories. These complexity metrics describe the
Linac state and settings during radiation therapy.

Table 2. The complexity metrics of the Linac parameters of the cancer samples in the dataset.

Category Complexity Metrics

SASX mm
SAS2 mm, SAS5 mm,

SAS10 mm, SAS15 mm,
SAS20 mm, SAS30 mm

leaf gap X-Y mm
leaf gap 2–5 mm, leaf gap 5–10 mm,

leaf gap 10–15 mm, leaf gap 15–20 mm,
leaf gap 20–30 mm

mean jawi gap mean jawY gap, mean jawX gap

jawY gap 0–X mm
jawY gap 0–2 mm, jawY gap 0–5 mm,

jawY gap 0–10 mm, jawY gap 0–15 mm,
jawY gap 0–20 mm, jawY gap 0–30 mm

jawX gap 0–X mm
jawX gap 0–2 mm, jawX gap 0–5 mm,

jawX gap 0–10 mm, jawX gap 0–15 mm,
jawX gap 0–20 mm, jawX gap 0–30 mm

Next, we provide an explanation of complexity metrics.

* SASX mm: the percentage of small aperture score < X mm
* leaf gap X–Y mm: the percentage of leaf gap X mm < Y mm
* mean jawX gap: the average gap of jawX
* mean jawY gap: the average gap of jawY
* jawY gap 0–X mm: the percentage of jawY gap < X mm
* jawX gap 0–X mm: the percentage of jawX gap < X mm

Table 3 shows the 22 complexity metrics of the plan properties.

Table 3. The complexity metrics of plan properties.

Complexity Metrics Definition

Fraction dose The fraction dose

Mean CP number Mean control point number

Mean CP MU Mean control point monitor

PMU Plan normalized MU

Beam number The beam number

Linac Linear accelerator

CAS Cross-axis score
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Table 3. Cont.

Complexity Metrics Definition

CIAO Complete irradiated area outline

MAD Mean asymmetry distance

PA Plan area

PI Plan averaged beam irregularity

PM Plan averaged beam modulation

PALG Plan average leaf gap

ALT X1 Averaged leaf gap of xl

ALT X2 Averaged leaf gap of x2

ALG Averaged leaf gap

MCS Modulation complex score

Doctor The treating physicist

Positions The treating position

MU1 MU value in first arc

MU2 MU value in second arc

TMU Total MU

The distribution of GPR values for the 850 radiation therapy plans is shown in Figure 1.
The GPRs of 2%/2 mm, 3%/2 mm, and 3%/3 mm are in the range of [78.90–100.00%],
[89.00–100.00%], [91.10–100.00%], respectively. The GPRs of the same samples measured
under different error tolerability standards are different. The higher the tolerability of
the measurement error, the higher the value of the GPR. Among the three sets of GPRs,
the criterion of 2%/2 mm is the most important. It has the lowest tolerability for error and
is the most important criterion in clinical evaluation, which can provide the best accuracy
measurement of the radiation therapy plan. Therefore, this paper focuses on the 2%/2 mm
gamma criterion for GPR prediction.

(a) (b) (c)

Figure 1. Distribution of GPRs in 850 radiation therapy plans. (a) The value distribution of the GPR
at 2%/2 mm; (b) the value distribution of the GPR at 3%/2 mm; (c) the value distribution of the GPR
at 3%/3 mm.

The American Association of Physicists in Medicine TG 218 report [26] recommended
95% and 90% as the tolerability and action limits for the 3%/2 mm gamma criterion,
respectively. The report does not recommend tolerability and action limits for 2%/2 mm
and 3%/3 mm. Therefore, by comparing the sample number of 3%/2 mm, the tolerability
and action limits for 2%/2 mm were set at 90% and 84%, and the tolerability and action
limits for 3%/3 mm were set at 97% and 93%. The tolerability and action limits for the
three VMAT gamma standards are shown in Table 4.
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Table 4. The tolerability and action limits for the three gamma criterions of VMAT.

Gamma Criterion Action Limit Tolerability Limit

(2%/2 mm) 90% 84%

(3%/2 mm) 95% 90%

(3%/3 mm) 97% 93%

3.2. The Neural Network Model Based on Branch Architecture

The details of the proposed neural network model based on branch architecture are
shown in Figure 2, which is named the multi-branch neural network (MBNN). The pro-
posed MBNN model framework contains three modules: the metric classification module,
the feature extraction module, and the feature fusion and prediction module. All the
complexity metrics were used as the model inputs and are classified into two categories
by the metrics classification module. The different categories of the metrics are fed into
the feature extraction module, which contains three branches for extracting the features
of different categories of metrics. Three branches are defined as full metrics networks
(FM-Nets), Linac metrics networks (LM-Nets), and plan metrics networks (PM-Nets), re-
spectively. The features extracted by the feature extraction module are pooled into the
feature fusion and prediction module for feature fusion and the prediction of the GPR.
The branching design enhances the feature extraction capability of the model: each branch
extracts different category complexity metric features, and these features are fused as a
more comprehensive feature to the predictor for GPR prediction.

LM-Net

PM-Net

FM-Net

Features Fusion and
Prediction Module

All Features

……

Linac Features

……

Plan Features

……

Feature Extraction Module

Metrics 
Classification 

Module

GPR

Figure 2. The proposed multi-branch neural network model.

The data used in this paper contain the complexity metrics and corresponding measured
GPRs Q = {(xn, yn); n ∈ (1, 2, · · · , N)}, where xn represents the complexity metrics, and
yn is the GPR of the i-th sample, respectively. For the complexity metrics of sample xn,
the complexity metrics of the Linac parameters and plan properties are defined as xlm

n and
xpm

n , respectively.
The GPR prediction study in this paper is formally denoted as

F : xn → pn, (1)

where F is the QA prediction study, and pn is the predicted GPR of xn. The value of the
GPR range is from 0% to 100%.
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Specifically, the formulas of the three branch networks are defined as follows:

fLM : xlm
n → f lm

n ,

fPM : xpm
n → f pm

n ,

fFM : xn → f f m
n ,

(2)

where fFM, fLM, and fPM are the FM-Net, LM-Net, and PM-Net, respectively. f lm
n , f pm

n and
f f m
n are the features of LM-Net, PM-Net, and FM-Net, respectively.

Each branch network consists of two parts: the input layer and the feature extraction
layer. The input layer is used to receive the complexity metrics of each sample. Each sample
has 47 complexity metrics, including 25 complexity metrics for the Linac parameters and
22 complexity metrics for the plan properties, so the number of neurons in the input layer of
FM-Net, LM-Net, and PM-Net are 47, 25, and 22, respectively. The feature extraction layer
is designed as three fully connected layers. The number of neurons in the fully connected
layers in FM-Net are 128, 512, and 128, respectively. The number of neurons in the fully
connected layers in LM-Net and PM-Net are 64, 256, and 64, respectively. For the activation
functions of the neural network, except for the last layer, which uses sigmoid, the rest of
the neural network uses the relu activation function.

In the multi-branch feature fusion module, the features extracted from the three branch
networks are merged to receive the fused features:

f f use
n = [ f lm

n , f pm
n , f f m

n ]. (3)

The prediction of each branch has an impact on the final prediction, and the formula
of the final prediction is defined in detail as follows:

F : f f m
n × w f m + f lm

n × wlm + f pm
n × wpm + f f use

n × w f use → pn, (4)

where w f m, wlm, wpm, and w f use are the weights of the features of LM-Net, PM-Net, FM-Net,
and the fused features, respectively. They are set to 0.3, 0.15, 0.15, and 0.4, respectively.

The loss function of the proposed model is

L = lFM + λ1 × lLM + λ2 × lPM, (5)

where L is the loss function of the proposed model, and it consists of three loss functions.
lLM, lPM, and lFM are the loss functions of the LM-Net, PM-Net, and FM-Net, respectively.
λ1 and λ2 are set as 0.5. lLM, lPM, and lFM are defined as follows:

lFM =
1
N

N

∑
n=1

(yn − pn)
2,

lPM&lLM =
1
N

N

∑
n=1

(yn − pn),

(6)

where yn and pn are the true and predicted GPRs, respectively. The mean squared error
(MSE) is the common loss function; hence, it is used for PM-Net, which contains all the
complexity metrics. The mean absolute error (MAE) measures the distance between the
predicted and true GPR and is used for branch network evaluation with fewer complex-
ity metrics.

The overall learning process of the proposed multi-branch neural networks is shown
in Algorithm 1.
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Algorithm 1 Framework of multi-branch neural networks model
Input: The complexity metrics xn(n ∈ (1, 2, · · · , N))
Output: The prediction pn of input xn(n ∈ (1, 2, · · · , N))

1: Ending epochs = 200
2: Initializing the model randomly
3: while training epoch < ending epochs do
4: for a case xn in dataset Q do
5: fLM : xlm

n → f lm
n

6: fPM : xpm
n → f pm

n

7: fFM : xn → f f m
n

8: f f use
n = [ f lm

n , f pm
n , f f m

n ]

9: Prediction: f f m
n × w f m + f lm

n × wlm + f pm
n × wpm + f f use

n × w f use → pn
10: Updating gradients with back propagation algorithm
11: end for
12: end while
13: while training epochs = ending epochs do
14: Saving the model and parameters
15: end while

4. Experiments
4.1. The Experimental Setup

A total of 850 samples are collected in our dataset, which is randomly split into
training and test sets according to the ratio of 4:1 in this paper. The training set includes
680 samples, while the test set includes 170 samples. Each sample contains 47 complexity
metrics and three GPRs. Each GPR of the same sample is measured with different dose
deviation/distance-to-agreement criteria. All experiments were conducted on this dataset.

The proposed model takes 47 complexity metrics as input, 45 of them are numerical
data, which are preprocessed by standardization, and two non-numeric complexity metrics
are encoded by one-hot. The mean square error (MSE) is used as the cost function, as
shown in Equation (3). The optimizer is sgd with a learning rate of 1 × 10−3. The learning
rate decays by 0.98 every five epochs. The batch size is 200. In order to reduce the side
effects of overfitting, dropout is applied in the last hidden layer with a probability of 0.6.
The mean absolute error (MAE) is used to evaluate our model, which visually describes the
distance between the measured and predicted GPR. It is the most important criterion for
clinical radiologists. The calculation of MAE is presented as follows:

MAE =
1
N

N

∑
n=1

|yn − pn|. (7)

4.2. Results

As mentioned above, QA studies on VMAT are mostly based on traditional machine
learning methods, including SVM [5] and lasso regression [7]. Moreover, some common
machine learning methods, such as RF and k-nearest-neighbor (KNN), are incorporated.
The DNN method contains 3D-MResNet [24] and ONO-Net [10]. The proposed method
is compared with other reported state-of-the-art methods. The experimental results of
the test set are shown in Table 5. It can be seen that the proposed method achieves the
best performance on all GPR predictions, obtaining an MAE of 2.12% at 2%/2 mm, 1.69%
at 3%/2 mm, and 1.30% at 3%/3 mm. Due to the distribution of the data, the MAE
results show no apparent differences among all methods at 3%/3 mm, which has no great
importance for the clinical assistance as expected. The proposed method is significantly
better than other machine learning methods for the 2%/2 mm and 3%/2 mm gamma
criteria. In particular, the MAE of the proposed method is 15–23% lower than that of other
methods on the most important clinical evaluation criterion: 2%/2 mm. It takes 15 s for the
model to train one epoch. Meanwhile, the performance of the proposed model is better
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than that of ONO-Net [10], which is a DNN without a branch design. This shows that our
branch network design has a significant impact on QA performance. The 3D-MResNet [24]
model performs well, but it requires additional dose features.

Table 5. The proposed method compared with state-of-the-art methods.

Method
MAE

(2%/2 mm) (3%/2 mm) (3%/3 mm)

The proposed MBNN 2.12% 1.69% 1.30%

SVM [5] 2.49% 1.95% 1.33%

RF 2.56% 1.90% 1.35%

KNN 2.78% 1.87% 1.34%

lasso regression [7] 2.60% 1.89% 1.36%

ONO-Net [10] 2.30% 1.77% 1.30%

3D-MResNet [24] 2.20% 1.73% 1.30%

The predicted and measured GPRs for the test set are displayed in Figure 3. Each
point represents a sample, and the points enclosed by the blue and orange lines show that
the sample’s MAE is <3% and <5%, respectively.

(a) (b) (c)

Figure 3. The predicted GPR and measured GPR of three gamma criteria. (a) 2%/2 mm; (b) 3%/2 mm;
(c) 3%/3 mm.

The results of the 2%/2 mm gamma criterion are displayed in Figure 3a, where the
majority of the samples have prediction errors of <5%. There are 170 samples in the test set
overall, of which 159 have prediction errors of <5% and 11 have prediction errors of >5%.
However, one sample has a very large prediction error of 15%, which can not be accepted.
Figure 3b shows the results of the 3%/2 mm gamma criterion, where 90% of the samples
had a prediction error of <5%. Five samples had a prediction error of >5%. When compared
to the 2%/2 mm gamma criterion, the samples are more centered on the midline, which
means that the prediction error is smaller. This prediction error performance is valuable
for assisting in patient-specific QA. Figure 3c shows the results of the 3%/3 mm gamma
criterion, and the prediction errors are basically <3%. Only a few samples have prediction
errors of >3%

The experimental results demonstrate that the prediction of our model is very good,
especially at 3%/2 mm. The American Association of Physicists in Medicine TG 218 report
recommends 95% and 90% as the tolerability and action limits for 3%/2 mm, respectively.
At 3%/2 mm, most of the predicted GPRs are >94%, and even when taking a 3% prediction
error into account, the predictions of our model meet the action limit. The tolerability and
action limits for 3%/3 mm are set as 97% and 93%. Most of the predicted GPRs are >96%,
taking into account a 3% prediction error; thus, the predictions of our model meet the action
limit. The result indicates that the prediction performance of the proposed multi-branch
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neural network QA model is good. However, a few samples with large prediction errors
for the 2%/2 mm gamma criterion will lead to model unavailability.

There is a huge deviation between the predicted GPR and the measured GPR at
2%/2 mm for all 63 samples during the experiment, with a total of 52 from the training set
and 11 from the test set. Errors in the test set are reasonable, but the training set should not
have such large errors. After a discussion with the physicists, one possible explanation is
that the errors occurred in the patient-specific QA measurement. That means the measured
GPRs of these samples may be inaccurate. These 63 samples were re-measured for patient-
specific QA. A comparison of the first measurement, re-measurement, and model-predicted
GPRs is shown in Figure 4. The blue line is the model-predicted GPR, the orange line is
the GPR for the first patient-specific QA measurement, and the gray line is the GPR for
the patient-specific QA re-measurement. The re-measurement of the GPR was used as a
benchmark for comparison. The samples from the first measurement had an overall low
GPR, which may be due to inaccurate Linac or operational errors. The re-measured GPR for
two-thirds of the samples are closer to the model-predicted GPR, and the re-measurement
GPRs of the rest of the samples is closer to the first GPR measurement. It suggests that the
model-predicted GPR is closer to the true GPR. It also illustrates the inaccuracy of the first
measurement of the GPR. This result further supports the model’s prediction performance,
and the results of the model’s evaluation of inaccurately measured samples will be valuable
to radiation therapy physicists.

75

80

85

90

95

100

0 10 20 30 40 50 60

Predicted GPR Measured GPR Re-measured GPR

Figure 4. A comparison of the GPRs.

The model was re-trained by updating the dataset by replacing the first measured
GPR in the 63 samples with the re-measured GPR. The MAE decreased from 2.12% to 1.92%
for 2%/2 mm in the re-trained model. Figure 5b shows the predicted results of the test set.
At 2%/2 mm, the prediction errors are mostly >5%. There is a significant decrease in the
prediction error compared to the results of the first measurement in Figure 5a. In the new
dataset especially, there are almost no samples with large prediction errors. The number of
samples with prediction errors of >5% decreased from 11 to 8. The maximum prediction
error of the samples decreased from 15% to 8%. The number of samples with a deviation of
>5% both in the training set and test set decreased from 63 to 35. The number of samples
in the test set with a prediction error of >5% decreased significantly, from 52 to 27. The
tolerability and action limits for 2%/2 mm are set as 90% and 84%. Most of the predicted
GPRs are >90%, taking into account a 5% prediction error; thus, the predictions of our
model meet the action limit.

This shows that the proposed multi-branch neural network performs well. The model
predictions have low mean errors, and there are no samples with significant prediction
errors, which can assist in clinical QA in practice, hopefully optimizing the workflow of
patient-specific QA.
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(a) (b)

Figure 5. The predicted and measured GPRs. (a) (2%/2 mm); (b) Remeasured results of (2%/2 mm).

4.3. Ablation Experiment

This section explores the number of layers and neurons in the hidden layer. The exper-
iments were performed on the most important branch: FM-Net. As shown in Table 6, the
128-512-128 setting achieved the best performance.

Table 6. The setting of the hidden layers.

Hidden Layers MAE of 2%/2 mm

128-512-1024-512-128 2.31%

128-1024-256-64 2.26%

128-512-128 2.23%

128-1024-128 2.31%

64-256-64 2.25%

32-128-32 2.39%

512-64 2.28%

256-64 2.27%

Since the QA complexity metrics are distinctly different in the two categories, LM-Net
and PM-Net are designed to learn the features of the two categories, respectively, and FM-
Net is designed to learn the features of all the complexity metrics. The proposed model
can learn the features of the complexity metrics with limited samples easier and better.
Table 7 shows that the multi-branch networks outperform all single-branch networks,
which demonstrates the success of the multi-branch networks in the QA study. It is worth
noting that each branch network can predict the GPR independently, but the performance
of single-branch networks is not as good as multi-branch networks.

LM-Net and PM-Net use fewer complexity metrics for prediction and, thus, do not
perform as well as the multi-branch networks. At the same time, neither of these networks
performs as well as FM-Net. This suggests that complexity metrics are important for feature
representation, and more complexity metrics lead to better performance. The performance
of FM-Net and ONO-Net is comparable. They both take all the complexity metrics as
input, but the performance of ONO-Net is inferior to the proposed method. This is further
evidence that the proposed method can learn features to predict the GPR better than a
single network.
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Table 7. Performance of the branch networks.

Method
MAE

(2%/2 mm) (3%/2 mm) (3%/3 mm)

Our method 2.12% 1.69% 1.30%

FM-Net 2.23% 1.70% 1.32%

LM-Net 2.67% 1.72% 1.52%

PM-Net 2.36% 1.90% 1.37%

ONO-Net 2.30% 1.77% 1.30%

5. Conclusions

Patient-specific QA may lag behind treatment, and the performance of machine
learning-based QA is not sufficient to assist patient-specific QA, all of which fail to ensure
the dose delivery and safety of the patient. By analyzing the complexity metrics of the Linac
parameters and plan properties of VMAT, a real-time multi-branch network is proposed for
the QA of VMAT for multiple cancers. Our model can balance performance and efficiency,
which effectively addresses the shortcomings of poor timeliness in patient-specific QA and
the insufficient performance of machine learning-based QA. The experiments show that the
proposed method is superior to other state-of-the-art machine learning methods. Moreover,
the proposed QA model detected some samples with measurement GPR errors, which can
assist physicists in performing patient-specific QA.

Furthermore, the performance of machine learning-based QA methods is not compara-
ble to patient-specific QA, which is intended to support rather than replace patient-specific
QA. The QA model can improve the workflow of radiation therapy physicists. It can
evaluate the radiation therapy plan in real time when the plan is developed, and then
patient-specific QA can be performed in time for those with low GPRs. This workflow
ensures that all radiation therapy plans are evaluated by the QA model, and the possibility
of unqualified samples being missed is reduced while not taking up medical resources.
This is important for treatment effectiveness and patient safety.

For future research, it would be promising to extend the current work in the following
areas: (1) More complexity metrics can be mined from the VMAT radiation therapy plan
for GPR prediction. (2) It is possible to analyze the sensitivity of the complexity metrics for
the GPR predictions of different cancers. (3) The flux map reconstructed from the VMAT
plan can be used to predict the GPR when a much larger set of samples is collected.
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