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MA-DV2F: A Multi-Agent Navigation Framework
Using Dynamic Velocity Vector Field

Yining Ma , Qadeer Khan , and Daniel Cremers

Abstract—In this paper, we propose MA-DV2F: Multi-Agent
Dynamic Velocity Vector Field. It is a framework for simultaneously
controlling a group of vehicles in challenging environments. DV2F
is generated for each vehicle independently and provides a map of
reference orientation and speed that a vehicle must attain at any
point on the navigation grid such that it safely reaches its target. The
field is dynamically updated depending on the speed and proximity
of the ego-vehicle to other agents. This dynamic adaptation of
the velocity vector field allows prevention of imminent collisions.
Experimental results show that MA-DV2F outperforms concurrent
methods in terms of safety, computational efficiency and accuracy
in reaching the target when scaling to a large number of vehicles.

Index Terms—Path planning for multiple mobile robots or
agents, autonomous vehicle navigation, autonomous agents.

I. INTRODUCTION

THE task of multi-agent navigation has attracted widespread
attention in recent years due to myriad applications in areas

such as search and rescue missions [1], area exploration [2],
pickup and delivery services [3], warehouses [4], self-driving
cars [5] etc. The task of multi-agent path finding/navigation
involves simultaneously directing a group of vehicles from
their initial position to their desired destination while avoiding
collisions with other agents. The task is known to be NP-hard
even in the discrete setting [6]. An ideal algorithm must find
the optimal solution in limited time. This leads to contradictory
goals since determining the optimal solution requires searching
a larger solution space, which necessitates more time. In struc-
tured environments such as indoor spaces, prior knowledge and
understating of the layout impose constraints that can reduce the
solution search space. In unstructured environments, there are no
such constraints. This allows an algorithm the flexibility to find
a solution. However, since the search space is much larger, there
is no guarantee that the solution found is optimal. The problem
is further exacerbated when the search space is continuous and
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agents are non-holomonic vehicles. The constraints arising from
the vehicle kinematics add to the complexity.

There have been various techniques and heuristics attempt-
ing to find (near-)optimal trajectories for multiple agents. The
methods can be divided into two primary categories: 1) Learning
based data driven methods [7], [8] and 2) Search/optimization
based methods [9], [10]. Learning based algorithms involve
training a neural network on data, with the understanding that
the network will generalize at inference time. The training data
should encompass all the situations that the model is expected
to encounter at test time. This necessitates a large amount of
training samples. The greatest challenge with large training
samples is determining the corresponding supervised labels
for training; that might be too tedious to obtain. In contrast
to supervised learning, an alternate would be to train using
reinforcement learning (RL) [11], where the model explores the
environment and acquires rewards or penalties depending on the
actions taken. The model then exploits this experience to execute
the correct control actions at test time. However, RL algorithms
tend to be more sample inefficient than supervised methods.
In contrast, optimization [12] or search based [13] methods
involves simultaneously optimizing trajectories for multiple ve-
hicles. As the number of vehicles are added, the complexity of
the optimization/search becomes intractable making it infeasible
to scale to a large number of vehicles [14], [15].

In this paper, we propose Multi-Agent Dynamic Velocity
Vector Field (MA-DV2F), which generates vectors for the orien-
tation and reference speed for every vehicle on the map. The ve-
hicles then just need to follow in the direction of their respective
velocity vector fields to successfully reach their destinations.
The vector field for each vehicle is generated independently
and can be adapted dynamically depending on the vehicle’s
proximity to other agents (neighbouring vehicles or obstacles).
Decoupling reduces the complexity of adding vehicles & allows
for parallel generation of DV2F of each vehicle, thereby increas-
ing the throughput. An added benefit of our approach is that the
generated DV2F can be used to train a learning based graph-
ical neural network (GNN) in a self-supervised manner. This
self-supervised learning based approach neither requires tedious
labeling of data nor necessitates sample inefficient environment
exploration. We test our framework under challenging collision
prone environments. A scenario is regarded to be challenging
if trajectories of different vehicles considered independently
from other agents intersect at multiple places at the same time.
This would necessitate a collision avoidance maneuver for safe
navigation towards the target.
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Fig. 1. Shows the pipeline for MA-DV2F. The state of all vehicles at time
t is used to create the dynamic velocity vector field (DV2F) from which the
reference control commands are determined. These commands are, in turn, used
to determine the next state at time t+ 1 using the kinematic motion model. Note
that the reference control commands can optionally be used to train a GNN in a
self-supervised manner (indicated by dotted arrows). Meanwhile, the DV2F is
shown for the black ego-vehicle with 2 other vehicles (blue & maroon) and 2
obstacles (green & brown) in the scene. The target state for the black ego-vehicle
is shown by the dotted rectangle with a solid arrow at the top of the map. The
dotted circle around the target state is the parking region. The black arrows
indicate the ideal reference orientation as unit vectors which the ego-vehicle
should attain at each different position on the map. The colored dotted circles
around other vehicles and obstacles show the collision avoiding regions for
the black ego-vehicle. Each black arrow in these regions is composed of an
attractive target approaching component (gray arrow) and a repulsive collision
avoidance component (colored arrow). Note that due to kinematic constraints,
the reference orientation (uref ) might not be attainable for the ego-vehicle at
its existing location. The shaded wedge in front of the ego-vehicle shows the
region of reachable orientation at the next time step. The real orientation (ureal)
is therefore the physically attainable orientation by the ego-vehicle that is closest
to the reference. An example of the dynamic velocity vector field is shown in
the project page: https://yininghase.github.io/MA-DV2F/#VD. Note that DV2F
for the neighboring blue & maroon vehicles is likewise created separately (not
shown in this figure).

Fig. 1 shows the pipeline for both the MA-DV2F (left branch,
solid arrows) and optional training of the self-supervised GNN
counterpart (right branch, dotted arrows). The input is a con-
tinuous state representation of all the multiple vehicles and the
outputs are the corresponding continuous control variables. The
vehicles are non-holonomic with rotation radius determined by
the kinematic model.

We summarize the contribution of this letter as follows:
� Our proposed MA-DV2F outperforms other concurrent

learning and search based approaches for the task of multi
agent navigation in challenging, collision prone environ-
ments.

� Even the self-supervised learning based counterpart of
MA-DV2F scales better than other learning and search
based methods.

� MA-DV2F can determine the solutions orders of magni-
tude faster than other SOTA search based approaches.

� We release the complete code of MA-DV2F on the project
page here: https://yininghase.github.io/MA-DV2F/.

The project page also contains additional supplementary in-
formation, such as videos better depicting the operation of our
method in comparison with other approaches, details of the
challenging scenarios, dynamics of the velocity field at different
regions on the navigation grid, etc.

II. RELATED WORK

In [16] proposed using Artificial Potential Fields (APF) for
trajectory planning. An agent is subjected to an attractive poten-
tial force towards the target which serves as the sink and a repul-
sive potential force away from obstacles [17], [18]. However, a
common problem with such methods is their propensity to get
stuck in local minima [19], [20] when the attractive force from
the target is cancelled out by the repulsive force arising from
an another agent for e.g. when the ego-vehicle is symmetrically
aligned with other agents to the target [21] and thus leading to
a bottleneck situation. We break such bottlenecks by enforcing
the vehicles to move in the clockwise direction.

In [13] proposed a two level tree based search algorithm for
multi-agent path finding. However, the tree may grow exponen-
tially, making the search inefficient. This is because multi-agent
path planning methods on trees and graphs are known to be
NP-hard [22] since the search space grows exponentially as
the number of agents rise [13]. Nevertheless, [14] used [13] to
generate expert data for training a GNN model that can scale up
to more vehicles than trained on. [23] uses RL and proposes a
local reward function to encourage environmental exploration.
However, the need for exploration tends to make the learning
sample-inefficient [24], [25] particularly when compared with
imitation learning approaches [26]. [27] rather combines RL
for single agent path planning with imitation learning to learn
actions that can influence other agents. All approaches described
above work either on a discrete grid, discrete action space,
assume holomonic robots or their combination.

CL-MAPF [9] uses a Body Conflict Tree to describe agent
collision scenarios as spatiotemporal constraints. It then applies
a Hybrid-State A* Search algorithm to generate paths satisfying
both kinematic and spatiotemporal constraints of the vehicles.
However, under challenging test scenarios with vehicles crowd-
ing together, the algorithm takes long to search for a solution
and can easily time out. To find feasible solution for large-scale
multi-vehicle trajectory planning, CSDO [10] first searches for
a coarse initial guess using a large search step. Then, the Decen-
tralized Quadratic Programming is implemented to refine this
guess for minor collisions. GCBF+ [8] based on GCBF [7] aims
to provide safety guarantees utilizing control barrier functions
(CBF). A Graphical Neural Network is trained to learn agent
control policy.

III. FRAMEWORK

A. Problem Description

We aim to solve the task of multi-agent navigation in
unconstrained environments. Given Nveh dynamic vehicles
and Nobs static obstacles in the scene, the task is to ensure
each vehicle reaches its desired destination while avoiding
collision with other agents. The state vector for ego-vehicle i

https://yininghase.github.io/MA-DV2F/#VD
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(1 ≤ i ≤ Nveh) at current time t can be represented as s
(i)
t =

[xt, yt, θt, vt, xtar, ytar, θtar]
T , where xt and yt shows the po-

sition, θt, the orientation and vt the speed at current time t.
Meanwhile, xtar and ytar are co-ordinates of the target position,
and θtar is the target orientation. Each ego-vehicle is controlled
by a control vector c(iveh)

t = [pt, ϕt]
T , where pt ∈ [−P, P ] and

ϕt ∈ [−Φ,Φ] are the pedal acceleration and steering angle,
limited in magnitude by P and Φ respectively. The obstacle k
(1 ≤ k ≤ Nobs) is represented by a state vector sk = [x, y, r]T ,
where x and y is the position, and r is the radius of the circle
circumscribing all vertices of the obstacle. The kinematics of
the vehicles are modeled using the bicycle model [28].

xt+1 = xt + vt · cos(θt) ·Δt

yt+1 = yt + vt · sin(θt) ·Δt

θt+1 = θt + vt · tan(ϕt) · γ ·Δt

vt+1 = β · vt + pt ·Δt (1)

It describes how the equations of motion can be updated in
time increments of Δt assuming no slip condition, valid under
low or moderate vehicle speed v when making turns. Note
that β and γ are the tuneable hyper-parameters modeling the
environment friction and vehicle wheelbase, respectively.

We create a velocity vector field for each vehicle, which
in turn can dynamically generate reference control variables.
Generation of the velocity field can be divided into two stages:
� Estimation of reference orientation of ego-vehicle for every

position in the map (See Subsection III-B).
� Estimation of reference speed for the corresponding posi-

tions. (See Subsection III-C).
The orientation that a vehicle should possess at any position

on the map is referred to as the Reference Orientation and is
represented as a unit vector. The black arrows in Fig. 1 show
the reference orientation for the black ego vehicle at different
positions in the map. It can be seen that the arrows attract the
ego-vehicle towards its target while repelling it away from the
other vehicles and obstacles. Note that the current orientation
of the ego-vehicle is not aligned with the reference orientation
at its existing position. Therefore, we ought to find the control
variables that align the ego-vehicle with the reference orienta-
tion. Apart from the reference orientation at each position in the
map, the ego-vehicle also has a reference speed which should
be attained by the control variables. Lastly, note that apart from
the black vehicle, a separate reference orientation map is also
created for the blue and maroon vehicles present in Fig. 1 (not
shown in the figure).

Hence, our task of multi-agent navigation simplifies to finding
the reference orientation maps and corresponding reference
speed for each vehicle independently. In the subsequent sub-
sections, we describe how the reference orientation and speed
are estimated.

B. Estimation of Reference Orientation

We first define some frequently used functions and vectors
before we begin discussion of reference orientation estimation.

The vector function funi(a) is the function which takes a non-
zero vector a as input and divides by its magnitude to convert it
into a unit vector.

Other scalar functions include fsgn(a) and fpos(a) which
both output 1 if the scalar input a is positive. However, fsgn(a)
outputs −1, while fpos(a) outputs 0 when a is negative. We

now define the vector from the next position (x
(i)
t+1, y

(i)
t+1) of ego

vehicle i to
� its target position (x

(i)
tar, y

(i)
tar) as X

(i)
tar = [x

(i)
tar −

x
(i)
t+1, y

(i)
tar − y

(i)
t+1]

T

� the position (x(k)
obs, y

(k)
obs) of the static obstacle k asX(i)

obsk
=

[x
(k)
obs − x

(i)
t+1, y

(k)
obs − y

(i)
t+1]

T

� next position (x
(j)
t+1, y

(j)
t+1) of another vehicle j as X(i)

vehj
=

[x
(j)
t+1 − x

(i)
t+1, y

(j)
t+1 − y

(i)
t+1]

T

The unit vector along the Z-axis is Z = [0, 0, 1]T , while
the unit orientation vector of the ego vehicle at the current
and target states is given by U

(i)
t = [cos(θ

(i)
t ), sin(θ

(i)
t )]T and

U
(i)
tar = [cos(θ

(i)
tar), sin(θ

(i)
tar)]

T respectively.
For the ego vehicle i, the target reaching component of the

reference orientation u
(i)
tar is defined as:

u
(i)
tar =

{
funi(X

(i)
tar) · ξ(i)tar ‖X(i)

tar‖2 > rp

funi(U
(i)
tar + λ

(i)
tar · funi(X(i)

tar)) otherwise

λ
(i)
tar=

(
‖X(i)

tar‖2
rp

+fpos(‖X(i)
tar‖2−εp)

)
· fsgn

(
X

(i)
tar

T ·U(i)
tar

)

ξ
(i)
tar =

{
1 ‖X(i)

tar‖2 ≥ 0.5 · v2d + rp

fsgn(X
(i)
tar

T ·U(i)
t ) otherwise

(2)

where rp is the parking threshold (black dotted circle in Fig. 1)
and 0.5 · v2d is the marginal parking threshold (shaded blue
region in Fig. 1). vd is the default reference speed, estimation
of which is explained in Subsection III-C. εp is the threshold
above which an additional term is introduced when the vehicle
is within the parking threshold.

Equation (2) shows that when the ego-vehicle i is far away
from the parking threshold, the reference orientation is in the
direction of X(i)

tar. However, as the ego-vehicle approaches the
target and the velocity is high, then the vehicle might overshoot
the target and enter the shaded marginal parking threshold re-
gion. In this case, the direction of the orientation is flipped using

fsgn(X
(i)
tar

T
.U

(i)
t ). This is to prevent the vehicle from moving in

circles. A detailed explanation of this is given in the supplemen-
tary file on the project page: https://yininghase.github.io/MA-
DV2F/supplementary.pdf.

Equation (2) also shows for the condition when the distance
‖X(i)

tar‖2 falls below the parking threshold rp, and is closer
to the target. The ego vehicle should be guided to not only
reach the position of the target (X(i)

tar = 0) but also be aligned
with the target orientation (U(i)

tar = U
(i)
t ). The balancing act

between these two conditions is handled by the λ
(i)
tar term in

(2). Like previously, fsgn(X
(i)
tar

T ·U(i)
tar) in λ

(i)
tar makes sure

the reference and target orientations are in the same directions

https://yininghase.github.io/MA-DV2F/supplementary.pdf
https://yininghase.github.io/MA-DV2F/supplementary.pdf
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when parking. The fpos(‖X(i)
tar‖2 − εp) term in λ

(i)
tar is designed

to expedite the parking behavior when the vehicle position is
exactly on the left or the right side of the target and the vehicle
orientation is parallel to the target orientation.

Besides reaching the target, the ego vehicle i should also
avoid collision on its way to the target. This is realized by the
collision avoiding componentu(i)

coll which comprises of collision
avoidance between the ego vehicle i and either static obstacle k
(u(i)

obsk
) or with another vehicle j (u(i)

vehj
).

The equation for determining (u(i)
obsk

) is given by:

u
(i)
obsk

=

{
funi(X

(i)
obsk

) · α(i)
obsk

+R
(i)
obsk

· β(i)
obsk

α
(i)
obsk

≤ 0

0 otherwise

α
(i)
obsk

= ‖X(i)
obsk

‖2 − r
(k)
obs − rveh − (rc + |v(i)t |)

β
(i)
obsk

= fpos(X
(i)
tar

T ·X(i)
obsk

) · (‖X(i)
obsk

‖2 − r
(k)
obs)

R
(i)
obsk

= funi(Z×X
(i)
obsk

) (3)

where r
(k)
obs is the radius of the static obstacle k, rveh is the

radius of the smallest circle enclosing the ego-vehicles, rc is
the static component, while |v(i)t | is the speed-based dynamic
safety margin for collision avoidance between ego vehicle i and
obstacle k. Higher the vehicle speed |v(i)t |, larger is this margin
rc + |v(i)t |. When the distance between the ego vehicle i and
static object k (‖X(i)

obsk
‖2 − r

(k)
obs − rveh) is below the collision

avoidance margin rc + |v(i)t |, then α
(i)
obsk

≤ 0, and the reference
orientation is modified to prevent collision with the static ob-
stacle. Under this condition, the first term funi(X

(i)
obsk

) · α(i)
obsk

will guide the vehicle to drive away from the static obstacle.
However, driving away is not enough as this might cause a
bottleneck in cases where the obstacle is symmetrically collinear
between the ego-vehicle and its target. We would additionally
like the ego-vehicle to drive around the obstacle to reach the
target for which the term R

(i)
obsk

· β(i)
obsk

is relevant. If the ego-

vehicle is between the obstacle and target then β
(i)
obsk

= 0 (since

fpos(X
(i)
tar

T ·X(i)
obsk

) = 0) and hence there is no need for the
vehicle to drive around the obstacle. However, if that is not the
case, then an additional component is added whose direction is
given byR(i)

obsk
and magnitude (β(i)

obsk
) is proportional to how far

the vehicle is away from the obstacle. R(i)
obsk

is given as the cross

product between Z and X
(i)
obsk

with a zero being appended to the

third dimension of X(i)
obsk

which originally lies in the 2D space.
The vector resulting from the cross-product is perpendicular
to X

(i)
obsk

which causes the vehicles to move in the clockwise
direction around the obstacle as shown in Fig. 2.

Likewise, the component for avoiding collision between the
ego vehicle i and another vehicle j (u(i)

vehj
) is similar to (3)

except that the static obstacle radius r
(k)
obs will be replaced by

the other vehicle’s radius rveh in the α
(i)
vehj

term. Secondly, the

Fig. 2. Shows the constituents of the reference orientation vectoruref near an
obstacle. It comprises of a target approaching (utar) and the collision avoiding

(uobsk ) components. uobsk includes vn = funi(X
(i)
obsk

) · α(i)
obsk

guiding the

vehicle to drive away from the obstacle and vt = R
(i)
obsk

· β(i)
obsk

leading the
vehicle to go around the obstacle. When the ego-vehicle is between the obstacle
and target, it is not necessary for it to go around the obstacle and thus vt = 0.
The formulation to calculate uobsk is described in (3).

speed based dynamic margin is |v(j)t |+ |v(i)t | rather than just
|v(i)t |.

The overall collision avoiding component u(i)
coll is given by:

u
(i)
coll =

Nobs∑
k=1

u
(i)
obsk

+

Nveh∑
j=1,j �=i

u
(i)
vehj

(4)

Finally, the ideal reference orientation vector û(i)
t+1 (uref in

Fig. 1) is:

û
(i)
t+1 = funi(u

(i)
tar + u

(i)
coll) (5)

From this, the corresponding ideal reference orientation angle
θ̂
(i)
t+1 for ego vehicle i can be calculated by applying arctan2 to

û
(i)
t+1. However, kinematic constraints arising from the motion

model ( (1)) may prevent the vehicle from immediately attaining
the ideal reference orientation θ̂

(i)
t+1 in the next time step. There-

fore, we instead use θ
(i)
t+1 referred to as the real orientation.

It is the reachable orientation closest to θ̂
(i)
t+1. The unit vector

corresponding to this real reference orientation angle θ
(i)
t+1 for

ego vehicle i isu(i)
t+1 (ureal in Fig. 1)= [cos(θ

(i)
t+1), sin(θ

(i)
t+1)]

T .

C. Estimation of Reference Speed

The reference speed v
(i)
t+1 is chosen after determination of

the reference orientation, which depends on the situation the
vehicle is in. Fig. 3 shows a scenario wherein a vehicle is at the
same location next to an obstacle but with opposite orientations.
This determines if the velocity should move the car forward or
backward.

We use the logical or (∨) and logical and (∧) operators [29] to
describe the criteria for collision avoidance between ego vehicle
i and static obstacle k under such situations as:

F
(i)
obsk

= (α
(i)
obsk

+ εc ≤ 0) ∧ (γ
(i)
obsk

> 0)

B
(i)
obsk

= (α
(i)
obsk

+ εc ≤ 0) ∧ (γ
(i)
obsk

< 0)

γ
(i)
obsk

= u
(i)
t+1

T ·X(i)
obsk

(6)
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Fig. 3. Shows two different scenarios when the black ego vehicle is in a
collision avoiding region. In (a), the ego vehicle is facing the obstacle, i.e.
uT ·Xobs > 0, in which case the vehicle should be forbidden to move forwards.
In (b), the ego vehicle is oriented away from the obstacle, i.e. uT ·Xobs < 0,
in which case the vehicle should be prevented from moving backward.

where α
(i)
obsk

is the same as defined in (3), εc is an additional

tolerance for the collision checking region. F
(i)
obsk

equalling
true indicates the ego vehicle i is forbidden to drive forward
towards obstacle k. This happens when the angle between
the reference orientation (u(i)

t+1) and the vector from the ego

vehicle to the obstacle (X(i)
obsk

) is less than 90◦ i.e. γ(i)
obsk

=

u
(i)
t+1

T ·X(i)
obsk

> 0. Likewise, B
(i)
obsk

equaling true happens

whenγ(i)
obsk

= u
(i)
t+1

T ·X(i)
obsk

< 0 indicating that the ego vehicle
i is forbidden to drive backward.

Similarly for the case of ego vehicle i and another vehicle
j, the conditions for preventing the ego-vehicle from moving
forward F

(i)
vehj

or backward B
(i)
vehj

are the same as described in

(6) except that X(i)
vehj

replaces X(i)
obsk

.
Summarising the results above, the magnitude and sign of the

velocity depends on the combination of these boolean variables
i.e. F (i)

obsk
, F (i)

vehj
, B

(i)
obsk

and B
(i)
vehj

as follows:

F
(i)
coll =

(
Nobs∨
k=1

F
(i)
obsk

)
∨ (

Nveh∨
j=1,j �=i

F
(i)
vehj

)

B
(i)
coll =

(
Nobs∨
k=1

B
(i)
obsk

)
∨ (

Nveh∨
j=1,j �=i

B
(i)
vehj

)

v
(i)
coll =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vd B
(i)
coll ∧ (¬F (i)

coll)

−vd (¬B(i)
coll) ∧ F

(i)
coll

0 B
(i)
coll ∧ F

(i)
coll

v
(i)
tar otherwise

(7)

The first 3 conditions check whether or not there is a potential for
collision. The velocity is+vd, when the ego-vehicle is prevented
from moving backwards (B(i)

coll) but allowed to move forward

(¬F (i)
coll) and−vd when vice versa. The reference velocity is zero

when the ego-vehicle is prevented from moving both forward
(F (i)

coll) and backward (B(i)
coll). In all other cases, the velocity is

v
(i)
tar defined as:

v
(i)
tar =

{
ξ
(i)
p · λ(i)

p · vd ‖X(i)
tar‖2 ≤ rp

vd · fsgn(u(i)
t+1

T · û(i)
t+1) otherwise

λ(i)
p =

{
λ̄
(i)
p (‖X(i)

tar‖2 < εp) ∧ (|θ(i)tar − θ
(i)
t+1| < εo)√

λ̄
(i)
p otherwise

λ̄(i)
p = minimum

(
‖X(i)

tar‖2
rp

+
|θ(i)tar − θ

(i)
t+1|

vd
, 1

)

ξ(i)p =

⎧⎪⎪⎨
⎪⎪⎩
1 u

(i)
t+1

T ·X(i)
tar > 0.25

−1 u
(i)
t+1

T ·X(i)
tar < −0.25

fsgn(u
(i)
t ) otherwise

(8)

Where εp and εo are the acceptable position and orientation
tolerances for deciding to stop the vehicle at the target. When the
ego vehicle is within the parking radius, it reduces its speed as it
gets closer to the target position and orientation. This is achieved
by the multiplier λ

(i)
p , which is proportional to λ̄

(i)
p when the

vehicle state is very close to the target state and
√

λ̄
(i)
p when

farther away from the tolerance. The square root accelerates the
vehicle approaching its target when there is still some distance
between the current state and target state, i.e. ¬((‖X(i)

tar‖2 <

εp) ∧ (|θ(i)tar − θ
(i)
t+1| < εo)). When the vehicle is very close to

the target state, i.e. (‖X(i)
tar‖2 < εp) ∧ (|θ(i)tar − θ

(i)
t+1| < εo), the

ratio λ̄
(i)
p prevents the vehicle from shaking forward and back-

ward. For λ̄
(i)
p , the first term: 1

rp
· ‖X(i)

tar‖2, decreases linearly
with the ego vehicle distance to its target, and the second term,
i.e. 1

vd
· |θ(i)tar − θ

(i)
t+1|, reduces linearly with the angle difference

between the reference θ
(i)
t+1 and target θ(i)tar orientation angles.

However, we do not allow the reference parking speed v
(i)
tar

to be any higher than the default reference speed vd. So, λ̄
(i)
p

is clipped to a maximum of 1. ξ(i)p controls whether the ego

vehicle moves forward or backward by checking u
(i)
t+1

T ·X(i)
tar.

Originally, the vehicle should move forward when facing the

target, i.e.u(i)
t+1

T ·X(i)
tar > 0, and move backward when backing

towards the target, i.e. u(i)
t+1

T ·X(i)
tar < 0. However, to prevent

the vehicle from changing direction at high frequency within
short traveling distances, we set a margin allowing the vehicle

to keep its previous direction when |u(i)
t+1

T ·X(i)
tar| ≤ 0.25.

When the ego vehicle i is out of the parking area of radius rp,

the reference speed v
(i)
t+1 takes the forn vd · fsgn(u(i)

t+1

T · û(i)
t+1),

where the reference speed v
(i)
t+1 takes the default value vd, but

changes to negative, i.e. −vd, when u
(i)
t+1

T · û(i)
t+1 < 0.

The final ideal reference speed v̂
(i)
t+1 for ego vehicle i is:

v̂
(i)
t+1 = v

(i)
coll (9)

Similar to the reference orientation, the ideal reference speed
v̂
(i)
t+1 may not be achievable due to the limitation of the maximum

pedal command. The real reference speed v
(i)
t+1 is therefore the

reachable speed value closest to v̂
(i)
t+1.
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TABLE I
SHOWS THE SUCCESS RATE METRIC (HIGHER IS BETTER) FOR DIFFERENT MODELS, I.E. OUR MA-DV2F, OUR SELF-SUPERVISED GNN MODEL, CSDO [10],

CL-MAPF [9], GCBF+ [8] AND THE SUPERVISED GNN MODEL [12]

Calculation of Reference Steering Angle and Reference Pedal:
Given the reference orientation and velocity, the Vehicle Kine-
matic (1) can be inverted to determine the reference steering
angle ϕ(i)

t and pedal acceleration p
(i)
t for controlling the vehicle

at time t :

ϕ
(i)
t = arctan2

(
(θ

(i)
t+1 − θ

(i)
t )

v
(i)
t · γ ·Δt

)

p
(i)
t =

v
(i)
t+1 − β · v(i)t

Δt
(10)

These reference control commands can either be directly used
to control the vehicles or as labels for training the GNN model
in a self-supervised manner using the architecture of [12].

IV. EXPERIMENTS

A. Algorithm Evaluation

To assess the performance of our MA-DV2F approach and
its learning based counterpart (self-supervised GNN model),
we compare with other recent learning and search/optimization
based algorithms in challenging, collision prone test cases. The
recent learning based approaches include [12] which is a GNN
model trained in a supervised manner and an extension of [7] i.e.
GCBF+ [8], also a GNN model incorporating safety constraints
using Control Barrier Functions (CBF). Meanwhile, the two
search/optimization based algorithms used for comparison in-
clude CL-MAPF [9] and CSDO [10]. The test dataset comprises
of challenging, collision prone scenarios with the number of
vehicles ranging from 10 to 50 and static obstacles chosen
between 0 and 25. Note that all the static obstacles in the test
cases are fixed to be circles with fixed radii because of the
limitation of the CL-MAPF and CSDO environment setting and
because it circumscribes an obstacle of arbitrary shape, allowing
for safer behaviour. For the GCBF+, we use the DubinsCar
model because it has vehicle kinematics that are most similar
to ours. As GCBF+ has an entirely different working domain
with different map and agent sizes, we scale our test cases when
running GCBF+ under the rule that the ratio of the map to agent

size remains equal across all the algorithms. Details regarding
the generation of test samples are given in the supplementary
file on the project page.

Table I shows the evaluation results of the different meth-
ods across the various vehicle-obstacle combinations described
earlier against the success rate metric [8]. It measures the per-
centage of vehicles that successfully reach their targets within a
tolerance without colliding with other objects along the way. The
results show that our MA-DV2F outperforms other algorithms
achieving almost 100% success rate across all vehicle-obstacle
combinations. Even the self-supervised GNN model performs
far better than other algorithms when scaling the number of
vehicles. Only the CSDO algorithm has slightly better results
than our GNN model when the number of agents is low (20).
However, CSDO’s performance drops drastically as the number
of agents are increased under these challenging conditions.
Note that the GCBF+ pipeline only checks whether the agents
reach their target positions but ignores the target orientations
as shown in the project page: https://yininghase.github.io/MA-
DV2F/#MC which explains why it has such poor performance.
Therefore, we additionally evaluate GCBF+ by ignoring the
orientation and only considering the position. Results of which
are shown in the second last column. Even then, the GCBF+,
does not match the performance of MA-DV2F.

B. Discussion

Investigating failure Causes: Note that the Success rate metric
measures a model’s ability to not only reach its destination but
also avoid collisions. Therefore, for challenging test cases, a
navigation algorithm may fail due to two main reasons: the
algorithms behave too aggressively by driving the vehicles to
their targets, albeit at the cost of colliding with other agents or
behaves too conservatively to ensure safety of the vehicles re-
sulting in some vehicles getting stuck mid-way without reaching
their targets. Therefore, to disambiguate between the two causes,
we additionally evaluate all algorithms against the Reach rate
and Safe rate metrics as proposed in [8]. Reach rate measures the
percentage of vehicles that reach their targets within a tolerance

https://yininghase.github.io/MA-DV2F/#MC
https://yininghase.github.io/MA-DV2F/#MC
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Fig. 4. Shows the Safe and Reach rate metrics (Higher is better) for the different models, i.e. our MA-DV2F, our self-supervised GNN model, supervised GNN
model [12], CSDO [10], CL-MAPF [9] and GCBF+ [8].

disregarding any collisions along the way. Meanwhile, the Safe
rate calculates the percentage of vehicles that do not collide with
any other agents irrespective of whether or not they reach their
targets. Fig. 4 shows the performance of the different methods
against the Reach Rate and Safe Rate metrics. It can be seen that
the supervised GNN model behaves rather aggressively reaching
the target in majority of the cases albeit at the cost of multiple
collisions leading to high Reach but low Safe rates. In contrast,
CL-MAPF [9] takes a greedy strategy in its optimization/search
pipeline. It can quickly find the path for some vehicles which are
easy to plan. But then it is unable to find paths for other vehicles
and gets stuck in this partial solution. This greedy strategy lead
to a low reach rate, but high safe rate since no collisions happen
among vehicles that do not move.

GCBF+ has a higher safe rate than reach rate. This is not
because the vehicles fail to reach their target, but rather be-
cause they reach the target at an incorrect orientation. This
is aligned with the intuition described in Section IV-A and is
further corroborated by the fact that when orientation is ignored
in the evaluation and only position is considered, the reach
rate jumps drastically. Nevertheless, it is still much lower than
both our MA-DV2F and its GNN self-supervised counterpart.
They are the only 2 methods that maintain a consistently high
performance against both metrics across all vehicle-obstacle
combinations.

Preventing Bottlenecks: A common problem with other plan-
ning algorithms is that vehicles tend to crowd within a small
sub-region in the map. This leads to these algorithms either being
unable to find an optimal path, resulting in all vehicles becoming
stationary at their place (low reach rate), or finding sub-optimal
paths, resulting in more collisions among vehicles (low safe
rate). To prevent such bottlenecks in our MA-DV2F model, (3)
causes all the vehicles to drive in the clockwise direction when
encountering other agents. This leads to a roundabout driving
behavior which breaks the bottleneck and can be visualized on
the project page: https://yininghase.github.io/MA-DV2F/#RE.
Due to this, the vehicles are capable of eventually reaching their
targets,by making a detour around the other agents, resulting in
both a high Reach and Safe rate. Our trained GNN model also
adapts this behaviour.

Intermediate Success Rate: One might wonder if the MA-
DV2F method outperforms every other method, what is the
advantage of its self-supervised GNN model counterpart? One
reason is that MA-DV2F behaves conservatively in some simple
test cases even though there is no collision risk nearby, causing

TABLE II
SHOWS THE TOTAL RUNTIME IN SECONDS (LOWER IS BETTER) FOR THE 1000

TEST CASES FOR EACH VEHICLE-OBSTALCE COMBINATION OF THE DIFFERENT

MODELS, I.E. OUR MA-DV2F, CSDO [10] AND CL-MAPF [9]

the vehicles to take a longer time to finish the journey. This
is because the speed is limited to vd. On the other hand, the
self-supervised GNN counterpart is free from this restriction. It
can move faster when it is far away from its target, and there is
less risk of collision with other objects. The figures on the project
page: https://yininghase.github.io/MA-DV2F/#ISR show the
difference in the success rate between the self-supervised GNN
model and MA-DV2F as a function of time. At the beginning,
when the vehicles tend to be far away from their targets, the GNN
allows high velocity for vehicles, thereby causing some vehicles
to reach their target faster leading to a success rate greater than
that for MA-DV2F. This can also seen in the example on the
project page: https://yininghase.github.io/MA-DV2F/#MC, the
vehicles driven by a GNN can drive faster towards the targets
than that by MA-DV2F. However, maintaining a high velocity
also leads to a higher risk of collision when encountering chal-
lenging situations as time progresses and the success rate of
MA-DV2F will gradually catch up and eventually exceed the
GNN.

Runtime Analysis: We compare the runtime of MA-DV2F
with concurrent search based methods (CSDO and CL-MAPF).
TABLE II shows the total runtime of all the 1000 test cases for
each vehicle-obstalce combinations. All methods were evaluated
on a machine with an Intel Core i7-10750H CPU and GeForce
RTX 2070 GPU. As can be seen, our MA-DV2F, is orders of
magnitude faster than its peers, since it has the ability to run the
different scenarios within a batch in parallel. Meanwhile, CSDO
and CL-MAPF are search/optimization-based algorithms that
need to solve each test case one-by-one. Note that CL-MAPF

https://yininghase.github.io/MA-DV2F/#RE
https://yininghase.github.io/MA-DV2F/#ISR
https://yininghase.github.io/MA-DV2F/#MC
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would continue its search until a solution is found, which is why
the maximum allowed runtime needs to be clipped, otherwise
the runtime would be even larger. Note that the evaluations in
the experiments were done for only up to 50 vehicles since
other algorithms are either extremely slow or have drastically
reduced performance when scaling. However, our method is
capable of scaling to a far greater number of vehicles than
just 50, as can be observed on the project page for scenarios
with 100, 125 and 250 vehicle-obstacle combinations: https:
//yininghase.github.io/MA-DV2F/#LE.

Lastly, note that the runtime analysis is not done for the learn-
ing based methods since, it is dependent on the GPU rather than
the algorithm itself. Therefore, for the same model architecture,
the runtime will be the same for all learning based algorithms.

Limitations: If the vehicles are densely packed or their targets
are within the safety margins of one another, then due to their
non-holonomic behavior there might not be enough space for
them to navigate without risking a collision. In such a scenario,
the vehicles will act conservatively and hesitate to proceed so
as to avoid collisions, leading to fewer vehicles reaching the
target. A similar outcome is observed, if some vehicles start
behaving unexpectedly, wherein the safety margin would need to
be increased to mitigate the risk of collision, albeit at the expense
of reaching the target. More details on sensitivity analysis of the
effect of change in the static component of the safety margin (rc)
and visualization of the limitations are in the supplementary file
and the project page.

V. CONCLUSION

This work introduced MA-DV2F, an efficient algorithm for
multi-vehicle navigation using dynamic velocity vector fields.
Experimental results showed that our approach seamlessly
scales with the number of vehicles. When compared with other
concurrent learning and search based methods, MA-DV2F has
a higher success rate, lower collision metrics and higher com-
putational efficiency.
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