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Abstract

Kuramoto network as a representative of collective dynamics presents a challenging
control task of affecting the synchronization of the interacting oscillators. As the
dynamics become harder to estimate, making use of a learned model for controlling
purposes is difficult. Learning through interactions with the environment enhanced
by model-based reinforcement learning (MBRL) algorithms can alleviate the lack
of sample efficiency involved with model-free reinforcement learning (MFRL)
methods. Given prior knowledge of the underlying dynamics of the system, physics-
informed MBRL can achieve even higher efficiency. In this study, we compare the
performance of physics-informed MBRL, MBRL, and MFRL in synchronizing the
Kuramoto network. We assess the scalability of these three reinforcement learning
methods in a naturally chaotic or unsynchronized network.

1 Introduction

Control of a complex system of collective dynamics is often challenging, partly due to the difficulty
and uncertainty involved in estimating the underlying dynamics. The model-free reinforcement
learning (MFRL) methods happen to be successful in such applications but at the expense of poor
sample efficiency. In fields like neuronal control where data collection is expensive, model-based
reinforcement learning (MBRL) algorithms can be a compromise between sample efficiency and the
collected rewards. Dyna-style MBRL [1] introduces the physics-informed framework [2] to reduce
the gap between MBRL and MFRL. This physics-informed notion can be extended to many other
established MBRL frameworks [3] which involve planning over a learned model of the environment
that assists the learning process of optimal policy. In this work, we compared the performance
of physics-informed MBRL (PiMBRL) with the MBRL and MFRL in synchronizing a system of
oscillators, Kuramoto network [4]. Since the oscillators of Kuramoto network continuously interacts
with each other, introducing synchronization in a naturally chaotic or unsynchronized network
seems to be a challenging control task. The same control signals may push one oscillator towards
synchronization while perturbing the harmony among others.

Our works are summarized as –

• We compared three RL approaches – MFRL, MBRL, and PiMBRL– in the task of increasing
synchronization of an unsynchronized Kuramoto network.

• We performed experiments with two networks of different sizes to assess the robustness of
these three approaches to the complexity of the system.

∗These authors contributed equally to this work.
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2 Problem Formulation

2.1 Kuramoto Model

A Kuramoto network of N oscillators can be represented by a system of coupled differential Equa-
tion (1). The interaction strength or coupling coefficients (K) between each pair of oscillators,
number of oscillators (N ), and the adjacency matrix A regulate the synchronization dynamics of
{θi} of this system.

dθi(t)

dt
= ωi +

K

N

N∑
j=1

Ai,j sin(θj(t)− θi(t)), i = 1, 2, · · · , N (1)

2.2 Enhancement of Synchronization as a Reinforcement Problem

In a Kuramoto network, the intrinsic frequencies ωi of each oscillator push them toward independent
oscillations. A smaller value for the coupling coefficient, K thus makes the whole system unsynchro-
nized. To synchronize in such a weakly coupled unsynchronized system, we need to introduce control
signals [5] that modify the phases of the oscillators in such a way that the whole system synchronizes.

Environment M({ωi} ,K,A)

State stk :=

[
{ϕi(tk−1)}{

θi(tk−1+j/Ns
)
}
j=1,··· ,Ns

]
Action atk := [{ϕi(tk)}]
Reward rtk := R ({θi(tk+1)})

Table 1: Problem formulation.

Gjata et al. [6] applied Hamiltonian con-
trol theory for desynchronizing a synchro-
nized Kuramoto network. In their ap-
proach, the goal is to introduce perturba-
tion signal ϕi(t) to each oscillator to dis-
rupt the synchronized interaction of the
network. We utilize their derived under-
lying system Equation (2) to increase the
degree of synchronization.

dθi(t)

dt
= ωi +

K

N

N∑
j=1

Ai,j sin(θj(t)− θi(t)) +
dϕi(t)

dt
, i = 1, 2, · · · , N (2)

Equation 2 dictates how the network will respond to the introduction of the control signals {ϕi}. The
details of the simulation of this environment, M({ωi} ,K,A) are discussed in Appendix A.2.

At a certain time point tk, the environment has knowledge about a set of angular positions,
{θi(tk)}, and immediate past control signal {ϕi(tk−1)}. When the learner takes action {ϕi(tk)},
M({ωi} ,K,A) moves to a new set of {θi(tk+1)} and the learner gets the reward rtk =
R({θi(tk+1)}). R(·) needs to have a higher value when the network becomes more synchronized,
and the order parameter (equation 3) of the Kuramoto model is a natural candidate for this.

R := R({θj}) =
1

N

∣∣∣∣∣∣
N∑
j=1

eiθj

∣∣∣∣∣∣ ∈ [0, 1] (3)

To formulate the control problem in a reinforcement learning framework, we treat it as a continu-
ing task[7]. Thus, the agent’s goal is to learn some policy πθ to maximize the discounted reward∑∞

k=0 γ
tkrtk . In our work, we consider {tk} are evenly spaced within [0, T ], where T is the maxi-

mum duration of the task. Here θ represents the learnable parameters of the policy (actor) network.
To take an action {ϕi(tk)}, we allow the policy network to utilize

{
θi(tk−1+j/Ns

)
}
j=1,··· ,Ns

along
with past action, {ϕi(tk−1)}. Ns is the length of angular states, i.e. the number of immediate
oscillator phases including {θi(tk)}. So the state representation for our problem is the concatenation
of Ns ×N oscillator phases and N previous control actions. We restrict the spaces of {θi} to [0, 2π]
and {ϕi} to [0, π]. The latter choice is made to facilitate the learning process of the actor-critic-based
learning algorithm we used in our work. Table 1 shows the summary of the RL problem formulation.

3 Methodology

We consider a Kuramoto network with N oscillator, with a very low coupling coefficient, K which
causes lower synchronicity among oscillators. To learn the optimal control policy for increasing
synchronization, we pursue the model free and model based learning algorithms.
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3.1 Model Free Reinforcement Learning (MFRL)

As a baseline approach, we have considered the twin delayed DDPG (TD3)[8] for policy optimization
with the usage of sin instead of tanh activation function at the output layer of the actor network.
With tanh, the predicted action values were often close to the maximum or minimum limit of action
values resulting in no improvement to the uncontrolled scenario.

3.2 Model-based Reinforcement Learning (MBRL)

Model-based approach tries to reduce the number of interactions between the agent and the environ-
ment, using a simulator or fictitious environment. In our work, we apply the TD3 algorithm through
interactions with the environment and we use those interactions data from the “real” replay buffer to
learn the underlying model of the environment. Specifically, the environment of Kuramoto network,
M({ωi} ,K,A) is modeled as MF ({ω̂i} , K̂, Â), where ω̂i, K̂, Â are learned by minimizing the
data loss, LD = 1

nb
∥st+1 − ŝt+1∥2, between predicted and true next state for batches of transition

pair (st,at, st+1, rt) from real replay buffer, Dr. ŝt+1 is the next state prediction when we initialize
the state of MF ({ω̂i} , K̂, Â) as st and apply at on this model of the environment. Once we have
very small data loss, we use the learned model, MF as a parallel source of interaction data along
with the real environment. For one interaction with the real environment, we perform rM steps in the
simulator MF . Data collected from the latter interactions are stored in another experience replay
buffer, Df . Since samples in Df are collected in a parallel manner, the policy optimization has
the opportunity of seeing a large amount of data with a lower number of interactions with the real
environment. Faster convergence to the optimal policy is expected as long as the learned model MF

is reliable. Algorithm 1 shows the pseudocode for model based learning used in our work.

3.3 Physics-informed Model-based Reinforcement Learning (PiMBRL)

Using a simulator can hinder the agent’s learning by introducing modeling errors that mislead the pol-
icy optimization with inconsistent environmental behavior. To incorporate the prior knowledge about

the environment into the modeling of the simulator, we add another loss, Lr = 1
nb

∥∥∥ṡt+1 − dŝt+1

dt

∥∥∥2
which is the residual loss between the true gradients and the estimated gradients for the states. The
true gradients ṡt+1 is collected along with (st,at, st+1, rt). In Algorithm 1 these additional infor-
mation is included in dt+1. The predicted gradients are obtained through the simulator, MF . The
objective is to minimize the total loss of 2LD + 5Lr. The relative weight between the residual loss
and data loss is chosen from the common practice of physics-informed neural network (PINN)[2].
When both LD and Lr are decreased beyond a very small threshold (λ), we begin collecting the data
from the learned model, MF . The rest of the framework is the same as the vanilla MBRL.

4 Results

For a fully connected N oscillators system, we initialize the M({ωi} ,K,A) with evenly spaced
intrinsic frequencies and choose a very small value for K, so that M has a lower degree of synchro-
nization without any external control signals. We considered Kuramoto networks with N = 5, 10.

4.1 Enhancement of Sample Efficiency

To see whether the physics prior helps the PiMBRL over MBRL, we first use N = 5 oscillators. In
the first 2000 training steps, we select actions by taking random samples uniformly within [0, π].
Following this exploration policy, we begin executing actions according to the actor network of
TD3 algorithm. For all three approaches, the agents are trained for 50000 iterations. In every
500th training iteration, the RL agents are evaluated by collecting the average reward obtained over
neval = 5000 steps in a separate environment. Figure 1 shows the smoothed evaluation reward for
three approaches with different values of fictitious to real data usage ratio, rM . In all values of rM ,
the two model-based approaches show faster convergence to higher evaluation rewards. If we look
closely towards the early steps, physics-informed model-based reinforcement learning shows slightly
faster improvement compared to the vanilla MBRL. This is most prominent for rM = 20. However,
MBRL quickly closes the gap in this smaller network of 5 oscillators.
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Figure 1: Evaluation reward for rM = 5, 10, 20, 50 for 5 oscillator system. During the training of the
agent, in every 500th iterations the learned agent is applied to the environment, and the average of
cumulative undiscounted rewards is shown here as the average reward.

4.2 Impact of Larger Network

Figure 2: Evaluation reward for rM = 5, 10, 20, 30 for 10 oscillator system.

Figure 3: The reward for uncon-
trolled networks with N = 5, 10

As we increase the size of the network to N = 10, the dynam-
ics of the Kuramoto network become more involved. Figure
3 shows the reward, i.e. order parameter of the uncontrolled
networks for N = 5 and 10. The larger network has more
concentration toward smaller rewards which makes the task of
RL agent more challenging compared to N = 5.
We repeat the same experimental procedure as N = 5, except
for evaluation after every 500th training iteration, we run the
agents for neval = 6000 steps to include all the major tran-
sitions of the uncontrolled case. For rM = 5, 10, all three
approaches show similar convergence rates (Figure 2). How-
ever, the MBRL shows a small level of instability which is more
pronounced for higher rM . As MBRL only optimizes for data
loss, in this slightly larger network the learned model fails to capture the underlying dynamics of the
Kuramoto network. And with a high usage rate of generated data from that unreliable model, the pol-
icy learning algorithm gets confused with the erroneous data. On the other hand, the PiMBRL shows
significant improvement for rM = 20, 30 as the data generated by its learned model is more accurate
representation of the dynamics. Figure 4 in Appendix A.4 shows the learned agent’s performance
controlling the networks when rM = 20 for three learning approaches.

5 Conclusion

Finding the control signal for increasing synchronization in an unsynchronized Kuramoto network
is challenging due to mutual interactions among the oscillators. In our work, we apply the rein-
forcement algorithms to assess how reliable they are for different sizes of networks. Our empirical
results demonstrate that the physics prior does not add significant improvement over the MBRL
for a smaller network. With an increased complexity of a larger network, PiMBRL shows better
performance over MFRL whereas the MBRL approach deteriorates because of the inaccuracy in
modeling the environment. Leveraging a generative model [9] along with the prior knowledge about
the environment can be explored next to highlight the importance of the model-based approach.
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A Appendix

A.1 Related Work

For introducing synchronization into a weakly coupled Kuramoto network Snyder et al. [5] studies
an experimental setting of applying a periodic excitation signal to focus each individual oscillation
towards a predefined pattern. In the Hamiltonian analysis of [6], the control signal to perturb an
already synchronized Kuramoto network is analyzed. Based on their formulation, Mitchell and
Petzold [10] tries to apply reinforcement learning ideas to design the control signal by interacting
with Kuramoto network. Specifically, they applied Deep Deterministic Policy Gradients (DDPG)[11]
to learn the policies for the control signals in model free fashion.
The idea of using prior physics information in model-based reinforcement learning is first proposed
by Liu and Wang [1]. Their proof of concept experiments shows significant improvement by PiMBRL
over MBRL. However, the dimension of those problems is not large enough to see how well the
performance transfers for large-scale networks.

A.2 Simulation of Dynamics of Kuramoto Network with Control Signal

We have created an environment object for the Kuramoto network with external control signals.
Given an action i.e. the control signals, the system of coupled differential equations in Equation 2 is
solved via numerical method (Euler’s method) to approximate the change in oscillator phases due to
rate of change in the control signal. As the chosen step size is small enough, we have not to used
higher-order methods. In the following paragraph, we provide the exact steps we followed to simulate
the Kuramoto network, M({ωi} ,K,A).
First, the step size for Euler’s method, h is set as ∆ts

Ns
with ∆ts = 0.01. We assume to have {ϕi} at

some discrete time points {tk}. To approximate the ϕ̇i(t), we use the frame-skipping-like technique
[12] commonly used in playing Atari games. Specifically, when the agent executes an action {ϕi(tk)},
we approximate

{
ϕ̇i(t)

}
as in equation 4.

dϕi(t)

dt
≈ ϕi(tk)− ϕi(tk−1)

∆ts
∀t ∈

{
tk+1−j/Ns

}
j=1,··· ,Ns

(4)

Next, we apply the following recursive Euler’s forward step to find the
{
θi(tk+j/Ns

)
}
j=1,··· ,Ns

θi
(
tk+(n+1)/Ns

)
− θi

(
tk+n/Ns

)
h

= ωi +
K

N

N∑
j=1

Ai,j sin(θj
(
tk+n/Ns

)
− θi

(
tk+n/Ns

)
)

+
ϕi(tk)− ϕi(tk−1)

∆ts
for n = 0, 1, · · · , Ns − 1 (5)

From equation 5, we get the {θi(tk+1)} caused by {ϕi(tk)}, then the reward for the agent is
determined by equation 3.
For an uncontrolled Kuramoto network, we omit the approximated ϕ̇i(t) (third term in right-hand
side of equation 5), and the resultant {θi(t)} are used to measure the degree of synchronization for
the uncontrolled case.
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A.3 Hyperparameters

Table 2: Values of different hyperparamters

Parameter and Value

Ns 10
T 50000
γ 0.99
nM 5000
λ 1e−8 (N = 5), 1e−6 (N = 10)
nf 10
nb 128

actor lr 5e−4 (N = 5),1e−3 (N = 10)
critic lr 1e−3 (N = 5),2e−3 (N = 10)

exploration policy duration 2000

Algorithm 1 Model-Based Reinforcement Learning (MBRL and PiMBRL) in Our Work
1: Start with randomly initialized actor network πθ(s), critic network(s) qϕ(s,a), fictitious model,

MF , and replay buffers Dr,Df for real and fictitious environments.
2: Collect (s0,d0) from the real environment, where d0 may contain additional information like

episode termination signal, gradients of states etc.
3: for i = 0, · · · , T do ▷ T : maximum episode length
4: Take action ai = πθ(si) in the real environment.
5: Add (si,ai, si+1, ri,di,di+1) to the real buffer Dr;
6: if real buffer Dr has at least nM samples then ▷ nM : starting iteration for learning MF

7: Update the fictitious model, MF using the data loss LD (MBRL) or combination of LD

and residual loss Lr (PiMBRL) on the batches from Dr;
8: end if
9: if fictitious model meets the accuracy threshold (LD < λ or/and Lr < λ) then

10: Reset the MF

11: for j = 1, · · · , rM do ▷ rM : fictitious to real data usage ratio
12: Collect current (sj ,dj) from MF

13: Take action aj = πθ(sj) in the model MF ;
14: Add (sj ,aj , sj+1, rj ,dj ,dj+1) to Df ;
15: end for
16: end if
17: if i ≡ 0 mod nf then ▷ nf : agent update frequency
18: if real buffer Dr has at least nb samples then
19: Update policy parameters θ and value parameters ϕ using sampled batches from Dr

20: end if
21: if fictitious buffer Df has at least nb samples then
22: Update policy parameters θ and value parameters ϕ using sampled batches from Df

23: end if
24: end if
25: end for
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A.4 Performance of Learned Agent

Figure 4: Performance of the learned agents for MFRL, MBRL, and PiMBRL along with an
uncontrolled oscillators Networks for N = 5, 10.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper claims that physics informed model-based reinforcement learning
achieves superior performance in controlling a weakly coupled Kuramoto oscillator network
compared to its model-based and model-free counterparts.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Empirical results demonstrated in this work shows the limitations of our
proposed approach in some of the problem scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Background theory has been discussed in detail (both in the main paper and in
the appendix).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper discloses the methods used with all the necessary hyper-parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code and data upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The rewards shown in the evaluation phase have been time averaged, indicating
the statistical signigicance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources needed to
reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Controlling of a weakly coupled system has several applications ranging from
industrial control system to medical research. We do not know of any negative societal
impact of this work.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All sources have been cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details of the model has been discussed. Code implementations will be
released upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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