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Abstract
3D referring expression comprehension is a
task to ground text representations onto objects
in 3D scenes. It is a crucial task for indoor
household robots or augmented reality devices
to localize objects referred to in user instruc-
tions. However, existing indoor 3D referring
expression comprehension datasets typically
cover larger object classes that are easy to local-
ize, such as chairs, tables, or doors, and often
overlook small objects, such as cooking tools or
office supplies. Based on the recently proposed
diverse and high-resolution 3D scene dataset of
ARKitScenes, we construct the ARKitSceneRe-
fer dataset focusing on small daily-use objects
that frequently appear in real-world indoor
scenes. ARKitSceneRefer contains 15k objects
of 1, 605 indoor scenes, which are significantly
larger than those of the existing 3D referring
datasets, and covers diverse object classes of
583 from the LVIS dataset. In empirical ex-
periments with both 2D and 3D state-of-the-
art referring expression comprehension models,
we observed the task difficulty of the localiza-
tion in the diverse small object classes. ARK-
itSceneRefer dataset is available at: https:
//github.com/ku-nlp/ARKitSceneRefer

1 Introduction

3D referring expression comprehension (REC) is
an essential task of understanding 3D scenes and
localizing objects in scenes into easy-to-interpret
text representations. It has numerous applications,
such as robotics and augmented reality. Recently,
sophisticated datasets have been proposed for this
purpose (Chen et al., 2020; Wald et al., 2019; Qi
et al., 2020). These datasets are based on object
segmentations in 3D scenes and cover relatively
large objects, such as furniture in indoor scenes.

However, when we develop robots that follow
instructions and perform indoor household tasks,
such robots are expected to find out and localize
typically small objects that are required for house-
hold tasks. For example, for developing cooking

Query: a blue teapot on top of a black 
colored counter near a light blue pitcher
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Figure 1: An example of the ARKitSceneRefer dataset.
We present the whole 3D scene, zoomed 3D scene, and
2D image zoomed for local structure.

robots, robots are expected to find cooking tools,
foods, and ingredients. Similarly, to develop au-
tonomous laundry robots, they need to find small
objects such as clothes. We assume that finding
these small objects in 3D scenes is meaningful for
household robots, although these objects are dif-
ficult to be captured and often overlooked from
the existing real-world scan-based 3D scene REC
datasets.

In this study, we propose a new REC dataset
named ARKitSceneRefer in 3D scenes in that we
concentrate on the fineness and diversity of the
objects referred to in instructions. ARKitSceneRe-
fer is based on the recently proposed ARKitScenes
dataset. ARKitScenes (Baruch et al., 2021) is a fine-
grained photo-realistic 3D scan for diverse 1, 661
venues and 5, 047 scenes. Based on ARKitScenes,
we extract small objects that are not covered in the
previous 3D scene datasets well. We first apply
the 2D object detector Detic (Zhou et al., 2022)
with LVIS (Gupta et al., 2019) object classes for
the video frames (i.e., 2D images) from which 3D

https://github.com/ku-nlp/ARKitSceneRefer
https://github.com/ku-nlp/ARKitSceneRefer


scenes in ARKitScenes are constructed. Next, we
extract object labels and positions and map them to
3D scenes with ray-casting and clustering by DB-
SCAN (Ester et al., 1996). We confirm that most
small objects are detected in 3D scenes with this
approach. We then annotate referring expressions
that people use to locate the objects via Amazon
Mechanical Turk, while manually revising the in-
correctly detected object labels. Figure 1 shows
an example of our ARKitSceneRefer dataset. We
finally collect 1, 605 scenes with 583 object classes
and more than 15k objects and their corresponding
referring expressions.

In addition, we conduct experiments with both
2D and 3D models to localize objects in ARK-
itSceneRefer. Our 2D models are based on the
state-of-the-art 2D REC models MDETR (Kamath
et al., 2021) and OFA (Wang et al., 2022). Our
3D models are based on an adaptation of the state-
of-the-art 3D REC models ScanRefer (Chen et al.,
2020) and 3DVG-Transformer (Zhao et al., 2021)
on our dataset.

Our contributions are as follows: (i) creating the
first object localization dataset concentrating on
the small objects in daily indoor scenes upon the
high-resolution 3D scene dataset of ARKitScenes,
(ii) attaching more than 15k referring expressions
with human annotations with a significantly large
number of object classes, and (iii) comparisons
with the state-of-the-art 2D and 3D REC models
on ARKitSceneRefer.

2 Related Work

2.1 3D and Language

Recently, several photorealistic 3D indoor scene
datasets (Nathan Silberman and Fergus, 2012;
Song et al., 2017; Dai et al., 2017; Wald et al.,
2019; Straub et al., 2019; Ramakrishnan et al.,
2021; Rozenberszki et al., 2022) have been con-
structed. ScanNet (Dai et al., 2017) consists of
1, 513 RGB-D scans of 707 unique indoor envi-
ronments with estimated camera parameters and
semantic segmentation. 3RScan (Wald et al., 2019)
consists of 1, 482 RGB-D scans of 478 environ-
ments across multiple time steps, including ob-
jects whose positions change over time and an-
notations of object instances and 6DoF mappings.
ARKitScenes (Baruch et al., 2021) is the recently
proposed high-resolution 3D scene dataset based
on Apple’s LiDER scanner. ARKitScenes con-
sists of 5, 047 high-resolution RGB-D scans of

1, 661 unique indoor environments and provides
high-quality depth maps and 3D-oriented bounding
boxes.

Based on these 3D indoor-scene datasets, several
language-related 3D scene understanding datasets
have been proposed. For 3D visual grounding
or 3D REC, ScanRefer (Chen et al., 2020) and
ReferIt3D (Achlioptas et al., 2020) have been pro-
posed. These datasets are based on ScanNet and
annotated with referring expressions for objects in
3D scenes. They are also used for the 3D dense
captioning task. Similarly, the 3D question an-
swering dataset ScanQA (Azuma et al., 2022) was
proposed based on ScanNet. Yuan et al. (2022)
extended 3D visual grounding to 3D phrase-aware
grounding with phrase-level annotations from ex-
isting 3D visual grounding datasets (Chen et al.,
2020; Achlioptas et al., 2020). Qi et al. (2020)
annotated language instructions based on Matter-
port3D (Chang et al., 2017) and proposed remote
embodied visual referring expression in real 3D
indoor environments. Xu et al. (2022) proposed a
large-scale 3D synthetic indoor dataset TO-Scene
focusing on tabletop scenes. Unlike these datasets,
our dataset focuses on a broader category of in-
door small objects in real-world 3D scenes. Our
dataset is more challenging because small objects
are harder to recognize.

2.2 Referring Expression Comprehension

REC is the task of localizing a target object
corresponding to a referring expression. In 2D
REC (Kazemzadeh et al., 2014; Plummer et al.,
2015; Yu et al., 2016; Mao et al., 2016), mod-
els find the target object region specified by tex-
tual referring expression in an image. Deng et al.
(2021) use images with bounding boxes and queries
for supervised REC. TransVG (Deng et al., 2021)
is a transformer-based framework for 2D visual
grounding, outperforming existing one-stage and
two-stage methods. These fully supervised REC,
However, depends on large annotated datasets.
Weakly supervised methods (Liu et al., 2019; Sun
et al., 2021) don’t require manually annotated
bounding boxes and unsupervised methods (Jiang
et al., 2022) that require neither manually anno-
tated bounding boxes nor queries have also been
studied. Pseudo-Q (Jiang et al., 2022) proposed
a method for generating pseudo queries with ob-
jects, attributes, and spatial relationships as key
components, outperforming the weakly supervised
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Figure 2: Overview of our dataset construction pipeline. Green boxes in the 3D scene represent 3D bounding boxes.

methods.

Recently, pre-training on large vision-and-
language datasets become popular in image-
understanding tasks. Many existing 2D REC meth-
ods (Li* et al., 2022; Yang et al., 2022; Subra-
manian et al., 2022; Kamath et al., 2021; Wang
et al., 2022) relied on some pre-trained models.
MDETR (Kamath et al., 2021) is an end-to-end
text-modulated detector derived from DETR (Car-
ion et al., 2020) and achieved good performances
on scene understanding tasks. OFA (Wang et al.,
2022) is a unified sequence-to-sequence pre-trained
model that unifies multiple multi-modal tasks
such as image captioning, VQA, visual ground-
ing, and text-to-image generation. OFA achieved
state-of-the-art performances on several vision-and-
language tasks, including the REC. In addition to
2D REC, Video-REC (Li et al., 2017; Chen et al.,
2019) become a major task. First-person vision
REC of RefEgo (Kurita et al., 2023) shares the sim-
ilar difficulties with 3D REC problems. Both OFA
and MDETR are utilized in Kurita et al. (2023).

Compared to 2D and video REC, 3D REC is
an emerging task. Two-stage (Chen et al., 2020;
Zhao et al., 2021; Yuan et al., 2021) and single-
stage (Luo et al., 2022) methods have been pro-
posed for 3D REC. Two-stage methods generate
object proposals and then match them with the
query. These methods have the disadvantage that
they don’t take the query into account when gen-
erating object proposals. To address this disadvan-
tage, single-stage methods conduct language-aware

key point selection. Other approaches (Chen et al.,
2022; Jain et al., 2022; Wu et al., 2022) have been
proposed for further improvements of the matching.
D3Net (Chen et al., 2022) unified dense captioning
and REC in a self-critical manner. In this study, we
adapt two-stage models for the proposed task.

3 Dataset

We describe the methods to construct the ARK-
itSceneRefer dataset in this section.

3.1 Data Collection

We construct the ARKitSceneRefer dataset based
on ARKitScenes (Baruch et al., 2021), which is a
large-scale 3D indoor scene dataset. ARKitScenes
has comparably higher resolutions in 3D scenes,
and thus it is suitable for our task that targets small
object localization. Note that, in 3D scenes, some
small objects often become unclear and difficult to
recognize. However, most of them can be clearly
detected and classified in corresponding 2D images.
The performance of object detection in 2D images
has been improved significantly, making it possible
to find small objects in 2D images. Therefore, in
this study, we detect target objects in the video
frames (i.e., 2D images) where the 3D scene is
constructed and then localize them in 3D scenes.
Figure 2 shows our dataset construction pipeline.
In the following subsections, we describe each step
in detail.



3.1.1 Object Detection

In this step, we detect objects in video frames from
which the 3D scene is constructed. The results of
object detection are used to select target objects in
the dataset. Detic (Zhou et al., 2022) is used as the
object detection model. Detic is trained on both
object detection and image classification datasets.
With that, Detic expands the vocabulary of object
detection, reduces the performance gap between
rare classes and all classes in standard LVIS (Gupta
et al., 2019) benchmarks, and achieves state-of-the-
art performance. Detic provides more detailed class
information than conventional models trained on
MSCOCO (Chen et al., 2015), which is helpful for
the next class selection step, and the instance seg-
mentation corresponding to each 2D bounding box,
which is helpful for obtaining 3D bounding boxes.
We used pre-trained Detic in LVIS, MSCOCO, and
ImageNet-21K.1 Because the same object appears
in chronologically close video frames, it is unnec-
essary to perform object detection on all frames.
Therefore, we conduct object detection only for
1/10 frames uniformly sampled from all frames.

3.1.2 Projection of 2D Objects to 3D

After we obtain the bounding box of objects de-
tected by Detic, we project the position of the ob-
ject point in video frames into the world coordi-
nate of the 3D space using the provided intrinsic
and extrinsic parameters of ARKitScenes. We first
project the camera position for each video frame
into the world coordinate with the extrinsic param-
eters. The position of the detected objects is then
projected by the intrinsic parameters of the camera.
Here, two problems exist: the distance between the
camera and the object remains unknown, and the
projections of the same object from multiple video
frames don’t always converge on a single point be-
cause of the noise of the projection parameters. It is
also important to isolate bounding boxes for differ-
ent objects because the Detic results often contain
multiple same-class-label objects in a video frame.

Therefore, we apply the ray-casting and simple
clustering-based approach for summarizing multi-
ple projections for a single object in the 3D scene.
We use the ray-casting from the camera point to the
ARKitScenes mesh to obtain the first intersection
of the mesh and the ray to the target object. Here
we use the line from the camera point to the center

1https://dl.fbaipublicfiles.com/detic/Detic_
LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth

of the bounding boxes as the “ray.” By doing so,
we obtain multiple ray-mesh intersections for each
scene. We then make clusters by DBSCAN (Ester
et al., 1996) to summarize the intersections and
create object points in 3D space. For clustering,
we make clusters for the same class-label objects.
We also impose a threshold of 0.05m of distance
for making a single cluster to DBSCAN to keep
the resolution of small objects in scenes. As a re-
sult of clustering, we obtain 68.25 clusters in a
single scene on average on the validation set. Note
that we didn’t use the clusters that consist of fewer
numbers of intersections for further analyses and
annotations.

Finally, we use 2D instance segmentations in the
images corresponding to each 3D object point to
assign 3D bounding boxes. Similar to obtaining 3D
object points, we use ray-casting for each pixel of
the instance segmentation to project it onto the 3D
scene. To reduce computational complexity, ray
casting is only conducted for pixels whose posi-
tions are divisible by 5. To eliminate noise, the top
5% and bottom 5% of the projected instance seg-
mentation coordinates are removed, and the mini-
mum and maximum coordinates within that range
are considered as the 3D bounding box. Note that
the 3D bounding boxes are assumed to be parallel
to each axis because an object rotation is not taken
into account in ARKitSceneRefer.

3.1.3 Object Selection
The object selection step consists of three sub-steps:
class selection, scene selection, and target object
selection. Firstly, as large objects and small objects
are mixed in the results of object detection, we
conduct class selection to select small objects. We
choose the class of small objects based on the cri-
teria that they can be grasped with both hands (e.g.,
coffee maker, laptop computer, and microwave
oven). As a result of object selection, the number
of object classes decreases from the Detic object
detection results of 1, 151 to 794. Next, we con-
duct scene selection to guarantee the diversity of
3D scenes. We select one scene per room. In the
same room, the scene with the largest number of
objects and more than 20 objects is selected. As a
result, the number of scenes decreases from 5, 047
to 1, 615. Finally, we conduct target object selec-
tion to decide on the objects to be annotated. The
number of target objects is set to 20 for each 3D
scene. In order to increase the number of objects
in rarely detected classes, instead of choosing tar-

https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth
https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth


Figure 3: The distributions of the number of objects
and average volumes in major 30 object classes for
ARKitSceneRefer (upper) and ScanRefer (bottom).

get objects randomly, we select objects from low-
frequent classes to high-frequent classes according
to the detected class frequency. As a result, the
number of the entire object class of ARKitSceneRe-
fer becomes 612.

3.1.4 Annotation

With the above steps, we obtain the position infor-
mation of small objects from 3D scenes without any
human annotations. Then we annotate referring ex-
pressions on Amazon Mechanical Turk as the last
step for constructing our dataset. Before the anno-
tation, we conduct a qualification test and create
a worker pool to ensure the quality of our dataset.
In the annotation website, We present workers a
3D scene viewer with 3D bounding boxes made
in Sec. 3.1.2, three images containing the target
object with 2D bounding boxes detected by Detic,
and the class of the target object. The images are
randomly selected from video frames containing
large detected bounding boxes from target objects.
A 2D bounding box for the target object is shown
in each image, aiming to make it easier for work-
ers to recognize the location of the target object.
The 3D bounding boxes of all objects and all target
objects of each task are shown in the 3D scene so
that workers can clearly recognize the target ob-
ject and other objects. While referring to the 3D
scene and 2D images with target objects, workers

are asked to annotate referring expressions for the
target objects; the referring expression for a target
object must be clear enough to distinguish the tar-
get object from other objects. One task contains
five target objects. Workers are restricted to coun-
tries of USA, Canada, UK, and Australia. Workers
are also asked to choose 3D bounding boxes in
terms of whether their position is almost correct
as 3D bounding boxes sometimes become noisy.
As a result, workers answered 48.15% of the 3D
bounding boxes as correct. The wrong bounding
boxes are excluded from the final dataset. Further-
more, as the class obtained from Detic is sometimes
wrong, the workers are asked to choose the correct
class in the case that the class originally shown
in the interface was wrong. The class vocabulary
used for class correction is also LVIS, which is the
same as the one used in Detic. As a result, workers
modified 40.72% classes throughout the annotation
tasks, and the number of classes in our dataset be-
came 583. Note that 4.93% small objects wrongly
detected by Detic are modified by the worker to
larger object classes, and thus not all annotated
target objects belong to small object classes.2

3.2 Dataset Statistics

Finally, we collected 9.69 objects on average for
each scene in 1, 605 3D scenes in ARKitScenes
and 15, 553 referring expressions for these objects.
Each object has a 14.43 average length of the re-
ferring expression. The referring expression covers
538 classes of indoor objects. Table 1 shows a
comparison of our data with existing 3D referring
expression datasets. Our dataset is significantly
larger than existing datasets in two aspects, 3D
scenes, and object classes. Figure 3 shows distribu-
tions of the number of objects and average volumes
of each class in major 30 classes comparing our
dataset with ScanRefer. We can see that ScanRefer
includes many object classes for relatively large
objects, such as “table” and “door.” Compared to
ScanRefer, ARKitSceneRefer includes many ob-
ject classes for small objects, such as “bottle” and
“box.” Moreover, the volumes in ARKitSceneRefer
are not more than 0.10m3, while the volumes in
ScanRefer are significantly greater than 0.10m3.
The distribution indicates that our dataset is suc-
cessfully focused on small objects. Figure 4 shows
the most commonly used words for nouns, verbs,
adjectives, and adverbs classified by NLTK (Loper

2See Appendix A for our annotation interface.



Dataset Environment Objects Expressions Average Length Scenes Venues Object Class

Sr3D (Achlioptas et al., 2020) ScanNet 8,863 83,572 9.68 1,273 613 76
Nr3D (Achlioptas et al., 2020) ScanNet 5,878 41,503 11.32 641 641 76
ScanRefer (Chen et al., 2020) ScanNet 11,046 51,583 20.27 800 800 279

ARKitSceneRefer ARKitScenes 15,553 15,553 14.43 1,605 1,605 583

Table 1: Overview of 3D referring expression comprehension datasets.

(a) Noun (b) Verb (c) Adjective (d) Adverb

Figure 4: Word clouds of (a) noun (b) verb (c) adjective (d) adverb for the ARKitSceneRefer. Bigger fonts mean
high frequencies in the referring expressions.

Split Expressions Scenes Object Class

Train 11,197 1,144 534
Val 2,732 285 363
Test 1,624 176 310

Table 2: ARKitSceneRefer dataset statistics.

and Bird, 2002). In our dataset, “wall” and “sink”
are commonly used as nouns, “hanging” and “sit-
ting” as verbs, “white” and “black” as adjectives,
and “close” and “directly” as adverbs. Note that
NLTK rarely fails to classify the part of speech,
such as “oven” classified into adverbs. We further
split our dataset into training, validation, and test
sets. Table 2 shows the statistics of our dataset after
the split.3

4 Model

Following the previous 3D referring expression
studies (Chen et al., 2020; Zhao et al., 2021; Luo
et al., 2022), we compare 2D to 3D REC models.4

4.1 2D Models

Our 2D models are based on MDETR (Kamath
et al., 2021) and OFA (Wang et al., 2022), which
are state-of-the-art 2D REC models. We first ap-
ply 2D REC models, which take a video frame
and a referring expression as input and predict the
bounding box corresponding to the referring ex-
pression in the video frame. Then the centers of
the predicted bounding boxes in video frames are
projected onto the 3D scene and clustered using

3More details are provided in Appendix B and C.
4See Appendix D for a formulation of the task.

the same method presented in Sec. 3.1.2. Finally,
the center of the cluster with the most points is
regarded as the center of the predicted target object
on the 3D scene. Note that 2D models can’t predict
3D bounding boxes because these models don’t
generate 2D instance segmentation maps.

4.2 3D Models

Our 3D models are based on ScanRefer (Chen
et al., 2020) and 3DVG-Transformer (Zhao et al.,
2021), which are state-of-the-art 3D REC mod-
els. We customize both ScanRefer and 3DVG-
Transformer to fit to our task. Specifically, we
don’t adopt the vote regression loss introduced in
ScanRefer because there are no fine-grained in-
stance segmentation labels in ARKitScenes, which
means we define the object detection loss Ldet as
Ldet = 0.5Lobjn-cls + Lbox + 0.1Lsem-cls, where
Lobjn-cls, Lbox, and Lsem-cls respectively represent
the objectness binary classification loss, box re-
gression loss, and semantic classification loss, all
of which are introduced in ScanRefer. Our loss
function is defined as followings:

L = αLloc + βLdet + γLcls (1)

where Lloc and Lcls respectively represent the local-
ization loss and the language-to-object classifica-
tion loss, all of which are introduced in ScanRefer,
and α, β, and γ represent the weights for each loss.
Note that the loss function of 3DVG-Transformer
are based on ScanRefer, but the weights are cus-
tomized. We use the same weights introduced in
ScanRefer and 3DVG-Transformer.



5 Experiments

5.1 Evaluation Metrics
Following ScanRefer and Refer360° (Cirik et al.,
2020), we employ two evaluation metrics. The first
metric is IoU@k, where the predicted 3D bound-
ing box is considered correct if its Intersection over
Union (IoU) with the ground truth 3D bounding
box is equal to or greater than the threshold value
k. This metric has been widely adopted in existing
studies on REC. We set the threshold values k to
0.05, 0.15, 0.25, and 0.5. The second metric is
Dist@l, which considers the predicted 3D bound-
ing box as correct if the distance between its center
and the center of the ground truth 3D bounding box
is equal to or less than the threshold value l. We
use threshold values l of 0.1, 0.3, and 0.5. Note
that units of IoU@k and Dist@l are percentiles.

5.2 Settings
2D Models We used MDETR and OFAlarge fine-
tuned on RefCOCOg (Mao et al., 2016). We com-
pared the following methods:

• MDETR-random and OFA-random: We ran-
domly sampled input 1/10 video frames used
to construct the 3D scene of ARKitScenes.
Note that the target object may not appear in
the randomly sampled video frames. If the
target object is not contained in a video frame,
the 2D REC models may localize irrelevant
regions, leading to noises.

• OFA-Detic: This is a heuristic-based method.
OFA-Detic conducted object detection on
video frames by Detic, and then used only
video frames that contained the detected class
appearing in the referring expression. If no
class is included in the referring expression,
we used the same randomly sampled video
frames as OFA-random. Note that as we
also used Detic for dataset construction, this
method is biased. We leave the comparison of
using other object detectors for video frame
selection as future work.

We used DBSCAN (Ester et al., 1996) algorithm for
clustering. We set the maximum distance between
points in a cluster to 0.02m, and the minimum
number of points that make up a cluster to 1.

3D Models We used NLTK (Loper and Bird,
2002) for tokenization. We used GloVe (Penning-
ton et al., 2014) to convert tokens in a referring

Method Split Dist@0.1 Dist@0.3 Dist@0.5

MDETR-random val 7.43 13.68 17.16
OFA-random val 7.97 14.34 17.60
OFA-Detic val 13.39 25.51 31.62

MDETR-random test 7.63 14.28 17.73
OFA-random test 7.82 15.57 18.78
OFA-Detic test 13.48 27.95 35.46

Table 3: Localization results by 2D models of MDETR
and OFA.

expression to word embeddings. Then all word
embeddings in the referring expression are concate-
nated and input to the 3D models. ScanRefer was
trained for 200 epochs on the batch size of 32, and
3DVG-Transformer was trained for 500 epochs on
the batch size of 8. The initial learning rate was
1e−3, and AdamW (Loshchilov and Hutter, 2019)
was used for optimization. Following ScanRefer,
we applied random flipping, random rotation in the
range of [−5°,5°], random scaling in the range of
[e−0.1, e0.1], and random translation in the range
of [-0.5m, 0.5m] to point clouds for data augmenta-
tion. The input features for the 3D models were xyz
coordinates, colors, and normals, where the num-
ber of vertices in the point cloud was 200, 000. All
experiments were conducted on 1 NVIDIA A100
GPU.

5.3 Quantitative Analysis
Tables 3 and 4 present the evaluation results of
2D and 3D models on ARKitSceneRefer, respec-
tively.5

IoU For 3D models, 3DVG-Transformer outper-
formed ScanRefer by a large margin. However,
both of these models achieved lower performance
than that on previous datasets. For example, in
terms of IoU@0.25, 3DVG-Transformer achieved
45.90% on the ScanRefer validation set while only
2.21% on our validation set, which suggested that
our dataset is insanely difficult compared to the
existing datasets.

Dist Comparing 2D models of MDETR-random
and OFA-random to 3D models for Dist@0.1 and
Dist@0.3, MDETR-random and OFA-random out-
performed 3D models. However, 3D models were
comparable to 2D models for Dist@0.5. This is
because the 3D models can make predictions based
on the entire 3D scene. Even if the target object is
not recognizable, the approximate position can be
guessed. OFA-Detic significantly outperformed all

5More discussions can be found in Appendix E.



Method Split IoU@0.05 IoU@0.15 IoU@0.25 IoU@0.5 Dist@0.1 Dist@0.3 Dist@0.5

ScanRefer val 2.97 1.17 0.54 0.02 1.09 9.84 18.55
3DVG-Transformer val 5.69 3.65 2.21 0.30 2.81 11.70 17.93

ScanRefer test 3.00 1.13 0.46 0.03 1.02 9.26 17.82
3DVG-Transformer test 6.41 3.54 2.20 0.41 2.90 12.82 19.18

Table 4: Localization results by 3D models of ScanRefer and 3DVG-Transformer.

other methods, indicating the importance of select-
ing video frames that contain the target object for
the 2D model.

5.4 Qualitative Analysis
Figure 5 shows the comparison of localization re-
sults of 3DVG-Transformer and OFA-Detic. In
the leftmost example, both 3DVG-Transformer and
OFA-Detic successfully localized the referred ob-
ject. Relatively large objects that are unique in the
scene were easy to localize accurately. However,
in the second example from the left, only 3DVG-
Transformer successfully localized the referred ob-
ject. This suggests that 2D models, which rely on
local information from video frames, struggled to
consider the entire 3D scene simultaneously, re-
sulting in overlooking relatively small objects. In
the third example from the left, only OFA-Detic
successfully localized the referred object. This sug-
gests that 3D localizing models faces difficulties
in accurately localizing quite small objects such
as bottles. In the rightmost example, both 3DVG-
Transformer and OFA-Detic failed to localize the
referred object. This suggests that objects in com-
plicated scenes are still difficult to localize even
with current best models.

6 Conclusion

In this paper, we introduced a new 3D REC
dataset, ARKitSceneRefer, for small objects. ARK-
itSceneRefer consists of 15, 553 referring expres-
sions for 1, 605 scenes in ARKitScenes. We found
that conventional 3D models cannot get high ac-
curacy on our dataset. We also confirmed that the
performance of the 2D models varied significantly
depending on the input video frames. In the future,
we plan to use the confidence scores of 2D models
for image selection. We hope that our dataset will
be useful in the 3D REC community.

7 Limitations

Dataset ARKitSceneRefer only provides one re-
ferring expression per object, which is less than
in previous works. Additionally, some objects in

the 3D scenes of ARKitScenes fail to reconstruct
accurately, which is common to ScanNet, resulting
in missing parts or low resolution.

Human Annotation To ensure the quality of the
dataset, we conducted a qualification test to gather
highly skilled workers. However, still, subjectivity
rarely leads to occasional errors in human annota-
tions. Particularly in this paper, selecting accurate
3D bounding boxes is susceptible to such influ-
ences.

2D Models In this paper, we utilized off-the-shelf
2D models that were fine-tuned on RefCOCOg.
These models already exhibit impressive perfor-
mance, but we can expect further improvement on
our task by fine-tuning them on our dataset. In our
experiments, we employed simple heuristic video
frame selection methods. It can potentially enhance
accuracy to implement more optimized video frame
selection methods tailored to our task.

3D Models ARKitScenes lacks semantic segmen-
tation maps, which leads to the omission of the
vote regression loss employed by ScanRefer and
3DVG-Transformer. Consequently, in our experi-
ments, there is a possibility that the object detector
is not fully optimized. However, there has been
significant progress in recent research on 3D scene
understanding (Peng et al., 2023; Yang et al., 2023).
Leveraging these advancements to generate high-
quality pseudo-labels could improve 3D model per-
formance.

8 Ethical Statements

The annotations were conducted on Amazon Me-
chanical Turk, and we ensured that the workers re-
ceived fair compensation, taking into account mar-
ket rates. As we utilized existing data and didn’t
collect any newly scanned data, the workers’ pri-
vacy can be well protected. The annotation process
was conducted in compliance with the procedures
established by our institution.
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Figure 5: Qualitative analysis of the localization results of the 3DVG-Transformer and OFA-Detic models. Yellow,
green, and red represent ground truth, correct predictions, and incorrect predictions, respectively.
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A Mturk Annotation Interface

Figure 6 present an example of our annotation in-
terface. Workers can see 3D scenes, object classes,
and 3D bounding boxes. They can also rotate and
zoom 3D scenes interactively.

B Unique/Multiple Objects

One of the major challenges for 3D REC is multi-
ple objects with the same class as the target object
can appear in the same scene. Basically, it’s hard
to determine unique/multiple objects precisely be-
cause we sampled target objects before revising
classes from Detic. Instead, we can determine
unique/multiple objects on the dataset before the
target object selection, which means the analysis
is a little noisy. We confirmed that class-unique
and class-multiple objects in the whole dataset are
61.5% and 38.5%, respectively. As a result, the
model should focus on not only object words but
also other descriptions (e.g., other objects and re-
lationships) in order to achieve higher scores. Fur-
thermore, the performances of unique and multi-
ple objects on the test set by 3DVG-Transformer
were 1.75% and 2.16% on IoU@0.25 and 12.69%
and 13.00% on Dist@0.3, respectively. It might
be because of the difference in the amount of the
data. Specifically, we selected low-frequency ob-
jects so that our dataset could cover extensive ob-
ject classes, leading to the fact that the average
number of objects in the whole dataset was 94.11
for class-unique and 199.45 for class-multiple, re-
spectively.

C Human Score on the Small Dataset

To verify the dataset quality, we randomly tested
50 samples from val and test datasets. We carefully
checked whether the objects were detectable and
classified them into five categories: (i) we can local-
ize objects in 3D scenes without video frames (ii)
we can localize objects in 3D scenes referring to
video frames. (iii) we can’t localize objects because
of the ambiguity of referring expressions. (iv) we
can’t localize objects because of the incorrectness
of bounding boxes. (v) It’s hard to localize objects.
We confirmed that 29 of 50 objects can be localized
by referring expressions and 3D scenes. Further-
more, an additional five objects can be localized by
using video frames. This result indicated that the
performances of 3D REC models were much lower
than those of humans. We also confirmed that 42

of 50 objects ((i)+(ii)+(iii)) are detectable, which
certified the quality of small object representations.
Although ARKitScenes provides high-quality 3D
scenes, we didn’t use them in this paper because
of the lack of computational resources. Indeed,
we confirmed that we would not be able to see
high-quality 3D scenes on the web browser. More-
over, not only our paper but also other papers (e.g.,
ScanRefer and 3DVG-Transformer) adopted down-
sampling of 3D scenes before feeding them into
models to reduce the GPU memory. We believe that
future improvements in computational resources
would make it possible to handle high-quality 3D
scenes while we can use the same annotations of
ARKitSceneRefer.

D Task

We introduce a text-based small object localization
task in 3D scenes. Our task is completely differ-
ent from existing 3D referring expression tasks
in terms of the object size, which means existing
tasks mostly focus on large objects. In our task,
the input of the 3D REC model is a fine-grained
3D indoor scene and a referring expression that
clearly describes the target object. 3D scenes are
represented by xyz coordinates, colors, and nor-
mals. The model predicts the 3D bounding box of
the target object as:

3DVGsmall(Scene,Query) = Box (2)

where Box ∈ R6 represents the xyz coordinates,
height, width, and depth of the 3D bounding box.

E Discussion

Number of Points on 3D Scenes When the 3D
models localize small objects, the number of ver-
tices in the point cloud should be a very important
parameter compared to localizing large objects. As
shown in Table 5, we investigated how the number
of vertices in the point cloud affects the perfor-
mance. We used 3DVG-Transformer because its
performance was better than ScanRefer. However,
the performance was comparable as we reduced the
number of vertices. This is because the object de-
tectors employed by 3D models were not optimized
because of the lack of semantic segmentation maps.

3D Features Chen et al. (2020) found that us-
ing color and normal information improves perfor-
mance in 3D models. Therefore, we conducted
experiments to verify this claim in our task. We



Points Split IoU@0.05 IoU@0.15 IoU@0.25 IoU@0.5 Dist@0.1 Dist@0.3 Dist@0.5

50,000 test 6.82 4.31 2.57 0.23 2.72 12.95 20.35
100,000 test 7.27 4.72 3.04 0.49 3.26 12.82 18.90
200,000 test 6.41 3.54 2.20 0.41 2.90 12.82 19.18

Table 5: Comparison of different numbers of vertices in the point cloud for the 3DVG-Transformer model.

trained the model with four features: (i) coordi-
nates (xyz), (ii) coordinates and colors (xyz+rgb),
(iii) coordinated and normals (xyz+normal), (iv) co-
ordinates, colors, and normals (xyz+rgb+normal),
for the 3DVG-Transformer model. As shown in
Table 6, rgb features were not effective in our task.
This is because our dataset focuses on small objects
and handles a wide range of object classes, mak-
ing it more difficult to associate rgb features with
objects. By contrast, normal features were slightly
effective in our task.

Additionally, we compared 3DVG-Transformer
trained with coordinates, colors, and normals
(xyz+color+normal) with a model trained with
coordinates, colors, normals, and multiview fea-
tures (xyz+color+normal+multivew). For the
reduction of computational costs, we changed
the number of points, epochs, and object pro-
posals from 200, 000 to 25, 000, from 500
to 200, and from 1, 024 to 256, respec-
tively. As shown in Table 7, 3DVG-Transformer
(xyz+color+normal) was comparable to 3DVG-
Transformer (xyz+color+normal+multiview). This
showed that the importance of 3D scenes might be
comparable with video frames.

Upper Bound of 2D Models We focused on that
MDETR and OFA achieve high accuracy in 2D
REC tasks, but the performance is significantly
lower in our task. Therefore, we investigated the
upper bound of the OFA-based 2D model, which
outperforms the MDETR-based model, as shown
in Table 3. We further conducted experiments on
the following two settings:

• OFA-oracle: We conducted object detection
on video frames by Detic, and then used only
video frames with the detected class corre-
sponding with the one annotated in the ARK-
itSceneRefer.

• OFA-upper: We used only the video frames
used for annotating referring expressions by
crowdsourcing workers.

As shown in Table 8, OFA-oracle and OFA-upper
were superior to OFA-random significantly. OFA-

oracle was slightly superior to OFA-Detic because
many referring expressions include the object class
in themselves. The results showed that if we use
video frames with target objects, the model can be
further improved in our task.



Input Split IoU@0.05 IoU@0.15 IoU@0.25 IoU@0.5 Dist@0.1 Dist@0.3 Dist@0.5

xyz test 6.60 4.18 2.36 0.16 2.57 12.46 18.30
xyz+rgb test 6.19 3.90 2.51 0.34 2.62 11.09 17.78
xyz+normal test 7.04 4.33 2.58 0.40 3.43 14.33 22.24
xyz+rgb+normal test 6.41 3.54 2.20 0.41 2.90 12.82 19.18

Table 6: Comparison of color and normal features for the 3DVG-Transformer model.

Input Split IoU@0.05 IoU@0.15 IoU@0.25 IoU@0.5 Dist@0.1 Dist@0.3 Dist@0.5

xyz+rgb+normal test 3.26 2.08 1.25 0.16 1.15 7.21 12.14
xyz+rgb+normal+multiview test 2.62 1.65 0.92 0.08 1.01 5.74 10.38

Table 7: Comparison of multiview features for the 3DVG-Transformer model. Please note that the experimental
settings are different from others.

Method Split Dist@0.1 Dist@0.3 Dist@0.5

OFA-random test 7.82 15.57 18.78
OFA-Detic test 13.48 27.95 35.46
OFA-oracle test 16.25 34.29 42.30
OFA-upper test 32.94 63.30 76.10

Table 8: Oracle and upper bound results for the OFA-
based 2D model.



Figure 6: Example of the annotation interface. We provided an opportunity to indicate if they are unable to locate
the object at all.


