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Abstract. Multiple instance learning (MIL) stands as a powerful ap-
proach in weakly supervised learning, regularly employed in histolog-
ical whole slide image (WSI) classification for detecting tumorous le-
sions. However, existing mainstream MIL methods focus on modeling
correlation between instances while overlooking the inherent diversity
among instances. However, few MIL methods have aimed at diversity
modeling, which empirically show inferior performance but with a high
computational cost. To bridge this gap, we propose a novel MIL ag-
gregation method based on diverse global representation (DGR-MIL),
by modeling diversity among instances through a set of global vectors
that serve as a summary of all instances. First, we turn the instance
correlation into the similarity between instance embeddings and the pre-
defined global vectors through a cross-attention mechanism. This stems
from the fact that similar instance embeddings typically would result
in a higher correlation with a certain global vector. Second, we propose
two mechanisms to enforce the diversity among the global vectors to be
more descriptive of the entire bag: (i) positive instance alignment and
(ii) a novel, efficient, and theoretically guaranteed diversification learning
paradigm. Specifically, the positive instance alignment module encour-
ages the global vectors to align with the center of positive instances (e.g.,
instances containing tumors in WSI). To further diversify the global rep-
resentations, we propose a novel diversification learning paradigm lever-
aging the determinantal point process. The proposed model outperforms
the state-of-the-art MIL aggregation models by a substantial margin on
the CAMELYON-16 and the TCGA-lung cancer datasets. The code is
available at https://github.com/ChongQingNoSubway/DGR-MIL.

Keywords: Weakly-supervised learning, Multiple Instance Learning -
Histological Whole Slide Image - Transformer

" These authors contributed equally to this paper.
T Corresponding author


https://github.com/ChongQingNoSubway/DGR-MIL

2 Zhu. Wenhui et al.

[ positive instances
[ negative instances

==
50 100 150 200 250
(b) Diversity Measure [within-bag]

30

Diversity i far Diversity

Between-Bag
Diversity

s 10

(a) Positive Instances of within-bag and

1
1
1
1
1
1
1
1
1
1
1
1
1
1
: Within-Bag SRS 1 Within-Bag
1
1
1
1
1
1
1
1
1
1
1
1
1
! between-bag diversity

Fig.1: (a) Examples of positive instances of with-bag and between-bag diversities
measured by rate-distortion theory. (b) Histogram of the diversity measure within
positive bags on the CAMELYON16 dataset. (¢) The between-bag distinction measures
the pair-wise similarity between bags.

1 Introduction

Histological whole slide images (WSIs) are commonly used to diagnose a variety
of cancers, e.g., breast cancer, lung cancer, etc. [16]. However, the gigapixel res-
olution of WSIs hinders the direct translation of classic deep learning methods
into WSI applications mainly due to computational intractability [4,11, 35, 38].
Therefore, the analysis of WSIs typically starts with cropping images into small
patches and then performing analysis on a per-patch basis. In addition, the
absence of labor-intensive pixel/patch-level annotations poses a significant chal-
lenge for the precise localization of targets of interest (e.g., tumors in WSIs)
in a fully supervised setting. As a result, Multiple Instance Learning (MIL), a
weakly supervised method, is commonly employed in WSI analyses by treating
an entire WSI as a bag and the cropped patches as instances.

The prevailing MIL models in analyzing WSIs have been built upon the
attention-based MIL (AB-MIL) framework [28] since its introduction. However,
the standard AB-MIL treats each instance independently and does not take the
correlations between instances into account. Although many of its follow-ups
address this challenge by a variety of means [30,47,58,64], they mainly focus on
modeling the correlation between instances by assigning high correlations to in-
stances from the same category (e.g., tumor instances). However, even instances
from the same category exhibit variations in phenotype, size, as well as spatial
diversity marked by immune infiltration across different patients [7,37,66]. For
example, negative instances close to the tumor boundaries typically resemble
positive instances while appearing differently compared to the other negative
instances [24]. As a result, instances belonging to the same category may not



DGR-MIL 3

be assigned high correlations; similarly, instances from different categories could
also receive high correlations. This spurious correlation between instances is
prone to trap the MIL model by incorrectly aggregating them when making pre-
dictions. Formally, we quantify the diversity of instances between and within
bags in WSIs by leveraging the rate-distortion theory [12,15,63], where a higher
rate indicates a less compressible but more diverse collection of samples (see
details of computing the diversity measure in Appendix A). As consistent with
findings in pathology, we observe that both positive and negative instances in
WSIs exhibit between-bag and within-bag diversity (refer to Fig. 1). Based on
this fact, we argue that the diversity of instances is important in designing MIL
models. Before that, clustering/prototype-based MIL methods tried to solve the
diversity by utilizing attention scores as pseudo labels to provide instance-level
supervision [55,61]. This introduces a chicken-and-egg issue. The effectiveness
of pseudo-labels relies on successful MIL classification pooling, which in turn
depends on precise attention localization. Especially when patch representations
are inferior or MIL initially guided by poor pseudo label, leading to even mislead-
ing localization and unstable optimization [32,68]. Among them, PMIL presents
an alternative method to avoiding noise attention [62], initially selecting proto-
types through clustering, followed by modeling diversity via prototype and patch
representation. However, the design of the multi-stage framework empirically
leads to suboptimal learning outcomes, and the restricted number of prototypes,
due to high computational burden, results in diminished diversity.

To this end, we propose to jointly model this diversity through a set of learn-
able global vectors. The learned global vectors summarize diverse instances of
interest (e.g., tumors in WSIs). As a result, the diversity between instances can
be implicitly modeled by computing the correlation between instance embed-
dings and the global vectors through a cross-attention mechanism. To enhance
the ability of the global vectors to capture the most discriminative global context
for WSI classification, we introduce the concept of tokenized global vectors. It is
worth mentioning that the importance map for instances can be calculated based
on the attention between the tokenized global vector and the embedding of each
individual instance. To learn diverse global vectors, we propose two main strate-
gies. First, we push the global vectors toward the centers of the positive bag by
a positive instance alignment mechanism. Second, we propose a low-complexity
and theoretically guaranteed diversity loss to enforce the orthogonality between
the global vectors by utilizing the linear algebra property of the determinantal
point process (DPP). In this paper, we explore the design of diverse global rep-
resentation in the MIL model to model the diversity of instances in WSI. The
main contributions are four-fold: (i) We introduce a new perspective on modeling
the diversity of instances in WSI. (ii) We further propose a novel MIL aggre-
gation model, termed DGR-MIL, to model diversity in MIL through a set of
learnable global vectors. (iii) To learn a diverse global representation (vectors),
we propose two main mechanisms: positive instance alignment and a novel di-
versity loss. (iv) Experimental results on two WSI benchmarks demonstrate the
proposed DGR-MIL outperforms other competing MIL aggregation methods.
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2 Related Work

2.1 Multiple instance learning in WSIs

MIL has been widely applied in many fields, e.g., pathology [28,30,47,64], video
analysis [2,42], time series [14,21]. In particular, the applications of the MIL
in Whole Slide Image classification can be roughly summarized into two sub-
categories: i) instance-based MIL [22,27,60] and ii) bag embedding-based MIL.
Instance-based methods typically require the propagation of the bag-level label
to each of its instances to train the model. Consequently, the final bag-level pre-
diction is obtained by aggregating instance-level predictions. However, empirical
studies have proven its performance inferior to the embedding-based competitors
because of the noisy instance-level supervision [54]. In contrast, bag-embedding-
based methods start by projecting instances into feature embeddings and subse-
quently aggregate the information of these embeddings to obtain the bag-level
prediction. Since the introduction of attention-based MIL (AB-MIL) [28], the
prevailing applications of bag embedding-based MIL in WSI analysis have re-
volved around this framework. However, AB-MIL operates under the assump-
tion that all instances within a bag are independent and identically distributed
while failing to uncover inter-instance correlations. Therefore, numerous of its
follow-up works centered around mitigating this limitation by taking advantage
of non-local attention mechanism [30], transformer [47], pseudo bags [64], sparse
coding [40], and low-rank constraints [58].

Most existing mainstream MIL methods have modeled correlations mainly
through similarity between instances. However, they did not consider the vari-
ability of instances between and within bags. Conversely, clustering/prototype-
based MIL employs attention scores for selecting prototypes [55, 61], poten-
tially introducing noise and misleading model decisions [32,68]. Unlike attention-
guided methods, PMIL [62] suggests a two-stage framework that first leverages
clustering to identify reference prototypes and capture the sub-cluster represen-
tation among patch instances and prototypes. However, unrestricted optimiza-
tion in prototype selection can easily lead to suboptimal outcomes, and a limited
number of prototypes can result in a loss of diversity (limited by computational
resources). In this paper, we explicitly model the diversity among instances in
bag-embedding-based MIL through a learnable global representation. Although
the proposed method falls into the category of transformer-based MILs, it differs
from the previous transformer-based MILs [47,58] in two main aspects. First, we
model the diversity between instances by comparing instances to the proposed
global vectors via a cross-attention mechanism. Second, we propose a tokenized
global vector to summarize the context information of positive instances.

2.2 Transformer

The transformer [51] has been widely applied in computer vision [9,20, 33, 52],
time series modeling [57,67], and the natural language processing fields [18, 43,
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Fig. 2: Overview of the proposed DGR-MIL where the global vectors are used for
modeling the diversity of instances. The diverse global vectors are learned through the
positive instance alignment module and the diversity learning mechanism.

44]. Standard transformers discover contextually relevant information by model-
ing the correlation between elements within a sequence through the self-attention
mechanism. However, the traditional self-attention operation has quadratic time
and space complexity O(n?), with respect to a sequence containing n elements.
In the context of MIL, sequence length typically becomes quite large since
one bag often approximately comprises ten thousand instances. This extremely
long sequence poses significant computational intractability. Although [23,48,53]
demonstrate that proper approximation of standard self-attention can reduce
its quadratic complexity to linear, it still struggles to capture extremely long-
term dependencies of context [6,45,58]. In contrast, the cross-attention mecha-
nism [49,52], which was originally proposed to relate positions from one sequence
to another, allows models to consider cross-sequence information. Inspired by
this, we propose to model the diversity between and among instances through
a cross-attention between instances and the proposed global vectors (see details
in Section 3.1). This dramatically reduces the complexity compared to the self-
attention mechanism (see Appendix C for details of model complexity) since the
number of global vectors is significantly less than the sequence length.

3 Methods

The proposed DGR-MIL comprises two main parts: i) the design of the global
representation in MIL pooling (Section 3.1), and ii) the strategy of learning
diverse global representation (Section 3.2), where we further propose positive
instance alignment and a computational-efficient diversity loss with a theoretical
guarantee. The entire framework of DGR-MIL is depicted in Fig. 2.

Preliminary. Without loss of generality, we take binary MIL classification as
an example: The objective is to predict the bag-level label Y € {0,1}, given a
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bag of instances X = {x1, 2, -, .}, denoting a WSI with n tiled patches.
However, the corresponding instance-level labels {y;}?_; are unknown in most
WHSI analyses due to the laboriousness of obtaining patch-level annotations. This
turns the WSI classification into a weakly-supervised learning scheme according
to the standard MIL formulation:

v {o, iff S,y =0 0

1, otherwise.

Because of the gigapixel resolution of WSIs, MIL typically cannot be performed
in an end-to-end fashion [8,34,35] and instead necessitates a simplified learning
scheme. This simplified MIL learning process comprises three main parts: i)
a pre-trained feature extractor f,,o;(-) that projects each instance into a L-
dimensional vector, ii) a MIL pooling operator o(-) that combines instance-level
embeddings into a bag-level feature, and iii) a bag-level classifier fqs(-) that
takes the bag-level feature as input and produces the bag-level prediction as
output. Mathematically, this process is given by

Y = fus(o({@1,---  &a})), & € R @
Wlth {ilu e 7i:n} = fproj({mly e 7wn})7

where Y denotes the predicted bag-level label. In the attention-based MIL (AB-

MIL) [28] framework, the typical formulation for the MIL pooling operator is as

follows:

exp{ W' (tanh(V&;)) ® sigm(U;)}

7l&:) = Sy exp{W ' (tanh(VZ;)) © sigm(Ud;)}’

(3)

where W,V and U are learnable parameters.

3.1 Global Representation in MIL Pooling

To accommodate the variability of the target lesions within and between bags,
we develop a diverse global representation in the MIL pooling stage. Specifically,
we define the global representation of the target (positive) instances as a set of
learnable vectors given by G = [g] ,--- ,g5] € RE*L with g, € RL where K
is the number of global vectors. It is worth noting that a feed-forward network
(FFN) is used to embed further both the input instance vectors X = {&;}1,
and the global vectors G (see Fig. 2). However, we keep using G € RE*L to
denote global vectors for notation brevity.

Instance Correlation as Cross Attention. The standard AB-MIL frame-
work assumes the instances are independent and identically distributed while
overlooking the correlation effect between instances. Hence, the self-attention
mechanism becomes a natural choice for modeling the inter-instance correla-
tion. However, due to the large number of instances within a bag in MIL, the
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quadratic time and space complexity O(n?) of standard self-attention poses a sig-
nificant challenge in computation. Alternatively, the previous transformer-based
MIL [47] mitigates this problem by employing Nystrom-Attention [59], approxi-
mating the standard self-attention with linear complexity, which has proved ef-
fective of modeling correlation between positive and negative instances. It could
be used to gather similar instances together by attention, benefiting from fil-
tering background information. However, self-attention usage only guarantees
the general separation of the positive and negative instances in a bag, which
overlooks the diversity between instances and between bags.

Here, we implicitly model the diversity between instances by comparing the
similarity between each instance vector and the proposed diverse global vec-
tors. Specifically, this is achieved through a cross-attention mechanism where
the global vector G serves as queries, and a bag of instance vectors X is used as
key-value pairs. Formally, the h-th head of the proposed cross attention is given
by

heady, (G, X) = Attention(Q,,, K1, V1)

- - (4)
Q,=GW? K,=XWE V,=XW/,

where W% W,If7 W,‘{ € RLXL/H are learnable parameters for linear projec-
tions, where H is number of heads. For the derivation purposes, we follow
the traditional definition of the attention mechanism in the transformer (i.e.,

Attention(Q),, Kp, V1) = softmax (QhK;/\/dk) V'1). The output of the yield-

ing multi-head cross attention (MHCA) is the concatenation of the outputs from
all heads through a linear projection:

MHCA(G, X) = concat(head,; - - - ;head; )W, (5)

where WO e RL*L ig a trainable parameter. The proposed cross-attention mech-
anism reduces the quadratic time and space complexity O(n?) in the standard
self-attention mechanism to linear O(Kn) where K < n. In practice, we ap-
plied the Nystrom-Attention to the instance vectors and global vectors before
performing the cross-attention (see Fig. 2) for two main reasons. First, apply-
ing self-attention to input instance vectors can facilitate filtering out the back-
ground. Second, applying self-attention to the global vectors can increase their
discrepancies.

Tokenized Global Vector. The vision transformer includes a class token to
encode the globally discriminative representation associated with certain labels
in image classification tasks. This token is typically added to the input token
embedding by serving as a summary of the entire image. Building upon this
inspiration, we propose to add a tokenized global vector g, ., @ a summary
of all the other global vectors. Now, the yielding global vectors can be denoted
as G = {Gioxens 915+ 9} € REFTVXL The output of the tokenized global
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vectors after the cross-attention layer (Eq.(5)) is then used for bag-level classi-
fication. Following the convention in AB-MIL, the yielded importance score of
each instance can be computed as

N (6)

At first glance, adding the token to the global vectors instead of the input
instance embedding appears counterintuitive. However, an in-depth analysis re-
veals its favorable properties. The proposed global vectors are learned in an
unsupervised way (see details in Section 3.2), which poses a significant challenge
in perfectly eliminating information from negative instances in the global vec-
tors. This may be attributed to the similarity between positive instances and
their adjacent negative instances, as tumor-adjacent regions typically exhibit
high-density, quantitative expression in the spatial relationships of cells [24].
Each diverse global vector encapsulates a collection of analogous tissue features.
As a result, certain global vectors emphasize certain types of positive instances.
Accordingly, adding tokenized global vectors facilitates the model to capture
the most discriminative global representation while suppressing the information
from the negative instances (as evident in Fig. 5(b)).

Q ~ . K\T
U(ji) = softmax <(gtokenwh )(wzwh ) > .

3.2 Learning Diverse Global Representation

Due to the weakly-supervised nature of MIL, how to learn the global represen-
tation of the target of interest remains an open problem. In this section, we
introduce two strategies that can be used to learn a reliable and diverse global
representation in MIL, respectively: i) positive instance alignment and ii) diver-
sity learning via utilizing the linear algebra property of the DPP.

Positive Instance Alignment. To enforce that the global representation
aligns with the instances of interest (i.e., positive instances), we push the global
vectors toward the positive bag centers but away from the negative bag cen-
ters. To do so, we first define the center of the positive and negative bags as
2% ¢ R and ("9 € RL, respectively. Similar to [25], the positive and neg-
ative centers are then updated in a momentum fashion at each training iteration:

igpos) _ migﬁOS) +(1— m)L Z;
|IP°5| €T pos
: 7
Ii(neg) _ mi(neg) + (1 _ m) 1 s ( )
c c |Ineg| i€Tneq b

where m denotes the momentum update rate, which is set empirically to 0.4.
Zpos and I, are the index sets of positive bags and negative bags, respectively.
This indicates that the update of the positive instance center occurs only if a
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positive bag is fed into the network. The same strategy is applied to the negative
center update (i.e., updated if and only if a negative bag is encountered). Up to
now, we can formulate a set of triplet {G,i’&p 0s) glnes )}. The triplet loss [3] is
then adopted to enforce the global representation G being close to the positive
bag center while away from the negative bag center:

K

Lori = Y [ds Gy, 50°) = d_ (G, 30D) + pi ., (8)
k=1

where p is the margin parameter, and d denotes the distance measure. We use
cosine similarity as the distance measure.

Diversity Learning. Although the positive instance alignment mechanism
pushes the global representation to be aligned with the positive bag center,
it is likely to result in a trivial solution where all the global vectors are identical.
However, a diverse global representation is desired to capture the variability of
positive instances. Hence, we propose our unique diversity loss inspired by DPP
for data selection to maximize the diversity among global vectors and hence bet-
ter summarize the instances. DPP is a well-known diversification tool [29] and
is often used to select diverse subsets [10,12,13,17,50]. Inspired so, rather than
use it for selection, we utilize it as a diversity measurement.

Mathematically, P is an L-ensemble DPP if the likelihood of an arbitrary
subset A C S drawn from the entire set S satisfies:

Pr(A) ocdet (Ly), 9)

where L4 denotes a submatrix of the similarity Gram matriz L indexed by
A. In the case of prompting diversity of global vectors G = [g{,--- ,g)], the
similarity matrix is given as L = GG' € RE*X | we simply set A = B = [K]
and each global vector g,, i € A is treated as a data point, and the total number
of subsets can be calculated as 25! = 2K It is worth noting that the matrix L
is positive semi-definite.

Lemma 1. ( [29]) From a geometric perspective, the determinants in Eq.(9)
can be interpreted as the squared |A|-dimensional volume spanned by its feature
vectors:

Pr(A) oc det (L4) = Vol*({g; }ica)- (10)

Lemma 1 immediately implies that a diverse subset is more likely to span
larger volumes. This is because as the similarity between two data points (i.e.,
L;;.i+;) increases, they will span fewer areas (see Fig. 3(a) and (b)), hence de-
creasing the probabilities of sets containing both of them (see Eq.(9)). Accord-
ingly, feature vectors that are more orthogonal to each other span the largest
volumes (see Fig.3(a)), hence resulting in the most diverse subsets.

Theorem 1. Given a set of global vectors G = [g] ,- -+ , g5 with ||g;|| = C,Vi €
[K], mazimizing the DPP-based diversity (i.e. max det(GG ")) results in orthog-
onal global vectors with g; L g;, Vi # j,i,j € [K].
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Fig. 3: The similarity matrix for the global vectors G learned from the CAMELYON16
dataset in two scenarios: (a) G is orthogonal and (b) G is non-orthogonal. To support
Lemma 1 and Remark 1, we computed the area of the parallelogram corresponding to
the two highly correlated global vectors. We omitted the diagonal elements in subpanel
figure (b), as L;; =1, Vi € [K].

Proof. The determinant det(L) = det(GG ") is upper-bounded according to
Hadamard’s inequality [39]:

u v K
|det(L)] 2 det(L) < [] La- (11)
=1

Condition (a) is fulfilled because the matrix L is positive semi-definite. The
equality of Condition (b) is achieved if and only if all non-diagonal entries of G
are zeros, meaning rows of the global vectors are orthogonal. The normalization
constraint in Eq.(11) leads the upper bound to be the infimum, since L;; =
llgll? < C? and it can be achieved if and only if the equality of Condition (b) is
satisfied. This completes the proof.

According to Theorem 1, we propose a diversity loss Lg;, to diversify the pro-
posed global vectors by minimizing the negative logarithm of det(GG " ):

Laiv = —logdet(GG"), s.t. |lg;]| =1=C. (12)

Remark 1. Theorem 1 implies that optimal diversity through minimizing our
loss is theoretically achievable. This is because enforcing the constraints ||g;|| = 1
leads the infimum of L4, to reach zero due to log(GG ")y = log(||g;||?) = 0. In
contrast, the diversity loss Lg;, can be arbitrarily small (up to —co) without the
constraint ||g;|| = 1, which results in a unstable training.

We also add a small value € = 1 x 107!° to prevent the logarithm of the
determinant from being negative infinity (i.e. any two global vectors become
collinear). The final diversity loss is given as

Lain = —logdet(GGT + €I), (13)

where I denotes the identity matrix. It is noteworthy that the complexity to
compute the loss is approximate O(L), which is negligible (see Appendix D).
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3.3 Objective Function

The proposed MIL model is trained in an end-to-end fashion by jointly optimiz-
ing the weighted combination of cross-entropy (ce) loss that corresponds to the
bag-level classification, triplet loss, and the proposed diversity loss:

»Cfinal = Lee + Mrilri + Adivﬁdiv» (14)

where A\y; and A\y-; are balance parameters.

4 Experiments and Results

To validate the effectiveness of the proposed DGR-MIL, we conduct experiments
on the CAMELYON16 dataset [5] and TCGA-lung cancer dataset (TCGA-
NSCLC).

Dataset and Evaluation Metrics. The two datasets are followed the exper-
imental data partition setting in [64]. For the CAMELYON16, the training set
is further divided into training and validation sets with a 9:1 ratio. We report
the mean of accuracy, F1 score, and AUC with their corresponding 95% interval
on the testing dataset after running five experiments. For the TCGA lung can-
cer dataset, we perform 4-fold cross-validation experiments, where the dataset
is partitioned into training, validation, and testing sets with a patient ratio of
65:10:25. We report the mean and standard variation of accuracy, F1 score, and
AUC on the testing dataset from 4-fold cross-validation.

Experiment Setup. Three sets of instance features were extracted using dif-
ferent strategies to evaluate the proposed method’s adaptability across vari-
ous feature embeddings. The first set provided by DTFD-MIL [64], employ-
ing OTSU’s method for patch extraction from WSIs and ResNet-50 for fea-
ture extraction, resulting in 1024-dimensional vectors per patch. For thorough
validation, two additional sets of features were generated by segmenting each
WHSI into non-overlapping 224x224 patches using threshold filtering, resulting
in 3.4 and 10.3 million patches from CAMELYON16 and TCGA lung cancer
datasets [30,31,40,68], respectively. These patches were processed using ResNet-
18 and Vision Transformer, pre-trained on ImageNet, to produce 512 and 768-
dimensional feature vectors.

Baseline MIL Models. We compare the proposed model to eight state-of-
the-art MIL methods. These models can be roughly divided into two categories:
i) AB-MIL [28] and its variants, including CLAM-SB [35], DS-MIL [30], and
DTFD-MIL [64]; ii) the transformer-based methods including Trans-MIL [47]
and ILRA-MIL [58]. iii) clustering/prototype-based MIL including PMIL [62].
Implementation Details. All the models are trained using the parameter set-
tings provided by [30,35,47,58,64]. (See Appendix B, including our method).
Additional Experiments. We also include the experiments on using CTransPath
[56] as feature extractor for CAMELYON16 dataset. Additionally, to validate
the generalizability of our method on broader applications other than WSI, we
conduct the experiment on MIL benchmark [1,19]. Our method demonstrates
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Table 1: Main results on the CAMELYON16 dataset and TCGA-NSCLC dataset by
using features extracted by different means. Our method statistically outperforms all
other competitors (refer to the statistic test in Appendix E)

CAMELYON16 TCGA-NSCLC
Accuracy F1 AUC ‘ Accuracy F1 AUC
ResNet-50 ImageNet Pretrained
Classic AB-MIL (ICML’18) 0.845(0.839,0.851) 0.780(0.769,0.791) 0.854(0.848,0.860) | 0.8690.032 0.8660.021 0.9410.028
DS-MIL (CVPR’21) 0.856(0.843,0.869) 0-815(0.797,0.832) 0.899(0.890,0.908) | 0-8880.013 0.8760.011 0.9390.019

CLAM-SB (Nature Bio. Eng.’21)  0.837(0.500.0.863 0.775(0.755.0.705) 0.871(0.836.0.885) | 0.8750.041 0.8640.043 0.9440.02
CLAM-MB (Nature Bio. Fng.’21)  0.823(0.705.0.850) 0.774(0.752.0.705) 0.878(0.561.0.801) | 0.8780.013 0.8740.025 0.949% 016
PMIL (MedIA’23) 0.831(0.799,0.863) 0-816(0.779,0.853) 0.845(0.813,0.876) | 0-8730.010 0.8750.011 0.9330.007
Trans-MIL (NeurIPS’21) 0.858(0.848,0.868) 0.797(0.776,0.818) 0.906(0.875,0.937) | 0.8830.022 0.8760.021 0.9490.013
DTFD-MIL (MaxS) (CVPR’22) 0.864(0.848,0.830) 0-814(0.802,0.826) 0.907(0.894,0.919) | 0.8680.040 0.8630.020 0.9190.037
DTFD-MIL (MaxMinS) (CVPR’22) 0.899(0.887,0.912) 0.865(0.848,0.882) 0.941(0.936,0.944) | 0.8940.033 0.8910.027 0.9610.021

DTFD-MIL (AFS) (CVPR’22) 0.9080.892,0.925) 0.882(0.861,0.903) 0.946(0.941,0.951) | 0.8910.033 0.8830.025 0.9510.022

ILRA-MIL (ICLR23) 0.848 0 54,0533 0.826(0.5230.520) 0.-868(0.852.0.553) | 0-8950.017 0.8960.017 0.9460.014

Our 0.917(6.902,0.931) 0.-913(0.898,0.928) 0-957(0.951,0.963) |0-9080.015 0.9110.015 0.9630.008
ResNet-18 ImageNet Pretrained

Classic AB-MIL (ICML’18) 0.805(0.772,0.837) 0-786(0.757,0.515) 0-843(0.527.0.55%) | 0-8740.005 0.8730.006 0.9370.001

DS-MIL (CVPR’21) 0.791(0.739,0.843) 0.776(0.712,0.840) 0.814(0.754,0.875) | 0.8310.012 0.8380.008 0.8960.009

CLAM-SB (Nature Bio. Bng.’21)  0.792(0 760,015 0.766(0.746.0.755) 0-8110.777.0.543) | 0-869.010 0.8690.010 0.9310.006
CLAM-MB (Nature Bio. Eng.’21)  0.786(0 7540515 0.770(0.746.0.795) 0-825(0.508.0.53) | 0-8800.016 0.8800.016 0.9440.012
PMIL (MedIA’23) 0.800(0.775,0.825) 0.784(0.765,0.804) 0.829(0.807,0.851) | 0.8560.006 0.8620.003 0.9330.010
Trans-MIL (NeurIPS'21) 0.839(0.522.0.836) 0-827(0.505.0.845) 0-854(0.523.0.556) | 0-8770.000 0.879%.005 0.9380.014
DTFD-MIL (MaxS) (CVPR’22) 0.856(0.824,0.887) 0.792(0.742,0.842) 0.878(0.862,0.893) | 0.8300.014 0.8210.020 0.8930.015
DTFD-MIL (MaxMinS) (CVPR’22) 0.833(0.807,0.858) 0.768(0.747,0.788) 0.878(0.872,0.883) | 0.8530.012 0.8500.021 0.9250.013

DTFD-MIL (AFS) (CVPR’22) 0.817(0.791,0.843) 0.734(0.687,0.781) 0.868(0.841,0.896) | 0-8700.007 0.8640.012 0.9350.010

ILRA-MIL (ICLR’23) 0.831(0.768,0.895) 0.819(0.768,0.871) 0.852(0.811,0.803) | 0.8780.002 0.8790.001 0.9370.004

Our 0.873(0.862,0.884) 0.862(0.852,0.871) 0-8980.886,0.909) |0-8910.029 0.8900.021 0.9550.023
Vision Transformer ImageNet Pretrained

Classic AB-MIL (ICML’18) 0.851(0.837,0.865) 0.835(0.810,0.860) 0.873(0.840,0.906) | 0.9040.011 0.9040.010 0.9530.013

DS-MIL (CVPR’21) 0.810(0.741,0.879) 0-806(0.742,0.869) 0.871(0.836,0.906) | 0-8750.020 0.8790.016 0.9330.016

CLAM-SB (Nature Bio. Eng.’21) 0.839(0.831,0.847) 0.816(0.709,0.831) 0.864(0.841,0.887) | 0-9070.008 0.9070.001 0.9540.014
CLAM-MB (Nature Bio. Eng.’21)  0.8260 s06.0.546) 0-804(0.705 0,513 0.851(0.525.0.875) | 0.9110.007 0.9110.007 0.959% 008
PMIL (MedIA’23) 0.843(0.831,0.856) 0.826(0.814,0.838) 0.843(0.820,0.867) | 0.8820.000 0.8840.006 0.9400.006
Trans-MIL (NeurIPS'21) 0.862(0.541.0.553) 0-846(0.523 0,569 0-860(0.845.0.573) | 0-909.000 0.909.000 0.9530.006
DTFD-MIL (MaxS) (CVPR’22) 0.846(0.832,0.860) 0.767(0.746,0.787) 0.859(0.842,0.876) | 0.9040.011 0.9040.010 0.9530.013
DTFD-MIL (MaxMinS) (CVPR’22) 0.839(0.826,0.851) 0.752(0.742,0.763) 0.862(0.836,0.888) | 0.8950.013 0.8920.016 0.9520.011

DTFD-MIL (AFS) (CVPR’22) 0.831(0.818,0.844) 0.759(0.737,0.781) 0.880(0.864,0.897) | 0-9010.005 0.9000.008 0.9590.012
ILRA-MIL (ICLR’23) 0.850(0.825,0.875) 0-838(0.812,0.865) 0.864(0.843,0.885) | 0-9020.007 0.9040.007 0.9540.006
Our 0.893(0.889,0.897) 0.882(0.577,0.886) 0-891(0.884,0.899) |0.9260.008 0.9250.008 0.9690.004

the obvious superiority over other methods in both experiments. Please refer to
Appendix F.

4.1 Experimental Results

The proposed method outperforms the other state-of-the-art MIL aggregation
models by a large margin in both the CAMELYON16 and TCGA-NSCLC datasets
using features extracted by three different means (see Table 1). We also show the
statistical superiority of our method in Appendix E. Specifically, the proposed
model outperforms the second-best models in terms of accuracy (1.7%; 1.3%),
F1 score (3.1%; 1.5%), and AUC (1.1%; 1.7%) when using features extracted
from ResNet-50 in CAMELYON16 and TCGA-NSCLC, respectively. A similar
performance gain is observed on features extracted from ResNet-18 including
accuracy (3.4%; 1.1%), F1 score (3.5%; 1.0%), and AUC (4.4%; 1.1%). We also
observe an improvement in accuracy (3.4%; 1.1%), F1 score (3.5%; 1.0%), and
AUC (4.4%; 1.1%) when using features extracted from the vision transformer.
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Fig. 4: Ablation studies on (a) number of non-tokenized global vectors on both CAME-
LYON16 and TCGA-NSCLC datasets, (b) and (c) balance parameter A:r; and Mg, on
CAMELYON16 dataset, respectively. (d) Comparison in the number of positive in-
stances per bag.

Table 2: The ablation studies on dif-

fe%"ent modules. 7 Pos:itive. instance Table 3: The ablation studies on tokenized
alignment module. D: Diversity loss. global representation.

'PD‘ CAMELYON16 TCGA-NSCLC
‘Accuracy F1 AUC‘Accuracy F1 AUC

Gioken| CAMELYON16 TCGA-NSCLC
‘Accuracy F1 AUC‘Accuracy F1 AUC

X X 0.895 0.887 0.922| 0.872 0.875 0.928
X /| 0906 0.9000.938 0.896 0.896 0.952 X 0.907  0.900 0.935 0.903  0.905 0.957
v X| 0917 0.9100.944| 0.900 0.904 0.956 4 0.917 0.9130.957] 0.908 0.911 0.963

v /| 0917 0.9130.957| 0.908 0.911 0.963

In general, the proposed model shows a greater performance improvement in the
CAMELYON16 dataset compared to the TCGA-NSCLC dataset. This might be
attributed to the fact that CAMELYON16 consists of more diverse instances
than TCGA-NSCLC.

We also observe the performance of the three sets of feature embeddings var-
ied: the ViT feature embeddings outperform the ResNet-18 features but show
inferior performance compared to the ResNet-50 features. This is mainly at-
tributed to the fact that a greater number of positive instances is extracted by
the ResNet-50 (provided by DTFD-MIL) as shown in Fig. 4(d). In contrast, a
smaller portion of positive instances in the extracted patches may accompany a
drop in performances [41]. This phenomenon benefits the pseudo-bag partitions
in DTFD-MIL, as more positive instances within a bag are prone to result in less
noisy pseudo-bag labels. This accounts for the drop in DTFD-MIL performance
when applied to feature embeddings that contain a lower proportion of positive
instances.

4.2 Ablation Studies

We conduct ablation studies on model design variants in the CAMELYON16
dataset with features extracted by a ResNet-50, unless specified otherwise.

Effectiveness of the Proposed Global Representation. We ablate different
components of the proposed model, i.e., the positive instance alignment module
and the diversity loss. While the model without these two components serves
as the baseline in Table 2. We first observe that incorporating the proposed
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Fig. 5: Visualization of the attention map: (a) raw WSI with the ground-truth anno-
tation, (b) the attention map computes using the tokenized global vectors, and (c-g)
the attention map computes using the other (K — 1) global vectors with K = 6 in our
experiment.

global vectors described in Section 3.1 (without employing any of the learning
strategies in Section 3.2) yielded an AUC of 0.922 and 0.928. This AUC exceeds
that of most existing MIL models, except for DTFD-MIL (MaxMinS & AFS)
(see Table 1 and 2). Subsequently, by including the proposed positive instance
alignment module, we observe a performance gain of (2.2%, 2.8%) in accuracy,
(2.3%, 2.9%) in F1 score, and (2.2%, 2.8%) in AUC. Up to now, we outperform
the DTFD-MIL in terms of accuracy and F1 score (see Table 1 and 2), and
achieve a similar AUC (AUC = 0.944,0.956) compare to the DTFD-MIL(AFS)
(AUC = 0.946,0.951). Further incorporating the proposed diversity loss into
the objective function yields a performance gain of (1.3%,0.7%) in AUC, which
outperforms DTFD-MIL (AFS) by (1.1%,1.2%).

Effectiveness of the Tokenized Global Representation. As shown in Table
3, including the tokenized global vector gy, yields a remarkable performance
gain by improving accuracy by (1.0%, 0.5%), F1 score by (1.3%, 0.6%), and AUC
by (2.2%, 0.6%). As consistent with the pathological findings that instances are
diverse, we observe that different global vectors indeed corresponded to different
instance representations, which can be depicted by the attention map produced
by different global vectors in Fig. 5. However, we also observe that the learned
global vectors still include non-tumor related representation, particularly around
tumor boundaries, as positive instances around tumor boundaries have a similar
appearance to surrounding negative instances (see Fig. 5.(c) and (d)). As a result,
incorporating tokenized global vectors can mitigate this problem by capturing
the most discriminative positive (tumor) regions (see Fig. 5.(b)).

Number of Global Vectors. We find that the optimal number of global vectors
K in different data sets may vary due to dataset intrinsic properties. Specifically,
the optimal K for the CAMELYON16 and TCGA-NSCLC dataset are K = 5
and K = 3, respectively (Fig. 4.(a)). We observe that an overly large K is likely
to decrease performance as it will harden the learning task (see Fig. 4.(a)).
Loss Balance Hyperparameters. By conducting a grid search, we find that
the optimal setting of the balance parameters is Ay = 0.1 and Ag;,, = 0.1 (see
Fig. 4.(b) and (c)). An overly small L;.; and Lg;, (e.g., 0.01) is likely to enforce
inadequate constraints on the learned global representation by deviating it from
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learning meaningful information of instance of interest. While larger balance
parameters (e.g., {0.5,1.0}) distract the model from the main classification task,
leading to a drop in classification performance.

5 Conclusion

Inspired by the pathological fact that instances are diverse, we propose a novel
MIL model from the perspective of modeling diversity in instances through the
cross-attention between instances and a set of learnable and diverse global vec-
tors. To learn the global vectors, we propose a positive instance alignment mecha-
nism and the DPP-driven diversity loss. Extensive experiments demonstrate that
the proposed MIL model competed favorably against other existing MIL mod-
els. Importantly, our work provides an explicit way to account for the diversity
in WSI. This pathology-driven approach is beneficial in capturing heterogeneity
among the patient population. We also narrowed the performance gap between
the diversity-drive MIL method and mainstream MIL.
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Supplementary Materials - DGR-MIL: Exploring
Diverse Global Representation in Multiple
Instance Learning for Whole Slide Image
Classification

A Measuring Diversity Based on Rate-distortion Theory
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Fig.6: (a) Examples of positive instances of with-bag and between-bag diversities
measured by rate-distortion theory. (b) Histogram of the diversity measure within
positive bags on the CAMELYON16 dataset. (¢) The between-bag distinction measures
the pair-wise similarity between bags.

Rate-distortion (RD) theory is a fundamental concept in information the-
ory to describe the lossy compression for arbitrary data sources with tolerable
distortion. Here, rate R refers to the number of bits or units per symbol of
information required to represent the source data or signal; while distortion
measures the quality of the reconstructed data compared to the original source
data. Mathematically, given an arbitrary source X, we can use finite bits nR bits
to encode a sequence of n samples X™ with f,(X™) using a size codebook 2%,
and then decode it with X” = g,,(f(X™)). Accordingly, the reconstruction error
for the sample sequence ™ can be computed as d(z",2") :=1/n i, d(z;, ;)
for some distance measure d(-). The most commonly used distortion metric is
Mean Squared Errors (MSE), which is presented as €? := 1/n """ | (¥; —2;)? and
distortion D is defined as D := E[d(X™, X™)] [15]. The rate R is computed for a
sequence with infinite length (n — oo) and distortion D. For a Gaussian source,
given a finite dataset X = [z1,®o, - ,x,] € R¥" the theoretical coding rate
with a small tolerable MSE distortion €2, can be approximately estimated as [36],
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1 d
R(X,e) := 3 log det (I—l— ne2XXT) , (15)

where the unit of R(X,e€) is bit/dimension or nat/dimension for log base 2 or
e, respectively. Accordingly, the rate of the sub-space for each class i can be
approximated,

RY(X,e| Cy) == élogdet (I + MLXcngi> , (16)
where C; is the index set of class 4, ¢ is the number of classes, X ¢, is a matrix
using columns of X indexed by C; (X[, Ci]), and |C;] is the cardinality of C;.
Having adopted the assumption in [63], we use the latent features extracted by
the projector to estimate the diversity.

To better illustrate the way to compute the diversity, we copy Fig.6 from
the main body to here. In Fig.6.(b), we use Eq. 16 to compute the within-bag
diversity, which refers to either all negative instances or positive instances (if
applicable) from the same bag. The instances are treated as a data matrix X
in Eq.15. We separately compute the diversity for each bag from the test set
(80 negative bags and 49 positive bags), which results in a total of 129 negative
within-bag diversity data points and 49 positive within-diversity data points.
Then, we plot the histograms in Fig.6.(b), where the x-axis denotes the measure
of diversity and the y-axis denotes the count (or frequency) of the diversity
within the interval (i.g. the width and height in a bin, respectively). It evidences
both positive and negative within-bag instances are diverse and on a comparable
scale. In Fig.6.(c), we use the rate reduction from [63] to compute the between-
bag distinction of positive instances for every two bags. A rate reduction is
presented as

‘%‘R;(x,e | Cy), (17)

2
AR:=R(X[:,C;UCtl,e) = Y
i=1

where C and C5 are the index sets of two sub-space. This concept is used to
describe the difference to encode the entire space and encode the sum of all
sub-spaces, and a higher value indicates two sub-spaces are more discrimina-
tive; hence, we employed it as a metric to describe the distinction between two
bags. In detail, we compare the distinction for every two positive bags. In each
computation, C'y and Cs denote the indices of positive instances from two differ-
ent bags, respectively. C; U C5 denotes all instances from the selected two bags.
Fig.6.(c) denotes the pair-wise distinction matrix, and we neglected the diagonal
elements since they are zero. We also neglected the upper-triangle elements since
this distinction matrix is symmetric.

B Baseline Models Parameter Setting

The baseline MIL methods include AB-MIL [28], CLAM-SB, multi-attention
CLAM-MB [35], DS-MIL [30], DTFD-MIL [64], Trans-MIL [47] and ILRA-
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Table 4: All training parameters setting for all methods in experiments. Here, Co-
sine annealing® denotes cosine decay with 20 epoch linear warmup from le-5. AMP
represents automatic mixed precision, and the grad clip was clipped gradient norm
constrained of model weight. Here, BCE was BCEWithLogitsLoss, which combines a
sigmoid layer and the binary cross entropy loss.

Parameters Setting| AB-MIL CLAM-SB/MB |DS-MIL DTFD-MIL Trans-MIL ILRA-MIL Our proposed Method
optimizer Adam Adam Adam Adam Radam Adam SGD

learning rate le-3 le-4 le-4 le-4 2e-4 le-4 5e-4

weight decay 0.005 le-5 5e-3 le-4 le-5 le-4 le-4

scheduler Cosine annealing™|Cosine anncaling®|Cosine annealing|MultiStepLR LookAhead [65]| Cosine annealing|Cosine annealing™
Dropout rate 0.15 0.15 0.15 0.15 0.15 0.15 0.15

epoch 200 200 200 200 200 200 200

loss BCE BCE BCE BCE + Tier-2 loss|BCE BCE Lee + MeriLiri + MdivLaiv
other settings None Farly stop Droppath — 0.2 |grad clip — 5 AMP Xavier initialize |Warmup training strategy

MIL [58]. We follow the optimal parameter settings outlined in their original
papers. The detailed parameters that we use to train all the baselines and the
proposed model are shown in Table 4. It is worth noting that our method adopts
the linear learning rate warmup for the first 20 epochs, and details can be referred
to B.4.

B.1 ResNet-50 ImageNet Pre-Trained

We use extracted features released by the DTFD-MIL. Each patch was embedded
into a 1024-dimensional vector using a ResNet-18 pretrained on ImageNet [26].
The instance features are directly fed to MIL methods for training. In the ex-
periments, we consistently set the middle layer (Some MIL methods including
feed-forward layers before entering the aggregation method) output dimension
to 512, For example, TransMIL [47], ILRA [58], DTFD [64], ABMIL [28], and
the proposed method.

B.2 ResNet-18 ImageNet Pre-Trained

Different from DTFD-MIL, we employ the threshold filter method (entropy < 5
discarded) to extract patches from raw WSIs [30]. This results in fewer patches
compared to DTFD-MIL. Each patch was embedded into a 512-dimensional
vector as an instance feature. Here, we consistently set the middle layer out-
put dimension to 256 in all MIL methods, including ILRA [58], DTFD [64],
ABMIL [28], and the proposed method. Here, the TransMIL middle layers di-
mension output is 512, following the settings in its original paper [47]. Here,
The TransMIL middle layers dimension output was 512, following the original
paper setting [47]. The experiments section of the manuscript reveals a notable
performance decline in most MIL methods.

B.3 Vision Transformer ImageNet Pre-Trained

We employ the same threshold filter technique for patch extraction as we have
done in the ResNet18 scheme. Each patch is transformed into a 768-dimensional
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Table 5: Comparision over efficiency among different transformer-based MIL aggre-
gation methods in terms of the number of Parameters (M) and MACs (G) represent
the model size and multiple-accumulated operation computational complexity, respec-
tively.

Models |Params(M) MACs(G)
ILRA-MIL [58]|  1.049 1.842
Trans-MIL [17]|  3.040 2.409
Our 0.642 1.054

vector using a vision transformer pre-trained on ImageNet. The middle layer out-
put dimension in MIL methods with feed-forward layers, such as TransMIL [47],
ILRA [58], DTFD [64], ABMIL [28], and the proposed method, is set to 512. In
line with the TransMIL study, the output dimension of its middle layers is also
established at 512.

B.4 Warm-up Training Strategy

As outlined in our paper, a warm-up training strategy is incorporated in all
experiments of the proposed method. This warm-up training can be described
as follows:

Lo _ Ecea iff ¢t < 20’ (18)
final — Lee + MiriLtri + Adivﬁdi’b'? if ¢ > 20,

where t is the current epoch. The total training epoch is set to 200 for all
experiments in this paper. We only employ the cross entropy classification loss
to train our model at the first 20 epochs; while adding all the other losses for
the latter epochs. The rationale behind this is that the randomly initialized
global vectors usually lead to instability in training. The warmup training will
help the global vectors to learn the meaningful instance relation in classification.
This prevents poorly initialized global vectors from incorrectly misleading the
modeling of instance correlations at the start.

C Efficiency Comparision of Transformer-Based MIL
Aggregation Methods

Take feature vectors extracted by ResNet-18 as an example, we apply the same
hidden parameters as reported in the experiments. As shown in Table 5, the
proposed method demonstrates superior efficiency compared to the other two
transformer-based MIL aggregation methods, exhibiting notable advantages in
terms of both model size and computational complexity. The cross-attention
mechanism is more computationally efficient compared to the self-attention mech-
anism used across all instances. This efficiency stems from the use of an extremely
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short sequence of global vectors, which is substantially less in number than the
total count of instances.

It is worth noting that ILRA-MIL [58] employs self-attention for modeling the
correlation between instances. Similarly, it also presents a larger number of pa-
rameters and is more computationally complex than the proposed method. The
main reason is that they rewrite self-attention instead of self-attention with lin-
ear, and added the non-local pooling extra module. complexity [23,48,53].

D Complexity of Diversity Loss

The proposed diversity loss can be computed in a linear time complexity. For
a global vector G € RE*L logdet(GGT) = K log(A2), where the main
overhead is an SVD decomposition of G to get \;, resulting in a complexity of
O(LK?) ~ O(L) due to K is often set a small number (e.g., 5).

E Statistical Test

We present the Wilcoxon signed-rank test and the critical difference diagram [16]
in Fig. 7 with a = 0.5 significance level. Our method statistically outperforms
all other competitors.

1 10 9 8 7 6 5 4 3 2 1
L 1 1 1 1 1 1 1 1 | -

DS-MIL 8822 “"’L’ Our
PMIL 2020 28598 Trans-MIL
CLAM-SB L4192 48607 || RA-MIL
CLAM-MB 1%L 28533 DTFD-MIL (AFS)

Classic AB-MIL :‘“:; L 29167 DTFD-MIL (MaxMinS)
DTFD-MIL (MaxS) &4

Fig. 7: Wilcoxon signed-rank test, average rank denoted by the number. No statistical
difference found between methods connected with one thickness line in the critical
difference diagram.

F Additional Results

We present the additional experiments on CAMELYON16 with CTransPath
feature extractor and classic MIL benchmarks. The results are shown in Table 6
and Table 7, respectively.
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Table 6: Results on CTransPath extractor. We employ the 4-fold cross-validation
using data split provided by DTFD.

CAMELYON16
Accuracy F1 AUC
Classic AB-MIL (ICML’18) 0.940(0.933,0.948) 0.936(0.928,0.944) 0.951(0.932,0.970)
DS-MIL (CVPR’21) 0.929(0.898,0.959) 0.923(0.889,0.957) 0.942(0.916,0.968)
Trans-MIL (NeurIPS’21) 0.952(0.935,0.970) 0.949(0.930,0.968) 0-973(0.958,0.987)
DTFD-MIL (MaXMiHS) (CVPR ’22) 0949(&931,0.953) 0‘933(0,906,()937) 0~985(0.976,().994)
DTFD-MIL (AFS) (CVPR’22) 0.942(0.931,0.953) 0.922(0.906,0.937) 0.982(0.969,0.995)
ILRA-MIL (ICLR’23) 0.940(0.924,0.957) 0.937(0.922,0.953) 0.961(0.946,0.975)
Our 0.9720.965,0.979) 0-971(0.963,0.978) 0.994(0.991,0.996)

Table 7: Results on MIL benchmarks.

Methods MUSK1 MUSK2 FOX TIGER ELEPHANT
mi-Net 0.889 + 0.039  0.858 £ 0.049  0.613 £ 0.035 0.824 £ 0.034 0.858 £ 0.037
MI-Net 0.887 & 0.041  0.859 £ 0.046  0.622 £ 0.038 0.830 £ 0.032 0.862 £ 0.034

MI-Net with DS| 0.894 + 0.042 0.874 £ 0.043  0.630 £ 0.037 0.845 £ 0.039 0.872 £ 0.032
MI-Net with RC| 0.898 + 0.043  0.873 £ 0.044  0.619 £ 0.047 0.836 £+ 0.037 0.857 & 0.040

ABMIL 0.892 + 0.040  0.858 + 0.048  0.615 £ 0.043 0.839 £ 0.022 0.868 £ 0.022
ABMIL-Gated | 0.900 + 0.050 0.863 £ 0.042  0.603 £ 0.029 0.845 £ 0.018 0.857 £ 0.027
DP-MINN 0.907 & 0.036  0.926 & 0.043  0.655 £ 0.052 0.897 £ 0.028 0.894 £ 0.030
NLMIL 0.921 £ 0.017  0.910 £ 0.009  0.703 £ 0.035 0.857 £ 0.013 0.876 £ 0.011
ANLMIL 0.912 4+ 0.009  0.822 + 0.084  0.643 £ 0.012 0.733 £ 0.068 0.883 £ 0.014
DSMIL 0.932 + 0.023  0.930 + 0.020 0.729 £ 0.018 0.869 £ 0.008 0.925 + 0.007

Our Method 0.989 + 0.033 0.970 + 0.0458 0.785 + 0.120 0.925 + 0.055 0.950 + 0.044
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