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ABSTRACT

Label noise is pervasive in real-world datasets, which encodes wrong correlation
patterns and impairs the generalization of deep neural networks (DNNs). It is
critical to find efficient ways to detect the corrupted patterns. Current methods
primarily focus on designing robust training techniques to prevent DNNs from
memorizing corrupted patterns. This approach has two outstanding caveats: 1)
applying this approach to each individual dataset would often require customized
training processes; 2) as long as the model is trained with noisy supervisions,
overfitting to corrupted patterns is often hard to avoid, leading to performance
drop in detection. In this paper, given good representations, we propose a uni-
versally applicable and training-free solution to detect noisy labels. Intuitively,
good representations help define “neighbors” of each training instance, and closer
instances are more likely to share the same clean label. Based on the neighbor-
hood information, we propose two methods: the first one uses “local voting” via
checking the noisy label consensuses of nearby representations. The second one
is a ranking-based approach that scores each instance and filters out a guaranteed
number of instances that are likely to be corrupted, again using only represen-
tations. Given good (but possibly imperfect) representations that are commonly
available in practice, we theoretically analyze how they affect the local voting and
provide guidelines for tuning neighborhood size. We also prove the worst-case
error bound for the ranking-based method. Experiments with both synthetic and
real-world label noise demonstrate our training-free solutions are consistently and
significantly improving over most of the training-based baselines.

1 INTRODUCTION

The generalization of deep neural networks (DNNs) depends on the quality and the quantity of
the data. Nonetheless, in practice real-world datasets often contain label noise that challenges the
above assumption (Krizhevsky et al., 2012; Zhang et al., 2017; Agarwal et al., 2016). Employing
human workers to cleaning annotations is one reliable way to improve the label quality, but it is
too expensive and time-consuming for a large-scale dataset. One promising way to automatically
cleaning up label errors is to first algorithmically detect possible label errors from a large-scale
dataset (Cheng et al., 2021; Northcutt et al., 2021a; Pruthi et al., 2020; Bahri et al., 2020), and then
correct them using either algorithm or crowdsourcing (Northcutt et al., 2021b).

Almost all the algorithmic detection approaches focus on designing customized training processes
to learn with noisy labels, where the idea is to train DNNs with noisy supervisions and then make
decisions based on the output (Northcutt et al., 2021a) or gradients (Pruthi et al., 2020) of the last
logit layer of the trained model. The high-level intuition of these methods is the memorization effects
(Han et al., 2020), i.e., instances with label errors, a.k.a., corrupted instances, tend to be harder to
be learned by DNNs than clean instances (Xia et al., 2021; Liu et al., 2020). By setting appropriate
hyperparameters to utilize the memorization effect, corrupted instances could be identified.

The above methods suffer from two major limitations: 1) the customized training processes are
task-specific and may require fine-tuning hyperparameters for different datasets/noise; 2) as long
as the model is trained with noisy supervisions, the memorization of corrupted instances exists.
The model will “subjectively” and wrongly treat the memorized/overfitted corrupted instances as
clean. For example, some low-frequency/rare clean instances may be harder to memorize than high-
frequency/common corrupted instances. Memorizing these corrupted instances lead to unexpected
and disparate impacts (Liu, 2021). One way to avoid memorizing/overfitting is to drop the depen-
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dency on training using the noisy supervisions, which motivates us to design a training-free method
to find label errors. Intuitively, we can carefully use the information from nearby representations
to infer whether one instance is corrupted or not. This observation inspired our solution of using
a good representation to first identify “neighbor” instances for each training example, whose noisy
labels jointly would help us perform the detection. Note the representation extractor could be fully
independent of noisy supervisions by referring to unsupervised learning or self-supervised learning,
or even adapting from other tasks.

Our training-free method enables more possibilities beyond a better detection result. For example,
the concerns of the required assumptions and hyperparameter tuning in those training-based methods
will now be released due to our training-free property. The complexity of such a solution will also
be much lower, again due to the removal of the possibly involved training processes. This light
detection solution also has the potential to serve as a pre-processing module to prepare data for
other sophisticated tasks (e.g., semi-supervised learning (Xie et al., 2019; Berthelot et al., 2019)).

Our main contributions are: 1) New perspective: Different from current methods that train cus-
tomized models on noisy datasets, we proposed a training-free solution to efficiently detect noisy
labels given good representations. We believe this is the first attempt of the same kind to the best of
our knowledge. 2) Efficient algorithms: Based on the neighborhood information, we propose two
methods: a voting-based local detection method that only requires checking the noisy label con-
sensuses of nearby representations, and a ranking-based global detection method that scores each
instance by its likelihood of being clean and filters out a guaranteed percentage of instances with
low scores as corrupted ones. 3) Theoretical analyses: We theoretically analyze how a good rep-
resentation (but possibly imperfect in practice) affects the local voting and provide guidelines for
tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method.
4) Numerical findings: Our numerical experiments show three important messages: in label noise
detection, i) training with noisy supervisions may not be necessary; ii) representation layers tend to
be more useful than the logit layers; iii) representations from other tasks or domains are helpful.

1.1 RELATED WORKS

Learning with noisy labels There are many other works that can detect corrupted instances (a.k.a.
sample selection) in the literature, e.g., (Jiang et al., 2018; Han et al., 2018; Yu et al., 2019; Yao
et al., 2020; Wei et al., 2020; Jiang et al., 2020; Zhang et al., 2021), and its combination with
semi-supervised learning (Nguyen et al., 2019; Li et al., 2020b; Cheng et al., 2021). Another line of
works focus on designing robust loss functions to mitigate the effect of label noise, such as numerical
methods (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Gong et al., 2018; Amid et al., 2019; Wang
et al., 2019; Shu et al., 2020) and statistical methods (Natarajan et al., 2013; Liu & Tao, 2015; Patrini
et al., 2017; Liu & Guo, 2020; Xia et al., 2019; 2021; Wei & Liu, 2021; Zhu et al., 2021a; Li et al.,
2021; Liu et al., 2020). All these methods require training DNNs with noisy supervisions.

Pre-training or Self-supervised Learning Training DNNs from scratch may be time-consuming
(Goyal et al., 2017). A common strategy to alleviate this issue is initializing DNN with a pre-trained
model when training on new tasks (Krizhevsky et al., 2012; Zeiler & Fergus, 2014; Sermanet et al.,
2013). The pre-trained model can be used for down-stream tasks due to the great transfer-ability
of DNNs (Tan et al., 2018). Popular pre-trained models include BERT (Devlin et al., 2018) for
language tasks or CLIP (Radford et al., 2021) for vision-language tasks. Recently, unsupervised
learning (Ji et al., 2019) and self-supervised learning (Jaiswal et al., 2021; Liu et al., 2021; He et al.,
2020; Chen et al., 2020) also exhibit great power when fine-tuning DNN on down-stream tasks.

Label aggregation Our work is also relevant to the literature of crowdsourcing that focuses on label
aggregation (to clean the labels)(Liu et al., 2012; Karger et al., 2011; 2013; Liu & Liu, 2015; Zhang
et al., 2014). Most of these works can access multiple reports (labels) for the same input feature,
while our real-world datasets usually have only one noisy label for each feature.

2 PRELIMINARIES

Instances Traditional classification problems with perfect supervisions build on a clean dataset
D := {(xn, yn)}n∈[N ], where [N ] := {1, 2, · · · , N}. Each clean instance (xn, yn) includes feature
xn and clean label yn, which is drawn according to random variables (X,Y ) ∼ D. In a more
practical case, the clean labels are likely to be unavailable and the learner could only observe a noisy
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Figure 1: Detect noisy labels with similar representations. Orange circle: instance with noisy label
1. Blue square: instance with noisy label 2. Green dashed circle: A k-NN example.

dataset denoted by D̃ := {(xn, ỹn)}n∈[N ], where (xn, ỹn) is a noisy instance and the noisy label ỹn
may or may not be identical to yn. We call ỹn is corrupted if ỹn 6= yn and clean otherwise. The
instance (xn, ỹn) is a corrupted instance if ỹn is corrupted. The noisy data distribution corresponds
to D̃ is (X, Ỹ ) ∼ D̃. We focus on the closed-set label noise that Y and Ỹ are assumed to be in the
same label space, e.g., Y, Ỹ ∈ [K] for a K-class classification task. Explorations on open-set data
(Xia et al., 2020a; Luo et al., 2021) are deferred to future works.

Representations The representation of feature xn is denoted by x̄n := g(xn), where g(·) denotes
a representation extractor. Feature xn could be in any shape and representation x̄n is generally
a high-dimensional vector. In this paper, we focus on a setting where the distances between two
representations should be comparable or clusterable (Zhu et al., 2021b), i.e., nearby representations
should belong to the same true class with a high probability (Gao et al., 2016), which could be
defined as (k, δk) label clusterability in Definition 1.
Definition 1 ((k, δk) label clusterability). Given a representation extractor g(·), a dataset D sat-
isfies (k, δk) label clusterability if: ∀n ∈ [N ], the representation x̄n := g(xn) and its k-Nearest-
Neighbors (k-NN) x̄n1

, · · · , x̄nk belong to the same true class with probability at least 1− δk.

Note δk captures two types of randomnesses: one comes from a probabilistic Y |X , i.e., ∃i ∈
[K],P(Y = i|X) /∈ {0, 1}; the other depends on the quality of representation and the value of
k, which will be further illustrated in Figure 2. The (k, 0) label clusterability is also known as k-NN
label clusterability (Zhu et al., 2021b). It has been shown in (Zhu et al., 2021b) that k-NN label
clusterability can often be satisfied for a reasonable representation when k is moderate to small. We
define k perfect extractors/representations in Definition 2.
Definition 2 (k perfect extractor/representation). A representation extractor g(·) is called k perfect
extractor if it induces k-NN label clusterability. Its outputs are called k perfect representations.

Label noise detection Our paper aims to improve the performance of the label noise detection
(a.k.a, detecting noisy/corrupted labels, finding label errors) which is measured by the F1-score
of the detected corrupted instances, which is the harmonic mean of the precision and recall, i.e.
F1 = 2/(Precision−1 + Recall−1). Let 1(·) be the indicator function that takes value 1 when
the specified condition is satisfied and 0 otherwise. Let vn = 1 indicate that ỹn is detected as a
corrupted label, and vn = 0 if ỹn is detected to be clean. Then the precision and recall can be
calculated as Precision =

∑
n∈[N] 1(vn=1,ỹn 6=yn)∑

n∈[N] 1(vn=1) , Recall =
∑
n∈[N] 1(vn=1,ỹn 6=yn)∑

n∈[N] 1(ỹn 6=yn) .

3 LABEL NOISE DETECTION USING SIMILAR REPRESENTATIONS

Different from most methods that detect noisy labels based on the logit layer or model predictions
(Northcutt et al., 2021a; Cheng et al., 2021; Pruthi et al., 2020), we focus on representations of
features. Particularly we are interested in the possibility of detecting noisy labels in a training-free
way, once given good representations. In this section, we will first introduce intuitions, and then
provide two efficient algorithms to detect label noise with similar representations.

3.1 INTUITIONS

The training-based detection methods often make decisions by comparing model predictions with
noisy labels (Cheng et al., 2021; Northcutt et al., 2021a). However, the representation g(xn) cannot
be directly compared with the noisy label ỹn since g(xn) is not directly categorical, i.e., the output of
a single g(xn) rarely corresponds to any label class. Thus the first step of our training-free solution
should be establishing an auxiliary categorical information using only representations.
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As illustrated in Figure 1, the high-level intuition is to check label consensuses of nearby represen-
tations. With k perfect representations as defined in Definition 2, we know the true labels of x̄n
and its k-NN x̄n1

, · · · , x̄nk should be the same. If the label noise across these instances are group-
dependent (Wang et al., 2021), we can treat their noisy labels as k + 1 independent observations
of P(Ỹ |X = xn, Y = yn), then estimate the probability by counting the frequency or weighted
frequency1 of each class in the k-NN label estimator, and get k-NN labels ŷn. The i-th element
ŷn[i] can be interpreted as the estimated probability of predicting class-i.

Representations could be better than model predictions During supervised training, memorizing
noisy labels makes the model generalizes poorly (Li et al., 2020a; Han et al., 2020), while using only
representations may effectively avoid this issue. This is because representations often come from
techniques beyond memorization such as unsupervised learning or self-supervised learning where
the noisy labels are not referred in representation learning. On the other hand, the extractor g(·) has
great potential in domain adaption or transfer, which makes representations more flexible than the
specific model predictions. We will demonstrate this point in Section 5.

3.2 VOTING-BASED LOCAL DETECTION

Inspired by the idea implemented in model decisions, i.e., selecting the most likely class as the true
class, we can simply “predict” the index that corresponds to the largest element in ŷn with random
tie-breaking, i.e., yvoten = arg maxi∈[K] ŷn[i]. To further detect whether ỹn is corrupted or not, we
only need to check vn := 1(yvoten 6= ỹn). Recall vn = 1 indicates a corrupted label. This voting
method relies only on the local information within each k-NN label ŷn, which may not be robust
with imperfect representations. Intuitively, when the gap between the true class probability and the
wrong class probability is small, the majority vote will be likely to make mistakes due to sampling
errors in ŷn. Thus only using local information within each ŷn may not be sufficient. It is important
to leverage more information such as some global statistics, which will be discussed later.

3.3 RANKING-BASED GLOBAL DETECTION

From a global perspective, if the likelihood for each instance being clean could be evaluated by some
scoring functions, we can sort the scores in an increasing order and filter out the low-score instances
as corrupted ones. Based on this intuition, there are two critical components: the scoring function
and the threshold to differentiate the low-score part (corrupted) and the high-score part (clean).

Scoring function A good scoring function should be able to give clean instances higher scores than
corrupted instances. We adopt cosine similarity defined as: Score(ŷn, j) =

ŷ>n ej
‖ŷn‖2‖ej‖2 , where ej

is the one-hot encoding of label j. To evaluate whether the soft label ŷn informs us a clean instance
or not, we compare Score(ŷn, ỹn) with other instances that have the same noisy label. This scoring
function captures more information than majority votes, which is summarized as follows.
Property 1 (Relative score). Within the same instance, the score of the majority class is higher than
the others, i.e. Score(ŷn, y

vote
n ) > Score(ŷn, j),∀j 6= yvoten , j ∈ [K],∀n ∈ [N ].

Property 2 (Absolute score). Score(ŷn, j) is jointly determined by both ŷn[j] and ŷn[j′],∀j′ 6= j.

The first property guarantees that the corrupted labels would have lower scores than clean labels
for the same instance when the vote is correct. However, although solely relying on Property 1 may
work well in the voting-based method which makes decisions individually for each instance, it is not
sufficient to be trustworthy in the ranking-based global detection. The main reason is that, across
different instances, the non-majority classes of some instances may have higher absolute scores than
the majority classes of the other instances, which is especially true for general instance-dependent
label noise with heterogeneous noise rates (Cheng et al., 2021). Property 2 helps make it less likely
to happen. Consider an example as follows.

Example Suppose ŷn1
= ŷn2

= [0.6, 0.4, 0.0]>, ŷn3
= [0.34, 0.33, 0.33]>, yn1

= yn2
= yn3

= 1,
ỹn1

= ỹn3
= 1, ỹn2

= 2. We can use the majority vote to get perfect detection in this case, i.e.,
yvoten1

= yvoten2
= yvoten3

= 1 = yn1
, since the first class of each instance has the largest value.

However, if we directly use a single value in soft label yn to score them, e.g., Score′(ŷn, j) =

1One can weight instances by the similarity to the center instance.
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Algorithm 1 Detection with Similar Representations (The SimiRep Detector)

1: Input: Number of epochs: M . k-NN parameter: k. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N ].
Representation extractor: g(·). Method: Vote or Rank. Epoch counter m = 0.

2: repeat
3: x′n ← RandPreProcess(xn),∀n; # Initialize & Standard data augmentations
4: x̄n ← g(x′n),∀n; # Extract representations with g(·)
5: ŷn ← kNNLabel({x̄n}n∈[N ], k) # Get soft labels based on the clusterability of representations
6: if Vote then
7: yvoten ← arg maxi∈[K] ŷn[i]; # Apply local majority vote
8: vn ← 1(yvoten 6= ỹn),∀n ∈ [N ]; # Treat as corrupted if majority votes agree with noisy labels
9: else

10: P(Y ),P(Ỹ |Y )← HOC({(x̄n, ỹn)}n∈[N ]);
# Estimate clean priors P(Y ) and noise transitions P(Ỹ |Y ) by the HOC estimator

11: P(Y |Ỹ ) = P(Ỹ |Y ) · P(Y )/P(Ỹ ); # Estimate thresholds by Bayes’ rule
12: for j in [K] do
13: Nj := {n|ỹn = j}; # Detect corrupted labels in each setNj
14: I ← argsort{Score(ŷn, j)}n∈Nj ; # I records the raw index of each sorted value

15: vn ← 1
(
Loc(n, I) ≤ b(1− P(Y = j|Ỹ = j)) ·Njc

)
;

# Select low-score (head) instances as corrupted ones
16: end for
17: end if
18: Vm = {vn}n∈[N ]; # Record detection results in the m-th epoch
19: until M times
20: V =Vote(Vm,∀m ∈ [M ]); # Do majority vote based on results from M epochs
21: Output: [N ] \ V .

ŷn[j], we will have ŷn1
[ỹn1

] = 0.6 > ŷn2
[ỹn2

] = 0.4 > ŷn3
[ỹn3

] = 0.33, where the ranking
is n3 ≺ n2 ≺ n1. Ideally, we know instance n2 is corrupted and the true ranking should be
n2 ≺ n3 ≺ n1 or n2 ≺ n1 ≺ n3. To mitigate this problem, we choose the cosine similarity as our
scoring function. The three instances could be scored as 0.83, 0.55, 0.59, corresponding to an ideal
ranking n2 ≺ n3 ≺ n1. We formally introduce the detailed ranking approach as follows.

Ranking Suppose we have a group of instances with the same noisy class j, i.e. {(xn, ỹn)}n∈Nj ,
where Nj := {n|ỹn = j} are the set of indices that correspond to noisy class j. Let Nj be the
number of indices in Nj (counted from noisy labels). Intuitively, we can first sort all instances in
Nj in an increasing order by argsort and obtain the original indices for the sorted scores as:
I = argsort{Score(ŷn, j)}n∈Nj , where the low-score head is supposed to consist of corrupted
instances (Northcutt et al., 2021a). Then we can simply select the first Ñj instances with low scores
as corrupted instances: vn = 1(Loc(n, I) ≤ Ñj), where Loc(n, I) returns the index of n in I.
Instead of manually tuning Ñj , we discuss how to determine it algorithmically.

Threshold The number of corrupted instances in Nj is approximately P(Y 6= j|Ỹ = j) · Nj
when Nj is sufficiently large. Therefore if all the corrupted instances have lower scores than any
clean instance, we can set Ñj = P(Y 6= j|Ỹ = j) · Nj to obtain the ideal division. Note Nj
can be obtained by directing counting the number of instances with noisy label j. To calculate
the probability P(Y 6= j|Ỹ = j) = 1 − P(Y = j|Ỹ = j), we borrow the results from the
HOC estimator (Zhu et al., 2021b), where the noise transition probability P(Ỹ = j|Y = j) and
the marginal distribution of clean label P(Y = j) can be estimated with only representations and
the corresponding noisy labels. Then we can calculated our needed probability by Bayes’ rule
P(Y = j|Ỹ = j) = P(Ỹ = j|Y = j) · P(Y = j)/P(Ỹ = j), where P(Ỹ = j) can be estimated
by counting the frequency of noisy label j in D̃. Technically other methods exist in the literature
to estimate P(Ỹ |Y ) (Liu & Tao, 2015; Patrini et al., 2017; Northcutt et al., 2021a; Li et al., 2021).
But they often require training a model to fit the data distribution, which conflict with our goal of a
training-free solution; instead, HOC fits us perfectly.
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3.4 ALGORITHM: DETECTION WITH SIMILAR REPRESENTATIONS (SIMIREP)

Algorithm 1 summarizes our solution. The main computation complexity is obtaining representa-
tions with extractor g(·), which is less than the cost of evaluating the model compared with the
training-based methods. Thus SimiRep can filter out corrupted instances efficiently. In Algo-
rithm 1, we run either voting-based local detection as Lines 7, 8, or ranking-based global detection
as Lines 14, 15. The detection is run multiple times with random standard data augmentations to
reduce the variance of estimation. The majority of results from different epochs is adopted as the
final detection output as Line 20, i.e., flag as corrupted if vn = 1 in more than half of the epochs.

4 HOW DO REPRESENTATIONS AFFECT OUR SOLUTION?

In this section, we will first show how a good but imperfect representation2 affects the selection of
the hyperparameter k. We then offer an analysis of the error upper bound for the ranking-based
method given a representation extractor g(·).

4.1 HOW DO REPRESENTATIONS AFFECT THE CHOICE OF k?

Recall k is used as illustrated in Figure 1. On one hand, the k-NN label estimator will be more
accurate if there is stronger clusterability that more neighbor representations belong to the same true
class (Liu & Liu, 2015; Zhu et al., 2021b), which helps improve the performance of later algorithms.
On the other hand, with good but imperfect representations, stronger clusterability with a larger k
is less likely to satisfy, thus the violation probability δk increases with k for a given extractor g(·).
We take the voting-based method as an example and analyze this tradeoff. For a clean presentation,
we focus on a binary classification with instance-dependent label noise where P(Y = 1) = p,
P(Ỹ = 2|X,Y = 1) = e1(X), P(Ỹ = 1|X,Y = 2) = e2(X). Suppose the instance-dependent
noise rate is upper-bounded by e, i.e., e1(X) ≤ e, e2(X) ≤ e. With δk as in Definition 1, we
calculate the lower bound of the probability that the vote is correct in Proposition 1.
Proposition 1. The lower bound for the probability of getting true detection with majority vote is

P(Vote is correct|k) ≥ (1− δk) · I1−e1(k + 1− k′, k′ + 1),

where k′ = d(k + 1)/2e − 1, I1−e1(k + 1− k′, k′ + 1) is the regularized incomplete beta function
defined as I1−e(k + 1− k′, k′ + 1) = (k + 1− k′)

(
k+1
k′

) ∫ 1−e
0

tk−k
′
(1− t)k′dt.

Proposition 1 shows the tradeoff between a reliable k-NN label and an accurate vote.
When k is increasing, Term-1 (1 − δk) (quality of representations) decreases but Term-2
I1−e1(k + 1− k′, k′ + 1) (result of pure majority vote) increases. With Proposition 1, we are ready
to answer the question: when do we need more labels? See Remark 1.
Remark 1. Consider the lower bounds with k1 and k2 (k1 < k2). Supposing the first lower bound
is lower than the second lower bound, based on Proposition 1, we roughly study the trend with an
increasing k by comparing two bounds and get

1− δk1
1− δk2

<
I1−e(k2 + 1− k′2, k′2 + 1)

I1−e(k1 + 1− k′1, k′1 + 1)
.

For example, when k1 = 5, k2 = 20, e = 0.4, we can calculate the incomplete beta function and
1−δ5
1−δ20 < 1.52. Supposing δ5 = 0.2, we have δ20 < 0.47. This indicates increasing k from 5 to 20
would not improve the lower bound with imperfect representations with δ20 > 0.47. This observa-
tion helps us set k with a practical and imperfect g(·). We set k = 10 in all of our experiments.

Remark 1 indicates that: with imperfect representations, a small k may achieve the best (highest)
probability lower bound. To further consolidate this claim, we numerically calculate δk with differ-
ent g(·) and the corresponding probability lower bound in Figure 2. We find most of the probability
lower bounds first increase then decrease except for the perfect g(·) which is trained using ground-
truth labels. Note the perfect g(·) has memorized all clean instances so that δk → 0 since k � 5000
(the number of instances in the same label class).

2Note the voting-based method achieves an F1-score of 1 given k perfect representations, k → +∞.
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Figure 2: The trends of δk and probability lower bounds on CIFAR-10 (Krizhevsky et al., 2009) with
different g(·). The outputs of the last convolution layer are adopted. R18/34/50: ResNet18/34/50.
Img: Pre-trained on ImageNet (Deng et al., 2009). C10/100-Clean: Pre-trained on clean CIFAR-
10/100. C10/100-SSL: Pre-trained on CIFAR-10/100 without labels by SimCLR (Chen et al., 2020).
ViT-B/32-CLIP: CLIP Pre-trained vision transformer (Radford et al., 2021).

4.2 HOW DO REPRESENTATIONS AFFECT F1-SCORE?

We next prove the probability bound for the performance of the ranking-based method. Consider a
K-class classification problem with informative instance-dependent label noise (Cheng et al., 2021).
Denote random variable S by the score of each instance being clean. A higher score S indicates the
instance is more likely to be clean. Then for instances in Nj , we have two set of random variables
S true
j := {Strue|n ∈ Nj , ỹn = yn} and S false

j := {Sfalse|n ∈ Nj , ỹn 6= yn}. Intuitively, the score Strue
j

should be greater than Sfalse
j . Suppose their means, which depend on noise rates, are bounded, i.e.,

E[Strue
j ] ≥ µtrue

j , E[Sfalse
j ] ≤ µfalse

j . Assume there exists a feasible v such that both Strue
j and Sfalse

j

follow sub-Gaussian distributions with variance proxy ∆2

2v (Buldygin & Kozachenko, 1980; Zhu
et al., 2021c) such that: P(µtrue

j − Strue
j ≥ t) ≤ e−v(t/∆)2 , and P(Sfalse

j − µfalse
j ≥ t) ≤ e−v(t/∆)2 ,

where 1/∆ is the “height” of both distributions, i.e., P(Strue
j = µtrue

j ) = P(Sfalse
j = µfalse

j ) = 1/∆,
v is the decay rate of tails. Let N−j (N+

j ) be the number of indices in S false
j (S true

j ). Theorem 1
summarizes the performance bound of the ranking-based method. See Appendix for the proof.

Theorem 1. With probability at least p, the F1-score of detecting corrupted instances inNj with the

rank-based method by threshold NjP(Y = j|Ỹ = j) is at least 1− e−v max(N−,N+)+α
N− , where p =∫ µtrue−µfalse−∆

−1
f(t)dt, f(t) is the probability density function of the difference of two independent

beta-distributed random variables β1−β2, where β1 ∼ Beta(N−, 1), β2 ∼ Beta(α+1, N+−α).

Theorem 1 shows the performance of detection depends on 1) the concentration of Strue
j and Sfalse

j

(denoted by variance proxy ∆2

2v ); 2) the distance between Strue
j and Sfalse

j (denoted by µtrue − µfalse).
Intuitively, with proper scoring function and good representations, we have small variance proxy
(small ∆ and large v) and F1-score approximates to 1.

5 EMPIRICAL RESULTS

We present experimental evidence in this section. The performance is measured by the F1-score
of the detected corrupted labels as defined in Section 2. Note there is no any training procedure in
our method. The only hyperparameters in our methods are the number of epochs M and the k-NN
parameter k. Intuitively, a larger M returns a collective result from more times of detection, which
should be more accurate. The hyperparameter k cannot be set too large as demonstrated in Figure 2.
In CIFAR (Krizhevsky et al., 2009) experiments, rather than fine-tuneM and k for different settings,
we fix M = 21 and k = 10. We also test on Clothing1M (Xiao et al., 2015). Detailed experiment
settings on Clothing1M are in Appendix C.

Synthetic label noise We experiment with three popular synthetic label noise models: the sym-
metric label noise, the asymmetric label noise, and the instance-dependent label noise. Denote the
ratio of instances with corrupted labels in the whole dataset by η. Both the symmetric and the
asymmetric noise models follow the class-dependent assumption (Liu & Tao, 2015), i.e., the label
noise only depends only on the clean class: P(Ỹ |X,Y ) = P(Ỹ |Y ). Specially, the symmetric noise
is generated by uniform flipping, i.e., randomly flipping a true label to the other possible classes
w.p. η (Cheng et al., 2021). The asymmetric noise is generated by pair-wise flipping, i.e., randomly
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Table 1: Comparisons of F1-scores (%). CORES, CL, TracIn: Train with noisy supervisions.
SimiRep-V and SimiRep-R: Get g(·) without any supervision. Top 2 are bold.

Method CIFAR10 CIFAR100
Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4

CORES 65.00 92.94 7.68 87.43 3.52 92.34 0.02 9.67
CL 55.85 80.59 76.45 62.89 64.58 78.98 52.96 50.08

TracIn 55.02 76.94 73.47 58.85 61.75 76.74 48.42 49.89
SimiRep-V 82.30 93.21 82.52 81.09 73.19 84.48 65.42 74.26
SimiRep-R 83.28 95.56 83.58 82.26 74.67 88.68 62.89 73.53

Table 2: Comparisons of F1-scores (%). CORES, CL, TracIn: Use logit layers. SimiRep-V/R: Use
only representations. All methods use the same extractor from CLIP. Top 2 are bold.

Method CIFAR10 CIFAR100
Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4

CE Sieve 67.21 94.56 5.24 8.41 16.24 88.55 2.6 1.63
CORES 83.18 96.94 12.05 88.89 38.52 92.33 7.02 85.52

CL 69.76 95.03 77.14 62.91 67.64 85.67 62.58 61.53
TracIn 81.85 95.96 80.75 64.97 79.32 91.03 63.12 64.31

SimiRep-V 87.43 96.44 88.97 87.11 76.26 86.88 73.50 80.03
SimiRep-R 87.45 96.74 89.04 91.14 79.21 90.54 68.14 77.37

flipping true label i to the next class (i mod K) + 1. Denote by d the dimension of features. The
instance-dependent label noise is synthesized by randomly generating a d×K projection matrix wi
for each class i and project each incoming feature with true class yn onto each column of wyn (Xia
et al., 2020b). Instance n is more likely to be flipped to class j if the projection value of xn on the
j-th column of wyn is high. See Appendix B in Xia et al. (2020b) and Appendix D.1 in Zhu et al.
(2021b) for more details. We use symmetric noise with η = 0.6 (Symm. 0.6), asymmetric noise with
η = 0.3 (Asym. 0.3), and instance-dependent noise with η = 0.4 (Inst. 0.4) in experiments.

Real-world label noise The real-world label noise comes from human annotations or weakly la-
beled web data. We use the 50, 000 noisy training labels (η ≈ 0.16) for CIFAR-10 collected by Zhu
et al. (2021b), and our self-collected 50, 000 noisy training labels (η ≈ 0.40) for CIFAR-100 (data
will be released in the non-anonymous version). Both sets of noisy labels are crowd-sourced from
Amazon Mechanical Turk. For Clothing1M (Xiao et al., 2015), we could not calculate the F1-scores
due to the lack of ground-truth labels. We firstly perform noise detection on 1 million noisy training
instances then train only with the selected clean data to check the effectiveness.

5.1 SUPERVISION MAY NOT BE NECESSARY

Our first experiment aims to show that training with noisy supervisions may not be necessary in
detecting corrupted labels. To this end, we compare our methods, i.e., voting-based local detection
(SimiRep-V) and ranking-based global detection (SimiRep-R), with three recent noise detection
works: CORES (Cheng et al., 2021), confident learning (CL) (Northcutt et al., 2021a), and TracIn
(Pruthi et al., 2020). We use ResNet34 as the backbone network in this experiment.

Baseline settings All these three baselines require training a model with the noisy supervision.
Specifically, CORES (Cheng et al., 2021) trains ResNet34 on the noisy dataset and uses its proposed
sample sieve to filter out the corrupted instances. We adopt its default setting during training and
calculate the F1-score of the sieved out corrupted instances. Confident learning (CL) (Northcutt
et al., 2021a) detects corrupted labels by firstly estimating probabilistic thresholds to characterize
label noise, ranking instances based on model predictions, then filtering out corrupted instances
based on ranking and thresholds. We adopt its default hyper-parameter setting to train ResNet34.
TracIn (Pruthi et al., 2020) detects corrupted labels by evaluating the self-influence of each instance,
where the corrupted instances tend to have a high influence score. The influence scores are calculated
based on gradients of the last layer of ResNet34 at epoch 40, 50, 60, 100, where the model is trained
with a batch size of 128. The initial learning rate is 0.1 and decays to 0.01 at epoch 50. Note
TracIn only provides ranking for instances. To exactly detect corrupted instances, thresholds are
required. For a fair comparison, we refer to the thresholds learned by confident learning (Northcutt
et al., 2021a). Thus the corrupted instances selected by TracIn are based on the ranking from its self-
influence and thresholds from CL. To highlight that our solutions work well without any supervision,
our representation extractor g(·) comes from the ResNet34 pre-trained by SimCLR (Chen et al.,
2020) where contrastive learning is applied and no supervision is required. Extractor g(·) is obtained
with only in-distribution features, e.g., for experiments with CIFAR-10, g(·) is pre-trained with
features only from CIFAR-10.

Performance Table 1 compares the results obtained with or without supervisions. We can see both
the voting-based and the ranking-based method achieve overall higher F1-scores compared with the
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Table 4: Experiments on Clothing1M. None: Standard training with 1M noisy data. R50-Img (or
ViT-B/32-CLIP, R50-Img Warmup-1): Apply our method with ResNet50 pre-trained on ImageNet
(or ViT-B/32 pre-trained by CLIP, R50-Img with 1-epoch warmup). Top-1 is bold.

Data Selection # Training Samples Best Epoch Last 10 Epochs Last Epoch
None (Standard Baseline) 1M (100%) 70.32 69.44 ± 0.13 69.53

R50-Img 770k (77.0%) 72.37 71.95 ± 0.08 71.89
ViT-B/32-CLIP 700k (70.0%) 72.54 72.23 ± 0.17 72.11

R50-Img Warmup-1 767k (76.7%) 73.64 73.28 ± 0.18 73.41

other three results that require learning with noisy supervisions. Moreover, in detecting the real-
world human-level noisy labels, our solution outperforms baselines around 20% on CIFAR-10 and
10% on CIFAR-100, which indicates the training-free solution are more robust to complicated noise
patterns. One might also note that CORES achieves exceptionally low F1-scores on CIFAR-10/100
with asymmetric noise and CIFAR-100 with human noise. This observation also informs us that
customized training processes might not always be universally applicable.

5.2 REPRESENTATION LAYERS MAY PERFORM BETTER THAN LOGIT LAYERS

Table 2 shows the detection using either representation layers or logit layers of DNNs. In addition
to the baselines compared in Section 5.1, we also compare to CE Sieve (Cheng et al., 2021) which
follows the same sieving process as CORES but uses CE loss without regularizer. All methods
adopt ViT-B/32 pre-trained by CLIP (Radford et al., 2021). Specifically, the training-based methods
further fine-tune a linear logit layer on noisy supervisions, while our solution directly sets this pre-
trained model as g(·). Other settings are the same as those in Section 5.1. By counting the frequency
of reaching top-2F1-scores, we find SimiRep-R wins 1st place, SimiRep-V and CORES are tied for
2nd place. However, similar to Table 2, we find the training process of CORES to be unstable. For
instance, it almost fails for CIFAR-100 with asymmetric noise. It is therefore reasonable to believe
both methods with only representations achieve an overall higher F1-score than other methods with
logit layers. In other words, compared with our methods, the extra fine-tuning of logit layers with
noisy supervisions cannot always help improve the performance of detecting corrupted labels.

5.3 WHAT ARE GOOD REPRESENTATIONS

Table 3: Comparisons of F1-scores (%) using g(·) with differ-
ent δk (%). Model names are the same as Figure 2.

Pre-trained Model CIFAR10 CIFAR100
1− δk Human Inst. 0.4 1− δk Human Inst. 0.4

R18-Img 35.73 75.40 80.22 11.30 74.91 71.99
R34-Img 48.13 79.52 82.43 16.17 76.88 74.00
R50-Img 45.77 78.40 82.06 15.81 76.55 73.51

ViT-B/32-CLIP 64.12 87.45 91.14 19.94 79.21 77.37
R34-C10-SSL 69.31 83.28 85.26 2.59 68.03 65.94

R34-C10-Clean 99.41 98.39 98.59 0.22 60.90 60.73
R34-C100-SSL 18.59 59.96 74.99 22.46 74.67 73.53

R34-C100-Clean 18.58 60.17 76.41 89.07 92.87 95.29

Previous experiments demonstrate
our methods overall outperform
baselines given representations
from contrastive pre-training. It is
interesting to see how other repre-
sentations perform. We summarize
results of SimiRep-R in Table 3.
There are several interesting find-
ings: 1) The ImageNet pre-trained
models perform well, indicating
the traditional supervised training on out-of-distribution data helps; 2) For CIFAR-100, extractor
g(·) obtained with only features from CIFAR-10 (R34-C10-SSL) performs better than the extractor
with clean CIFAR-10 (R34-C10-Clean), indicating that contrastive pre-training has better general-
ization ability to out-of-distribution data than supervised learning; 3) The F1-scores achieved by
g(·) trained with the corresponding clean dataset are close to 1, indicating our solution can give
perfect detection with ideal representations. Besides, we test the performance of training only with
the clean instances selected by our approach in Table 4. Standard training with Cross-Entropy loss
is adopted. The only difference between the first row and other rows of Table 4 is that some training
instances are filtered out by our approach. Table 4 shows simply filtering out corrupted instances
based on our approach distinctively outperforms the baseline. We also observe that slightly tuning
g(·) in the fine-grained Clothing1M dataset would be helpful. See more details in Appendix C.

6 CONCLUSIONS

This paper proposed a new and universally applicable training-free solution to detect noisy labels by
using the neighborhood information defined by a good set of representations. We have also demon-
strated that good representations are reasonable assumptions with pre-training or self-supervised
learning. Future works will explore other tasks that could benefit from label cleaning.
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The omitted proofs are provided as follows.

A THEORETICAL ANALYSES

A.1 PROOF FOR PROPOSITION 1

Now we derive a lower bound for the probability of getting true detection with majority vote:

P(Vote is correct|k) ≥(1− δk) ·
[
p

d(k+1)/2e−1∑
l=0

(
k + 1

l

)
el1(1− e1)k+1−l

+ (1− p)
d(k+1)/2e−1∑

l=0

(
k + 1

l

)
el2(1− e2)k+1−l

]
=(1− δk) · [p · I1−e1(k + 1− k′, k′ + 1) + (1− p) · I1−e2(k + 1− k′, k′ + 1)]

where I1−e1(k + 1− k′, k′ + 1) is the regularized incomplete beta function defined as

I1−e(k + 1− k′, k′ + 1) = (k + 1− k′)
(
k + 1

k′

)∫ 1−e

0

tk−k
′
(1− t)k

′
dt,

and k′ = d(k + 1)/2e − 1.

B PROOF FOR THEOREM 1

Proof. Now we derive the worst-case error bound. We first repeat the notations defined in Sec-
tion 4.2 as follows.

Denote random variable S by the score of each instance being clean. A higher score S indicates the
instance is more likely to be clean. Then for instances in Nj , we have two set of random variables
S true
j := {Strue|n ∈ Nj , ỹn = yn} and S false

j := {Sfalse|n ∈ Nj , ỹn 6= yn}. Intuitively, the score Strue
j

should be greater than Sfalse
j . Suppose their means, which depend on noise rates, are bounded, i.e.,

E[Strue
j ] ≥ µtrue

j , E[Sfalse
j ] ≤ µfalse

j . Assume there exists a feasible v such that both Strue
j and Sfalse

j

follow sub-Gaussian distributions with variance proxy ∆2

2v (Buldygin & Kozachenko, 1980; Zhu
et al., 2021c) such that: P(µtrue

j − Strue
j ≥ t) ≤ e−v(t/∆)2 , and P(Sfalse

j − µfalse
j ≥ t) ≤ e−v(t/∆)2 ,

where 1/∆ is the “height” of both distributions, i.e., P(Strue
j = µtrue

j ) = P(Sfalse
j = µfalse

j ) =

1/∆, v is the decay rate of tails. Let N−j (N+
j ) be the number of indices in S false

j (S true
j ). For

ease of notations, we omit the subscript j in this proof since the detection is performed on each j
individually.

Denote the order statistics of random variables in S false by Sfalse
(1) , · · ·S

false
(N−), where Sfalse

(1) is the small-
est order statistic and Sfalse

(N−) is the largest order statistic. The following lemma motivates the perfor-
mance of the rank-based method.

Lemma 1. The F1-score of detecting corrupted labels in Nj by the rank-based method will be no
less than 1− α/N− when the true probability P(Y = j|Ỹ = j) is known and Sfalse

(N−) < Strue
(α+1).

Lemma 1 connects the upper bound for the number of wrongly detected corrupted instances with
order statistics. There are two cases that can cause detection errors:
Case-1:

0 ≤ µtrue − Strue < ∆ and 0 ≤ Sfalse − µfalse < ∆ : at most α errors when Sfalse
(N−) < Strue

(α+1).

and Case-2:

µtrue − Strue ≥ ∆ or Sfalse − µfalse ≥ ∆ : at most max(N−, N+) errors

We analyze each case as follows.
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Case-1: When Case-1 holds, we have

P(µtrue − Strue = x) ≤ 1/∆, x ∈ [0,∆]

and
P(Sfalse − µtrue = x) ≤ 1/∆, x ∈ [0,∆].

The above two inequalities show that the left tail of Strue and the right tail of Sfalse can be up-
per bounded by uniform distributions. Denote the corresponding uniform distribution by U true ∼
Unif(µtrue −∆, µtrue) and U false ∼ Unif(µfalse, µfalse + ∆).

With true P(Y = j|Ỹ = j), the detection errors only exist in the cases when the left tail of Strue and
the right tail of Sfalse are overlapped. When the tails are upper bounded by uniform distributions, we
have

P(Sfalse
(N−) < Strue

(α+1)) ≥ P(U false
(N−) < U true

(α+1))

=P
([
U false − µfalse]

(N−)
+ µfalse <

[
U true − (µtrue −∆)

]
(α+1)

+ (µtrue −∆)
)

=P
([
U false − µfalse]

(N−)
−
[
U true − (µtrue −∆)

]
(α+1)

< µtrue − µfalse −∆
)
.

Note [
U false − µfalse]

(N−)
∼ Beta(N−, 1),

and [
U true − (µtrue −∆)

]
(α+1)

∼ Beta(α+ 1, N+ − α),

where Beta denotes the Beta distribution. Both variables are independent. Thus the PDF of the
difference is

f(p) =


B(N+ − α, 1)pN

+−α(1 − p)α+1F (1, N− +N+, 1 −N−;α + 2; 1 − p, 1 − p2)/A, 0 < p ≤ 1

B(N−−, N+ − α)(−p)N
+−α(1 + p)N

−+N+−α−1F (N+ − α,−α,N− +N+;N− +N+ − α; 1 − p2, 1 + p)/A, −1 ≤ p < 0

B(N− + α,N+ − α)/A, p = 0,

where A = B(N−, 1)B(α+ 1, N+ − α), B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt

F (a, b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt.

Therefore, we have

P(Sfalse
(N−) < Strue

(α+1)) ≥
∫ µtrue−µfalse−∆

−1

f(p)dp.

Case-2 The other part, we have no more than e−v ·max(N−, N+) corrupted instances that may
have higher scores than one clean instance.

Wrap-up From the above analyses, we know, w.p. at least
∫ µtrue−µfalse−∆

−1
f(p)dp, there are at most

e−v max(N−, N+) + α errors in detection corrupted instances. Note Precision = Recall if we
detect with the best threshold NjP(Y = j|Ỹ = j). Therefore, the corresponding F1-score would
be at least 1− e−v max(N−,N+)+α

N− .

C EXPERIMENT SETTINGS ON CLOTHING1M

We firstly perform noise detection on 1 million noisy training instances then train only with the
selected clean data to check the effectiveness. Particularly, in each epoch of the noisy detection, we
use a batch size of 32 and sample 1,000 mini-batches from 1M training instances while ensuring the
(noisy) labels are balanced. We repeat noisy detection for 600 epochs to ensure a full coverage of 1
million training instances. Parameter k is set to 10.
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Table 5: Experiments on Clothing1M (Xiao et al., 2015) with or without balanced sampling.
None: Standard training with 1M noisy data. R50-Img (or ViT-B/32-CLIP, R50-Img Warmup-1):
Apply our method with ResNet50 pre-trained on ImageNet (or ViT-B/32 pre-trained by CLIP, R50-
Img with 1-epoch warmup).

Data Selection # Training Samples Best Epoch Last 10 Epochs Last Epoch
None (Standard Baseline) (Unbalanced) 1M (100%) 70.32 69.44 ± 0.13 69.53
None (Standard Baseline) (Balanced) 1M (100%) 72.20 71.40 ± 0.31 71.22

R50-Img (Unbalanced) 770k (77.0%) 72.37 71.95 ± 0.08 71.89
R50-Img (Balanced) 770k (77.0%) 72.42 72.06 ± 0.16 72.24

ViT-B/32-CLIP (Unbalanced) 700k (70.0%) 72.54 72.23 ± 0.17 72.11
ViT-B/32-CLIP (Balanced) 700k (70.0%) 72.99 72.76 ± 0.15 72.91

R50-Img Warmup-1 (Unbalanced) 767k (76.7%) 73.64 73.28 ± 0.18 73.41
R50-Img Warmup-1 (Balanced) 767k (76.7%) 73.97 73.37 ± 0.03 73.35

Representation Extractor: We tested three different representation extractors in Table 4: R50-
Img, ViT-B/32-CLIP, and R50-Img Warmup-1. The former two representation extractors are the
same as the ones used in Table 3. Particularly, R50-Img means the representation extractor is the
standard ResNet50 encoder (removing the last linear layer) pre-trained on ImageNet (Deng et al.,
2009). ViT-B/32-CLIP indicates the representation extractor is a vision transformer pre-trained
by CLIP (Radford et al., 2021). Noting that Clothing1M is a fine-grained dataset. To get better
domain-specific fine-grained visual representations, we slightly train the ResNet50 pre-trained with
ImageNet for one epoch, i.e., 1,000 mini-batches (batch size 32) randomly sampled from 1M train-
ing instances while ensuring the (noisy) labels are balanced. The learning rate is 0.002.

Training with the selected clean instances: Given the selected clean instances from our ap-
proach, we directly apply the Cross-Entropy loss to train a ResNet50 initialized by standard Im-
ageNet pre-trained parameters. We did not apply any sophisticated training techniques, e.g., mixup
(Zhang et al., 2018), dual networks (Li et al., 2020b; Han et al., 2018), loss-correction (Liu & Tao,
2015; Natarajan et al., 2013; Patrini et al., 2017), and robust loss functions (Liu & Guo, 2020; Cheng
et al., 2021; Zhu et al., 2021a; Wei & Liu, 2021). We train the model for 80 epochs with a batch
size of 32. We sample 1, 000 mini-batches per epoch randomly selected from 1M training instances.
Note Table 4 does not apply balanced sampling. Only the pure cross-entropy loss is applied. We also
test the performance with balanced training, i.e., in each epoch, ensure the noisy labels from each
class are balanced. Our approach can be consistently benefited by balanced training, and achieves
an accuracy of 73.97 in the best epoch, outperforming many baselines such as HOC 73.39% (Zhu
et al., 2021b), GCE+SimCLR 73.35% (Ghosh & Lan, 2021), CORES 73.24% (Cheng et al., 2021),
GCE 69.75% (Zhang & Sabuncu, 2018). We believe the performance could be further improved by
using some sophisticated training techniques mentioned above.

16


	Introduction
	Related Works

	Preliminaries
	Label Noise Detection Using Similar Representations
	Intuitions
	Voting-Based Local Detection
	Ranking-Based Global Detection
	Algorithm: Detection with Similar Representations (SimiRep)

	How Do Representations Affect Our Solution?
	How Do Representations Affect the Choice of k?
	How Do Representations Affect F1-Score?

	Empirical Results
	Supervision May Not Be Necessary
	Representation Layers May Perform Better Than Logit Layers
	What Are Good Representations

	Conclusions
	Theoretical Analyses
	Proof for Proposition 1

	Proof for Theorem 1
	Experiment Settings on Clothing1M

