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Abstract

In many computational science and engineering applications, the output of a1

system of interest corresponding to a given input can be queried at different2

levels of fidelity with different costs. Typically, low-fidelity data is cheap and3

abundant, while high-fidelity data is expensive and scarce. In this work we study4

the reinforcement learning (RL) problem in the presence of multiple environments5

with different levels of fidelity for a given control task. We focus on improving6

the RL agent’s performance with multifidelity data. Specifically, a multifidelity7

estimator that exploits the cross-correlations between the low- and high-fidelity8

returns is proposed to reduce the variance in the estimation of the state-action9

value function. The proposed estimator, which is based on the method of control10

variates, is used to design a multifidelity Monte Carlo RL (MFMCRL) algorithm that11

improves the learning of the agent in the high-fidelity environment. The impacts of12

variance reduction on policy evaluation and policy improvement are theoretically13

analyzed by using probability bounds. Our theoretical analysis and numerical14

experiments demonstrate that for a finite budget of high-fidelity data samples,15

our proposed MFMCRL agent attains superior performance compared with that of a16

standard RL agent that uses only the high-fidelity environment data for learning17

the optimal policy.18

1 Introduction19

Within the computational science and engineering (CSE) community, multifidelity data refers to20

data that comes from different sources with different levels of fidelity. The criteria by which data is21

considered to be low fidelity or high fidelity vary across different applications, but usually low-fidelity22

data is much cheaper to generate than high-fidelity data under some cost metric. In robotics for23

instance, data coming from a robot operating in the real world constitutes high-fidelity data, while24

simulated data of the robot based on first principles is considered to be low-fidelity data. Different25

simulators of the robot can also be designed by increasing the modeling complexity. A simulator26

that takes into account aerodynamic drag is, for instance, of higher fidelity than one that is based27

only on the simple laws of motion. As another example, a neural classifier in deep learning can be28

trained on the full training data for a large number of training epochs, or on a subset of the training29

data for few epochs. Evaluating the trained model on a held-out validation data set in the former30

case yields a higher-fidelity estimate of the classifiers’ performance compared with that in the latter31

case. In general, low-fidelity data serves as an approximation to its high-fidelity counterpart and32

can be generated cheaply and abundantly [24]. Many outer-loop applications that require querying33

the system at many different inputs, including black-box optimization [21], inference [29], and34

uncertainty propagation [19, 27], can exploit the cross-correlations between low- and high-fidelity35

data to solve new problems that would otherwise be prohibitively costly to solve using high-fidelity36

data alone [28, 29].37
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Motivated by the advent of multifidelity data sources within CSE, in this work we study the rein-38

forcement learning (RL) problem in the presence of multiple environments with different levels of39

fidelity for a given control task. RL is a popular machine learning paradigm for intelligent sequential40

decision-making under uncertainty, enabling data-driven control of complex systems with scales41

ranging from quantum [18] to cosmological [26]. State-of-the-art model-free RL algorithms have42

indeed demonstrated sheer success for learning complex policies from raw data in single-fidelity43

environments [25, 22, 31, 32, 12]. This success, however, comes at the cost of requiring a large num-44

ber of data samples to solve a control task satisfactorily.1 In the presence of multiple environments45

with different levels of fidelity, new ways arise that could help the agent learn better policies. One46

way that has been well studied in the context of RL is transfer learning (TL). In TL [35, 8, 39], the47

agent first uses the low-fidelity environment to learn a policy that is then transferred (directly or48

indirectly through the transfer of the state-action value function) to the high-fidelity environment49

as a heuristic to bootstrap learning. Essentially, TL attempts to leverage multifidelity environments50

to deal with the exploration-exploitation dilemma that is present within RL, and it works under the51

assumption that the maximum deviation between the optimal low-fidelity state-action value function52

and the optimal high-fidelity state-action value function is bounded with a threshold that is used53

by TL for bootsrapping the high-fidelity value function [9]. In our work we explore an uncharted54

territory and focus on multifidelity estimation in RL and its role in improving the learning of the55

agent. We demonstrate that as long as the low- and high-fidelity state-action value functions for56

any policy are correlated, significant performance improvements can be reaped by leveraging these57

cross-correlations without extra effort in managing the exploration-exploitation process.58

The main contributions of our work are summarized as follows. First, we study a generic multifidelity59

setup in which the RL agent can execute a policy in two environments, a low-fidelity environment60

and a high-fidelity environment. To leverage the cross-correlations between the low- and high-fidelity61

returns, we propose an unbiased reduced-variance multifidelity estimator for the state-action value62

function based on the framework of control variates. Second, a multifidelity Monte Carlo (MC) RL63

algorithm, named MFMCRL, is proposed to improve the learning of the RL agent in the high-fidelity64

environment. For any finite budget of high-fidelity environment interactions, MFMCRL leverages65

low-fidelity data to learn better policies than a standard RL agent that uses only the high-fidelity66

data. Third, we theoretically analyze the impacts of variance reduction in the estimation of the state-67

action value function on policy evaluation and policy improvement using probability bounds. Fourth,68

performance gains of the proposed MFMCRL algorithm are empirically assessed through numerical69

experiments in synthetic multifidelity environments, as well as a neural architecture search (NAS)70

use case.71

2 Preliminaries and related work72

2.1 Reinforcement learning73

We consider episodic RL problems where the environment Σ is specified by an infinite-horizon74

Markov decision process (MDP) with discounted returns [5]. Specifically, an infinite-horizon MDP75

is defined as a tuple M = (S,A,P,β, R, γ), where S and A are finite sets of states and actions,76

respectively; P : S × A × S → [0, 1] is the environment dynamics; and β : S → [0, 1] is the77

initial distribution over the states, that is, β(s) = Pr(s0 = s),∀s ∈ S. The reward function R is78

bounded and defined as R : S × A → [Rmin, Rmax], where Rmin and Rmax are real numbers. γ is a79

discount factor to bound the cumulative rewards and trade off how far- or short-sighted the agent is80

in its decision making. The environment dynamics, P(s′|s, a),∀s, a, s′ ∈ S × A × S, encode the81

stationary transition probability from a state s to a state s′ given that action a is chosen [7, 16]. In the82

episodic setting, there exists at least one terminal state sT such that P(s′|sT , a) = 0,∀a, s′ ̸= sT and83

P(sT |sT , a) = 1,∀a, i.e. sT is an absorbing state. Furthermore, β(sT ) = 0 and R(sT , a) = 0,∀a.84

When the RL agent transitions into a terminal state, all subsequent rewards are zero, and simulation85

is restarted from another state s ∼ β.86

The agent’s decision-making process is characterized by π(a|s), which is a Markov stationary policy87

that defines a distribution over the actions a ∈ A given a state s ∈ S. In the RL problem, P88

1Poor sample complexity of model-free RL algorithms has long motivated developments in model-based RL,
where a predictive model of the environment is learned alongside the policy [14, 30]. Our work is focused on
model-free RL.
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and R are not known to the agent, yet the agent can interact with the environment sequentially89

at discrete time steps, t = 0, 1, 2, · · · , T , by exchanging actions and rewards. Notice that T is a90

random variable and denotes the time step at which the agent transitions into a terminal state. At91

each time step t, the agent observes the environment’s state st = s ∈ S, takes action at = a ∼92

π(a|s) ∈ A, and receives a reward rt+1 = R(s, a). The environment’s state then evolves to a93

new state st+1 = s′ ∼ P(s′|s, a). The state-value function of a state s under a policy π is defined94

as the expected long-term discounted returns starting in state s and following policy π thereafter,95

Vπ(s) = Eat∼π,st∼P

[∑∞
t=0 γ

tR(st, at)|s0 = s

]
. In addition, the state-action value function of a96

state s and action a under a policy π is defined as Qπ(s, a) = Eat∼π,st∼P

[∑∞
t=0 γ

tR(st, at)|s0 =97

s, a0 = a

]
. Notice that Vπ(s) = Ea∼π[Qπ(s, a)]. The solution of the RL problem is a policy π∗ that98

maximizes the discounted returns from the initial state distribution π∗ = argmax
π

Es∼β [Vπ(s)]. It is99

well known that there exists at least one optimal policy π∗ such that Vπ∗(s) = max
π

Vπ(s),∀s ∈ S100

and Qπ∗(s, a) = max
π

Qπ(s, a),∀s, a ∈ S ×A [2]. Furthermore, a deterministic policy that selects101

the greedy action with respect to Qπ∗(s, a),∀s ∈ S, is an optimal policy.102

2.2 Control variates103

The method of control variates is a variance reduction technique that leverages the correlation104

between random variables (r.vs.) to reduce the variance of an estimator [20]. Let W1,W2, · · · ,Wn105

be n independent and identically distributed (i.i.d.) r.vs. such that E[Wi] = µ
W

, and E[(Wi −106

µ
W
)2] = σ2

W
,∀i ∈ [n]. In addition, let Z1, Z2, · · · , Zn be n i.i.d. r.vs. such that E[Zi] = µ

Z
, and107

E[(Zi − µ
Z
)2] = σ2

Z
,∀i ∈ [n]. Suppose that Wi, Zi are correlated with a correlation coefficient108

ρ
W,Z

= Cov[Zi,Wi]√
σ2
Z

√
σ2
W

,∀i ∈ [n], where Cov[Zi,Wi] = E[ZiWi] − E[Zi]E[Wi] is the covariance109

between Zi and Wi. Furthermore, suppose that Wi, Zj are independent and thus uncorrelated ∀i ̸= j.110

Using the Cauchy—Schwartz inequality, one can show that |ρ
W,Z

| ≤ 1.111

To estimate µ
W

, we first consider the sample mean estimator, θ̂1 = 1
n

∑n
i=1 Wi. θ̂1 is an unbiased112

estimator of µ
W

, in other words, E[θ̂1] = 1
n

∑n
i=1 E[Wi] = µ

W
, and has a variance Var[θ̂1] =

σ2

W

n .113

Next, we consider the control-variate-based estimator,114

θ̂2 =
1

n

n∑
i=1

Wi + α(Zi − µ
Z
). (1)

θ̂2 is also an unbiased estimator of µ
W

, i.e., E[θ̂2] = µ
W

, yet it has a variance Var[θ̂2] = 1
nVar[Wi +115

α(Zi−µ
Z
)] = 1

n

(
Var[Wi]+α2Var[Zi]+2αCov[Zi,Wi]

)
. The variance of θ̂2 can be controlled and116

minimized by setting α to the minima of Var[Wi] + α2Var[Zi] + 2αCov[Zi,Wi], which is attained117

at α∗ = −Cov[Zi,Wi]
σ2
Z

= −ρ
Z,W

σ
W

σ
Z

. Hence, by introducing α(Zi − µ
Z
) as a control variate, the118

variance of θ̂2 is reduced,119

Var[θ̂2] = (1− ρ2
Z,W

)Var[θ̂1]. (2)

Because θ̂2 is an unbiased estimator, θ̂2 has a lower mean squared error (MSE) by the bias-variance120

decomposition theorem of the MSE. Applications of the method of control variates extend beyond121

variance reduction. For example, the concept of control variates is used in [27] to design a fusion122

framework to combine an arbitrary number of surrogate models optimally.123

2.3 Related work124

In [1], a policy search algorithm is proposed that leverages a crude approximate model P̂ of the true125

MDP to quickly learn to perform well on real systems. The proposed algorithm, however, is limited126

to the case where P is deterministic, and it assumes that model derivatives are good approximations127

of the true derivatives such that policy gradients can be computed by using the approximate model.128
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In transfer learning (TL) [36, 23], value, model, or policy parameters are transferred in one direction129

as a heuristic initialization to bootstrap learning in the high-fidelity environment, with no option130

for backtracking. The option for the agent to backtrack and to choose which environment to use is131

studied in the multifidelity RL (MFRL) work of [9]. That algorithm is extended in [33] by integrating132

function approximation using Gaussian processes [38]. As in TL, both [9] and [33] use the value133

function from a lower-fidelity environment as a heuristic to bootstrap learning and guide exploration134

in the high-fidelity environment. From an optimization viewpoint, this approach is reasonable only135

if the lower-fidelity value function lies in the vicinity of the optimal high-fidelity value function, a136

situation that cannot be guaranteed or known a priori in general. Hence, in [9, 33], it is assumed that137

the optimal state-action value function in the low- and high-fidelity environments differ by no more138

than a small parameter β at every state-action pair, and they require the knowledge of β a priori to139

manage exploration-exploitation across multifidelity environments. By contrast, we require only that140

the low- and high-fidelity returns are correlated in our work, and the correlation need not be known141

a priori. The cross-correlation between the low- and high-fidelity returns is used for reducing the142

variance in the estimation of the high-fidelity state-action value function, and hence our approach is143

complementary to existing TL techniques that use multifidelity environments for guided exploration144

[9, 33]. We show that as long as the low- and high-fidelity state-action value function of a policy are145

correlated, the agent can benefit from the cheap and abundantly available low-fidelity data to improve146

its performance, without altering the exploration process.147

3 Multifidelity estimation in RL148

3.1 Problem setup149

We consider a multifidelity setup in which the RL agent has access to two environments, Σlo and Σhi,150

modeled by the two MDPs Mlo = (S lo,A,P lo,βlo,Rlo, γ), and Mhi = (Shi,A,Phi,βhi,Rhi, γ),151

respectively, as shown in Figure 1. Σlo is a low-fidelity environment in which the low-fidelity152

reward function Rlo : S ×A → [Rlo
min, R

lo
max] and the low-fidelity dynamics P lo are cheap2 to153

evaluate/simulate, yet they are potentially inaccurate. On the other hand, Σhi is a high-fidelity154

environment in which the high-fidelity reward function Rhi : S ×A → [Rhi
min, R

hi
max] and the high-155

fidelity dynamics Phi describe the real-world system with the highest accuracy, yet they are expensive156

to evaluate/simulate [11]. We stress that (Phi,βhi,Rhi) and (P lo,βlo,Rlo) are unknown to the agent,157

and interaction with the two environments is only through the exchange of states, actions, next states158

and rewards, which is the typical case in RL.159

The action space A is the same in both environments, yet the state space may differ. It is assumed160

that the low-fidelity state space is a subset of the high-fidelity state space, S lo ⊆ Shi, in other words,161

the states available in the low-fidelity environment are a subset of those available at the high-fidelity162

environment, and it is assumed that there exists a known mapping3 T : Shi → S lo as in previous163

works [36, 9]. High-fidelity environments usually capture more state information than do low- fidelity164

environments so T can be a many-to-one map. Access to the high-fidelity simulator Σhi is restricted165

to full episodes τ hi = (shi
0 , a0, r

hi
1 , s

hi
1 , a1, r

hi
2 , s

hi
2 , · · · , shi

T ). On the other hand, Σlo is generative, and166

simulation can be started by the agent at any state-action pair [15, 17]. Using T and Σlo, the agent167

can map a τ hi to τ lo = (T (shi
0 ), a0, r

lo
1 , T (shi

1 ), a1, r
lo
2 , T (shi

2 ), · · · , T (shi
T )), and it is assumed that168

Pr(τ lo) > 0 under P lo and βlo. It is also assumed that Rlo(T (shi), a) and Rhi(shi, a) are correlated.169

Based on this setup, a correlation exits between the low- and high- fidelity trajectories170

that can be beneficial for policy learning. In this work we study how to leverage the171

cheaply accessible low-fidelity trajectories from Σlo, to learn an optimal π∗ that maximizes172

Es∼βhi

[
Eat∼π,st∼Phi

[∑∞
t=0 γ

tRhi(shi
t , at)|shi

0 = s

]]
; in other words, to learn π∗ that is optimal173

with respect to the high-fidelity environment Σhi.174

2Sampling cost is application dependent. It is up to the practitioner to assign cost and determine low- and
high-fidelity sampling budgets.

3T is problem-specific. For instance, if Shi represents a fine grid and S lo represents a coarse grid, then T
will map shi to the closest slo based on a chosen distance metric.
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3.2 Multifidelity Monte Carlo RL175

High-fidelity 
environment

RL agent

Low-fidelity 
environment 

<latexit sha1_base64="kx0rlF+lWRL6npqS0gapMt4bYoI="></latexit>

slo 2 S lo
<latexit sha1_base64="JQVnTqLUn/ZahnCRGizU/4U18sI=">AAACWnicbVFbS8MwFE7rbdbbvLz5EhyCT6MVUR8FX3yc6FRY50jTsy2YpjU5FUfpn/RFBP+KYFaL9wOBL993LjlfokwKg77/4rgzs3PzC41Fb2l5ZXWtub5xZdJcc+jyVKb6JmIGpFDQRYESbjINLIkkXEd3p1P9+gG0Eam6xEkG/YSNlBgKztBSg+Z9GMFIqALu84opaahSlScRaK+WmBQjBXHpmdsiRHjEYixKmycUDROGY85kcVF+17wQVPxVV90+BwyaLb/tV0H/gqAGLVJHZ9B8CuOU5wko5JIZ0wv8DPsF0yi4BNs+N5AxfsdG0LNQsQRMv6isKemuZWI6TLU9CmnFfq8oWGLMJIls5nQX81ubkv9pvRyHx/1CqCxHUPxj0DCXFFM69ZnGQgNHObGAcS3sWykfM8042t/wrAnB75X/gqv9dnDYPjjfb50c1HY0yDbZIXskIEfkhJyRDukSTp7JmzPvLDivrusuuksfqa5T12ySH+FuvQOdvrhB</latexit>

shi 2 Shi

<latexit sha1_base64="eBG8FYqRANu/1QJIq7Me4MXBHAQ="></latexit>

rhi 2 Rhi
<latexit sha1_base64="+u9USvaqC0FfddhyokI/UY3JBvY="></latexit>

rlo 2 Rlo

<latexit sha1_base64="QL1hLepeJWgtjTVuBKYWCmLwOZY="></latexit>

a 2 A <latexit sha1_base64="QL1hLepeJWgtjTVuBKYWCmLwOZY=">AAACQnicbVC7TsMwFHV4E14FRhaLCompSioEjCAWRpAoFDVVdePcFquOE2wHqYr6bSx8ARsfwMIAQqwMuCHiVY5k6fice6+vT5gKro3nPTgTk1PTM7Nz8+7C4tLySmV17VwnmWLYYIlIVDMEjYJLbBhuBDZThRCHAi/C/tHIv7hBpXkiz8wgxXYMPcm7nIGxUqdyGYTY4zLH66xQhjSQicziEJVbWiB4T2I0dIEGXNIgBnPFQOSHQzdAGX37xe1rUKdS9WpeATpO/JJUSYmTTuU+iBKWxSgNE6B1y/dS085BGc4E2vGZxhRYH3rYslRCjLqdFxEM6ZZVItpNlD3S0EL92ZFDrPUgDm3laH/91xuJ/3mtzHT32zmXaWZQss+HupmgJqGjPGnEFTIjBpYAU9zuStkVKGDGpu7aEPy/Xx4n5/Wav1vbOa1XD3bKOObIBtkk28Qne+SAHJMT0iCM3JJH8kxenDvnyXl13j5LJ5yyZ538gvP+AcX3sqc=</latexit>

a 2 A

<latexit sha1_base64="uDYZy88TPjy329dOwfVbiIYSOwA=">AAAB+3icdVDLSsNAFJ3UV62vWJdugkVwFVKtr13BjcuK9gFNLJPppB06yYSZG2kJ+RU3LhRx64+482+ctEV8HrhwOOde7r3HjzlT4DjvRmFhcWl5pbhaWlvf2Nwyt8stJRJJaJMILmTHx4pyFtEmMOC0E0uKQ5/Ttj+6yP32HZWKiegGJjH1QjyIWMAIBi31zLJ7zQYhvk1doGNIuciynllx7PMcx1bVdqb4TSpojkbPfHP7giQhjYBwrFS36sTgpVgCI5xmJTdRNMZkhAe0q2mEQ6q8dHp7Zu1rpW8FQuqKwJqqXydSHCo1CX3dGWIYqp9eLv7ldRMIzryURXECNCKzRUHCLRBWHoTVZ5IS4BNNMJFM32qRIZaYgI6rpEP4//dP0jq0qyd27apWqR/N4yiiXbSHDlAVnaI6ukQN1EQEjdE9ekRPRmY8GM/Gy6y1YMxndtA3GK8fJxWVJA==</latexit>

⌃lo
<latexit sha1_base64="4Qacut75N1hoiChRXpoquz1lFug=">AAAB+3icdVDLSsNAFJ3UV62vWJdugkVwFVKtr13BjcuK9gFNLJPppB06k4SZG2kJ+RU3LhRx64+482+ctEV8HrhwOOde7r3HjzlT4DjvRmFhcWl5pbhaWlvf2Nwyt8stFSWS0CaJeCQ7PlaUs5A2gQGnnVhSLHxO2/7oIvfbd1QqFoU3MImpJ/AgZAEjGLTUM8vuNRsIfJu6QMeQDlmW9cyKY5/nOLaqtjPFb1JBczR65pvbj0giaAiEY6W6VScGL8USGOE0K7mJojEmIzygXU1DLKjy0untmbWvlb4VRFJXCNZU/TqRYqHURPi6U2AYqp9eLv7ldRMIzryUhXECNCSzRUHCLYisPAirzyQlwCeaYCKZvtUiQywxAR1XSYfw/++fpHVoV0/s2lWtUj+ax1FEu2gPHaAqOkV1dIkaqIkIGqN79IiejMx4MJ6Nl1lrwZjP7KBvMF4/ABfVlRo=</latexit>

⌃hi

Figure 1: RL with low- and high-fidelity environ-
ments. Σlo is cheap to evaluate but is potentially
inaccurate. Σhi represents the real world with the
highest accuracy, yet it is expensive to evaluate.
The RL agent leverages the correlations between
the low- and high-fidelity data to learn π∗

hi.

The Monte Carlo method to solve the RL prob-176

lem is based on the idea of averaging sample177

returns. In the MC method, experience is di-178

vided into episodes. At the end of an episode,179

state-action values are estimated, and the policy180

is updated. For ease of exposition, we consider a181

specific state-action pair (shi, a) in what follows182

and suppress the dependence on (shi, a) from183

the notation to avoid clutter. Consider a sam-184

ple trajectory τ hi that results from the agent’s185

interaction with the high-fidelity environment186

starting at (shi
0 = shi, a0 = a) and following187

π, that is, τ hi : shi
0 , a0, r

hi
1 , s

hi
1 , a1, r

hi
2 , · · · , shi

T .188

Note that rhi
t+1 = Rhi(shi

t , at). Let Ghi denote the corresponding long-term discounted return,189

Ghi =
∑∞

t=0 γ
trhi

t+1. The high-fidelity state-action value of the pair (s, a) when the agent follows π190

is191

Qhi
π (s

hi, a) = Eτ hi

[
Ghi|shi

0 = shi, a0 = a
]
. (3)

Notice that Qhi
π (s

hi, a) is the expectation of an r.v. Ghi with respect to the random trajectory τ hi. Ghi192

is a bounded r.v. with support on the interval [R
hi
min

1−γ ,
Rhi

max
1−γ ] and has a finite variance given by193

σ2
hi(s

hi, a) = Eτ hi

[(
Ghi −Qhi

π (s
hi, a)

)2|s0 = shi, a0 = a
]
. (4)

By interacting with the environment, the agent can sample only a finite number of trajectories, n.194

Let τ hi
1 , τ

hi
2 , · · · , τ hi

n be the n sampled trajectories that starts at the pair (shi, a). Furthermore, let195

Ghi
1 ,Ghi

2 , · · · ,Ghi
n be i.i.d. r.vs. that correspond to the long-term discounted returns of the sampled196

trajectories, τ hi
1 , τ

hi
2 , · · · , τ hi

n , respectively. Notice that Eτ hi [Ghi
1 ] = Eτ hi [Ghi

2 ] = · · · = Eτ hi [Ghi
n ] =197

Qhi
π (s, a). The first-visit MC sample average is198

Q̂hi
π,n(s

hi, a) =
1

n

n∑
i=1

Ghi
i . (5)

By the weak law of large numbers, lim
n→∞

Pr
(
|Q̂hi

π,n(s
hi, a)−Qhi

π (s
hi, a)| > ξ

)
= 0, for any positive199

number ξ. In addition, the variance of this unbiased sample average estimator is200

Var
[
Q̂hi

π,n(s
hi, a)

]
=

σ2
hi(s

hi, a)

n
. (6)

Using the low-fidelity generative environment and the method of control variates, we design an201

unbiased estimator for the expected long-term discounted returns that has a smaller variance than202

(6). Let τ lo
i be the ith low-fidelity trajectory that is obtained from τ hi

i by using T and the generative203

low-fidelity environment to evaluate rlow
t+1 = Rlo(T (shi

t ), at). Let G lo
i be the r.v. which corresponds to204

the long-term discounted return of τ lo
i . Notice that Ghi

i and G lo
i are correlated r.vs. in this multifidelity205

setup. Based on those low-fidelity trajectories, the low-fidelity first-visit MC sample average is206

Q̂lo
π,n(T (shi), a) = 1

n

∑n
i=1 G lo

i and has a variance of Var
[
Q̂lo

π,n(T (shi), a)
]
=

σ2
lo(T (shi),a)

n , where207

σ2
lo(T (shi), a) = Eτ lo

[(
G lo −Qlo

π (T (shi), a)
)2|s0 = T (shi), a0 = a

]
and Qlo

π (T (shi), a) is the true208

population mean.209

Using the method of control variates presented in Subsection 2.2, we propose the following multifi-210

delity MC estimator:211

Q̂MFMC
π,n (shi, a) =Q̂hi

π,n(s
hi, a) + α∗

s,a

(
Qlo

π (T (shi), a)− Q̂lo
π,n(T (shi), a)

)
, (7)

where212

α∗
s,a =

Cov
[
Q̂hi

π,n(s
hi, a), Q̂lo

π,n(T (shi), a)
]

Var
[
Q̂lo

π,n(T (shi), a)
] . (8)
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Notice that the estimator in (7) is unbiased and has a variance of213

Var
[
Q̂MFMC

π,n (shi, a)
]
=
(
1− ρ2s,a

)
Var
[
Q̂hi

π,n(s
hi, a)

]
, (9)

where ρs,a is the correlation coefficient between the low-fidelity and high-fidelity long-term dis-214

counted returns:215

ρs,a =
Cov

[
Q̂hi

π,n(s
hi, a), Q̂lo

π,n(T (shi), a)
]√

Var
[
Q̂hi

π,n(s
hi, a)

]
Var
[
Q̂lo

π,n(T (shi), a)
] . (10)

Therefore, the variance in estimating the value of a state-action pair under a policy π can be reduced216

by a factor of
(
1− ρ2s,a

)
when the low-fidelity data is exploited, although the budget of high-fidelity217

samples remains the same. Notice that218

Cov
[
Q̂hi

π,n(s
hi, a), Q̂lo

π,n(T (shi), a)
]
= Cov

[ 1
n

n∑
i=1

Ghi
i ,

1

n

n∑
i=1

G lo
i

]
=

1

n
Cov

[
Ghi
i ,G lo

i

]
, (11)

because Ghi
i ,G lo

j are independent r.vs. ∀i ̸= j. Hence, Cov
[
Q̂hi

π,n(s
hi, a), Q̂lo

π,n(T (shi), a)
]
,219

Var
[
Q̂hi

π,n(s
hi, a)

]
, and Var

[
Q̂lo

π,n(T (shi), a)
]

can all be estimated in practice based on the return220

data samples using the standard unbiased estimators for the variance and covariance.221

The reduced-variance estimator of (7) can be used to design a multifidelity Monte Carlo RL algorithm222

as shown in Algorithm 1 in Appendix A. This algorithm is based on the on-policy first-visit MC223

control algorithm with ϵ-soft policies [34] but uses the multifidelity estimator (7). Algorithm 1 is224

based on the idea of generalized policy iteration. In the policy evaluation step (lines 11–18), the225

state-action value function is made consistent with the current policy by updating the estimated226

long-term discounted returns of a state-action pair (st, at) using the control-variate-based estimator227

(7) (line 18). This update requires the estimation of the correlation between the low- and high-228

fidelity returns, which is done in lines 13–17. Next, in the policy improvement step (lines 19–20), the229

policy is made ϵ-greedy with respect to the current state-action value function. In each episode, the230

agent needs to evaluate the policy in the low-fidelity environment to obtain Qlo
π . This can be done in231

practice by collecting a large number of m return samples from the cheap low-fidelity environment232

and setting Qlo
π (T (shi), a) ≈ Q̂lo

π,m+n(T (shi), a). The convergence of Algorithm 1 to the optimal233

ϵ-greedy policy, π∗
ϵ−opt, along with its corresponding Q̂MFMC

∗ , is guaranteed under the same conditions234

that guarantee convergence for the on-policy first-visit MC control algorithm with ϵ-soft policies [34].235

In the following subsection, we theoretically analyze the impacts of variance reduction on policy236

evaluation and policy improvement.237

3.3 Theoretical analysis238

In this subsection we analyze the impacts of variance reduction on policy evaluation error and policy239

improvement by introducing two main theorems. Intermediate lemmas along with all the proofs can240

be found in Appendix B.241

3.3.1 Policy evaluation242

In policy evaluation, the task is to estimate the state-action value function of a given policy π.243

Trajectory samples are first generated by interacting with the environment using π, and the state-action244

value function is then estimated using either the single high-fidelity estimator (5) or the proposed245

multifidelity estimator (7). To analyze the impacts of variance reduction on policy evaluation error,246

we first derive a a Bernstein-type concentration inequality [6] that relates the deviation between the247

sample average and the true mean to the sample size n, estimation accuracy parameters δ, ξ, and the248

variance of a r.v. as follows.249

Lemma 1 Let X1, X2, · · · , Xn be i.i.d. r.vs. with mean E[Xi] = µ
X

and variance E[(Xi−µ
X
)2] =250

σ2
X

, ∀i ∈ [n]. Furthermore, suppose that Xi,∀i, are bounded almost surely with a parameter b,251

namely, Pr(|Xi − µ
X
| ≤ b) = 1,∀i. Then252

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ
X

∣∣∣∣∣ ≥ ξ

)
≤ 2exp

(−nξ2

4σ2
X

)
(12)
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for 0 ≤ ξ ≤ σ2
X
/b.253

Next, the concentration bound of Lemma 1 is used to derive the minimum sample size that is required254

to ensure that the sample average deviates by no more than ξ from the true mean with high probability255

for both the high-fidelity estimator (5) and the multifidelity estimator (7).256

Theorem 1 To guarantee that257

1. Pr
(
|Q̂hi

π,n(s
hi, a)−Qhi

π (s
hi, a)| ≤ ξ

)
≥ 1− δ, then n ≥ 4σ2

hi(s
hi,a)

ξ2 log( 2δ ).258

2. Pr
(
|Q̂MFMC

π,n (s, a)−Qhi
π (s

hi, a)| ≤ ξ
)
≥ 1− δ, then n ≥ 4(1−ρ2

s,a)σ
2
hi(s

hi,a)

ξ2 log( 2δ ).259

The result of Theorem 1 highlights the benefit of using our proposed multifidelity estimator (7) for260

policy evaluation as opposed to using the single high-fidelity estimator of (5). By leveraging the261

correlation between low- and high-fidelity returns ρs,a, the variance of the multifidelity estimator262

is reduced by a factor of (1− ρ2s,a), which makes it possible to achieve a low estimation error at a263

reduced number of high-fidelity samples.264

3.3.2 Policy improvement265

In policy improvement, a new policy π′ is constructed by deterministically choosing the greedy266

action with respect to the state-action value function of the original policy π, Qhi
π (s, a), at every state,267

that is, π′(s)
.
= argmax

a∈A
Qhi

π (s, a),∀s ∈ S. By the policy improvement theorem, π′ is as good as or268

better than π under the assumption that Qhi
π (s, a),∀s, a is computed exactly. In practice, the MDP is269

unknown, and the state-action value function is estimated based on a finite number of trajectories.270

Moreover, those trajectories are generated by following an exploratory policy, such as an ϵ-soft271

policy. Because we are interested in studying how different estimators impact policy improvement,272

we consider a target state shi ∈ Shi and assume that we have n trajectories for each action a ∈ A at273

this target state. This assumption basically ensures that all actions at the target state shi have been274

explored equally well and enables us to make fair comparisons about estimator performance.275

Without loss of generality, suppose that Qhi
π (s

hi, a1) ≥ Qhi
π (s

hi, a2) ≥ · · ·Qhi
π (s

hi, a|A|). Let ∆i =276

Qhi
π (s

hi, a1) − Qhi
π (s

hi, ai),∀i ̸= 1. We analyze the probability that a1, which is the greedy action277

given the true Qhi
π (s

hi, a), is the greedy action with respect to the single- and multifidelity estimators278

in our next theorem.279

Theorem 2 Suppose that the number of trajectories from a state-action pair at a target state shi ∈ Shi280

is the same for all actions a ∈ A and that a1 is the greedy action with respect to the true Qhi
π (s

hi, a).281

Furthermore, suppose that Phi(shi|shi′ , a) ≥ β(shi),∀shi ∈ Shi. Then282

1. Pr
(
a1 = argmax

a∈A
Q̂hi

π,n(s
hi, a)

)
≥∏|A|

i=2
∆2

i

∆2
i+Var[Q̂hi

π,n(s
hi,a1)]+Var[Q̂hi

π,n(s
hi,ai)]

.283

2. Pr
(
a1 = argmax

a∈A
Q̂MFMC

π,n (shi, a)
)
≥∏|A|

i=2
∆2

i

∆2
i+(1−ρ2

s,a1
)Var[Q̂hi

π,n(s
hi,ai)]+(1−ρ2

s,ai
)Var[Q̂hi

π,n(s
hi,ai)]

.284

Notice that when |ρs,a2 | → 1, the lower bound in the result of Theorem 2 approaches 1, which285

means that the correct greedy action a1 can be selected with certainty when the reduced-variance286

multifidelity estimator (7) is adopted. Combining the results of Theorems 1 and 2, the proposed287

MFMCRL algorithm is expected to outperform its single high-fidelity Monte Carlo counterpart in terms288

of learning a better policy under a given budget of high-fidelity environment interactions.289

4 Numerical experiments290

In this section we empirically evaluate the performance of the proposed MFMCRL algorithm on291

synthetic MDP problems and on a NAS use case. Our codes and all experimental details can be found292

in Appendix C.293
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4.1 Synthetic MDPs294

We synthesize multifidelity random MDP problems with state space cardinality |S| and action space295

cardinality |A|. The high-fidelity transition and reward functions, Phi and Rhi, respectively, are296

first generated based on a random process as detailed in Appendix C.2. Next, for a given Phi and297

Rhi, the corresponding P low and Rlow are generated by injecting Gaussian noise to meet a desired298

signal-to-noise ratio. Specifically, we generate a random matrix PN of size |S| × |A| × |S| from299

a normally distributed r.v. with mean 0 and variance σ2
P , and set P low = Phi + PN . P low is then300

appropriately normalized so that
∑

slo′∈S P lo(slo′ |slo, a) = 1. Similarly, we generate a random301

matrix RN of size |S| × |A| from a normally distributed r.v. with mean 0 and variance σ2
R and set302

Rlow = Rhi +RN . Phi and Rhi are then encapsulated within a gym-like environment with which303

the agent can interact by exchanging sample tuples of the form (shi, a, rhi, shi′). Similarly, P lo and304

Rlo are encapsulated within a gym-like environment to form the low-fidelity environment. In this305

experiment, both low- and high-fidelity environments share the same state-action space—that is, T is306

an identity transformation—yet the transition and reward functions of the low-fidelity environment307

are different since they are corrupted with noise. Notice that even if the agent could draw an infinite308

number of samples from P lo and Rlo, it would not be able to recover Phi and Rhi since P lo and309

Rlo underneath the low-fidelity environment themselves are corrupted. This situation mimics what310

happens in practice when we attempt to learn P lo and Rlo based on real data and build an RL311

environment off those learned functions to train the agent.312

After constructing the multifidelity environments, we train an RL agent using the proposed MFMCRL313

algorithm over 10K high-fidelity episodes, where a training episode is defined to be a trajectory that314

ends at a terminal state. The MFMCRL agent interacts with the low-fidelity environment as shown in315

Algorithm 1, to generate reduced-variance estimates of the state-action value function. As a baseline316

for comparison, we train another RL agent (MCRL) using the standard the first-visit MC control317

algorithm over 10K high-fidelity episodes [34]. We set γ and ϵ to 0.99 and 0.1, respectively. Every 50318

training episodes, the greedy policy w.r.t to the estimated Q function is used to test the performance319

of the agent on 200 test episodes. We repeat the whole experiment with 36 different random seeds320

(to fully leverage our 36 core machine) and report the mean and standard deviation (across different321

seeds) of the test episode rewards in Figure 2(a). One can observe that for a given budget of high-322

fidelity episodes, the proposed MFMCRL algorithm outperforms MCRL in terms of policy performance,323

with performance improving as the RL agent collects more low-fidelity samples (#τ lo refers to the324

number of low-fidelity trajectories started from a state-action pair). In Figure 2(b), we vary the SNR325

of the low-fidelity environment and observe that performance improves as SNR increases. This326

is expected because the low- and high-fidelity environments are better-correlated at higher SNRs.327

Notice that when the SNR of the low-fidelity environment is -10 dB, there is no benefit from doing328

multifidelity RL. The reason is that the low- and high-fidelity environments are too weakly correlated329

to benefit from multifidelity estimation. In fact, for this case Es,a,s′ [|Phi −P lo|] = 0.275± 0.33, and330

Es,a[|Rhi −Rlo|] = 1.029± 0.024, compared with the other extreme case (SNR +3dB) for which331

Es,a,s′ [|Phi − P lo|] = 0.009± 0.0002, and Es,a[|Rhi −Rlo|] = 0.230± 0.006. This is also evident332

in Figure 2(c), where we show the mean variance reduction factor Var[Q̂MFMC]/Var[Q̂hi] estimated333

based off the last 1K training episodes. When the low-fidelity environment is less noisy (higher SNR),334

more variance reduction can be attained.335

4.2 NAS336

In NAS, the task is to discover high-performing neural architectures with respect to a given training337

dataset over a predefined search space. While many earlier works attempted to design RL-based NAS338

algorithms, [3, 40, 13], it has since become clear that the sample complexity of RL is too high to be339

competitive with state-of-the-art NAS methods [4, 37]. In this experiment we study how multifidelity340

RL can improve learning in NAS over standard RL, which could serve to catalyze future work in this341

direction to make RL more competitive in NAS.342

For this experiment we use the tabular dataset of NAS-Bench-201 [10] to construct multifidelity RL343

environments as detailed in Appendix C.3. In summary, the RL agent sequentially configures the344

nodes of an architecture (inducing an MDP), after which the architecture is trained on the training345

dataset for L epochs, and the validation accuracy on a held-out validation data set is provided to the346

agent as a reward. By maximizing the total rewards, high-performing architectures can be discovered.347

NAS-Bench-201 reports the validation accuracy curves for all the architectures in the search space348
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Figure 2: Mean and standard deviation of test episode rewards for the proposed MFMCRL during
training: (a) test episode rewards improve with increasing number of low-fidelity samples (#τ lo); (b)
test episode rewards improve with less noisy low-fidelity environments; (c) variance reduction factor
improves when low- and high-fidelity environments are more correlated. These results are based on a
random MDP with |S| = 200, |A| = 8.
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Figure 3: Mean and standard deviation of test
episode rewards for the proposed MFMCRL dur-
ing training on multifidelity NAS environments.
See text for description of the two multifidelity
scenarios (i) and (ii). In both cases, #τ lo =
5/(T (shi), a)).

as a function of the number of training epochs349

and for three image data sets. We construct two350

multifidelity scenarios as follows. In both sce-351

narios, the validation accuracy of an architecture352

at the end of training (i.e. at L = 200 epochs) is353

used as a high-fidelity reward in the high-fidelity354

environment. For the low-fidelity environment,355

we have two cases: (i) low-fidelity environment356

is identical to the high-fidelity environment ex-357

cept for the reward function, which is now the358

validation accuracy at the L = 10th training359

epoch, and (ii) low-fidelity environment is de-360

fined for a smaller search space and the reward361

function is the validation accuracy of an archi-362

tecture at the L = 10th training epoch. Note363

that in case (ii) the state space and dynamics364

differ between the low- and high-fidelity envi-365

ronments. For both cases, we train both our proposed MFMCRL and the MCRL exactly as we did in366

Section 4.1, and we report the mean and standard deviation of test episode rewards in Figure 3. We367

can observe that our multifidelity RL framework does indeed improve over standard RL and that368

performance gains are higher when the low- and high-fidelity environments are more similar, case (i).369

5 Conclusion370

In this paper we have studied the RL problem in the presence of a low- and a high-fidelity environment371

for a given control task, with the aim of improving the agent’s performance in the high-fidelity372

environment with multifidelity data. We have proposed a multifidelity estimator based on the method373

of control variates, which uses low-fidelity data to reduce the variance in the estimation of the374

state-action value function. The impacts of variance reduction on policy improvement and policy375

evaluation are theoretically analyzed, and a multifidelity Monte Carlo RL algorithm (MFMCRL) is376

devised. We show that for a finite budget of high-fidelity data, the MFMCRL agent can well exploit the377

cross-correlations between low- and high-fidelity data and yield superior performance. In our future378

work, we will study the design of a control-variate-based multifidelity RL framework with function379

approximation to solve continuous state-action space RL problems.380

6 Broader impact381

Positive impacts: The energy/cost associated with generating low-fidelity data is generally much382

smaller than that of high-fidelity data. By leveraging low-fidelity data to improve the learning of RL383

agents, greener agents are realized. Negative impacts: Running multifidelity RL agent training with384

weakly-correlated low- and high-fidelity environments can be wasteful of resources since the benefits385

in this case are not significant.386
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