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Abstract

Dense 3D scene reconstruction from an ordered sequence or unordered image
collections is a critical step when bringing research in computer vision into prac-
tical scenarios. Following the paradigm introduced by DUSt3R, which unifies an
image pair densely into a shared coordinate system, subsequent methods main-
tain an implicit memory to achieve dense 3D reconstruction from more images.
However, such implicit memory is limited in capacity and may suffer from infor-
mation loss of earlier frames. We propose Point3R, an online framework targeting
dense streaming 3D reconstruction. To be specific, we maintain an explicit spa-
tial pointer memory directly associated with the 3D structure of the current scene.
Each pointer in this memory is assigned a specific 3D position and aggregates
scene information nearby in the global coordinate system into a changing spa-
tial feature. Information extracted from the latest frame interacts explicitly with
this pointer memory, enabling dense integration of the current observation into the
global coordinate system. We design a 3D hierarchical position embedding to pro-
mote this interaction and design a simple yet effective fusion mechanism to ensure
that our pointer memory is uniform and efficient. Our method achieves competi-
tive or state-of-the-art performance on various tasks with low training costs. Code:
https://github.com/YkiWu/Point3R.

1 Introduction

Dense 3D reconstruction from image collections has long been a fundamental task in computer
vision, with broad applications in fields such as autonomous driving [25, 78], medical modeling,
and cultural heritage preservation. Conventional approaches [1, 11, 48, 56, 67, 68] first conduct a
sequence of sub-tasks, including feature extraction and matching [33, 41], triangulation, and global
alignment to get sparse geometry and camera poses. Multi-view stereo [20, 22, 49] is then used
to obtain dense geometry. However, this tightly coupled pipeline is inefficient and tends to be
vulnerable to noise. To address these challenges, DUSt3R [64] proposes a data-driven paradigm
that directly reconstructs the input image pair as point maps within a unified coordinate system.

Due to the constraint of pair-wise input, DUSt3R requires an additional global alignment step when
performing dense reconstruction from multiple images, which is inefficient in multi-view settings.
To improve this, subsequent works [59, 60, 63, 71] can be categorized into two main paradigms. One
category of these works [60, 71] takes all input images simultaneously and employs global attention
to reconstruct them into a unified coordinate system, requiring substantial computational resources
and is misaligned with the incremental nature of real-world reconstruction scenarios. The second
category [59, 63] introduces an external memory mechanism to retain information from past frames,
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Figure 1: Comparison between our explicit spatial pointer memory and other paradigms in
dense 3D reconstruction. Methods that conduct all-to-all interaction among all inputs simultane-
ously [60, 71] can be considered as using other frames as memory (for one of the inputs). Methods
that cache encoded features of processed frames and conduct token-image interaction [59] can be
considered as using past frames as memory. Methods maintaining a fixed-length state memory
and conducting state-image interaction [63] can be considered as using implicit state memory. We
propose an explicit spatial pointer memory in which each pointer is assigned a 3D position and
points to a changing spatial feature. We conduct a pointer-image interaction to integrate new obser-
vations into the global coordinate system and update our spatial pointer memory accordingly.

enabling each new input to be directly integrated into the global coordinate system. For instance,
Spann3R [59] maintains a memory that essentially caches implicit features of processed frames.
However, this implicit memory often contains redundant information, and a discard strategy must be
employed once capacity is saturated. CUT3R [63] uses a fixed-length token-based memory mech-
anism and directly updates it through interactions with image features. Nonetheless, as the number
of processed frames increases, this memory inevitably leads to the loss of earlier information.

Inspired by the human memory mechanism, we propose Point3R, an online framework equipped
with a spatial pointer memory. Human memory of previously encountered environments is inher-
ently related to spatial locations. For example, when we talk about a café or our bedroom, the
images we recall are distinct. Similarly, each 3D pointer in our spatial pointer memory is assigned a
3D position in the global coordinate system. Each 3D pointer is directly linked to an explored spatial
location and points to a dynamically updated spatial feature. Leveraging this 3D-aware structure,
we introduce a 3D hierarchical position embedding, which is integrated into the interaction module
between current image features and stored spatial features, enabling more efficient and structured
memory querying. Furthermore, since the spatial pointer memory expands as the scene exploration
progresses, we design a simple yet effective fusion mechanism to ensure that the memory remains
spatially uniform and efficient. Our spatial pointer memory evolves in sync with the current scene,
allowing our model to handle both static and dynamic scenes. We use Figure 1 to compare our
spatial pointer memory with other paradigms mentioned before. Our method achieves competitive
or state-of-the-art performance across various tasks: dense 3D reconstruction, monocular and video
depth estimation, and camera pose estimation. It is worth mentioning that although trained on a
variety of datasets, the training of our method has a low cost in time and computational resources.

2 Related Work

Conventional 3D Reconstruction. Classic approaches to 3D reconstruction from image col-
lections are typically optimization-based and tailored to specific scenes. Structure-from-motion
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(SfM) [1, 11, 48, 56, 67, 68] follows a pipeline consisting of feature extraction [16, 34, 46], image
matching [9, 31, 50, 68], triangulation to 3D, and bundle adjustment [2, 58] to obtain sparse geome-
try and estimated camera poses. Building upon this, subsequent methods such as Multi-view Stereo
(MVS) [18, 19, 49, 65], Neural Radiance Fields (NeRF) [4, 8, 36, 37, 62], and 3D Gaussian Splatting
(3DGS) [26] leverage known camera parameters to recover dense geometry or high-fidelity scene
representation. These approaches rely on a sequential combination of multiple modules, which not
only require considerable optimization time but are also vulnerable to noise. It is worth noting
that Simultaneous Localization and Mapping (SLAM) [13, 17, 27, 40] can perform localization and
reconstruction in an online manner. However, they often rely on specific camera motion assump-
tions [13, 40] (sometimes these motion assumptions may be misleading or restrictive) or require
additional depth/LiDAR sensors [39] for better performance.

Learning-Based 3D Reconstruction. To enhance accuracy and efficiency, the field of 3D recon-
struction is gradually shifting toward learning-based and end-to-end paradigms. Some approaches
utilize learnable modules to replace hand-crafted components [14, 47] during the traditional re-
construction pipeline. Some others try to optimize the overall pipeline in an end-to-end man-
ner [57, 61, 72]. DUSt3R [64] introduces a pointmap representation and directly learns to integrate
an image pair into the same coordinate system, which unifies all sub-tasks we have mentioned above.
MonST3R [75] extends this paradigm to dynamic scenes by fine-tuning it on dynamic datasets.
However, this pair-wise formulation needs a global alignment to process more views, which is com-
putationally intensive and time-consuming. Subsequent works [59, 60, 63, 71] are exploring how to
further replace the global optimization step with an end-to-end learning framework. These efforts
can be broadly categorized into two main branches. The former [60, 71] feeds all images simulta-
neously and leverages global attention to reconstruct the scene within a unified coordinate system;
the latter [59, 63] proposes a streaming paradigm, in which a memory module stores information
from past frames, thereby enabling online incremental reconstruction from sequential inputs. The
streaming paradigm aligns more closely with real-world applications, offering improved scalability
without imposing excessive computational demands.

Streaming Reconstruction and Memory Mechanism. The streaming reconstruction paradigm and
the memory mechanism are inherently aligned with each other. Existing streaming reconstruction
methods [10, 17, 59, 63, 76] universally incorporate a certain form of memory to store information
from past frames. This memory can take on various forms, such as explicit scene representation (the
most direct form of memory), recurrent neural network architectures [10], and encoded or learnable
token features [59, 63]. Explicit 3D scene representation is compact and efficient but tailored to
a specific scene, limiting its generalizability. Spann3R [59] stores implicit features from previous
frames in the memory, which may lead to redundancy. CUT3R [63] employs a fixed-length set of
learnable token features as its memory module, which is continuously updated during sequential
processing. However, its limited capacity can lead to information loss. In contrast, we propose a
spatial pointer memory, in which each pointer is dynamically assigned a 3D position. This ensures
that the total amount of stored information scales naturally with the extent of the explored scene.
Furthermore, each pointer has a spatial feature that captures aggregated scene information nearby.

3 Proposed Approach

3.1 Memory-Based Streaming 3D Reconstruction

To densely reconstruct image collections I ∈ RN×H×W×3 into a unified global coordinate system as
per-frame pointmaps X ∈ RN×H×W×3, existing methods can be categorized into three paradigms:
(1) pair-wise reconstruction [29, 64, 75] with an optimization-based global alignment, (2) one-shot
global reconstruction [60, 71] with all inputs, and (3) frame-by-frame input and reconstruction [59,
63] based on a memory mechanism. Pair-wise methods take only one image pair each time as input
and reconstruct it into a local coordinate system. A global alignment is then conducted to merge all
local outputs into a global coordinate system. This approach suffers from inefficiency due to the need
for repeated pair-wise processing and a post-processing stage. The second category feeds all images
into the model simultaneously and employs a global attention to reconstruct them directly in a shared
coordinate system. However, this approach is computationally intensive and inherently mismatched
with the core demands of embodied agents, which typically perform streaming perception of their
surroundings and respond correspondingly in practical scenarios.
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Figure 2: Overview of Point3R. Given streaming image inputs, our method maintains an explicit
spatial pointer memory to store the observed information of the current scene. We use a ViT [15,
64] encoder to encode the current input into image tokens and use ViT-based decoders to conduct
interaction between image tokens and spatial features in the memory. We use two DPT [43] heads
to decode local and global pointmaps from the output image tokens. Besides, a learnable pose token
is added during this stage so we can directly decode the camera parameters of the current frame.
Then we use a simple memory encoder to encode the current input and its integrated output into new
pointers, and use a memory fusion mechanism to enrich and update our spatial pointer memory.

In pursuit of a balance between practicality and efficiency, the key idea of memory-based methods
is maintaining a memory that stores observed information and interacts with each incoming frame
to enable streaming dense reconstruction. We formulate the memory-based pipeline as follows:

Xt = F(Mt−1, It), (1)
where It ∈ RH×W×3 and Xt ∈ RH×W×3 are the current image input and pointmap output, F is a
certain approach and Mt−1 represents a memory with integrated information from the past frames.

To elaborate, in Spann3R [59], M is a growing set of key-value-pair features, where the features are
encoded from the output of each previous frame. In CUT3R [63], M takes the form of a fixed-length
feature sequence that is iteratively updated as new frame comes. In this work, we propose an explicit
spatial pointer memory M that stores a set of 3D pointers corresponding to the explored regions of
the current scene, along with their associated spatial features. We argue that this explicit memory
enables compact and structured integration of information from past observations. Each pointer is
indexed by a 3D position in the global coordinate system, rather than implicit features, making the
interaction between the memory and the current frame more direct and efficient.

3.2 Pointer-Image Interaction

The core of our method is making the interaction between the current input and our spatial pointer
memory more effective and efficient. We will elaborate on the overall model architecture, which
is composed of an image encoder, interaction decoders, a memory encoder, and a memory fusion
mechanism. We also incorporate a 3D hierarchical position embedding into the interaction decoders
to promote our pointer-image interaction. Figure 2 shows the overview of our method.

Image Encoder. For each frame, we use a ViT [15] to encode the current input It into image tokens
Ft:

Ft = Encoder(It). (2)

Interaction Decoders. Our spatial pointer memory M consists of a set of 3D pointers (3D positions
P and spatial features M ). Before processing the first frame, the memory has not yet stored any
global spatial features of the current scene. Therefore, we use a simple layer to embed the image
tokens F0 of the first frame, and use the output M0 to initialize the features of our memory. It is
worth noting that, since the precise spatial positions represented by these features are not yet known
at this time, each feature has not been assigned a specific 3D position. Then we use two intertwined
decoders [64, 66] to enable interaction between the current image tokens and the memory:

F ′
0, z

′
0 = Decoders((F0, z0),M0), (3)

F ′
t , z

′
t = Decoders((Ft, zt),Mt−1), (4)
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where we use a learnable pose token z as a bridge between the current frame and the global coordi-
nate system. After this interaction, we get the updated image tokens F ′

t and pose token z′t. Then we
use F ′

t and z′t to predict two pointmaps (X̂self
t in the local coordinate system of the current input

and X̂global
t in the global coordinate system) with their own confidence maps (Ct

selfand Ct
global),

and a camera pose T̂t representing the rigid transformation between this two coordinate system:

T̂t = Headpose(z
′
t), (5)

X̂self
t , Ct

self = Headself (F
′
t ), (6)

X̂global
t , Ct

global = Headglobal(F
′
t , z

′
t), (7)

where Headpose is an MLP network, Headself and Headglobal are DPT [43] heads. The global
coordinate system is actually the first input’s own coordinate system.

Memory Encoder. After processing It, we use the current features Ft, F
′
tand the predicted

pointmap X̂global
t to obtain the new pointers:

Pnew(u, v) =
1

|Ru,v|
∑

(i,j)∈Ru,v

X̂global
t (i, j), (8)

Mnew = Encoderf (Ft, F
′
t ) + Encodergeo(X̂

global
t ), (9)

where Mnew is the set of new spatial features and we compute the 3D location Pnew(u, v) for each
feature in the global coordinate system as its 3D position by averaging all 3D coordinates within the
corresponding patch Ru,v . Besides, Encoderf is a MLP and Encodergeo is a lightweight ViT.

Memory Fusion Mechanism. Apart from the first frame when we simply add all the obtained
pointers into the memory, new pointers extracted from each subsequent frame It are integrated into
the existing memory Mt−1 through a fusion mechanism. To elaborate, we compute the Euclidean
distance between each new pointer and all existing pointers from the memory to identify its nearest
neighbor. If the distance to its nearest neighbor in the memory is below a changing threshold δ
(we change δ accordingly to make the distribution of memory units more uniform), we treat the
neighbors as corresponding and perform the fusion. Otherwise, the new pointer is directly added to
the memory. Notably, if a memory pointer is identified as the nearest neighbor by one or a few new
pointers, we update the position p and spatial feature m of this pointer as follows:

p′ =
1

K

K∑
i=1

pnewi ,m′ =
1

K

K∑
i=1

mnew
i , (10)

where K is the total number of new neighbors of the target pointer. This fusion mechanism ensures
that each pointer always stores the current spatial information at its location, thereby enabling the
memory to deal with dynamic scenes. In this way, we obtain an enriched and updated memory Mt.

3D Hierarchical Position Embedding. We expand the rotary position embedding (RoPE [23, 54],
a method of relative position embedding usually used in transformers) to a 3D hierarchical position
embedding and use this to conduct position embedding in continuous 3D space. In practical imple-
mentation, RoPE utilizes multiple frequencies θt using channel dimensions dhead of key and query
as

θt = 10000−t/(dhead/2),where t ∈ {0, 1, ..., dhead/2}. (11)

Then a rotation matrix R ∈ CN×(dhead/2) is defined as

R(n, t) = eiθtn, (12)

and applied to query and key with the Hadamard product ◦ as

q̄′ = q̄ ◦R, k̄′ = k̄ ◦R, A′ = Re[q̄′k̄′∗]. (13)

Here, the attention matrix with RoPE A′ implies relative position in rotation form ei(n−m)θt . In-
spired by this, we formulate a 3D hierarchical position embedding. We need to change the 1D token
index n in RoPE to a 3D token position pn = (pxn, p

y
n, p

z
n) where pxn, pyn and pzn correspond to the

coordinates on three axes in a continuous 3D space. Thus, the rotation matrix R ∈ CN×(dhead/2) in
Eq. 12 is changed accordingly as

R(n, 3t) = eiθtp
x
n , R(n, 3t+ 1) = eiθtp

y
n , R(n, 3t+ 2) = eiθtp

z
n . (14)
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To accommodate spatial position inputs of varying scales, we use h different frequency bases (10000
in Eq. 11) to derive hierarchical rotation matrices and apply them to query and key as

q̄′ =
1

h

h∑
i=1

(q̄ ◦Ri), k̄
′ =

1

h

h∑
i=1

(k̄ ◦Ri), A
′ = Re[q̄′k̄′∗]. (15)

We use this hierarchical position embedding in our interaction decoders to inject relative position
information into image tokens and memory features. When applying the rotation matrices in Eq. 15,
the 3D token position of each memory feature is its 3D position. For image tokens from It, the 3D
token position assigned to each of them is as follows:

p(u, v) =
1

|Ru,v|
∑

(i,j)∈Ru,v

X̂global
t−1 (i, j), (16)

where Ru,v is the corresponding image patch and we use X̂global
t−1 from t−1 because we assume that

the image tokens of the current frame are more likely to be spatially close to those of the previous
frame. Of course, even in cases of significant pose shifts or unordered inputs, this assumption will
not introduce any adverse effects. This is because the image tokens of the current frame interact with
all memory features in our interaction decoders, and our hierarchical position embedding merely
provides a potential prior. Due to the space limit, we will add more details about the design and
implementation of our 3D hierarchical position embedding in the supplementary material.

3.3 Training Strategy

Training Objective. Following MASt3R [29] and CUT3R [63], we use the L2 norm loss for the
poses and a confidence-aware loss for the pointmaps. In practical implementation, we parameterize
the predicted pose T̂t as quaternion q̂t and translation τ̂t. We use X̂ = {X̂ self , X̂ global} to denote
the predicted pointmaps, where X̂ self = {X̂self

t }Nt=1, X̂ global = {X̂global
t }Nt=1 and N is the number

of images per sequence. Besides, C is used to denote the set of confidence scores correspondingly.
So the final expression of the loss we used is:

Lpose =

N∑
t=1

(
∥q̂t − qt∥2 +

∥∥∥∥ τ̂tŝ − τt
s

∥∥∥∥
2

)
, (17)

Lconf =
∑

(x̂,c)∈(X̂ ,C)

(
c ·

∥∥∥∥ x̂ŝ − x

s

∥∥∥∥
2

− α log c

)
, (18)

where ŝ and s are scale normalization factors for X̂ and X . When the groundtruth pointmaps are
metric, we set ŝ := s to force the model to learn metric-scale results.

Training Datasets. During training, we use a combination of 14 datasets, including ARK-
itScenes [5], ScanNet [12], ScanNet++ [74], CO3Dv2 [44], WildRGBD [70], OmniObject3D [69],
HyperSim (a subset of it) [45], BlendedMVS [73], MegaDepth [30], Waymo [55], Virtu-
alKITTI2 [7], PointOdyssey [79], Spring [35], and MVS-Synth [24]. These datasets exhibit highly
diverse characteristics, encompassing both indoor and outdoor, static and dynamic, as well as real-
world and synthetic scenes. See the supplementary material for more details.

Training Stages. Our model is trained in three stages. We train the model by sampling 5 frames per
sequence in the first stage. The input here is 224×224 resolution. Then we use input with different
aspect ratios (set the maximum side to 512) in the second stage, following CUT3R [63]. And finally,
we freeze the encoder and fine-tune other parts on 8-frame sequences.

Implementation Details. We initialize our ViT-Large [15, 64] image encoder, ViT-Base interaction
decoders [64, 66], and DPT [43] heads with pre-trained weights from DUSt3R [64]. Our memory
encoder is composed of a light-weight ViT (6 blocks) and a 2-layer MLP. Each memory feature has
a dimensionality of 768. We use the AdamW optimizer [32] and the learning rate warms up to a
maximum value of 5e-5 and decreases according to a cosine schedule. We train our model on 8
A800 NVIDIA GPUs for 15 days, which is a relatively low cost.
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Table 1: Quantitative 3D reconstruction results on 7-scenes and NRGBD datasets. We use
“GA” to mark methods with global alignment, and use “Optim.” and “Onl.” to distinguish between
optimization-based and online methods [63]. Our method achieves competitive or better perfor-
mance than those optimization-based methods and current online methods.

7-scenes NRGBD

Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Method Optim. Onl. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

DUSt3R-GA [64] ✓ 0.146 0.077 0.181 0.067 0.736 0.839 0.144 0.019 0.154 0.018 0.870 0.982
MASt3R-GA [29] ✓ 0.185 0.081 0.180 0.069 0.701 0.792 0.085 0.033 0.063 0.028 0.794 0.928

MonST3R-GA [75] ✓ 0.248 0.185 0.266 0.167 0.672 0.759 0.272 0.114 0.287 0.110 0.758 0.843
Spann3R [59] ✓ 0.298 0.226 0.205 0.112 0.650 0.730 0.416 0.323 0.417 0.285 0.684 0.789
CUT3R [63] ✓ 0.126 0.047 0.154 0.031 0.727 0.834 0.099 0.031 0.076 0.026 0.837 0.971

Ours ✓ 0.085 0.046 0.087 0.030 0.739 0.854 0.077 0.030 0.069 0.027 0.835 0.971

Table 2: Monocular Depth Evaluation on NYU-v2 (static), Sintel, Bonn, and KITTI datasets.

NYU-v2 (Static) Sintel Bonn KITTI
Method Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑

DUSt3R [64] 0.080 90.7 0.424 58.7 0.141 82.5 0.112 86.3
MASt3R [29] 0.129 84.9 0.340 60.4 0.142 82.0 0.079 94.7

MonST3R [75] 0.102 88.0 0.358 54.8 0.076 93.9 0.100 89.3
Spann3R [59] 0.122 84.9 0.470 53.9 0.118 85.9 0.128 84.6
CUT3R [63] 0.086 90.9 0.428 55.4 0.063 96.2 0.092 91.3

Ours 0.078 92.3 0.395 55.0 0.061 94.5 0.083 94.6

4 Experiments

Tasks and Baselines. We use various 3D/4D tasks (dense 3D reconstruction, monocular depth es-
timation, video depth estimation, and camera pose estimation) to evaluate our method. We choose
DUSt3R [64], MASt3R [29], MonST3R [75], Spann3R [59], and CUT3R [63] as our primary base-
lines. Among these methods, DUSt3R, MASt3R, and MonST3R take an image pair as input, so an
optimization-based global alignment (GA) stage is conducted when dealing with streaming inputs.
Both Spann3R and CUT3R have a memory module so they can process an image sequence in an
online manner, similar to our method.

4.1 3D Reconstruction

We evaluate the 3D reconstruction performance on the 7-scenes [51] and NRGBD [3] datasets in
Table 1, and the metrics we used include accuracy (Acc), completion (Comp), and normal consis-
tency (NC), following previous works [3, 59, 64]. We use inputs with minimal overlap [63]: 3 to 5
frames per scene for the 7-scenes datasets and 2 to 4 frames per scene for the NRGBD dataset. Such
sparsely sampled inputs can directly demonstrate the effectiveness of our proposed pointer memory,
which is explicitly associated with 3D spatial locations and does not rely on similarity or continuity
between input frames. As shown in Table 1, our method achieves comparable or better results than
other memory-based online approaches or even DUSt3R-GA [64]. We compare the reconstruction
quality of our method with other memory-based online approaches, Spann3R [59] and CUT3R [63]
in Figure 3, and our method achieves state-of-the-art reconstruction performance with sparse inputs
from the 7-scenes and NRGBD datasets.

4.2 Monocular and Video Depth Estimation

Monocular Depth Estimation. We evaluate zero-shot monocular depth estimation [63, 75] perfor-
mance on NYU-v2 [52] (static), Sintel [6], Bonn [42], and KITTI [21] datasets. We adopt per-frame
median scaling following DUSt3R [64], and the evaluation metrics we used include absolute relative
error (Abs Rel) and percentage of inlier points δ < 1.25. As shown in Table 2, our method achieves
state-of-the-art or competitive performance in both static and dynamic, indoor and outdoor scenes.
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Figure 3: Qualitative results on sparse inputs from the 7-scenes and NRGBD datasets. Our
method achieves the best qualitative results among memory-based methods.

Table 3: Video Depth Evaluation. We compare scale-invariant depth (per-sequence alignment) and
metric depth (no alignment) results on Sintel, Bonn, and KITTI datasets.

Sintel BONN KITTI

Alignment Method Optim. Onl. Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑

Per-
sequence

DUSt3R-GA [64] ✓ 0.656 45.2 0.155 83.3 0.144 81.3
MASt3R-GA [29] ✓ 0.641 43.9 0.252 70.1 0.183 74.5

MonST3R-GA [75] ✓ 0.378 55.8 0.067 96.3 0.168 74.4
Spann3R [59] ✓ 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R [63] ✓ 0.421 47.9 0.078 93.7 0.118 88.1

Ours ✓ 0.481 44.8 0.066 95.8 0.093 93.5

Metric-
scale

MASt3R-GA [29] ✓ 1.022 14.3 0.272 70.6 0.467 15.2
CUT3R [63] ✓ 1.029 23.8 0.103 88.5 0.122 85.5

Ours ✓ 1.208 13.8 0.081 95.8 0.169 80.5

Video Depth Estimation. We align predicted depth maps to ground truth using a per-sequence
scale (Per-sequence alignment) to evaluate per-frame quality and inter-frame consistency. We also
compare results without alignment with other metric pointmap methods like MASt3R [29] and
CUT3R [63] (Metric-scale alignment). As shown in Table 3, with the per-sequence scale align-
ment, our method outperforms DUSt3R [64], MASt3R [29], and Spann3R [59] by a large margin.
These methods have a static scene assumption and are trained only on static datasets. Our spa-
tial pointer memory directly associates spatial features with their real-world positions and imposes
no assumptions or dependencies on whether the scene is static or dynamic. Our method performs
comparably, or even better than MonST3R-GA [75] and CUT3R [63] (methods trained on dynamic
datasets). Besides, in the metric-scale setting, our method outperforms MASt3R-GA [29] and per-
forms comparably with CUT3R [63], leading on Bonn.

4.3 Camera Pose Estimation

We evaluate the camera pose estimation performance on ScanNet [12] (static), Sintel [6], and TUM-
dynamics [53] datasets following MonST3R [75] and CUT3R [63]. We report Absolute Translation
Error (ATE), Relative Translation Error (RPE trans), and Relative Rotation Error (RPE rot) after
applying a Sim(3) Umeyama alignment with the ground truth [75]. It is worth noting that prior
approaches conduct additional optimization while our method does not require any post-processing.
Results in Table 4 show that our method performs comparably with other online methods, but there
persists a performance gap between those optimization-based baselines and our method.
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Table 4: Camera Pose Estimation Evaluation on ScanNet, Sintel, and TUM-dynamics datasets.

ScanNet (Static) Sintel TUM-dynamics

Method Optim. Onl. ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
Robust-CVD [28] ✓ 0.227 0.064 7.374 0.360 0.154 3.443 0.153 0.026 3.528
CasualSAM [77] ✓ 0.158 0.034 1.618 0.141 0.035 0.615 0.071 0.010 1.712
DUSt3R-GA [64] ✓ 0.081 0.028 0.784 0.417 0.250 5.796 0.083 0.017 3.567
MASt3R-GA [29] ✓ 0.078 0.020 0.475 0.185 0.060 1.496 0.038 0.012 0.448

MonST3R-GA [75] ✓ 0.077 0.018 0.529 0.111 0.044 0.869 0.098 0.019 0.935
Spann3R [59] ✓ 0.096 0.023 0.661 0.329 0.110 4.471 0.056 0.021 0.591
CUT3R [63] ✓ 0.099 0.022 0.600 0.213 0.066 0.621 0.046 0.015 0.473

Ours ✓ 0.097 0.035 2.791 0.442 0.154 1.897 0.058 0.031 0.758

Table 5: Quantitative 3D reconstruction results on long sequences.

7-scenes NRGBD

Method Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

CUT3R [63] 0.238 0.172 0.105 0.025 0.527 0.537 0.372 0.270 0.211 0.090 0.556 0.582
Ours 0.071 0.033 0.031 0.015 0.558 0.587 0.110 0.050 0.025 0.009 0.641 0.729

4.4 Analysis and Discussion
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Figure 4: Changes on the total number of point-
ers and per-frame runtime with memory fusion.

Comparison on Long Sequences. We com-
pare our model with CUT3R [63] on long
sequences to show the advantage of our ex-
plicit spatial pointer memory to effectively
store more information from past frames. We
resampled the testing sequences from 7-scenes
at the interval of 1 (each contains 500-1000
frames) and NRGBD at the interval of 2 (400-
900 frames). As shown in the Table 5, our
method outperforms CUT3R by a large margin,
showing the advantage of our model when han-
dling long sequences in practical applications.

Robustness to the Input Orders. We evalu-
ate the robustness of our model to the order of
camera registration. To be specific, for each scene in 7-scenes, we sample a sequence with a frame
interval of 20 (each sequence contains 25-50 frames). For each scene in NRGBD, we sample a se-
quence with a frame interval of 40 (each sequence contains 20-40 frames). Then we disrupt the input
sequence after the sampling to evaluate the reconstruction results. From Table 6, we can observe
that our method still achieves good reconstruction performance after the input sequence is shuffled.
This verifies the robustness of our explicit pointer memory to handle the discontinuity of the inputs.

Effect of the Memory Fusion Mechanism and Runtime Analysis. We design the memory fusion
mechanism to get a balance between efficiency and performance. Figure 4 shows the changes in
the number of pointers N in the memory (line graph) and per-frame runtime t (histogram) with
the increasing number of frames K when processing Scene WhiteRoom (from NRGBD dataset).
We can see that this memory fusion mechanism can control the total number of pointers and per-
frame runtime within a reasonable range. We also report the 3D reconstruction results without the
memory fusion mechanism on the 7-scenes and NRGBD datasets in Table 7. Although this fusion
mechanism may result in a slight decrease in some metrics, we believe that the sacrifice made for
efficiency improvement is worthwhile.

Effect of the 3D Hierarchical Position Embedding. To demonstrate the effectiveness of our 3D
hierarchical position embedding, we conduct ablation studies for this module in Table 7. We re-
port the 3D reconstruction results without the 3D hierarchical position embedding (“w/o 3DHPE”),
which shows the effectiveness of the elaborate position embedding we proposed.

Comparison with SLAM Systems and More Discussions. Traditional SLAM systems and the re-
cent feed-forward 3D reconstruction methods (e.g., DUSt3R [64], CUT3R [63], and ours) are similar
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Table 6: Robustness to the input orders.

7-scenes NRGBD

Sample Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Ordered 0.032 0.016 0.024 0.008 0.665 0.758 0.064 0.031 0.029 0.011 0.801 0.949
Shuffled 0.033 0.014 0.019 0.010 0.669 0.764 0.063 0.027 0.029 0.009 0.800 0.953

Table 7: Effects of the 3D hierarchical position embedding and the memory fusion mechanism.

7-scenes NRGBD

Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Ours (w/o 3DHPE) 0.142 0.132 0.698 0.083 0.079 0.808

Ours (w/o Mem-Fusion) 0.118 0.148 0.721 0.079 0.074 0.824
Ours 0.124 0.139 0.725 0.079 0.073 0.824

in terms of output format (reconstruction results and predicted poses), but their core objectives are
different. The main objective of SLAM lies in accurately registering the camera poses from RGB-D
inputs (where the depth could be obtained from prediction models). Differently, feed-forward 3D
reconstruction methods aim to develop a unified model to predict 3D reconstructed points for each
frame in a shared coordinate system (and some recent methods simultaneously predict the camera
pose with an additional head). To better evaluate these two paradigms, we compare our method with
MASt3R-SLAM [38] on its own established benchmarks.

We conduct the dense geometry evaluation on 7-Scenes seq-01 and also report the RMSE of the
absolute trajectory error (ATE) in meters. We also compare these two methods in terms of peak
memory usage and per-frame runtime. As shown in Table 8, our method achieves better dense
geometry reconstruction results with lower memory consumption. However, there is still room for
further improvement in tracking accuracy (as discussed in Limitations) and runtime efficiency. We
hold the belief that these two paradigms are compatible and essentially beneficial to each other.
Visual SLAM systems could use a feed-forward 3D reconstruction model to produce reconstructed
points (just like MASt3R-SLAM [38]). Feed-forward 3D reconstruction methods can further employ
SLAM techniques such as bundle adjustment to obtain more accurate poses.

Table 8: Comparison with SLAM in mapping quality, tracking accuracy and efficiency.
Acc↓ Comp↓ ATE↓ Peak Memory Usage↓ Per-frame Runtime↓

MASt3R-SLAM [38] 0.068 0.045 0.066 7.18 GB 0.11 s
Ours 0.061 0.022 0.084 5.46 GB 0.20 s

5 Conclusion and Discussions

In this paper, we have presented an online streaming 3D reconstruction framework, Point3R, with
a spatial pointer memory. When processing streaming inputs, our method maintains a growing
spatial pointer memory in which each pointer is assigned a specific 3D position and aggregates
scene information nearby with a changing spatial feature. Equipped with a 3D hierarchical position
embedding and a simple yet effective memory fusion mechanism, our method imposes minimal
constraints on the input, handling both static and dynamic scenes as well as ordered or unordered
image collections. With a low training cost, our method achieves competitive or state-of-the-art
performance on various 3D/4D tasks, which verifies the effectiveness of our method.

Limitations. As the explored area expands, the positions where pointers are stored also grow pro-
gressively, which may introduce additional interference to camera pose estimation in subsequent
frames. One of our future works is improving the pointer-image interaction to mitigate this issue.

Broader Impacts. Our method facilitates scalable and efficient dense streaming 3D scene recon-
struction, benefiting a wide range of applications. The explicit and interpretable design of our pointer
memory makes our method more transparent and adaptable to different real-world scenarios.
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[43] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense predic-
tion. In ICCV, pages 12179–12188, 2021. 4, 5, 6

[44] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut,
and David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life
3d category reconstruction. In ICCV, pages 10901–10911, 2021. 6, 17

[45] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista,
Nathan Paczan, Russ Webb, and Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In ICCV, 2021. 6, 17

[46] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative
to sift or surf. In ICCV, pages 2564–2571. Ieee, 2011. 3

[47] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-
glue: Learning feature matching with graph neural networks. In CVPR, pages 4938–4947,
2020. 3

[48] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
CVPR, 2016. 1, 3

[49] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixel-
wise view selection for unstructured multi-view stereo. In ECCV, 2016. 1, 3

[50] Yan Shi, Jun-Xiong Cai, Yoli Shavit, Tai-Jiang Mu, Wensen Feng, and Kai Zhang. Clustergnn:
Cluster-based coarse-to-fine graph neural network for efficient feature matching. In CVPR,
pages 12517–12526, 2022. 3

[51] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and An-
drew Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d im-
ages. In CVPR, pages 2930–2937, 2013. 7

[52] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from rgbd images. In ECCV, pages 746–760. Springer, 2012. 7

[53] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A
benchmark for the evaluation of rgb-d slam systems. In IROS, pages 573–580. IEEE, 2012. 8

13



[54] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 5

[55] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for
autonomous driving: Waymo open dataset. In CVPR, pages 2446–2454, 2020. 6, 17

[56] Chris Sweeney, Torsten Sattler, Tobias Hollerer, Matthew Turk, and Marc Pollefeys. Optimiz-
ing the viewing graph for structure-from-motion. In ICCV, pages 801–809, 2015. 1, 3

[57] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle adjustment network. arXiv preprint
arXiv:1806.04807, 2018. 3

[58] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages 298–
372. Springer, 1999. 3

[59] Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. arXiv preprint
arXiv:2408.16061, 2024. 1, 2, 3, 4, 7, 8, 9

[60] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and
David Novotny. Vggt: Visual geometry grounded transformer, 2025. 1, 2, 3

[61] Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual
geometry grounded deep structure from motion. In CVPR, pages 21686–21697, 2024. 3

[62] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 3

[63] Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A. Efros, and Angjoo Kanazawa.
Continuous 3d perception model with persistent state, 2025. 1, 2, 3, 4, 6, 7, 8, 9, 16, 18

[64] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In CVPR, pages 20697–20709, 2024. 1, 3, 4, 6, 7, 8, 9

[65] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, and Jie Zhou. Nerfingmvs:
Guided optimization of neural radiance fields for indoor multi-view stereo. In ICCV, pages
5610–5619, October 2021. 3

[66] Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaib-
hav Arora, Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco:
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A More Method Details

A.1 Memory Fusion Mechanism

We use a changing threshold δ to determine whether a new pointer and its nearest neighbor are
sufficiently close. At time t, we have:

δ =

√
(
maxP x

t−1 −minP x
t−1

lx
)2 + (

maxP y
t−1 −minP y

t−1

ly
)2 + (

maxP z
t−1 −minP z

t−1

lz
)2,

(19)
where P x

t−1, P
y
t−1, P

z
t−1 are the set of X, Y, Z components of the coordinates of all memory pointers

from Mt−1, lx, ly, lz are constants we use to control the distribution of memory pointers. In practical
implementation, we set lx, ly, lz to 20.

A.2 3D Hierarchical Position Embedding

For n, m-th query and key qn,km ∈ R1×dhead , RoPE converts them to complex vector q̄n, k̄m ∈
R1×(dhead/2) by considering (2t)-th dim as real part and (2t + 1)-th dim as imaginary part. We
follow this so θt in Eq. 14 in the main text is

θt = b−t/(dhead/6),where t ∈ {0, 1, ..., dhead/6}, b ∈ {10, 100, 1000, 10000}. (20)

We use different frequency bases b to accommodate spatial inputs of varying scales, and thus derive
four (h in Eq. 15 in the main text) different rotation matrices Ri (i = 0, 1, 2, 3). Then we can obtain
the embedded query and key, and the corresponding attention matrix as follows:

q̄′ =
1

4

4∑
i=1

(q̄ ◦Ri), k̄
′ =

1

4

4∑
i=1

(k̄ ◦Ri), A
′ = Re[q̄′k̄′∗]. (21)

The rotation matrix (with our 3D hierarchical position embedding) A′ implies relative position in
rotation form, and thus boosts the performance.

A.3 Pose Retrieval Mechanism

For each input sequence, we introduce a learnable token that is initialized within the model and
serves as the pose token of the first frame. This token acts as the latent representation of the camera
pose at the beginning of the sequence and provides a reference for subsequent frames. In addition
to this initialization, we define a compact set of learnable tokens that function as a lightweight pose
memory module [63]. This memory is specifically designed for pose retrieval, enabling the model
to accumulate and reuse pose-related information across frames in a sequence without incurring
excessive computational cost.

After processing each frame, the pose token that has interacted with the current image features is
used to update this memory set, thereby maintaining a condensed yet informative representation of
previously observed poses. When the next frame arrives, its corresponding pose token is initial-
ized not randomly, but by retrieving an initial value from this pose memory. This retrieval process
leverages the image tokens of the current frame to query the memory and select the most relevant
pose context. In this way, the proposed memory mechanism allows the model to efficiently capture
temporal dependencies between frames while avoiding redundancy and instability.

In the forward pass of Headglobal, we first generate the pose-modulated tokens using an additional
modulation function in CUT3R [63], and then feed them to the DPT architecture to generate the
output X̂global

t . The modulation function uses two self-attention blocks and modulates the input
tokens within the Layer Normalization layers using the pose token.

B More Training Details

Table 9 provides detailed information about the datasets used to train our model. To ensure both
diversity and robustness, we adopt a multi-stage training strategy that progressively enhances the
model’s generalization capability across a wide range of real-world and synthetic environments.
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Dataset Scene Type Dynamic Real Metric

ARKitScenes [5] Indoor Static Real Yes
BlendedMVS [73] Mixed Static Synthetic No
CO3Dv2 [44] Object-Centric Static Real No
HyperSim [45] Indoor Static Synthetic Yes
MegaDepth [30] Outdoor Static Real No
OmniObject3D [69] Object-Centric Static Synthetic Yes
ScanNet [12] Indoor Static Real Yes
ScanNet++ [74] Indoor Static Real Yes
WildRGBD [70] Object-Centric Static Real Yes
MVS-Synth [24] Outdoor Dynamic Synthetic Yes
PointOdyssey [79] Mixed Dynamic Synthetic Yes
Spring [35] Mixed Dynamic Synthetic Yes
VirtualKITTI2 [7] Outdoor Dynamic Synthetic Yes
Waymo [55] Outdoor Dynamic Real Yes

Table 9: Training Datasets.

In the first stage, we train our model on a collection of large-scale datasets, including ARK-
itScenes, BlendedMVS, CO3Dv2, HyperSim, MegaDepth, ScanNet, ScanNet++, WildRGBD, Vir-
tualKITTI2, and Waymo. Such diversity allows the model to learn robust geometric priors and
generalizable visual representations that are independent of specific dataset characteristics.

In the second and third stage, we introduce additional datasets and increase the input resolution.
This progressive training paradigm enables the model to gradually adapt from coarse-level scene
reasoning to high-resolution, detail-oriented prediction, effectively improving its performance in
both accuracy and stability.

To further stabilize training in the early phase, we disable the memory fusion mechanism during the
first stage. This prevents unstable memory updates that may arise when both pose and feature repre-
sentations are still under training. Once the model achieves stable convergence, the memory fusion
mechanism is introduced to facilitate temporal consistency learning across frames and improve the
model’s efficiency.

Moreover, we employ a dynamic dataset sampling strategy, where the sampling ratio of each dataset
is adaptively adjusted throughout training. This adaptive reweighting ensures that the model receives
balanced supervision from different datasets, mitigates potential domain bias, and leads to improved
generalization across diverse scene distributions.

C More Experiments

Robustness to Poor Initialization Frames. The use of the initial frame as the reference leading
to possible sensitivity to poor initialization frames is a common issue faced by the “-3R” series
of work. We therefore evaluate the robustness of our method on such scenarios. We select Scene
Kitchen in the NRGBD dataset and obtain 37 input images by sampling at the interval of 40 frames.
To simulate a poor initialization, we set the 23rd sample (corresponding to frame 920 in the original
dataset, which mainly contains large areas of the low-texture wall and floor with no other objects) as
the first frame and randomly shuffled the order of the remaining frames. The comparison of results
between our method and CUT3R under these two input settings is shown in Table 10.

We observe that our method is more robust to the effect of the initialization. Although the per-
formance slightly degrades when the initial frame has significantly degraded content, the drop is
acceptable considering the difficulty of such a scenario. We think this is because our explicit pointer
memory is aligned with 3D structures of the current scene, which can minimize the impact of ini-
tialization as much as possible.
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Table 10: Robustness to poor initialization frames.

Normal Initialization Poor Initialization

Method Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

CUT3R [63] 0.166 0.040 0.081 0.016 0.980 0.976 0.290 0.154 0.156 0.051 0.733 0.942
Ours 0.096 0.037 0.058 0.014 0.977 0.977 0.120 0.070 0.068 0.019 0.853 0.972

D More Visualizations

We show qualitative results on sparse inputs in Figure 3 in the main text. In this section, we show
more qualitative results on dense inputs from static (Figure 5) and dynamic (Figure 6) scenes.

Figure 5: Qualitative results on dense inputs from static scenes.

Figure 6: Qualitative results on dense inputs from dynamic scenes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim a streaming dense 3d reconstruction framework with a explicit
spatial pointer memory. These claims have been justified by the experimental results in
Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in the Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include details about our experiments in Section 3. We also include code
with instructions to reproduce our results on public datasets in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and instructions to reproduce our results on public datasets are provided
in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all details in Section 3, in Section 4 ,and in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: It is not a conventional procedure to report error bars in this field. However,
the results do not fluctuate much through differen runs from our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: All details have been provided in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics because authors have
read and followed it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impact is discussed in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Only existing datasets and models have been used in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Authors of used code libraries, models and data have been cited and version
details have been provided in our code package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our code contains instructions how to run experiments and text comments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Crowdsourcing has not been used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Crowdsourcing has not been used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

24

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Authors did not use LLMs for core method development or any components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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