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Abstract

Interpreting the internal mechanisms of large language models (LLMs) is crucial
for improving their trustworthiness and utility. Prior work has primarily focused
on mapping individual neurons to discrete semantic concepts. However, such
mappings struggle to handle the inherent polysemanticity in LLMs, where in-
dividual neurons encode multiple, distinct concepts. Through a comprehensive
analysis of both encoder and decoder-based LLMs across diverse datasets, we
observe that even highly salient neurons, identified via various attribution tech-
niques for specific semantic concepts, consistently exhibit polysemantic behavior.
Importantly, activation magnitudes for fine-grained concepts follow distinct, often
Gaussian-like distributions with minimal overlap. This observation motivates a
shift from neuron attribution to range-based interpretation. We hypothesize that
interpreting and manipulating neuron activation ranges would enable more precise
interpretability and targeted interventions in LLMs. To validate our hypothesis,
we introduce NeuronlLens, a novel range-based interpretation and manipulation
framework that provides a finer view of neuron activation distributions to localize
concept attribution within a neuron. Extensive empirical evaluations demonstrate
that NeuronLens significantly reduces unintended interference, maintaining precise
manipulation of targeted concepts, outperforming neuron attribution.

1 Introduction

Large language models (LLMs) demonstrate remarkable performance across natural language un-
derstanding, generation, and transformation tasks [Brown et al.| 2020, [Bommasani et al., [2022|
Touvron et al., 2023} |Raffel et al., 2019]]. However, the inner workings of LLMs remain largely
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opaque [Burkart and Huber, 2021]], as their representations are distributed across billions of parame-
ters. This lack of interpretability raises critical concerns about reliability, fairness, and trustworthiness,
particularly in high-stakes domains such as healthcare, law, and education. To this end, neuron-level
interpretability can address these concerns by enabling researchers to uncover how individual neurons
encode semantic concepts and contribute to model outputs. With this understanding, researchers can
diagnose safety risks [Wei et al., 2024} |[He et al.| |2024], refine model outputs [Meng et al.| 2023
Rizwan et al.| |2024], optimize efficiency through pruning [Frankle and Carbin, [2019, Haider and Taj}
2021]], and steer model’s representations toward desired objectives [Subramani et al} 2022} [Li et al.|
2023} [Rodriguez et al.| 2024]).

Recent research efforts have made significant progress in neuron-level interpretation by identifying
salient neurons that influence model behavior [Dalvi et al., |2019a, |Antverg and Belinkov}, 2022}
Conmy et al., [2023| Marks et al.| [2024]. Approaches such as maximal activation analysis [Foote
et al., 2023| |[Frankle and Carbin, [2019]], Probe-based methods that employ auxiliary classifiers to
distinguish between concepts [Dalvi et al., 2019alb]], and the probeless approach bypasses the need
for classifiers by directly analyzing neurons [Antverg and Belinkov} 2022]. Other techniques include
circuit discovery, attributes concepts to groups of interacting neurons [Olah et al.} 2020, Conmy et al.,
2023|], and causal analysis, identify the internal components role in model behavior [[Vig et al.;[2020].
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Figure 1: NeuronLens leverages distinct, Gaussian-like acti-
vation patterns to enable fine-grained concept attribution.

Despite being traditionally viewed as a challenge, could polysemanticity instead provide a unique
lens for advancing interpretability and model control? If individual neurons encode multiple concepts,
might their activation spectrum reveal distinct and identifiable patterns for each concept? Could these
patterns enable precise interventions that adjust one concept while minimizing interference with
others, overcoming the limitations of coarse, monolithic neuron-to-concept mappings?

This work seeks to address these questions by analyzing the activation patterns of neurons in both
encoder-based and decoder-based LLMs. Through statistical and qualitative analysis, we find that
neuronal activations for concepts follow Gaussian-like distributions, with distinct patterns for different
concepts. Our key insight is that the unit of interpretability lies at a level more fine-grained than the
neuron itself. Within a neuron’s activation spectrum, activation ranges corresponding to specific
concepts can be used as a finer unit of interpretability. This nuanced perspective enables a more
precise approach to neuron interpretation and manipulation, addressing the limitations of traditional,
discrete neuron-to-concept mappings.

Building upon these insights, we introduce NeuronLens visualised in Figure|l| a range-based frame-
work for neuron interpretation and manipulation. NeuronLens identifies and maps specific activation
ranges within a neuron’s distribution to individual concepts, rather than attributing entire neurons to
single concepts. For each concept, NeuronLens calculates a range that covers its activation spectrum,
capturing the concept-specific activations while excluding unrelated concepts. Through experiments
on encoder-based and decoder-based LLMs across several text classification datasets, we show that
NeuronLens significantly reduces unintended interference by up to 25 percentage points in auxil-
iary concepts and up to 7x in LLM, while maintaining precise manipulation of targeted concepts,
outperforming existing methods.

Our key contributions are: (1) To the best of our knowledge, this is the first work that performs a
comprehensive study unfolding polysemantic neurons using activation spectrums. (2) We show that



Table 1: Performance drops relative to Baseline configuration (i.e., unaltered model’s performance)
for three techniques: Probeless, Probe, and Max. All values show the difference from Base values.
Results are for Emotions dataset on the GPT-2 model using 30% salient neurons of each method.
Metrics are detailed in Section[2. 1]

Probeless | Probe | Max

Ace Conf  CAcc CConf | Acc Conf  CAcc CConf | Ace Conf  CAcc  CConf
-0.524 -0.510 -0.086 -0.086 ‘ -0.052 -0.036 -0.018 -0.049 ‘ -0.735 -0.739 -0.103 -0.103

neuronal activations in LLMs form distinct concept level Gaussian-like distributions, with salient
neurons exhibiting limited overlap in their activation patterns across concepts. (3) We empirically
demonstrate that activation ranges within a neuron’s activation spectrum offer a more precise unit of
interpretability, offering a refined framework for neuron-level analysis. (4) We propose NeuronLens,
an activation range-based framework for interpreting and manipulating neuronal activations, which
enables fine-grained concept attribution and reduces unintended interference compared to neuron
level intervention.

2 Neuron Interpretation Analysis

This section provides an overview of the neuron analysis, methods for extracting salient neurons, and
causally validating their saliency.

2.1 Preliminaries

Neuron. We refer to the output of an activation as a neuron. In a transformer model, we consider
neurons of hidden state vectors of different transformer layers. Formally, given a hidden state vector
h! € R? of size d produced by layer /, hé denotes its j-th neuron, i.e., the j-th component of h'.

Concept. A concept ¢ € C'is a high-level semantic category that groups each input instance (or
components of every instance), where C' is the set of all concepts. For example, in a language task,
a sentence can be categorized into 4 types: declarative, interrogative, imperative, and exclamatory,
where each type is a concept. Words of a sentence can also have concepts like nouns, verbs, adjectives,
adverbs, etc. In this study, we focus on the situation where all input samples are labelled with concepts.

Saliency Ranking. A saliency ranking orders the importance of neurons based on some saliency
metric. For a hidden state vector h! € R?, s 7.c denotes the value of the saliency metric for the j-th
neuron with respect to a concept ¢. The saliency ranking (r.(1),7.(2), - ,7r.(d)) is a permutation
of the indices of neurons (1,2, - - ,d), where 7.(j) < 7(7) if s; > s; .. The saliency metric is
usually predetermined, e.g., the absolute value of each neuron.

Concept Learning. Given a hidden state vector h' as input, the associated concept can be the output
of an appended neural network (e.g., several fully connected layers). The parameters of this appended
neural network can be trained using training samples labelled with concepts.

Metrics. To establish the causal validity of the attribution, we employ two quantitative metrics:
prediction accuracy and the model’s predictive probability as a proxy for confidence score. First,
baseline measurements of both accuracy and confidence for all concepts C' without any intervention
(unmodified model) are established. Post-intervention measurements are recorded for the target
concept ¢ and auxiliary concepts(other concepts in the dataset) ¢’. The effectiveness and precision of
attribution are assessed through two key metrics: (1) the magnitude of performance degradation for
concept ¢, and (2) the extent of unintended impact on auxiliary concepts ¢’. Throughout our analysis,
we denote the accuracy and confidence metrics for concept ¢ as Ace and Conf respectively, while
corresponding measurements for auxiliary concepts ¢’ are represented as CAcc and CConf. For
evaluating the effect of the interventions on LLMs latent capabilities, we utilize perplexity (PPL)
and MMLU [Hendrycks et al., |2021]] zero-shot accuracy.

2.2 Concept Erasure

To assess the performance of a neuronal attribution, concept erasure acts as a critical diagnostic
intervention to determine the causal effect of identified neurons for a given concept [Dalvi et al.,



2019b, Dai et al., 2022} |Dalvi et al., 2019c), Morcos et al., 2018|]. The core idea is that if a neuron
is salient to a concept, eliminating it should result in the degradation of that concept’s performance
while causing minimal disruption to other concepts. This can be formalized as follows: given a
concept-learning model M that maps any input instance x (or part of an instance) to a concept
M(x) = c¢ ¢ € C, an ideal intervened model M}, after erasing a target concept ¢ € C' should
satisfy the following property:

ideal = M(z) if M(x)# c.

A popular approach of concept erasure in neuronal analysis literature [Dai et al.| |2022| |Antverg and
Belinkovl, [2022]] is zeroing out specific neurons that are “important” to the target concept. Other
studies have argued that zeroing out neurons is an overly aggressive intervention that can lead to
catastrophic degradation in model performance. In Appendix Section [D| we provide an ablation
comparing different activation interventions for concept erasure.

2.3 Salient Neurons Extraction

Problem setup and preparation: We record activations for training samples of different concepts to
perform neuron interpretation. Specifically, if we want to interpret neurons of h! (hidden state vector
at layer ), we traverse the training dataset and store the values of h' and the associated concepts
of all samples into a set H'. The set H' is further partitioned into H' for all concepts ¢ € C. Such
preparation is common in the relevant literature [Dalvi et al.| | 2019clb| |Antverg and Belinkov, 2022].

Max activations. Frankle and Carbin|[[2019]] extract high activations as a saliency ranking metric
relying upon the rationale that maximally activating neurons with respect to a concept c are important
for that concept. Probe analysis. Dalvi et al|[2019b] train a linear classifier on the hidden represen-
tations H' to predict each concept. The learned model weights are then utilized as a saliency ranking.
Probeless. |Antverg and Belinkov|[[2022] examine individual neurons, without the need for auxiliary
classifiers, using the element-wise difference between mean vectors. Details of these approaches are
provided in Appendix [G]

To assess the effectiveness of the attribution methods, we perform neuron masking on the salient
neurons identified by each method in a concept erasure task. Table [T provides the results for this
experiment. We observe that irrespective of the method used to obtain saliency ranking, a single
concept eraser using salient neurons causes deterioration in performance across several concepts.
Max activation causes the highest degree of deterioration in the targeted concept while maintaining
a comparable deterioration in auxiliary concepts. Based on this finding, we adopt max activation
ranking for saliency ranking. Moreover, we hypothesize that one reason for such deterioration in
overall performance is due to the polysemantic nature of neurons.

3 Polysemanticity

The polysemanticity of neuronal units, including
salient neurons that encode information about
multiple concepts, poses a challenge to neural
network interpretation and manipulation. In this
section, we discuss the degree of polysemantic-
ity in salient neurons in detail.
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Polysemanticity often arises when models must
represent more features than their capacity al-
lows or due to specific training paradigms. Lim-
ited representational space forces neurons to en-
code multiple unrelated features to maintain per- ’ ’
formance [Anthropicl 2023||. Training methods Number of Classes
like subword tokenization, designed to reduce
vocabulary size and model complexity, lead to
context-dependent token splits, causing neural
activations to encode multiple meanings [[Sennrich et al., [2016| [Elhage et al., 2022| |[Meng et al.,
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Figure 2: Overlap of top 30% salient neurons
across classes.
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Figure 3: Neuronal Activation Patterns of six Figure 4: Comparison of neurons 480 and 675
neurons on AG-News dataset class 1. Neurons showing class-specific activation patterns and
418 and 447 are the highest activating neurons, fitted Gaussian curves. Both neurons were
neurons 132 and 387 are middle-ranked neu- salient across all classes in top 5% on AG-News.

rons, and neurons 721 and 365 are the lowest
activating neurons.

[2022]. Additionally, Lecomte et al.|[2024] show that even with sufficient capacity, certain weight
initializations can induce polysemanticity by placing neurons near multiple conceptual regions.

Polysemanticity in salient neurons. Given that salient neurons have a strong causal association
with the concept of interest, their tendency to be mono-semantic should be is high, but we find that
there is a high degree of polysemanticity in salient neurons. We investigate this by extracting 30%
salient neurons (i.e.: Max neurons) for different datasets on the GPT-2 model. The results show that
there is a considerable overlap of salient neurons between concepts (classes) as shown in Figure[2] In
the case of a two-class dataset IMDB, the overlap of salient neurons, selected by max, is more than
60%. This shows a high degree of polysemanticity. Consequently, we extrapolate that salient neural
representations may exist in a polysemantic configuration, wherein a subset of the salient neurons
encode information through intricate activation patterns.

The monolithic attribution paradigm potentially oversimplifies the complex, distributed nature of
neuronal activation as can be seen in polysemanticity [Lecomte et al., 2024, Marshall and Kirchner,
where a single neuron learns multiple seemingly unrelated concepts and elucidates them at
different activation values.

4 Neuronal Activation Patterns

In this section, we analyze the properties of neuronal activations of the salient neurons (including
polysemantic) extracted via maximal activation. Similar to [Gurnee et al.,[2024]], our findings indicate
that neuronal activations form a Gaussian-like distribution. We further find that salient neurons
have a distinct Gaussian distribution of activations for different concepts with limited overlap
with other concept activations.

Qualitative Evaluation. To visually demonstrate that neuron activations for a concept c follows
a Gaussian-like distribution, we extract model representations as described in Section [2.1] Using
saliency ranking 7. for a single concept class, we examine neurons from different ranking positions
in the GPT-2 model on the AG-News dataset: two top-ranked neurons (r, < 2), two middle-ranked
neurons (7. ~ d/2), and two bottom-ranked neurons (r. > d — 1). In FiguresandEI, we use Kernel
Density Estimation (KDE) to visualize these distributions. Figure [3]reveals that while the activations
are Gaussian-like for different concepts, salient neurons demonstrate distinct activation patterns with
limited overlap, middle-ranked neurons show a higher degree of overlap than the top ones, whereas
non-salient neurons (bottom two) exhibit the highest overlap in their activation distributions.
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Figure 5: Box plot of neural activation of 11 polysemantic neurons (i.e: neurons in the salient group
for all classes, percentage selected: 5% top salient) for 4 randomly selected classes out of 14 classes
of DBPedia-14 dataset.

Additionally in Figure ] we identify and visualize two distinct types of polysemantic neurons
that appear in the salient sets across all classes, when 5% salient set was selected, in the dataset.
The first type, exemplified by neuron 480, maintains partially separable activation patterns despite
being polysemantic, suggesting some degree of class-specific behavior. In contrast, the second type,
represented by neuron 675, exhibits completely overlapping activation patterns across all classes,
making it hard to disentangle. To further investigate this phenomenon, Figure [5| presents a broader
analysis of neurons from the polysemantic subset, identified using a 5% saliency threshold(top 5%
salient neurons selected for a concept). By examining these neurons’ behavior across four randomly
selected classes (out of 14 total classes), we observe that most polysemantic neurons exhibit a high
degree of separability, for some classes, while they respond to multiple classes, they tend to operate
in partially separable activation ranges, supporting the possibility of meaningful disentanglement.

Quantitative Evaluation. To quantify the effect of Gaussian-like distribution of neurons for ¢ € C,
we perform statistical analysis of activations. We computed the skewness, kurtosis [Joanes and
Gill, [1998]] and analyzed the normality of neuronal activations using Kolmogorov-Smirnov (KS)
test [Massey Jrj [I951]]. Table 2] presents the results for distributional properties across all neurons.
The average skewness is close to 0 across all datasets, indicating strong symmetry (ideal normal
distribution: 0), and the average kurtosis is close to 3, nearly identical to the expected value for a
normal distribution (3.0).

To quantitatively assess normality, while ac- )

counting for practical significance, we employ Table 2: Skewness, kurtosis, and Kolmogorov-
the KS test with an effect size threshold of 10%. Smirnov test results across various datasets.GPT-2
This approach tests whether the distribution re- model

mains within a reasonable bound of normality, Dataset | Skewness  Kurtosis  KS-Test
rather than testing for perfect normality, which stanfordnlp/imdb 0.0014 3.6639  1.0000
is overly strict for real-world data. For each neu- ~ fancyzhx/dbpedia_I4 | -0.0007  3.9360 09782

li h . . dair-ai/emotion 0.0015 3.0198 0.9446
ron, We norl:na 1ze the activations to zero mea.n fancyzhx/ag_news -0.0013 3.2060 0.9918
and unit variance, then compute the KS statistic stanfordnlp/sst2 -0.0083 3.2038 1.0000

against a standard normal distribution. The KS
statistic represents the maximum absolute difference between the empirical and theoretical camulative
distribution functions. Using a threshold of 0.1 (allowing a maximum 10% deviation from normal),
we find that close to 100% of the neurons exhibit practically normal distributions. The combination of
near-ideal skewness and kurtosis values, visual confirmation through KDEs, and our effect size-based
KS tests provide strong evidence that the activations follow approximately normal distributions.

We report quantitative statistics for all layers in Appendix Section[[.T] which show that as layer depth
increases, kurtosis steadily converges toward the Gaussian benchmark of 3.0, skewness remains
near zero, and the 10% practical-normality score stays close to 1 across the network. A qualitative,
layer-wise examination in Appendix Section [[.2)further reveals that while all layers exhibit class level
Gaussian-like activations. Early layers show substantial overlap between classes, this is consistent
with the understanding that earlier layers focus on low-level features, not high level features like class.



Beginning as early as layers 5-6, distinct class-specific Gaussians emerge and become progressively
more separable in deeper layers, indicating a transition toward higher-level semantic representations.

5 Activation Ranges-guided Concept Erasure

Given that neuronal activations exhibit approximately Gaussian-like distributions with separable
means, we can interpret and intervene on neurons more precisely than by ablating entire units.
Specifically, NeuronlLens ablates salient neurons identified through saliency ranking only when
their activation falls within a selected range. The key idea is to identify a range that is strongly
associated with the target concept c intended for erasure. This range-based approach enables fine-
grained ablation, thereby reducing unintended interference with non-target concepts. To validate our
approach, we evaluate the causal efficacy of our method relative to neuron ablation using concept
erasure experiments and assess the model’s latent capabilities following this intervention.

To calculate the aforementioned range, the framework utilises the means and standard deviations
of the neuron activations. Specifically, first the empirical average ¢ € R and standard deviation
o > 0 of the values of the salient neuron for all samples associated with the target concept ¢ € C' are
calculated. After that, range is assigned as [u— 7 X o, p+7 X o], where 7 > 0 is a hyperparameter to
make a tradeoff between erasing the target concept c (using larger 7) and smaller impact on auxiliary
concepts and general LLM capabilities (using smaller 7). For this work, 7 is set to 7 = 2.5, assuming
a fully Gaussian distribution. This threshold corresponds to a coverage of approximately 98.76%
of the distribution’s values, providing a slightly conservative bound for range-based interventions.
Ablations for varying the hyperparameter 7 are presented in Appendix Section [Hl the results indicate
that targeted concept deteriorates up to 2.4-2.7 7 then plateaus, while auxiliary concepts begin to
degrade further.

B ¢(x) if hi(z) € CR(l, j,¢) CR(l, j,¢c) = [p—2.50, u+2.50],

i(@) = {hé (x) otherwise 1 z 1
Z hj, o= $ W Z (hé'—ﬂ)Q

w=
|Htl:| hl i i ]
leH hlcH]

c

where CR represents Correlated Range and ¢() is the activation intervention function, which returns
zero for the results presented in the main paper.

Notice that H! was defined in problem setup and preparation of section which denotes the set of
hidden state vector h(z..) at layer [ for all training samples . associated with concept c. Here | - |
denotes the cardinality of a set.

5.1 Experimental Setup

Models. This study employs both encoder and decoder-based models, including fine-tuned BERT
[Devlin et al., 2019, DistilBERT [Sanh et al., [2020], GPT-2 [Radford et al.,|2019], and pretrained
Llama-3.2-3B [Grattafiori, 2024]]. We incorporate our methodology at the penultimate layer; ablation
for layer selection is provided in the Appendix Section [} The training details for the models are
provided in Appendix Section[E]

For trained models (BERT, DistilBERT, and GPT-2), a higher proportion of neurons (up to 50%) can
be ablated with a relatively minor impact on primary task performance and minimal interference with
auxiliary concepts. This suggests substantial neuronal redundancy, wherein multiple neurons appear
to encode overlapping features.

Datasets. We consider various classification based tasks; sentiment analysis (IMDB, [Maas et al.,
2011]), (SST2, [Socher et al.,[2013]]), emotion detection (Dair-Ai/Emotions |Saravia et al. [2018]]),
news classification (AG-News [Zhang et al., 2015]]) and article content categorization (DBPedia-14
[Zhang et al.;,2015]).



Table 3: Evaluation of selected models on IMDB, SST2, AG-News, and DBPedia-14 datasets using
activation range and neuron masking techniques. Performance metrics are calculated using class level
10% trimmed means at the class level. Metrics are detailed in Section 2.1l For GPT-2 and Bert 50%
and for Llama-3.2-3B 30% neurons selected.

Model | Dataset ‘ Base Values ‘ Neuron Masking ‘ Activation Range Masking

\ | Acc Conf CAcc CConf | Acc Conf  CAcc  CConf |  Acc Conf CAcc  CConf

IMDB 0928 0904  0.928 0.904 | -0.190  -0.353 0.059 -0.078 | -0.184  -0.360 0.058 0.030
SST2 0910 0903 0910 0.903 | -0.051 -0.313 0.031 -0.046 | -0.060  -0.330 0.031 0.043
BERT AG-NEWS 0948 0929  0.948 0.929 | -0.271 -0.590 0.012 -0.074 | -0.261 -0.590 0.013 -0.009
Emotions 0894  0.834 0917 0.876 | -0.291 -0.633 0.013 -0.265 | -0.279  -0.635 0.014 -0.069
DBPedia-14 | 0.992  0.991 0.990 0989 | -0.028  -0.786 0.000 -0.017 | -0.015  -0.766 0.000 -0.000

IMDB 0952 0939 0952 0939 | -0.196  -0.188 0.033 0.045 | -0.195  -0.197 0.031 0.042
SST2 0966  0.958  0.966 0958 | -0.165  -0.190 0.025 0.032 | -0.159  -0.192 0.025 0.028
GPT-2 AG-NEWS 0945 0933 0945 0.933 | -0.871 -0.877  -0.155 -0.163 | -0.849  -0.862 -0.063 -0.223
Emotions 0905  0.892  0.930 0919 | -0.735 -0.738  -0.103 -0.103 | -0.737  -0.739 -0.044 -0.046
DBPedia-14 | 0.993  0.990  0.990 0988 | -0.810 -0.845 -0.154 -0.177 | -0.782  -0.825 -0.015 -0.031
IMDB 0952 0939  0.952 0939 | -0.196  -0.188 0.033 0.045 | -0.195  -0.197 0.031 0.042
SST2 1.000  0.559 1.000 0.559 | -0.760  -0.429  -0.394 -0.295 | -0.756  -0.427 -0.384 -0.291
Llama AG-NEWS 1.000  0.744 1.000 0.744 | -0934  -0.725  -0.660 -0.572 | -0.935  -0.725 -0.484 -0.454
Emotions 0815 0472  0.823 0477 | -0.795  -0.470  -0.696 -0.429 | -0.797  -0.469 -0.594 -0.404

DBPedia-14 1.000  0.533 1.000 0563 | -0.992  -0.528 -0.912 -0.445 | -0.986  -0.527 -0.663 -0.354

5.2 Results and Analysis

Table [3] presents results for the concept removal task across five benchmark datasets (Class-wise
detailed results are provided in Appendix Section[J), demonstrating the effectiveness of our range-
based masking approach compared to traditional neuron masking.

On binary classification tasks (IMDB, SST2), both masking approaches show moderate performance
drops in targeted concepts. This suggests higher redundancy for coarser binary concepts. Multi-class
classification tasks with fine-grained labels, such as AG-News, Emotions, and DBPedia-14, exhibit
more pronounced effects under intervention. Range-based masking results in significant degradation
of primary task performance while preserving auxiliary concept accuracy, this is particularly evident
in results for AG-News.

GPT-2, despite being fine-tuned but trained in an autoregressive manner, shows substantially higher
vulnerability with major drops in AG-NEWS (A, .. = —0.849) and DBPedia-14 (A,.. = —0.782).
This increased sensitivity may be attributed to its autoregressive training objective, which potentially
leads to more sequential and less redundant concept encodings. The Llama-3.2-3B model, evaluated
in a few-shot setting without task-specific training, experiences the most severe degradation across all
datasets (often exceeding —0.90), suggesting that pre-trained representations without task-specific
fine-tuning are more vulnerable to targeted neuron interventions.

Table[]in Appendix Section|C|presents the results showing the impact of concept erasure intervention
on latent LLM capabilities such as fluency and generalization. Neuron masking degrades performance,
increasing perplexity by (3.8-5.74) and lowering MMLU accuracy. In contrast, activation range
masking raises perplexity by (0.5-1.1) points only, while preserving or improving MMLU scores
indicates more precise and less disruptive removal.

Alternative activation interventions, beyond zeroing out, are explored in Appendix Section D]
including the dampening method [Suau et al.||2024] and mean replacement [Suau et al.,2021]]. While
these methods aim to manipulate without moving too far from the original representation, they exhibit
limitations when applied to neurons. Specifically, neuron dampening increases perplexity by 2.9-3.7
points and often degrades MMLU accuracy (up to -0.045), whereas range-based dampening confines
perplexity increases to 0.5-0.8 points and occasionally improves MMLU (up to +0.035). Similarly,
mean replacement leads to substantial degradation when applied to neurons (perplexity increases of
7.4-8.8), while range-restricted replacement reduces the impact to below 0.7 points.

However, all approaches suffer from rigid static suppression or substitution, which fail to account
for concept-specific activation dynamics. To address this issue, we introduce a novel adaptive
dampening technique. This method modulates suppression in proportion to each activation’s
deviation from its class-conditional mean, enabling data driven suppression. Adaptive dampening
achieves the strongest balance across all metrics: perplexity remains low (0.41-0.61), MMLU is
maintained or improved (up to +0.03), and collateral damage to auxiliary concepts is minimized (CAcc
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Figure 6: Accuracy comparisons between Neuronal Range manipulation (green) and complete neuron
manipulation (orange) methods on GP7-2 model.

drops consistently below -0.3, often under -0.15), outperforming dampening, mean replacement and
zeroing out approaches.

These results demonstrate that precise intervention in specific activation ranges, enables significantly
more targeted concept manipulation while preserving auxiliary concepts, highlighting how conceptual
information is encoded within specific activation patterns rather than isolated to individual neurons
and underscoring the importance of activation ranges in capturing neuron-concept relationships.

Percentage Masking Effect

As more neurons are masked, performance gains of range-based masking over the neuron masking
baseline become increasingly evident. Beyond a critical threshold of the number of masked neurons,
baseline performance degrades sharply, while our method remains stable up to masking of 100%
neurons. This arises from two factors: (1) models have a large number of polysemantic neurons
and higher masking rates increase the chance of ablating them, and (2) blocking/manipulating a
higher percentage of the model’s neurons creates a significant deviation from the original model’s
behavior. For low-activation neurons with respect to the concept of interest, discrete neuron masking
i.e. completely masking out a neuron, becomes unreliable, as shown in Figure [] with a steep
performance drop after masking 50% neurons. This underscores the need for finer-grained attribution;
our range-based method offers such precision, preserving model behaviour under extensive masking.

The relatively stable results on auxiliary concept when using range-based masking at high percentage
of neurons reduces the need to find an optimum threshold for the number of neurons to ablate which
is critical to neuron masking.

6 Related Work

While we have discussed closely related approaches in Section [2] here, we briefly review additional
relevant techniques. Circuit discovery identifies groups of neurons that jointly encode concepts,
providing a structured view of model behavior [Marks et al., 2024, Conmy et al., 2023} |Olah et al.,
2020]. However, extracting circuits is computationally intensive and lacks fine-grained neuron-level
attribution. Gradient-based methods attribute predictions to input features by tracking gradients
through the network, with integrated gradients [[Sundararajan et al., 2017, |Dai et al.l [2022] being
a widely used approach. However, they struggle with polysemanticity, as they do not disentangle
overlapping concepts within neurons. Causal analysis methods intervene on internal components to
assess their role in encoding concepts. Causal tracing measures the effect of corrupting activations on
model performance [Vig et al.| 2020, Meng et al., [2022]], while causal mediation analysis quantifies
information propagation through neurons [Vig et al.,[2020]]. Although effective, these techniques
require costly perturbation experiments. Beyond neuron-level analysis, representation-level methods
examine hidden states and their relationship to model outputs and concepts [Veldhoen et al., 2016,
Tenney et al., 2019} [Liu et al.l 2019]]. Sparse probing [[Gurnee et al.l [2023|] compresses hidden
representations into sparse, interpretable subspaces. While prior work has advanced interpretability,
most methods rely on discrete neuron-to-concept mappings, which fail to account for polyseman-
ticity [Sajjad et al., [2022]. Our work extends activation-based approaches by introducing activation
ranges as the unit of interpretability to enable more precise concept attribution and intervention.



7 Conclusion

In this work, we challenged traditional assumptions about neuron interpretability by reframing pol-
ysemanticity as a resource rather than a limitation in interpreting neurons. Through an in depth
analysis, we uncovered that neuronal activations for individual concepts exhibit distinct, Gaussian-like
distributions. This discovery allows for a more precise understanding of how neurons encode multiple
concepts, enabling us to move beyond coarse, monolithic neuron-to-concept mappings. Building upon
these insights, we proposed NeuronLens, a novel range-based framework for neuron interpretation
and manipulation. NeuronLens offers fine-grained control that reduces interference with unrelated
concepts by attributing specific activation ranges within neurons to individual concepts. Extensive
empirical evaluations demonstrated that NeuronLens outperforms neuronal attribution methods in
maintaining concept-specific precision while minimizing unintended side effects. Notably, while
targeted concept removal remains equally effective when comparing neuron vs range based interven-
tions, our approach achieves superior preservation of auxiliary concepts without compromising the
primary goal. An important direction for future work is exploring our range-based method as a metric
for quantifying polysemanticity in neural networks. This approach may also serve as a diagnostic tool
to evaluate the effectiveness of sparse autoencoders (SAEs) in disentangling concept representations
across individual neurons.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper claims that neuronal ranges are better units of interpretability and
manipulation than neurons. The paper provides extensive ablations across encoder and
decoder models to support this claim.

Guidelines:
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The answer NA means that the abstract and introduction do not include the claims
made in the paper.

The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitation are outlined in Section Bl

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.
The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: There are no theoretical proofs that require assumptions to be highlighted.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setup is provided in Section[5.1]and training details are provided
in Appendix Section [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Datasets used are open source and are referenced in[5.1] Extensive experiment
settings are provided in Appendix Section [E] The code will be open-sourced upon paper
acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup is provided in Section 5.1 and training details are provided
in Appendix Section [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments were run once due to the significant computational cost
associated with our setup (e.g., large model size, dataset scale, activations extraction, and
model inferences). We do not report error bars or confidence intervals. We provide extensive
experimentation across different settings, all of which support our claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute details are provided in Appendix Section [F
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The proposed NeuronLens framework enables precise control of model be-
haviour, benefiting research for model safety and reliability. While this improved understand-
ing could potentially be misused, the work’s theoretical nature and focus on interpretability
methods make immediate harmful applications are unlikely

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed NeuronLens framework enables precise control of model be-
haviour, benefiting research for model safety and reliability highlighted in Section|I]of the
main paper text. In Appendix Section[A]impact statement is provided.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new models or dataset. Neuronlens is a framework
designed to understand the inner workings of large language models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets and models used in the paper are referenced in Section[5.1]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: The paper provides a framework (NeuronLens) for understanding a large
language model’s internal workings. The methodology is defined in section [5]

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing is performed for this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There are no human study participants for this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLM was only used to help with editing texts.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Impact Statement

This work advances neural network interpretability by providing a fine-grained understanding of
concept encoding in language models. The proposed NeuronlLens framework enables precise control
of model behavior, benefiting research in model safety and reliability. While this improved under-
standing could potentially be misused, the work’s theoretical nature and focus on interpretability
methods makes immediate harmful applications unlikely.

B Limitations

While NeuronLens can disentangle polysemanticity to a degree using Gaussian Like Distribution,
it is unable to completely disentangle concepts encoded in the polysemantic neurons, because there
still is a significant overlap in the distributions of concepts in activations. Additionally, in this work,
we use T to be a fixed value of 2.5 to make the comparison of approaches fair, but 7 selection can be
optimized to be more sophisticated. We also get results primarily from the penultimate layer, and
not the intermediate or earlier layers, however, we do give ablation and rationale for this choice in
Appendix|l]

C General LLM Capabilities

We evaluate the general capabilities of large language models (LLMs) using the MMLU benchmark
[Hendrycks et all 2021]] and perplexity scores on Wikipedia texts [Foundation]. Table 4] presents the
comparative performance of neuron masking and activation range masking. Neuron masking leads to
notable increases in perplexity, exceeding 3 points in the best case, whereas range masking results in
a maximum increase of only 1.1. In terms of MMLU accuracy, neuron masking consistently reduces
performance across all settings, while range masking preserves or improves performance in most
cases, with degradation observed in only one instance.

Table 4: Evaluation of LLMs latent capabilities using Wikipedia for perplexity and zeroshot MMLU
for testing generalisation capabilities. Liama-3.2-3B model

Dataset | Base Values |  Neuron Masking | Activation Range Masking

| Perplexity ~MMLU | Perplexity MMLU | Perplexity MMLU
IMDB 7.007 0.530 10.990 0.515 7.550 0.530
SST2 7.007 0.530 11.688 0.510 8.150 0.537
AG-NEWS 7.007 0.530 12.757 0.510 8.022 0.533
Emotions 7.007 0.530 11.630 0.526 8.063 0.526
DBPedia-14 7.007 0.530 12.230 0.507 7.903 0.535

D Activation Intervention

In the main text, we primarily presented results using a “zeroing out” strategy for neuron manipula-
tion. This approach was chosen to compare neuron manipulation against range-based manipulation.
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However, zeroing out is considered a suboptimal strategy [Suau et al.|[2024]]. The primary concern
with standard zeroing-out approaches is that they distort the activation distribution significantly,
diverging from that of the original model. However, our range-based method selectively zeroes out
only a narrow slice of the activation spectrum, thereby mitigating the adverse effects associated with
hard erasure.

In this section, we explore alternative, more optimized strategies for concept removal. We also
introduce a novel range-based scaling strategy that has demonstrated superior results.

Below, we explore various activation intervention strategies, comparing traditional neuron-level
approaches with the nuanced range-based technique. Our comprehensive evaluation reveals that
range-based manipulations consistently outperform neuron interventions across multiple metrics,
with significantly less disruption to the model’s general capabilities.

Among all techniques examined, our novel adaptive dampening approach emerges as the most
effective, maintaining targeted concept suppression while minimizing collateral impact on auxiliary
concepts and preserving overall language modelling capabilities. This pattern holds true across
different intervention methods including zeroing out, dampening, and mean replacement strategies.

D.1 Dampening

In their work, Suau et al.|[2024]] propose using a dampening function rather than setting neuron
activations to zero outright. This approach, referred to as DAMP, corresponds to a specific choice
of the intervention function ¢(x) = ax, where 0 < « < 1. In this formulation, the activations
of selected neurons are scaled down by a factor « instead of being completely suppressed. Here,
x represents neuron activation. The rationale behind dampening is that a fixed intervention (like
zeroing out) can disrupt the LLM’s inference dynamics, especially when a large number of neurons
(k) are involved, thereby limiting its effectiveness. Dampening offers a less destructive intervention
by allowing contextual signals to continue passing through the network. This, in turn, permits
intervention on a larger set of expert neurons, potentially achieving stronger mitigation of the targeted
concept.

Table 5: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Dampening factor used is ¢ = 0.125. Acc represents
class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to average
accuracy and average class prediction probability across other classes, respectively. The Base Values
indicate the baseline model performance, while Neuron Masking and Activation Range Masking show
deviations from the baseline performance. PPL. A and MMLU A show changes in perplexity and
MMLU scores, respectively.

Class ‘ Base Values ‘ Neuron Masking (Deviations) ‘ Activation Range Masking (Deviations)

| Acc  Conf CAcc CConf| Acc Conf CAcc CConf PPLA MMLUA | Acc Conf CAcc CConf PPLA MMLUA
Class 0 1.000  0.576  1.000  0.563 | -0.919 -0.545 -0.281  -0.309 3.161 -0.020 | -0.924 -0.545 -0.276  -0.285 0.640 -0.010
Class 1 1.000 0526 1.000  0.567 | -0.988 -0.467 -0.246 -0.270 3.578 -0.015 | -0.805 -0.466 -0.193  -0.206 0.725 0.015
Class 2 1.000 0441 1.000 0575 | -0.864 -0.391 -0.461 -0.323 2.891 -0.030 | -0.869 -0.389 -0.346  -0.282 0.718 0.005
Class 3 1.000  0.461 1.000 0.573 | -0.974 -0.439 -0.411 -0.346 3.036 -0.025 | -0.970 -0.438 -0.282  -0.283 0.653 0.010
Class 4 1.000 0.839 1.000  0.541 | -0.382 -0.597 -0.367 -0.317 2.997 0.000 | -0.382  -0.597 -0.334  -0.284 0.691 0.020
Class 5 1.000  0.339  1.000  0.568 | -0.970 -0.326 -0.239  -0.246 3.503 0.010 | -0.970 -0.325 -0.197  -0.187 0.810 0.015
Class 6 1.000  0.810 1.000  0.545 | -0.233 -0.638 -0.194  -0.276 3.126 -0.010 | -0.241  -0.637 -0.174  -0.203 0.697 -0.010
Class 7 1.000  0.595 1.000  0.562 | -0.210 -0.382 -0.206  -0.226 3.037 0.000 | -0.179 -0.376  -0.123  -0.143 0.546 0.015
Class 8 1.000  0.417  1.000 0.574 | -0.310 -0416 -0335 -0.297 3.001 0.020 | -0.346 -0.416 -0.200  -0.187 0.624 0.015
Class 9 1.000  0.526 1.000  0.567 | -0.820 -0.465 -0.327 -0.264 3.369 -0.030 | -0.809 -0.463 -0.213  -0.189 0.596 0.000
Class 10 | 1.000 0505 1.000  0.569 | -0.691 -0.466 -0.389 -0.314 3732 0.000 | -0.696 -0.465 -0.267 -0.198 0.695 -0.015
Class 11 | 1.000 0.497 1.000  0.569 | -0.873 -0432 -0472 -0.289 3.070 -0.030 | -0.865 -0.427 -0.335  -0.205 0.594 -0.015
Class 12 | 1.000 0573 1.000  0.563 | -0.720 -0452 -0.295 -0.221 3410 -0.045 | -0.723  -0.451 -0.190  -0.163 0.595 0.035
Class 13 | 1.000 0567 1.000  0.564 | -0.951 -0.537 -0.226 -0.189 2.995 0.000 | -0.955 -0.536  -0.157  -0.150 0.672 0.005

Table[5]presents a comparative analysis of two intervention strategies, neuron masking and activation
range masking, when employing the Dampening technique with oo = 0.5. The evaluation spans 14
classes and utilizes the metrics: accuracy (Acc), confidence (Conf), class-wise accuracy (CAcc),
class-wise confidence (CConf), alterations in perplexity (PPL), and MMLU score.

A consistent trend emerges across the primary metrics (Acc, Conf, CAcc, and CConf), where
activation range masking demonstrates superior performance over neuron masking. Interventions
based on activation ranges lead to a notably smaller decline in the accuracy and confidence associated
with auxiliary concepts. For example, in Class 3, while neuron masking results in an accuracy drop of
-0.974 in the targeted class and auxiliary class accuracy decrease of -0.411, activation range masking,
despite a comparable accuracy reduction in the targeted class (-0.970), shows a less severe impact on
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auxiliary class accuracy (-0.283). This pattern of activation range masking better preserves auxiliary
class performance, is evident across all evaluated classes.

Examining the broader effects on language modeling capabilities reveals significant distinctions
between the two approaches. Neuron masking results in a considerable rise in perplexity (PPL),
with increases ranging from +2.891 to +3.732 across all the classes. Furthermore, it tends to cause
more pronounced negative shifts in MMLU scores, reaching as low as -0.045. Conversely, activation
range masking results in substantially smaller increments in perplexity, falling within the +0.546 to
+0.810 range, and frequently results in improved or minimally altered MMLU scores, with gains up
to +0.035.

D.2 Mean Replacement

Another approach of activation replacement discussed in the literature[Suau et al., 2021 is replacing
it with the mean activation value. We provide the results for this type of replacement in Table|[6]

The mean replacement strategy corresponds to setting the intervention function to ¢(x) = p, where
1 1s the mean activation of the neuron x computed over a general next-token prediction task on the
Wikipedia[Foundation].

Table 6: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Mean Activation p is used as replacement value. Acc
represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to
average accuracy and average class prediction probability across other classes, respectively. The
Base Values indicate the baseline model performance, while Neuron Masking and Activation Range
Masking show deviations from the baseline performance. PPL. A and MMLU A show changes in
perplexity and MMLU scores, respectively.

Class | Base Values | Neuron Masking | Activation Range Masking

| Acc Conf CAcc CConf | Acc Conf CAcc CConf PPLA MMLUA | Acc Conf CAcc CConf PPLA MMLUA
Class 0 1.000  0.576  1.000 0.563 | -1.000 -0.576 -0.685 -0.554 7.681 -0.025 | -1.000 -0.576 -0.551 -0.545 0.687 -0.005
Class 1 1.000  0.526 1.000  0.567 | -1.000 -0.526 -0.554  -0.550 8.437 -0.030 | -1.000 -0.526 -0.356  -0.517 0.583 0.015
Class2 | 1.000 0441 1.000 0575 | -0.995 -0441 -0.697 -0.556 7.567 -0.015 | -0.995 -0.440 -0.574 -0.536 0.520 -0.010
Class 3 1.000 0461 1.000  0.573 | -1.000 -0.461 -0.766  -0.561 8.005 -0.015 | -1.000 -0.461 -0.538  -0.534 0.543 0.010
Class4 | 1.000 0.839 1.000  0.541 | -1.000 -0.838 -0.724  -0.528 8.239 0.010 | -0.995 -0.838 -0.502  -0.503 0.565 0.005
Class 5 1.000 0339  1.000  0.568 | -1.000 -0.339 -0.616 -0.551 7.753 0.010 | -1.000 -0.339 -0.382  -0.510 0.552 0.005
Class6 | 1.000 0.810 1.000  0.545 | -0.313 -0.805 -0.549  -0.531 7.880 -0.005 | -0.292  -0.805 -0.336  -0.499 0.547 0.020
Class 7 1.000 0.595  1.000 0.562 | -1.000 -0.592 -0.491 -0.535 7413 -0.010 | -0.995 -0.591 -0.267  -0.449 0.462 0.000
Class 8 1.000 0417 1000  0.574 | -0.928 -0.414 -0.632 -0.556 7.688 0.015 | -0.934 -0414 -0.298 -0.489 0.495 0.015
Class9 | 1.000 0.526 1000 0567 | -1.000 -0.526 -0.611  -0.544 8.057 -0.035 | -1.000 -0.526 -0.370  -0.482 0.467 0.015
Class 10 | 1.000  0.505 1.000  0.569 | -0.998 -0.505 -0.642  -0.558 8.791 -0.020 | -0.998 -0.505 -0.406  -0.485 0.484 0.005
Class 11 | 1.000 0.497 1.000  0.569 | -1.000 -0.497 -0.719  -0.543 7.903 0.025 | -1.000 -0.497 -0.447  -0.459 0.397 -0.005
Class 12 | 1.000 0.573  1.000  0.563 | -0.904 -0.572 -0.629  -0.543 8.046 -0.005 | -0.896 -0.571 -0.375  -0.484 0.425 0.000
Class 13 | 1.000 0.567 1.000  0.564 | -1.000 -0.566 -0.526  -0.533 7.543 -0.025 | -0.998 -0.566 -0.341  -0.481 0.464 -0.010

In Table [6] we assess the effect of mean replacement using both neuron masking and activation
range masking. In every class, neuron masking results in more severe degradation than range-based
masking across all auxiliary and general metrics.

Across metrics (Acc, Conf, CAcc, and CConf), activation range masking consistently outperforms
neuron masking. The degradation in accuracy and confidence of auxiliary concepts is significantly
lower under range-based interventions. For instance, in Class 3, neuron masking causes a drop
of -1.000 in Acc and -0.766 in CAcc, whereas activation range masking yields a similar Acc drop
(-1.000) but a substantially smaller decline in CAcc (-0.538). A similar pattern repeats across all
classes; for example, in Class 0, neuron masking results in CAcc of -0.685 while activation range
masking yields -0.551. In Class 7, neuron masking shows a CAcc of -0.491 compared to -0.267 for
activation range masking.

Beyond auxiliary class performance, we observe substantial differences in how the two masking
methods affect general language modelling capabilities. Neuron masking leads to a large increase in
perplexity (PPL), ranging from +7.413 to +8.791 which is catastrophic, across classes, and induces
more negative shifts in MMLU scores (as low as -0.035 for Class 9, and also for Class 0 with -0.025,
Class 1 with -0.030, Class 10 with -0.020, and Class 13 with -0.025). In contrast, activation range
masking results in substantially smaller increases in perplexity (+0.397 to +0.687) and often yields
improved or near-zero changes in MMLU scores (up to +0.020 for Class 6, and several positive
values like +0.015 for Class 1, Class 8, and Class 9).
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D.3 Adaptive Dampening

We propose a novel replacement method in which the intervention function ¢(x) applies runtime-
controlled dampening based on the distance of the observed activation x from the center of a
predefined activation range. Specifically, the dampening factor a(z) is linearly scaled according
to the distance of z from the mean p of the neuron’s activation distribution, within the range
[u—2.50, u+ 2.50].

Let 8 € [0, 1] denote the maximum dampening factor applied at the range boundaries. Then:

|z — p
2.50 ’

a(x) =4 - and ¢(z) = a(z) - z.

This ensures that when & = p (the center of the range), a(x) = 0 and the activation is fully suppressed
via ¢(x) = 0. At the boundaries (x = p+2.50), a(x) = f3, and the activation is minimally dampened.
Values within the range are scaled proportionally based on their normalized distance from the mean.
This adaptive dampening mechanism suppresses values near the mean while preserving those closer
to the range edges.

The dampening factor 3 can be optimized for different neurons based on the concept information that
neuron provides. For this work, we use 5 = 0.5 across all neurons.

Table 7: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Adaptive Dampening factor used is 8 = 0.5. Acc represents
class accuracy, Conf denotes class prediction probability, and CAce and CConf refer to average
accuracy and average class prediction probability across other classes, respectively. The Base Values
indicate the baseline model performance, while Neuron Masking and Activation Range Masking show
deviations from the baseline performance. PPL A and MMLU A show changes in perplexity and
MMLU scores, respectively.

Class | Base Values | Activation Range Masking

| Acc Conf CAcc CConf| Acc Conf CAcc CConf PPLA MMLUA
Class 0 1.000 0.576 1.000 0.563 | -0.927 -0.543 -0.215 -0.217 0.487 -0.015
Class 1 1.000 0.526 1.000 0.567 | -0.791 -0.451 -0.134 -0.109 0.543 0.000
Class 2 1.000 0.441 1.000 0.575 | -0.828 -0.380 -0.277 -0.215 0.540 -0.010
Class 3 1.000 0.461 1.000 0.573 | -0.958 -0.432 -0.230 -0.214 0.492 0.010
Class 4 1.000 0.839 1.000 0.541 | -0.346 -0.579 -0.261 -0.218 0.521 0.015
Class 5 1.000 0.339 1.000 0.568 | -0.960 -0.319 -0.140 -0.116 0.609 -0.015
Class 6 1.000 0.810 1.000 0.545 | -0.236 -0.613 -0.130 -0.122 0.524 -0.010
Class 7 1.000 0.595 1.000 0.562 | -0.243 -0.388 -0.108 -0.080 0.408 0.005
Class 8 1.000 0.417 1.000 0.574 | -0.440 -0.414 -0.152  -0.088 0.465 0.030
Class 9 1.000 0.526 1.000 0.567 | -0.799 -0.459 -0.182 -0.131 0.445 0.005
Class 10 | 1.000 0.505 1.000 0.569 | -0.684 -0.451 -0.222 -0.130 0.513 -0.010
Class 11 | 1.000 0.497 1.000 0.569 | -0.836 -0.420 -0.308 -0.155 0.440 -0.005
Class 12 | 1.000 0.573 1.000 0.563 | -0.720 -0.451 -0.172  -0.095 0.444 0.025
Class 13 | 1.000 0.567 1.000 0.564 | -0.941 -0.530 -0.142  -0.098 0.502 0.010

In Table[7|we evaluate the adaptive dampening variant of the replacement function. This approach
outperforms both neuron masking and static activation masking across all metrics.

In auxiliary class metrics, adaptive dampening yields much smaller degradation. Auxilary class
accuracy (CAcc) and confidence (CConf) show significantly reduced drops compared to other
methods. For example, in Class 0, CAcc drops only —0.215 compared to —0.685 under neuron
masking and —0.551 under hard activation masking. The effect is consistent across classes, with
most CAcc and CConf drops staying well below —0.3, and in many cases below —0.15.

Language modeling metrics show this approach to be exceptionally efficient. Perplexity increases
are minimal, remaining within +0.408 to +-0.609, substantially lower than all hard-masking variants.
MMLU deltas also stay close to zero, with several classes showing improvement (e.g., Class 8:
40.030, Class 4: +0.015). Notably, no class suffers significant MMLU degradation.
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E Training Details

For BERT, DistilBERT, and Llama, we utilize pretrained models. Since BERT, and DistilBert are
not inherently trained as a conversational agent, we use top-performing fine-tuned models from the
Hugging Face repository. For the Llama model, few-shot prompt completion is employed to predict
class labels. This involves providing a small number of training samples from the dataset to guide the
model’s predictions.

For GPT-2, we fine-tune the pretrained model across all datasets for three epochs. The input sequence
is constructed by concatenating the text with a <sep> token, followed by the class label, and ending
with an <eos> token. During training, the loss is back-propagated only for the class label token, while
all other tokens are assigned a skip label (-100). Additionally, all class labels are added to the model’s
dictionary as special single-token entries.

In the case of Bert-based models, record the activation of the CLS token, In the case of GPT-2
and Llama models, we record the last token output when the class token is being predicted. The
intervention is applied to the appropriate token on the residual stream.

Dataset Preprocessing for Llama For Llama we process whole datasets in few shout settings and
only curate 2000 samples per class, where the model prediction was correct.

F Compute Details

All experiments, including activation extraction and interventions on large language models (LLMs),
were conducted using an NVIDIA RTX 3090 GPU equipped with 24GB of VRAM. 64GB RAM.

G Saliency details

Max activations. Frankle and Carbin/[2019] extract high neural activations as a saliency ranking
metric relying upon the rationale that maximally activating neurons are salient as these neurons play a
critical role in controlling the model’s output, highlighting their importance for a concept c.To identify
them, the column-wise mean of absolute neuronal activations in A é H é is defined in Sectio , is
computed, given that high negative activations also carry significant signals [Voita et al., [2023]]. The
magnitude of the means is then considered as a ranking for concept c.

Probe analysis. [Dalvi et al.| [2019b] train a linear classifier on the hidden representations H' to
distinguish between concepts. The learned model weights are then utilized as a saliency ranking.
This process involves learning a weight matrix W € R%*I¢l, where d is the hidden dimension and |c|
is the number of concept classes. The absolute weight values of each row in the weight matrix are
used as a ranking for the importance of each neuron for a given concept. To prevent the emergence of
redundant solutions characterized by minimal variations in the weights, the probe is trained using the
elastic regularization technique.

Probeless. |Antverg and Belinkov|[[2022]] examine individual neurons, without the need for auxiliary
classifiers, using the element-wise difference between mean vectors. The element-wise difference
between mean vectors is computed as 7 = . . [q(c) — g(c’)[, where r € R and d is the hidden
dimension. The final neuron saliency ranking is obtained by sorting 7 in descending order.

Table 8: Performance drops relative to Baseline configuration (i.e.: unaltered model’s performance)
for three techniques: Probeless, Probe, and Max. All values show the difference from Base values.
Results are for Emotions dataset on the GPT-2 model using 30% salient neurons of each method.
Metrics are detailed in[2.1]

| Probeless | Probe | Max

Class | Ace Conf  CAcc CConf |  Acc Conf  CAcc  CConf | Ace Conf  CAcc  CConf

Class 0 -0.738  -0.733  -0.103 -0.097 | -0.613  -0.650  -0.010 -0.038 -0.695  -0.751  -0.125 -0.124
Class 1 0.045 0.041 -0.113 -0.112 | -0.014  -0.015  -0.010 -0.034 -0.879  -0.882  -0.019 -0.009
Class 2 -0.570  -0.541 -0.052 -0.057 0.017 0.009  -0.347 -0.359 -0.776  -0.736  -0.029 -0.032
Class 3 -0.164  -0.166  -0.035 -0.038 0.078 0.061 -0.047 -0.104 -0.713  -0.714  -0.006 -0.007
Class 4 -0.623  -0.617  -0.087 -0.084 | -0.005  -0.010  -0.003 -0.020 -0.754  -0.753  -0.240 -0.248
Class 5 -0.817  -0.714  -0.101 -0.105 | -0.206  -0.127 0.003 -0.010 -0.587  -0.601 -0.301 -0.308




H Hyperparameter Ablation

For target concept, 7 values 0.3 — 2.4 show decreasing accuracy/confidence, stabilizing at 7 = 2.4
(accuracy 0.6126). Beyond 2.4, negligible additional degradation occurs, indicating we’ve captured
the complete target concept activation range. Importantly, while target performance stabilizes after
7 = 2.4, auxiliary task performance declines after 7 = 2.7. Complement accuracy stays above 0.93
until then before dropping to 0.8795 at 7 = 4.5. This aligns with normal distribution properties
where 95-99% of values fall within +2.5 standard deviations.

Table 9: Performance metrics for varying 7 values.

T Acc Conf CAcc  CConf
0.3 | 0.9021 0.8858 | 0.9452 0.9358
0.6 | 0.8439 0.8185 | 0.9424 0.9327
0.9 | 0.7801 0.7486 | 0.9391 0.9263
1.2 | 0.7295 0.6950 | 0.9340 0.9174
1.5 | 0.6834 0.6482 | 0.9337 0.9093
1.8 | 0.6424 0.6141 | 0.9331 0.9000
2.1 | 0.6184 0.5926 | 0.9327 0.8910
2.4 | 0.6126 0.5858 | 0.9314 0.8846
2.7 | 0.6024 0.5798 | 0.9280 0.8800
3.0 | 0.5971 0.5776 | 0.9234 0.8777
3.3 105963 0.5786 | 0.9173 0.8753
3.6 | 0.5970 0.5794 | 0.9097 0.8729
3.9 | 0.5976 0.5802 | 0.9020 0.8698
42 1 0.5967 0.5798 | 0.8908 0.8642
4.5 ] 0.5967 0.5798 | 0.8795 0.8577

I Layer Ablation

I.1 Statistical Results

We analyze concept level activation distributions across all 12 layers of GPT-2, measuring kurtosis
(where a value of 3.0 indicates a Gaussian distribution), skewness (where 0 indicates symmetry), and
practical normality in Table [T

Table 10: Statistical analysis of different layers showing skewness, kurtosis, and Kolmogorov-
Smirnov test results. GPT2 model. AG-News Dataset

Layer Kurtosis Skewness Practical Normality(10%)

1 3.9314 0.0430 0.7913
2 3.7622 -0.0091 0.9525
3 3.4109 -0.0143 0.9870
4 3.5582 -0.0073 0.9801
5 3.6145 0.0051 0.9730
6 3.5318 0.0086 0.9769
7 3.3461 0.0083 0.9880
8 3.2763 0.0037 0.9870
9 3.2267 0.0039 0.9860
10 3.2057 0.0029 0.9899
11 3.2105 -0.0002 0.9912
12 3.2061 -0.0014 0.9919

These results show that kurtosis values converge toward 3.0 (the Gaussian ideal) as layers progress,
skewness values remain near zero across all layers, and practical normality scores are close to 1
across all layers. Importantly, if the activations were not clustered into continuous intervals and were
in disconnected islands of activations, these would be reflected in the score for the practical normality
and other statistical metrics.
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Figure 7: Neuronal Activation Patterns of six  Figure 8: Neuronal Activation Patterns of six
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Figure 9: Neuronal Activation Patterns of six ~ Figure 10: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 3 neurons on AG-News dataset. Layer 4

LI.2 Qualitative Results

We expanded our visualization approach shown in Figures figs. [7] to [I§] in Figure 4) to all layers
in the model. The visualizations demonstrate an interesting progression: while all layers exhibit
Gaussian-like distributions on the class level, class concepts aren’t separated in the activation spectrum
Gaussians of the early layers. This aligns with the understanding that lower layers capture more basic
features rather than high-level semantic features like class. However, distinct concept-level Gaussian
distributions begin forming as early as layers 5-6, becoming increasingly separable in deeper layers.

L3 Masking Results

In Table [TT] and Table [T2] we provide results of applying both approaches on all layers of GPT-2
model on Emotions dataset. From the results we can see that: Early layers (1-3) show highly variable
and often severe impacts: Layer 1 exhibits minimal effects (AAcc = —0.113, AC Acc = —0.064),
while Layers 2-3 show extreme degradation (A Acc = —0.7, AC Acc > —0.5). Middle layers (4-8)
demonstrate inconsistent behavior with high variance in impacts. Layer 12, however, achieves an
optimal balance: it maintains substantial primary task impact (A Acc = —0.571) while minimizing
auxiliary concept interference (AC Acc = —0.060). This pattern holds true for both neuron masking
and range masking techniques, with range masking showing slightly better preservation of auxiliary
concepts (AC' Acc = —0.045). The mid-range primary task degradation combined with minimal
auxiliary impact makes Layer 12 the most suitable for targeted interventions, offering better control
and specificity compared to earlier layers.
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Figure 13: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 7
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Figure 14: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 8
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Here we provide the complete results for the datasets shown in Table 3] In Table [T4] we provide
results on IMDB dataset on all selected models. In Table[T5| we provide results on SST2 dataset on
all selected models. In Table[T6] we provide results on Emotions dataset on all selected models. In
Table[T7) we provide results on DBPedia-14 dataset on all selected models.
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Table 11: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron
and range masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf
denotes class prediction probability, and CAcc and CConf refer to average accuracy and average
class prediction probability across other classes, respectively. The Base Values indicate the baseline
model performance, while Activation Range Masking and Neuron Masking show deviations from the
baseline performance.
Layer | Class | Base Values | Neuron Masking | Activation Range Masking
| | Acc Conf CAcc CConf | Acc Conf CAcc CConf | Acc Conf CAcc CConf

Class 0 | 0.970 0.957 00915 0.904 | -0.029 -0.071 -0.074 -0.100 | 0.006  0.002 -0.004 -0.005
Class 1 | 0933 0932 0.931 0913 | -0.011 -0.056 -0.090 -0.116 | 0.001 -0.003 -0.004 -0.004
1 Class2 | 0.901 0.865 0.934 0.924 | -0206 -0.195 -0.052 -0.092 | -0.019 -0.015 -0.001  -0.002
Class3 | 0.926 0924 0.932 0919 | -0.128 -0.152 -0.051  -0.090 | -0.004 -0.005 -0.001  -0.002
Class 4 | 0.885 0.867 0.938 0.927 | -0.055 -0.084 -0.061 -0.093 | -0.016 -0.009  0.002 -0.001
Class 5 | 0.851 0.786 0.934 0.924 | -0.249 -0.217 -0.055 -0.094 | 0.016 0.013 -0.004 -0.005
Class 0 | 0.970 0.957 00915 0.904 | -0.804 -0.808 -0.389 -0.386 | -0.061 -0.133 -0.077 -0.096
Class 1 | 0933 0932 0.931 0913 | 0.053 -0.003 -0.819 -0.781 | -0.011 -0.049 -0.110  -0.145
5 Class2 | 0.901 0.865 0.934 0.924 | -0.868 -0.737 -0.515 -0.519 | -0.365 -0.337 -0.077 -0.126
Class3 | 0.926 0924 0.932 0919 | -0.870 -0.805 -0.498 -0.501 | -0.215 -0.248 -0.096  -0.153
Class 4 | 0.885 0.867 0.938 0.927 | -0.729 -0.707 -0.461  -0.463 | -0.042 -0.077 -0.076 -0.116
Class5 | 0.851 0.786  0.934 0.924 | -0.845 -0.769 -0.511 -0.508 | -0.229 -0.188 -0.106  -0.163
Class 0 | 0.970 0.957 0915 0904 | -0.896 -0.904 -0.824 -0.832 | -0.647 -0.688 -0.517 -0.544
Class 1 | 0933 0.932 0.931 0913 | -0.901 -0916 -0.835 -0.832 | -0.568 -0.607 -0.609  -0.630
3 Class2 | 0.901 0.865 0.934 0.924 | -0.868 -0.845 -0.838 -0.851 | -0.605 -0.600 -0.589  -0.619
Class3 | 0.926 0924 0.932 0919 | -0.868 -0.896 -0.830 -0.840 | -0.567 -0.605 -0.567 -0.596
Class4 | 0.885 0.867 0.938 0.927 | -0.800 -0.811 -0.849 -0.857 | -0.502 -0.522 -0.513 -0.544
Class5 | 0.851 0.786  0.934 0924 | 0022 0.081 -0.865 -0.881 | -0.155 -0.124 -0.561  -0.596
Class 0 | 0.970 0.957 00915 0.904 | -0.650 -0.703 -0.698  -0.764 | -0.608 -0.621 -0.499  -0.510
Class 1 | 0933 0932 0.931 0913 | -0.845 -0.884 -0.667 -0.725 | -0.491 -0.519 -0.480 -0.491
4 Class2 | 0.901 0.865 0.934 0.924 | -0.858 -0.824 -0.772 -0.809 | -0.488 -0.497 -0.506 -0.523
Class3 | 0.926 0924 0.932 0919 | -0.700 -0.808 -0.663  -0.739 | -0.534 -0.546 -0.512  -0.528
Class 4 | 0.885 0.867 0.938 0.927 | -0239 -0.514 -0.754  -0.797 | -0.304 -0.307 -0.452 -0.471
Class 5 | 0.851 0.786  0.934 0.924 | -0.612 -0.463 -0.692 -0.765 | -0.047 -0.038 -0.525  -0.541
Class 0 | 0.970 0.957 00915 0.904 | -0.838 -0.852 -0.492 -0.630 | -0.695 -0.688 -0.554  -0.555
Class 1 | 0933 0932 0.931 0913 | -0.387 -0.563 -0.683  -0.714 | -0.552 -0.564 -0.605 -0.599
5 Class2 | 0.901 0.865 0.934 0.924 | -0.702 -0.700 -0.634  -0.690 | -0.472 -0.470 -0.607  -0.605
Class3 | 0.926 0924 0.932 0919 | -0.361 -0.507 -0.615 -0.692 | -0.567 -0.575 -0.538 -0.539
Class 4 | 0.885 0.867 0.938 0.927 | -0.873 -0.844 -0.525 -0.650 | -0.668 -0.653 -0.594  -0.594
Class5 | 0.851 0.786  0.934 0.924 | -0.637 -0.573 -0.588  -0.681 | -0.069 -0.022 -0.548  -0.553
Class 0 | 0.970 0.957 00915 0.904 | -0.720 -0.775 -0.829  -0.830 | -0.484 -0.499 -0.318 -0.322
Class 1 | 0933 0932 0.931 0913 | -0.871 -0.887 -0.750  -0.768 | -0.176  -0.195 -0.499  -0.499
6 Class2 | 0.901 0.865 0.934 0.924 | -0.895 -0.860 -0.735 -0.773 | -0.680 -0.638 -0.335 -0.348
Class 3 | 0.926 0.924 0.932 0919 | -0.863 -0.884 -0.772 -0.793 | -0.418 -0.431 -0.379 -0.381
Class 4 | 0.885 0.867 0.938 0.927 | -0.621 -0.669 -0.743  -0.784 | -0.430 -0.435 -0.247 -0.262
Class5 | 0.851 0.786  0.934 0.924 | -0.143 -0.086 -0.808 -0.831 | -0.114 -0.070 -0.474  -0.478
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Table 12: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron
and range masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf
denotes class prediction probability, and CAcc and CConf refer to average accuracy and average
class prediction probability across other classes, respectively. The Base Values indicate the baseline
model performance, while Activation Range Masking and Neuron Masking show deviations from the
baseline performance.
Layer | Class | Base Values | Neuron Masking | Activation Range Masking
| | Acc Conf CAcc CConf | Acc Conf CAcc CConf | Ace Conf CAcc CConf

Class 0 | 0.970 0.957 00915 0.904 | -0.908 -0.901 -0.752  -0.753 | -0.527 -0.538 -0.492  -0.498
Class1 | 0933 0932 0.931 0913 | -0.884 -0.895 -0.743  -0.729 | -0.484 -0.509 -0.330 -0.338
7 Class2 | 0.901 0.865 0.934 0.924 | -0.866 -0.835 -0.767 -0.765 | -0.451 -0.442 -0.336  -0.355
Class 3 | 0.926 0.924 0.932 0919 | -0.786 -0.819 -0.641 -0.666 | -0.445 -0.457 -0.331 -0.346
Class4 | 0.885 0.867 0.938 0.927 | -0.626 -0.618 -0.810 -0.817 | -0.341 -0.335 -0.521  -0.532
Class 5 | 0.851 0.786 0.934 0924 | 0.106 0.147 -0.810 -0.811 | 0.102 0.107 -0.547 -0.553
Class 0 | 0.970 0.957 00915 0.904 | -0.776 -0.791 -0.209 -0.291 | -0.191 -0.312 -0.082  -0.114
Class 1 | 0933 0.932 0.931 0913 | -0.585 -0.667 -0.412 -0441 | -0.591 -0.644 -0.199  -0.227
3 Class2 | 0.901 0.865 0.934 0924 | -0.692 -0.716 -0.469  -0.496 | -0.560 -0.562 -0.468  -0.486
Class3 | 0926 0924 0.932 0919 | -0.657 -0.714 -0.415 -0.464 | -0.468 -0.503 -0.230 -0.266
Class 4 | 0.885 0.867 0.938 0.927 | -0.501 -0.509 -0.531 -0.569 | -0.201 -0.234 -0.258  -0.290
Class5 | 0.851 0.786  0.934 0.924 | -0.092 -0.050 -0.634 -0.647 | 0.065 0.058 -0.279 -0.308
Class0 | 0.970 0.957 0915 0.904 | -0.759 -0.768 -0.311 -0.351 | -0.610 -0.661 -0.307  -0.328
Class 1 | 0.933 0.932 0931 0913 | -0.570 -0.713 -0.319  -0.346 | -0.906 -0.910 -0.267  -0.298
9 Class2 | 0.901 0.865 0.934 0924 | -0.424 -0.520 -0.504 -0.531 | -0.635 -0.643 -0.579 -0.595
Class3 | 0.926 0.924 0.932 0919 | -0.810 -0.834 -0.501 -0.502 | -0.759 -0.772 -0.502  -0.516
Class4 | 0.885 0.867 0.938 0.927 | -0.358 -0.357 -0476 -0.481 | -0.587 -0.566 -0.519  -0.527
Class 5 | 0.851 0.786 0.934 0924 | -0.133  -0.101 -0.546  -0.554 | 0.106 0.104 -0.450 -0.462
Class 0 | 0.970 0.957 00915 0.904 | -0.733 -0.741 -0.105  -0.126 | -0.624 -0.659 -0.146  -0.163
Class1 | 0933 0932 0.931 0913 | -0.389 -0.671 -0.178 -0.209 | -0.899 -0.911 -0.254  -0.285
10 Class2 | 0.901 0.865 0.934 0.924 | -0230 -0.513 -0.116  -0.224 | -0.699 -0.735 -0.409  -0.451
Class3 | 0.926 0924 0.932 0919 | -0.434 -0.687 -0.081 -0.133 | -0.898 -0.905 -0.401  -0.455
Class 4 | 0.885 0.867 0.938 0.927 | -0.489 -0.506 -0.188 -0.256 | -0.140 -0.186 -0.063  -0.102
Class 5 | 0.851 0.786 0.934 0.924 | -0.306 -0.243 -0.157 -0.240 | 0.063 0.010 -0.095 -0.127
Class0 | 0.970 0.957 0915 0.904 | -0.358 -0496 -0.382 -0414 | -0.301 -0.441 -0.121  -0.148
Class1 | 0933 0932 0.931 0913 | -0.800 -0.857 -0.078 -0.123 | -0.858 -0.875 -0.128  -0.162
1 Class2 | 0.901 0.865 0.934 0.924 | -0.897 -0.861 -0416 -0450 | -0.901 -0.864 -0.464  -0.500
Class3 | 0.926 0924 0.932 0919 | -0.923 -0.921 -0427 -0470 | -0913 -0914 -0.354 -0.393
Class 4 | 0.885 0.867 0.938 0927 | -0.152  -0.212 -0.039  -0.075 | -0.210 -0.239 -0.181  -0.204
Class5 | 0.851 0.786  0.934 0.924 | 0.047 -0.028 -0.131 -0.173 | 0.053 0.002 -0.142  -0.159
Class0 | 0.970 0.957 0915 0.904 | -0.550 -0.603 -0.013 -0.003 | -0.542 -0.594  0.005 0.012
Class 1 | 0933 0.932 0931 0913 | -0.526 -0.545  0.001 0.012 | -0.521 -0.538 -0.005 -0.004
12 Class2 | 0.901 0.865 0.934 0.924 | -0.416 -0.402  0.002 0.006 | -0.419 -0.407  0.007 0.006
Class3 | 0.926 0.924 0.932 0919 | -0.561 -0.576 -0.007 0.003 | -0.561 -0.572  0.000 0.005
Class4 | 0.885 0.867 0.938 0.927 | -0.655 -0.658 -0.042 -0.034 | -0.657 -0.659 -0.011  -0.003
Class5 | 0.851 0.786 0.934 0924 | -0.718 -0.672 -0.300 -0.297 | -0.718 -0.672 -0.267  -0.266

Table 13: Evaluation of selected models on the AG-News dataset using neuron and range masking
techniques. Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance. For GPT-2 50% and

for Llama-3.2-3B 30% neurons selected.
Model | Class | Base Values | Neuron Masking | Activation Range Masking

| | Acc Conf CAcc CConf| Acc Conf CAcc CConf | Acc Conf CAcc CConf

Class0 | 0.945 0.936 0.949 0.927 | -0.205 -0.587  0.004 -0.076 | -0.198 -0.589  0.007  -0.010
BERT Class 1 | 0.993 0.988 0.933 0910 | -0.225 -0.659  0.004 -0.077 | -0.194 -0.650  0.003  -0.012
Class2 | 0.905 0.881 0.962 0.945 | -0.300 -0.536  0.014 -0.079 | -0.298 -0.542  0.014  -0.009
Class3 | 0.949 0913 0.948 0.935 | -0.354 -0.577 0.026  -0.065 | -0.353 -0.579  0.025 -0.005
Class 0 | 0.955 0.951 0.941 0928 | -0.920 -0.926 -0.231 -0.224 | -0919 -0.925 -0.019  -0.008
GPT-2 Class 1 | 0986 0.981 0.931 0917 | -0926 -0931 -0.253 -0.257 | -0912 -0916 -0.054  -0.069
Class2 | 0.897 0.886  0.960 0.949 | -0.696 -0.737 -0.110 -0.132 | -0.678 -0.725 -0.097 -0.306
Class3 | 0.940 0.916 0.946 0.939 | -0.940 -0916 -0.024 -0.037 | -0.887 -0.882 -0.080 -0.510
Class 0 | 1.000 0.936  1.000 0.680 | -0.995 -0.934 -0.530 -0.427 | -0.995 -0.934 -0.345 -0.306
Llama-3.2-3B Class 1 | 1.000 0.742  1.000 0.744 | -0.870 -0.680 -0.615 -0.599 | -0.875 -0.681 -0.515  -0.503
Class2 | 1.000  0.655  1.000 0.773 | -0.895 -0.646 -0.795 -0.634 | -0.895 -0.646 -0.655  -0.549
Class 3 | 1.000 0.642  1.000 0.778 | -0.975 -0.641 -0.698  -0.630 | -0.975 -0.640 -0.420  -0.459
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Table 14: Evaluation of selected models on the IMDB dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model | Class

Neuron Masking
Acc Conf CAcc CConf

Activation Range Masking
Acc  Conf CAcc CConf

Base Values

Acc  Conf CAcc CConf

|

\ \ \
BERT Class 0 | 0.930 0908 0.926 0901 | -0.169 -0.352  0.061 -0.066 | -0.163 -0.359  0.059 0.035
Class 1 | 0.926 0901 0.930 0.908 | -0.211 -0.355  0.057 -0.091 | -0.206 -0.361 0.056 0.025
GPT-2 Class 0 | 0.965 0941 0.940 0.922 | -0.935 -0.922  0.050 0.057 | -0.905 -0.901  0.055 0.046
Class 1 | 0.940 0922 0.965 0.941 | -0.620 -0.667  0.005 0.018 | -0.610 -0.657  0.015 0.027
Llama-3.2-3B Class 0 | 1.000 0.619  1.000 0.500 | -0.643 -0.448 -0.515 -0.287 | -0.640 -0.446 -0.502 -0.278
. Class 1 | 1.000 0.500  1.000 0.619 | -0.877 -0410 -0.273 -0.304 | -0.873 -0.409 -0.265 -0.303

Table 15: Evaluation of selected models on the SS72 dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model | Class

Base Values ‘ Neuron Masking ‘ Activation Range Masking
Acc  Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

|

\ \ \
BERT Class 0 | 0.890 0.882  0.930 0.925 | -0.058 -0.308 0.029 -0.047 | -0.075 -0.329  0.031 0.036
Class 1 | 0.930 0.925 0.890 0.882 | -0.043 -0.318 0.033  -0.045 | -0.045 -0.330  0.030 0.050
GPT-2 Class 0 | 0.950 0.937 0.981 0978 | -0.142 -0.158  0.010 0.012 | -0.142 -0.167  0.009 0.010
Class 1 | 0981 0.978 0.950 0.937 | -0.187 -0.223  0.041 0.053 | -0.176  -0.216  0.041 0.046
Llama-3.2-3B Class 0 | 1.000 0.620  1.000 0.690 | -0.532 -0.459 -0420 -0.424 | -0.532 -0.456 -0.404 -0.415
o Class 1 | 1.000  0.690  1.000 0.620 | -0.289 -0.379 -0.326 -0.315 | -0.284 -0.376 -0.306  -0.301

Table 16: Evaluation of selected models on the Emotions dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.
Model | Class | Base Values | Neuron Masking | Activation Range Masking
| | Acc Conf CAcc CConf| Acc Conf CAcc CConf | Acc Conf CAcc CConf

Class 0 | 0.960 0.935 0.901 0.851 | -0.241 -0.718 0.013 -0.266 | -0.222 -0.718  0.012  -0.055
Class 1 | 0942 0.904 0.905 0.861 | -0.223 -0.691  0.028 -0.254 | -0.213 -0.692  0.032  -0.064
BERT Class2 | 0.824 0.723  0.926 0.889 | -0.371 -0.533  0.016 -0.284 | -0.352 -0.534  0.018 -0.115
Class3 | 0.927 0.873 0916 0.876 | -0.247 -0.664 0.010 -0.256 | -0.240 -0.667  0.012  -0.057
Class4 | 0.884 0.837 0.922 0.880 | -0.406 -0.646  0.012 -0.251 | -0.402 -0.648  0.012  -0.066
Class5 | 0.591 0.566  0.929 0.886 | -0.303 -0.392  0.004 -0.299 | -0.303 -0.397  0.005  -0.090
Class 0 | 0.969 0.956 0913 0.903 | -0.695 -0.751 -0.125  -0.124 | -0.698 -0.749 -0.009  -0.009
Class 1 | 0939 0.938 0.925 0.908 | -0.879 -0.882 -0.019 -0.009 | -0.879 -0.880 -0.016  -0.015
GPT-2 Class2 | 0.902 0.872 0.932 0923 | -0.776  -0.736  -0.029  -0.032 | -0.780 -0.739 -0.023  -0.028
Class3 | 0910 0.905 0.932 0921 | -0.713  -0.714 -0.006  -0.007 | -0.715 -0.716 -0.002  -0.001
Class4 | 0.869 0.854 0.938 0.927 | -0.754 -0.753 -0.240  -0.248 | -0.754 -0.753 -0.127  -0.133
Class5 | 0.857 0.798  0.932 0.923 | -0.587 -0.601 -0.301 -0.308 | -0.587 -0.601 -0.280 -0.289
Class 0 | 0.950 0.550 0.782 0.455 | -0.950 -0.547 -0.655 -0.408 | -0.945 -0.547 -0.571 -0.378
Class 1 | 0.905 0.498 0.804 0473 | -0.855 -0.495 -0.743 -0.433 | -0.867 -0.494 -0.607 -0.404
Llama-3.2-3B Class2 | 0.785 0.421 0.827 0.483 | -0.785 -0.420 -0.771  -0.454 | -0.785 -0.420 -0.658 -0.436
Class3 | 0.790 0.482 0.833 0.476 | -0.760 -0.477 -0.635  -0.423 | -0.755 -0.476 -0.544  -0.402
Class 4 | 0.780 0.487 0.829 0476 | -0.780 -0.486 -0.534 -0.365 | -0.780 -0.486 -0.444 -0.324
Class5 | 0.536 0296 0.855 0498 | -0417 -0.284 -0.751 -0.465 | -0429 -0.282 -0.653  -0.434
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Table 17: Evaluation of selected models on the DBPedia-14 dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAce
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.
Model | Class | Base Values | Neuron Masking | Activation Range Masking
| | Acc Conf CAcc CConf | Acc Conf CAcc CConf | Acc Conf CAcc CConf

Class 0 0972 0966 0.992 0.991 | -0.082 -0.702  0.001 -0.014 | -0.076 -0.698  0.001  -0.000
Class 1 0.987 0986 0.991 0.990 | -0.030 -0.778  0.000  -0.017 | -0.018 -0.770  0.000  -0.000
Class 2 0.987 0985 0.991 0.990 | -0.239 -0.814  0.001 -0.018 | -0.217 -0.806  0.001  -0.000
Class 3 0.997 0.997 0.990 0.989 | -0.008 -0.766  0.000  -0.019 | -0.001 -0.731  0.000  -0.000
Class 4 0.984 0.983 0.991 0.990 | -0.058 -0.777  0.001 -0.018 | -0.032 -0.761  0.000  -0.000
Class 5 0995 0.995 0.990 0.989 | -0.007 -0.795  0.000 -0.017 | -0.001 -0.771  0.000  -0.000
BERT Class 6 0975 0974 0.992 0991 | -0.121 -0.807  0.000 -0.015 | -0.112 -0.803  0.000  -0.001
Class 7 0.994 0.994 0.990 0.989 | -0.028 -0.789  0.000 -0.017 | -0.010 -0.767  0.000  -0.000
Class 8 1.000  1.000  0.990 0.989 | -0.001 -0.808  0.000 -0.022 | 0.000 -0.772  0.000  -0.000
Class 9 0.999 0.998 0.990 0.989 | -0.004 -0.837  0.000 -0.019 | -0.001 -0.811  0.000  -0.000
Class 10 | 0.994 0.993  0.990 0.989 | -0.025 -0.846  0.000 -0.016 | -0.005 -0.831  0.000  -0.000
Class 11 | 0.997 0.997 0.990 0.989 | -0.013 -0.751  0.000 -0.017 | -0.001 -0.726  0.000  -0.000
Class 12 | 0.990 0.990 0.990 0989 | -0.018 -0.772  0.000 -0.017 | -0.005 -0.755  0.000  -0.000
Class 13 | 0.994 0.994 0.990 0.989 | -0.009 -0.740  0.001 -0.017 | -0.001 -0.721  0.000  -0.000
Class 0 0985 0.977  0.990 0.989 | -0.860 -0.877 -0.133  -0.136 | -0.850 -0.869 -0.002  -0.017
Class 1 0.995 0.992  0.990 0.988 | -0.500 -0.567 -0.180 -0.192 | -0.460 -0.544 -0.023  -0.024
Class 2 0.985 0.980 0.990 0.989 | -0.890 -0.904 -0.189  -0.213 | -0.880 -0.902 -0.004  -0.010
Class 3 0.995 0.995 0.990 0.987 | -0.900 -0.933 -0.145 -0.143 | -0.900 -0.927 -0.008 -0.017
Class 4 0970 0969 0.992 0.989 | -0.715 -0.773 -0.224  -0.260 | -0.695 -0.750 -0.042  -0.062
Class 5 0.995 0.993  0.990 0.988 | -0.315 -0.446 -0.127 -0.192 | -0.290 -0.432 -0.013  -0.025
GPT-2 Class 6 0.965 0.964 0.992 0990 | -0.925 -0932 -0.052 -0.062 | -0.910 -0.928 -0.006 -0.007
Class 7 1.000  0.998 0.989 0987 | -0.815 -0.865 -0.003 -0.008 | -0.775 -0.846 -0.026  -0.057
Class 8 1.000  1.000  0.989 0987 | -0.995 -0990 -0.148 -0.188 | -0.900 -0.932 -0.026 -0.055
Class 9 1.000  1.000 0.989 0987 | -0.975 -0979 -0.250 -0.268 | -0.955 -0.958 -0.020 -0.049
Class 10 | 0.995 0.993  0.990 0.988 | -0.595 -0.685 -0.045 -0.053 | -0.590 -0.675 -0.005 -0.011
Class 11 | 0.985 0.984 0.990 0988 | -0.210 -0.453 -0.094 -0.118 | -0.135 -0.396 -0.015 -0.034
Class 12 | 0.990 0.988  0.990 0988 | -0.930 -0.938 -0.293 -0.309 | -0.855 -0.880 -0.013  -0.029
Class 13 | 1.000  0.999  0.989 0987 | -0.985 -0986 -0.393 -0.416 | -0.945 -0.981 -0.018 -0.044
Class 0 1.000 0.586  1.000 0.559 | -0.990 -0.584 -0.949 -0.473 | -0.990 -0.584 -0.823  -0.441
Class 1 1.000  0.533  1.000 0.563 | -1.000 -0.528 -0.870  -0.446 | -0.970 -0.528 -0.706  -0.371
Class 2 1.000  0.467  1.000 0.568 | -0.995 -0.462 -0.963 -0.477 | -0.995 -0.461 -0.838 -0.432
Class 3 1.000  0.460  1.000 0.569 | -0.995 -0.459 -0.981 -0.486 | -0.995 -0.459 -0.815 -0.420
Class 4 1.000 0.828  1.000 0.539 | -0.965 -0.809 -0.981 -0.454 | -0.955 -0.808 -0.852 -0.412
Class 5 1.000  0.349  1.000 0.568 | -1.000 -0.348 -0.882  -0.429 | -0.989 -0.347 -0.585 -0.346
Llama-3.2-3B Class 6 1.000  0.809  1.000 0.541 | -1.000 -0.787 -0.972  -0.449 | -1.000 -0.787 -0.736  -0.366
Class 7 1.000  0.599  1.000 0.558 | -0.855 -0.588 -0.918 -0.410 | -0.860 -0.586 -0.489  -0.274
Class 8 1.000  0.420  1.000 0.572 | -1.000 -0.420 -0.957 -0.467 | -1.000 -0.420 -0.660  -0.335
Class 9 1.000  0.527  1.000 0.563 | -1.000 -0.524 -0.842 -0.435 | -0.995 -0.523 -0.552 -0.320
Class 10 | 1.000  0.505  1.000 0.565 | -0.995 -0.503 -0.907 -0.464 | -1.000 -0.503 -0.589  -0.322
Class 11 | 1.000  0.505  1.000 0.565 | -0.975 -0.501 -0.862 -0.416 | -0.970 -0.501 -0.579 -0.313
Class 12 | 1.000 0.560  1.000 0.561 | -0.980 -0.545 -0.812 -0.417 | -0.975 -0.544 -0.496 -0.310
Class 13 | 1.000 0.587  1.000 0.559 | -0.990 -0.584 -0.722  -0.406 | -0.985 -0.584 -0.588  -0.337
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