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Abstract

Interpreting the internal mechanisms of large language models (LLMs) is crucial1

for improving their trustworthiness and utility. Prior work has primarily focused2

on mapping individual neurons to discrete semantic concepts. However, such3

mappings struggle to handle the inherent polysemanticity in LLMs, where in-4

dividual neurons encode multiple, distinct concepts. Through a comprehensive5

analysis of both encoder and decoder-based LLMs across diverse datasets, we6

observe that even highly salient neurons, identified via various attribution tech-7

niques for specific semantic concepts, consistently exhibit polysemantic behavior.8

Importantly, activation magnitudes for fine-grained concepts follow distinct, often9

Gaussian-like distributions with minimal overlap. This observation motivates a10

shift from neuron attribution to range-based interpretation. We hypothesize that11

interpreting and manipulating neuron activation ranges would enable more precise12

interpretability and targeted interventions in LLMs. To validate our hypothesis,13

we introduce NeuronLens, a novel range-based interpretation and manipulation14

framework that provides a finer view of neuron activation distributions to localize15

concept attribution within a neuron. Extensive empirical evaluations demonstrate16

that NeuronLens significantly reduces unintended interference, maintaining precise17

manipulation of targeted concepts, outperforming neuron attribution.18

1 Introduction19

Large language models (LLMs) demonstrate remarkable performance across natural language un-20

derstanding, generation, and transformation tasks [Brown et al., 2020, Bommasani et al., 2022,21

Touvron et al., 2023, Raffel et al., 2019]. However, the inner workings of LLMs remain largely22

opaque [Burkart and Huber, 2021], as their representations are distributed across billions of parame-23

ters. This lack of interpretability raises critical concerns about reliability, fairness, and trustworthiness,24

particularly in high-stakes domains such as healthcare, law, and education. To this end, neuron-level25

interpretability can address these concerns by enabling researchers to uncover how individual neurons26

encode semantic concepts and contribute to model outputs. With this understanding, researchers can27

diagnose safety risks [Wei et al., 2024, He et al., 2024], refine model outputs [Meng et al., 2023,28

Rizwan et al., 2024], optimize efficiency through pruning [Frankle and Carbin, 2019, Haider and Taj,29

2021], and steer model’s representations toward desired objectives [Subramani et al., 2022, Li et al.,30

2023, Rodriguez et al., 2024].31

Recent research efforts have made significant progress in neuron-level interpretation by identifying32

salient neurons that influence model behavior [Dalvi et al., 2019a, Antverg and Belinkov, 2022,33

Conmy et al., 2023, Marks et al., 2024]. Approaches such as maximal activation analysis [Foote34

et al., 2023, Frankle and Carbin, 2019], Probe-based methods that employ auxiliary classifiers to35

distinguish between concepts [Dalvi et al., 2019a,b], and the probeless approach bypasses the need36

for classifiers by directly analyzing neurons [Antverg and Belinkov, 2022]. Other techniques include37
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circuit discovery, attributes concepts to groups of interacting neurons [Olah et al., 2020, Conmy et al.,38

2023], and causal analysis, identify the internal components role in model behavior [Vig et al., 2020].39

Figure 1: NeuronLens leverages distinct, Gaussian-like acti-
vation patterns to enable fine-grained concept attribution.

While these methods have advanced40

our understanding of neurons, they of-41

ten rely on discrete neuron-to-concept42

mappings, which assume that entire43

neurons encode single concepts. How-44

ever, neurons frequently exhibit pol-45

ysemanticity; the ability to encode46

multiple, seemingly unrelated con-47

cepts [Lecomte et al., 2024, Marshall48

and Kirchner, 2024]. Given this het-49

erogeneous encoding of concepts, tra-50

ditional approaches often lead to un-51

intended consequences when manipu-52

lating neurons, as changes intended for one concept may inadvertently affect others encoded by the53

same neuron or suboptimal interpretations of concepts [Sajjad et al., 2022].54

Despite being traditionally viewed as a challenge, could polysemanticity instead provide a unique55

lens for advancing interpretability and model control? If individual neurons encode multiple concepts,56

might their activation spectrum reveal distinct and identifiable patterns for each concept? Could these57

patterns enable precise interventions that adjust one concept while minimizing interference with58

others, overcoming the limitations of coarse, monolithic neuron-to-concept mappings?59

This work seeks to address these questions by analyzing the activation patterns of neurons in both60

encoder-based and decoder-based LLMs. Through statistical and qualitative analysis, we find that61

neuronal activations for concepts follow Gaussian-like distributions, with distinct patterns for different62

concepts. Our key insight is that the unit of interpretability lies at a level more fine-grained than the63

neuron itself. Within a neuron’s activation spectrum, activation ranges corresponding to specific64

concepts can be used as a finer unit of interpretability. This nuanced perspective enables a more65

precise approach to neuron interpretation and manipulation, addressing the limitations of traditional,66

discrete neuron-to-concept mappings.67

Building upon these insights, we introduce NeuronLens visualised in Figure 1, a range-based frame-68

work for neuron interpretation and manipulation. NeuronLens identifies and maps specific activation69

ranges within a neuron’s distribution to individual concepts, rather than attributing entire neurons to70

single concepts. For each concept, NeuronLens calculates a range that covers its activation spectrum,71

capturing the concept-specific activations while excluding unrelated concepts. Through experiments72

on encoder-based and decoder-based LLMs across several text classification datasets, we show that73

NeuronLens significantly reduces unintended interference by up to 25 percentage points in auxil-74

iary concepts and up to 7x in LLM, while maintaining precise manipulation of targeted concepts,75

outperforming existing methods.76

Our key contributions are: (1) To the best of our knowledge, this is the first work that performs a77

comprehensive study unfolding polysemantic neurons using activation spectrums. (2) We show that78

neuronal activations in LLMs form distinct concept level Gaussian-like distributions, with salient79

neurons exhibiting limited overlap in their activation patterns across concepts. (3) We empirically80

demonstrate that activation ranges within a neuron’s activation spectrum offer a more precise unit of81

interpretability, offering a refined framework for neuron-level analysis. (4) We propose NeuronLens,82

an activation range-based framework for interpreting and manipulating neuronal activations, which83

enables fine-grained concept attribution and reduces unintended interference compared to neuron84

level intervention.85

2 Neuron Interpretation Analysis86

This section provides an overview of the neuron analysis, methods for extracting salient neurons, and87

causally validating their saliency.88
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Table 1: Performance drops relative to Baseline configuration (i.e., unaltered model’s performance)
for three techniques: Probeless, Probe, and Max. All values show the difference from Base values.
Results are for Emotions dataset on the GPT-2 model using 30% salient neurons of each method.
Metrics are detailed in Section 2.1.

Probeless Probe Max

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

-0.524 -0.510 -0.086 -0.086 -0.052 -0.036 -0.018 -0.049 -0.735 -0.739 -0.103 -0.103

2.1 Preliminaries89

Neuron. We refer to the output of an activation as a neuron. In a transformer model, we consider90

neurons of hidden state vectors of different transformer layers. Formally, given a hidden state vector91

hl ∈ Rd of size d produced by layer l, hl
j denotes its j-th neuron, i.e., the j-th component of hl.92

Concept. A concept c ∈ C is a high-level semantic category that groups each input instance (or93

components of every instance), where C is the set of all concepts. For example, in a language task,94

a sentence can be categorized into 4 types: declarative, interrogative, imperative, and exclamatory,95

where each type is a concept. Words of a sentence can also have concepts like nouns, verbs, adjectives,96

adverbs, etc. In this study, we focus on the situation where all input samples are labelled with concepts.97

Saliency Ranking. A saliency ranking orders the importance of neurons based on some saliency98

metric. For a hidden state vector hl ∈ Rd, sj,c denotes the value of the saliency metric for the j-th99

neuron with respect to a concept c. The saliency ranking (rc(1), rc(2), · · · , rc(d)) is a permutation100

of the indices of neurons (1, 2, · · · , d), where rc(j) < rc(i) if sj,c > si,c. The saliency metric is101

usually predetermined, e.g., the absolute value of each neuron.102

Concept Learning. Given a hidden state vector hl as input, the associated concept can be the output103

of an appended neural network (e.g., several fully connected layers). The parameters of this appended104

neural network can be trained using training samples labelled with concepts.105

Metrics. To establish the causal validity of the attribution, we employ two quantitative metrics:106

prediction accuracy and the model’s predictive probability as a proxy for confidence score. First,107

baseline measurements of both accuracy and confidence for all concepts C without any intervention108

(unmodified model) are established. Post-intervention measurements are recorded for the target109

concept c and auxiliary concepts(other concepts in the dataset) c′. The effectiveness and precision of110

attribution are assessed through two key metrics: (1) the magnitude of performance degradation for111

concept c, and (2) the extent of unintended impact on auxiliary concepts c′. Throughout our analysis,112

we denote the accuracy and confidence metrics for concept c as Acc and Conf respectively, while113

corresponding measurements for auxiliary concepts c′ are represented as CAcc and CConf. For114

evaluating the effect of the interventions on LLMs latent capabilities, we utilize perplexity (PPL)115

and MMLU [Hendrycks et al., 2021] zero-shot accuracy.116

2.2 Concept Erasure117

To assess the performance of a neuronal attribution, concept erasure acts as a critical diagnostic118

intervention to determine the causal effect of identified neurons for a given concept [Dalvi et al.,119

2019b, Dai et al., 2022, Dalvi et al., 2019c, Morcos et al., 2018]. The core idea is that if a neuron120

is salient to a concept, eliminating it should result in the degradation of that concept’s performance121

while causing minimal disruption to other concepts. This can be formalized as follows: given a122

concept-learning model M that maps any input instance x (or part of an instance) to a concept123

M(x) = c c ∈ C, an ideal intervened model M ′
ideal after erasing a target concept c ∈ C should124

satisfy the following property:125

M ′
ideal(x) =

{
̸= M(x) if M(x) = c,

= M(x) if M(x) ̸= c.
126

A popular approach of concept erasure in neuronal analysis literature [Dai et al., 2022, Antverg and127

Belinkov, 2022] is zeroing out specific neurons that are “important” to the target concept. Other128

studies have argued that zeroing out neurons is an overly aggressive intervention that can lead to129

catastrophic degradation in model performance. In Appendix Section D, we provide an ablation130

comparing different activation interventions for concept erasure.131
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2.3 Salient Neurons Extraction132

Problem setup and preparation: We record activations for training samples of different concepts to133

perform neuron interpretation. Specifically, if we want to interpret neurons of hl (hidden state vector134

at layer l), we traverse the training dataset and store the values of hl and the associated concepts135

of all samples into a set H l. The set H l is further partitioned into H l
c for all concepts c ∈ C. Such136

preparation is common in the relevant literature [Dalvi et al., 2019c,b, Antverg and Belinkov, 2022].137

Max activations. Frankle and Carbin [2019] extract high activations as a saliency ranking metric138

relying upon the rationale that maximally activating neurons with respect to a concept c are important139

for that concept. Probe analysis. Dalvi et al. [2019b] train a linear classifier on the hidden represen-140

tations H l
c to predict each concept. The learned model weights are then utilized as a saliency ranking.141

Probeless. Antverg and Belinkov [2022] examine individual neurons, without the need for auxiliary142

classifiers, using the element-wise difference between mean vectors. Details of these approaches are143

provided in Appendix G.144

To assess the effectiveness of the attribution methods, we perform neuron masking on the salient145

neurons identified by each method in a concept erasure task. Table 1 provides the results for this146

experiment. We observe that irrespective of the method used to obtain saliency ranking, a single147

concept eraser using salient neurons causes deterioration in performance across several concepts.148

Max activation causes the highest degree of deterioration in the targeted concept while maintaining149

a comparable deterioration in auxiliary concepts. Based on this finding, we adopt max activation150

ranking for saliency ranking. Moreover, we hypothesize that one reason for such deterioration in151

overall performance is due to the polysemantic nature of neurons.152

3 Polysemanticity153
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Figure 2: Overlap of top 30% salient neurons
across classes.

The polysemanticity of neuronal units, including154

salient neurons that encode information about155

multiple concepts, poses a challenge to neural156

network interpretation and manipulation. In this157

section, we discuss the degree of polysemantic-158

ity in salient neurons in detail.159

Polysemanticity often arises when models must160

represent more features than their capacity al-161

lows or due to specific training paradigms. Lim-162

ited representational space forces neurons to en-163

code multiple unrelated features to maintain per-164

formance [Anthropic, 2023]. Training methods165

like subword tokenization, designed to reduce166

vocabulary size and model complexity, lead to167

context-dependent token splits, causing neural168

activations to encode multiple meanings [Sennrich et al., 2016, Elhage et al., 2022, Meng et al.,169

2022]. Additionally, Lecomte et al. [2024] show that even with sufficient capacity, certain weight170

initializations can induce polysemanticity by placing neurons near multiple conceptual regions.171

Polysemanticity in salient neurons. Given that salient neurons have a strong causal association172

with the concept of interest, their tendency to be mono-semantic should be is high, but we find that173

there is a high degree of polysemanticity in salient neurons. We investigate this by extracting 30%174

salient neurons (i.e.: Max neurons) for different datasets on the GPT-2 model. The results show that175

there is a considerable overlap of salient neurons between concepts (classes) as shown in Figure 2. In176

the case of a two-class dataset IMDB, the overlap of salient neurons, selected by max, is more than177

60%. This shows a high degree of polysemanticity. Consequently, we extrapolate that salient neural178

representations may exist in a polysemantic configuration, wherein a subset of the salient neurons179

encode information through intricate activation patterns.180

The monolithic attribution paradigm potentially oversimplifies the complex, distributed nature of181

neuronal activation as can be seen in polysemanticity [Lecomte et al., 2024, Marshall and Kirchner,182

2024] where a single neuron learns multiple seemingly unrelated concepts and elucidates them at183

different activation values.184
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Figure 3: Neuronal Activation Patterns of six
neurons on AG-News dataset class 1. Neurons
418 and 447 are the highest activating neurons,
neurons 132 and 387 are middle-ranked neu-
rons, and neurons 721 and 365 are the lowest
activating neurons.

Figure 4: Comparison of neurons 480 and 675
showing class-specific activation patterns and
fitted Gaussian curves. Both neurons were
salient across all classes in top 5% on AG-News.

4 Neuronal Activation Patterns185

In this section, we analyze the properties of neuronal activations of the salient neurons (including186

polysemantic) extracted via maximal activation. Similar to [Gurnee et al., 2024], our findings indicate187

that neuronal activations form a Gaussian-like distribution. We further find that salient neurons188

have a distinct Gaussian distribution of activations for different concepts with limited overlap189

with other concept activations.190

Qualitative Evaluation. To visually demonstrate that neuron activations for a concept c follows191

a Gaussian-like distribution, we extract model representations as described in Section 2.1. Using192

saliency ranking rc for a single concept class, we examine neurons from different ranking positions193

in the GPT-2 model on the AG-News dataset: two top-ranked neurons (rc ≤ 2), two middle-ranked194

neurons (rc ≈ d/2), and two bottom-ranked neurons (rc ≥ d− 1). In Figures 3 and 4, we use Kernel195

Density Estimation (KDE) to visualize these distributions. Figure 3 reveals that while the activations196

are Gaussian-like for different concepts, salient neurons demonstrate distinct activation patterns with197

limited overlap, middle-ranked neurons show a higher degree of overlap than the top ones, whereas198

non-salient neurons (bottom two) exhibit the highest overlap in their activation distributions.199

Additionally in Figure 4, we identify and visualize two distinct types of polysemantic neurons200

that appear in the salient sets across all classes, when 5% salient set was selected, in the dataset.201

The first type, exemplified by neuron 480, maintains partially separable activation patterns despite202

being polysemantic, suggesting some degree of class-specific behavior. In contrast, the second type,203

represented by neuron 675, exhibits completely overlapping activation patterns across all classes,204

making it hard to disentangle. To further investigate this phenomenon, Figure 5 presents a broader205

analysis of neurons from the polysemantic subset, identified using a 5% saliency threshold(top 5%206

salient neurons selected for a concept). By examining these neurons’ behavior across four randomly207

selected classes (out of 14 total classes), we observe that most polysemantic neurons exhibit a high208

degree of separability, for some classes, while they respond to multiple classes, they tend to operate209

in partially separable activation ranges, supporting the possibility of meaningful disentanglement.210

Quantitative Evaluation. To quantify the effect of Gaussian-like distribution of neurons for c ∈ C,211

we perform statistical analysis of activations. We computed the skewness, kurtosis [Joanes and212

Gill, 1998] and analyzed the normality of neuronal activations using Kolmogorov-Smirnov (KS)213

test [Massey Jr, 1951]. Table 2 presents the results for distributional properties across all neurons.214

The average skewness is close to 0 across all datasets, indicating strong symmetry (ideal normal215
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Figure 5: Box plot of neural activation of 11 polysemantic neurons (i.e: neurons in the salient group
for all classes, percentage selected: 5% top salient) for 4 randomly selected classes out of 14 classes
of DBPedia-14 dataset.

distribution: 0), and the average kurtosis is close to 3, nearly identical to the expected value for a216

normal distribution (3.0).217

Table 2: Skewness, kurtosis, and Kolmogorov-
Smirnov test results across various datasets.GPT-2
model

Dataset Skewness Kurtosis KS-Test

stanfordnlp/imdb 0.0014 3.6639 1.0000
fancyzhx/dbpedia_14 -0.0007 3.9360 0.9782
dair-ai/emotion 0.0015 3.0198 0.9446
fancyzhx/ag_news -0.0013 3.2060 0.9918
stanfordnlp/sst2 -0.0083 3.2038 1.0000

To quantitatively assess normality, while ac-218

counting for practical significance, we employ219

the KS test with an effect size threshold of 10%.220

This approach tests whether the distribution re-221

mains within a reasonable bound of normality,222

rather than testing for perfect normality, which223

is overly strict for real-world data. For each neu-224

ron, we normalize the activations to zero mean225

and unit variance, then compute the KS statistic226

against a standard normal distribution. The KS227

statistic represents the maximum absolute difference between the empirical and theoretical cumulative228

distribution functions. Using a threshold of 0.1 (allowing a maximum 10% deviation from normal),229

we find that close to 100% of the neurons exhibit practically normal distributions. The combination of230

near-ideal skewness and kurtosis values, visual confirmation through KDEs, and our effect size-based231

KS tests provide strong evidence that the activations follow approximately normal distributions.232

We report quantitative statistics for all layers in Appendix Section I.1, which show that as layer depth233

increases, kurtosis steadily converges toward the Gaussian benchmark of 3.0, skewness remains234

near zero, and the 10% practical-normality score stays close to 1 across the network. A qualitative,235

layer-wise examination in Appendix Section I.2 further reveals that while all layers exhibit class level236

Gaussian-like activations. Early layers show substantial overlap between classes, this is consistent237

with the understanding that earlier layers focus on low-level features, not high level features like class.238

Beginning as early as layers 5–6, distinct class-specific Gaussians emerge and become progressively239

more separable in deeper layers, indicating a transition toward higher-level semantic representations.240

5 Activation Ranges-guided Concept Erasure241

Given that neuronal activations exhibit approximately Gaussian-like distributions with separable242

means, we can interpret and intervene on neurons more precisely than by ablating entire units.243

Specifically, NeuronLens ablates salient neurons identified through saliency ranking only when244

their activation falls within a selected range. The key idea is to identify a range that is strongly245

associated with the target concept c intended for erasure. This range-based approach enables fine-246

grained ablation, thereby reducing unintended interference with non-target concepts. To validate our247

approach, we evaluate the causal efficacy of our method relative to neuron ablation using concept248

erasure experiments and assess the model’s latent capabilities following this intervention.249

To calculate the aforementioned range, the framework utilises the means and standard deviations250

of the neuron activations. Specifically, first the empirical average µ ∈ R and standard deviation251

σ ≥ 0 of the values of the salient neuron for all samples associated with the target concept c ∈ C are252
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Table 3: Evaluation of selected models on IMDB, SST2, AG-News, and DBPedia-14 datasets using
activation range and neuron masking techniques. Performance metrics are calculated using class level
10% trimmed means at the class level. Metrics are detailed in Section 2.1. For GPT-2 and Bert 50%
and for Llama-3.2-3B 30% neurons selected.

Model Dataset Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

IMDB 0.928 0.904 0.928 0.904 -0.190 -0.353 0.059 -0.078 -0.184 -0.360 0.058 0.030
SST2 0.910 0.903 0.910 0.903 -0.051 -0.313 0.031 -0.046 -0.060 -0.330 0.031 0.043
AG-NEWS 0.948 0.929 0.948 0.929 -0.271 -0.590 0.012 -0.074 -0.261 -0.590 0.013 -0.009
Emotions 0.894 0.834 0.917 0.876 -0.291 -0.633 0.013 -0.265 -0.279 -0.635 0.014 -0.069
DBPedia-14 0.992 0.991 0.990 0.989 -0.028 -0.786 0.000 -0.017 -0.015 -0.766 0.000 -0.000

GPT-2

IMDB 0.952 0.939 0.952 0.939 -0.196 -0.188 0.033 0.045 -0.195 -0.197 0.031 0.042
SST2 0.966 0.958 0.966 0.958 -0.165 -0.190 0.025 0.032 -0.159 -0.192 0.025 0.028
AG-NEWS 0.945 0.933 0.945 0.933 -0.871 -0.877 -0.155 -0.163 -0.849 -0.862 -0.063 -0.223
Emotions 0.905 0.892 0.930 0.919 -0.735 -0.738 -0.103 -0.103 -0.737 -0.739 -0.044 -0.046
DBPedia-14 0.993 0.990 0.990 0.988 -0.810 -0.845 -0.154 -0.177 -0.782 -0.825 -0.015 -0.031

Llama

IMDB 0.952 0.939 0.952 0.939 -0.196 -0.188 0.033 0.045 -0.195 -0.197 0.031 0.042
SST2 1.000 0.559 1.000 0.559 -0.760 -0.429 -0.394 -0.295 -0.756 -0.427 -0.384 -0.291
AG-NEWS 1.000 0.744 1.000 0.744 -0.934 -0.725 -0.660 -0.572 -0.935 -0.725 -0.484 -0.454
Emotions 0.815 0.472 0.823 0.477 -0.795 -0.470 -0.696 -0.429 -0.797 -0.469 -0.594 -0.404
DBPedia-14 1.000 0.533 1.000 0.563 -0.992 -0.528 -0.912 -0.445 -0.986 -0.527 -0.663 -0.354

calculated. After that, range is assigned as [µ−τ×σ, µ+τ×σ], where τ > 0 is a hyperparameter to253

make a tradeoff between erasing the target concept c (using larger τ ) and smaller impact on auxiliary254

concepts and general LLM capabilities (using smaller τ ). For this work, τ is set to τ = 2.5, assuming255

a fully Gaussian distribution. This threshold corresponds to a coverage of approximately 98.76%256

of the distribution’s values, providing a slightly conservative bound for range-based interventions.257

Ablations for varying the hyperparameter τ are presented in Appendix Section H, the results indicate258

that targeted concept deteriorates up to 2.4-2.7 τ then plateaus, while auxiliary concepts begin to259

degrade further.260

hl
j(x) =

{
ϕ(x) if hl

j(x) ∈ CR(l, j, c)
hl
j(x) otherwise

CR(l, j, c) = [µ−2.5σ, µ+2.5σ],

µ =
1

|Hl
c|

∑
hl∈Hl

c

hl
j , σ =

√√√√ 1

|Hl
c|

∑
hl∈Hl

c

(hl
j − µ)2

261

262

where CR represents Correlated Range and ϕ() is the activation intervention function, which returns263

zero for the results presented in the main paper.264

Notice that H l
c was defined in problem setup and preparation of section 2.3, which denotes the set of265

hidden state vector hl(xc) at layer l for all training samples xc associated with concept c. Here | · |266

denotes the cardinality of a set.267

5.1 Experimental Setup268

Models. This study employs both encoder and decoder-based models, including fine-tuned BERT269

[Devlin et al., 2019], DistilBERT [Sanh et al., 2020], GPT-2 [Radford et al., 2019], and pretrained270

Llama-3.2-3B [Grattafiori, 2024]. We incorporate our methodology at the penultimate layer; ablation271

for layer selection is provided in the Appendix Section I. The training details for the models are272

provided in Appendix Section E.273

For trained models (BERT, DistilBERT, and GPT-2), a higher proportion of neurons (up to 50%) can274

be ablated with a relatively minor impact on primary task performance and minimal interference with275

auxiliary concepts. This suggests substantial neuronal redundancy, wherein multiple neurons appear276

to encode overlapping features.277

Datasets. We consider various classification based tasks; sentiment analysis (IMDB, [Maas et al.,278

2011]), (SST2, [Socher et al., 2013]), emotion detection (Dair-Ai/Emotions Saravia et al. [2018]),279

news classification (AG-News [Zhang et al., 2015]) and article content categorization (DBPedia-14280

[Zhang et al., 2015]).281
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5.2 Results and Analysis282

Table 3 presents results for the concept removal task across five benchmark datasets (Class-wise283

detailed results are provided in Appendix Section J), demonstrating the effectiveness of our range-284

based masking approach compared to traditional neuron masking.285

On binary classification tasks (IMDB, SST2), both masking approaches show moderate performance286

drops in targeted concepts. This suggests higher redundancy for coarser binary concepts. Multi-class287

classification tasks with fine-grained labels, such as AG-News, Emotions, and DBPedia-14, exhibit288

more pronounced effects under intervention. Range-based masking results in significant degradation289

of primary task performance while preserving auxiliary concept accuracy, this is particularly evident290

in results for AG-News.291

GPT-2, despite being fine-tuned but trained in an autoregressive manner, shows substantially higher292

vulnerability with major drops in AG-NEWS (∆acc = −0.849) and DBPedia-14 (∆acc = −0.782).293

This increased sensitivity may be attributed to its autoregressive training objective, which potentially294

leads to more sequential and less redundant concept encodings. The Llama-3.2-3B model, evaluated295

in a few-shot setting without task-specific training, experiences the most severe degradation across all296

datasets (often exceeding −0.90), suggesting that pre-trained representations without task-specific297

fine-tuning are more vulnerable to targeted neuron interventions.298

Table 4 in Appendix Section C presents the results showing the impact of concept erasure intervention299

on latent LLM capabilities such as fluency and generalization. Neuron masking degrades performance,300

increasing perplexity by (3.8-5.74) and lowering MMLU accuracy. In contrast, activation range301

masking raises perplexity by (0.5-1.1) points only, while preserving or improving MMLU scores302

indicates more precise and less disruptive removal.303

Alternative activation interventions, beyond zeroing out, are explored in Appendix Section D,304

including the dampening method [Suau et al., 2024] and mean replacement [Suau et al., 2021]. While305

these methods aim to manipulate without moving too far from the original representation, they exhibit306

limitations when applied to neurons. Specifically, neuron dampening increases perplexity by 2.9–3.7307

points and often degrades MMLU accuracy (up to -0.045), whereas range-based dampening confines308

perplexity increases to 0.5–0.8 points and occasionally improves MMLU (up to +0.035). Similarly,309

mean replacement leads to substantial degradation when applied to neurons (perplexity increases of310

7.4–8.8), while range-restricted replacement reduces the impact to below 0.7 points.311

However, all approaches suffer from rigid static suppression or substitution, which fail to account312

for concept-specific activation dynamics. To address this issue, we introduce a novel adaptive313

dampening technique. This method modulates suppression in proportion to each activation’s314

deviation from its class-conditional mean, enabling data driven suppression. Adaptive dampening315

achieves the strongest balance across all metrics: perplexity remains low (0.41–0.61), MMLU is316

maintained or improved (up to +0.03), and collateral damage to auxiliary concepts is minimized (CAcc317

drops consistently below -0.3, often under -0.15), outperforming dampening, mean replacement and318

zeroing out approaches.319

These results demonstrate that precise intervention in specific activation ranges, enables significantly320

more targeted concept manipulation while preserving auxiliary concepts, highlighting how conceptual321

information is encoded within specific activation patterns rather than isolated to individual neurons322

and underscoring the importance of activation ranges in capturing neuron-concept relationships.323

Percentage Masking Effect324

As more neurons are masked, performance gains of range-based masking over the neuron masking325

baseline become increasingly evident. Beyond a critical threshold of the number of masked neurons,326

baseline performance degrades sharply, while our method remains stable up to masking of 100%327

neurons. This arises from two factors: (1) models have a large number of polysemantic neurons328

and higher masking rates increase the chance of ablating them, and (2) blocking/manipulating a329

higher percentage of the model’s neurons creates a significant deviation from the original model’s330

behavior. For low-activation neurons with respect to the concept of interest, discrete neuron masking331

i.e. completely masking out a neuron, becomes unreliable, as shown in Figure 6, with a steep332

performance drop after masking 50% neurons. This underscores the need for finer-grained attribution;333

our range-based method offers such precision, preserving model behaviour under extensive masking.334
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Figure 6: Accuracy comparisons between Neuronal Range manipulation (green) and complete neuron
manipulation (orange) methods on GPT-2 model.

The relatively stable results on auxiliary concept when using range-based masking at high percentage335

of neurons reduces the need to find an optimum threshold for the number of neurons to ablate which336

is critical to neuron masking.337

6 Related Work338

While we have discussed closely related approaches in Section 2, here, we briefly review additional339

relevant techniques. Circuit discovery identifies groups of neurons that jointly encode concepts,340

providing a structured view of model behavior [Marks et al., 2024, Conmy et al., 2023, Olah et al.,341

2020]. However, extracting circuits is computationally intensive and lacks fine-grained neuron-level342

attribution. Gradient-based methods attribute predictions to input features by tracking gradients343

through the network, with integrated gradients [Sundararajan et al., 2017, Dai et al., 2022] being344

a widely used approach. However, they struggle with polysemanticity, as they do not disentangle345

overlapping concepts within neurons. Causal analysis methods intervene on internal components to346

assess their role in encoding concepts. Causal tracing measures the effect of corrupting activations on347

model performance [Vig et al., 2020, Meng et al., 2022], while causal mediation analysis quantifies348

information propagation through neurons [Vig et al., 2020]. Although effective, these techniques349

require costly perturbation experiments. Beyond neuron-level analysis, representation-level methods350

examine hidden states and their relationship to model outputs and concepts [Veldhoen et al., 2016,351

Tenney et al., 2019, Liu et al., 2019]. Sparse probing [Gurnee et al., 2023] compresses hidden352

representations into sparse, interpretable subspaces. While prior work has advanced interpretability,353

most methods rely on discrete neuron-to-concept mappings, which fail to account for polyseman-354

ticity [Sajjad et al., 2022]. Our work extends activation-based approaches by introducing activation355

ranges as the unit of interpretability to enable more precise concept attribution and intervention.356

7 Conclusion357

In this work, we challenged traditional assumptions about neuron interpretability by reframing pol-358

ysemanticity as a resource rather than a limitation in interpreting neurons. Through an in depth359

analysis, we uncovered that neuronal activations for individual concepts exhibit distinct, Gaussian-like360

distributions. This discovery allows for a more precise understanding of how neurons encode multiple361

concepts, enabling us to move beyond coarse, monolithic neuron-to-concept mappings. Building upon362

these insights, we proposed NeuronLens, a novel range-based framework for neuron interpretation363

and manipulation. NeuronLens offers fine-grained control that reduces interference with unrelated364

concepts by attributing specific activation ranges within neurons to individual concepts. Extensive365

empirical evaluations demonstrated that NeuronLens outperforms neuronal attribution methods in366

maintaining concept-specific precision while minimizing unintended side effects. Notably, while367

targeted concept removal remains equally effective when comparing neuron vs range based interven-368

tions, our approach achieves superior preservation of auxiliary concepts without compromising the369

primary goal. An important direction for future work is exploring our range-based method as a metric370

for quantifying polysemanticity in neural networks. This approach may also serve as a diagnostic tool371

to evaluate the effectiveness of sparse autoencoders (SAEs) in disentangling concept representations372

across individual neurons.373
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the checklist: The papers not including the checklist will be desk rejected. The checklist should572

follow the references and follow the (optional) supplemental material. The checklist does NOT count573

towards the page limit.574

Please read the checklist guidelines carefully for information on how to answer these questions. For575

each question in the checklist:576

• You should answer [Yes] , [No] , or [NA] .577

• [NA] means either that the question is Not Applicable for that particular paper or the578

relevant information is Not Available.579

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).580

The checklist answers are an integral part of your paper submission. They are visible to the581

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it582

(after eventual revisions) with the final version of your paper, and its final version will be published583

with the paper.584

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.585

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a586

proper justification is given (e.g., "error bars are not reported because it would be too computationally587

expensive" or "we were unable to find the license for the dataset we used"). In general, answering588

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we589

acknowledge that the true answer is often more nuanced, so please just use your best judgment and590

write a justification to elaborate. All supporting evidence can appear either in the main paper or the591

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification592

please point to the section(s) where related material for the question can be found.593

IMPORTANT, please:594

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",595

• Keep the checklist subsection headings, questions/answers and guidelines below.596

• Do not modify the questions and only use the provided macros for your answers.597

1. Claims598

Question: Do the main claims made in the abstract and introduction accurately reflect the599

paper’s contributions and scope?600

Answer: [Yes]601

Justification: The paper claims that neuronal ranges are better units of interpretability and602

manipulation than neurons. The paper provides extensive ablations across encoder and603

decoder models to support this claim.604

Guidelines:605

• The answer NA means that the abstract and introduction do not include the claims606

made in the paper.607

• The abstract and/or introduction should clearly state the claims made, including the608

contributions made in the paper and important assumptions and limitations. A No or609

NA answer to this question will not be perceived well by the reviewers.610

• The claims made should match theoretical and experimental results, and reflect how611

much the results can be expected to generalize to other settings.612

• It is fine to include aspirational goals as motivation as long as it is clear that these goals613

are not attained by the paper.614

2. Limitations615

Question: Does the paper discuss the limitations of the work performed by the authors?616

Answer: [Yes]617
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Justification: Limitation are outlined in Section B.618

Guidelines:619

• The answer NA means that the paper has no limitation while the answer No means that620

the paper has limitations, but those are not discussed in the paper.621

• The authors are encouraged to create a separate "Limitations" section in their paper.622

• The paper should point out any strong assumptions and how robust the results are to623

violations of these assumptions (e.g., independence assumptions, noiseless settings,624

model well-specification, asymptotic approximations only holding locally). The authors625

should reflect on how these assumptions might be violated in practice and what the626

implications would be.627

• The authors should reflect on the scope of the claims made, e.g., if the approach was628

only tested on a few datasets or with a few runs. In general, empirical results often629

depend on implicit assumptions, which should be articulated.630

• The authors should reflect on the factors that influence the performance of the approach.631

For example, a facial recognition algorithm may perform poorly when image resolution632

is low or images are taken in low lighting. Or a speech-to-text system might not be633

used reliably to provide closed captions for online lectures because it fails to handle634

technical jargon.635

• The authors should discuss the computational efficiency of the proposed algorithms636

and how they scale with dataset size.637

• If applicable, the authors should discuss possible limitations of their approach to638

address problems of privacy and fairness.639

• While the authors might fear that complete honesty about limitations might be used by640

reviewers as grounds for rejection, a worse outcome might be that reviewers discover641

limitations that aren’t acknowledged in the paper. The authors should use their best642

judgment and recognize that individual actions in favor of transparency play an impor-643

tant role in developing norms that preserve the integrity of the community. Reviewers644

will be specifically instructed to not penalize honesty concerning limitations.645

3. Theory assumptions and proofs646

Question: For each theoretical result, does the paper provide the set of assumptions and a647

complete (and correct) proof?648

Answer: [NA]649

Justification: There are no theoretical proofs that require assumptions to be highlighted.650

Guidelines:651

• The answer NA means that the paper does not include theoretical results.652

• All the theorems, formulas, and proofs in the paper should be numbered and cross-653

referenced.654

• All assumptions should be clearly stated or referenced in the statement of any theorems.655

• The proofs can either appear in the main paper or the supplemental material, but if656

they appear in the supplemental material, the authors are encouraged to provide a short657

proof sketch to provide intuition.658

• Inversely, any informal proof provided in the core of the paper should be complemented659

by formal proofs provided in appendix or supplemental material.660

• Theorems and Lemmas that the proof relies upon should be properly referenced.661

4. Experimental result reproducibility662

Question: Does the paper fully disclose all the information needed to reproduce the main ex-663

perimental results of the paper to the extent that it affects the main claims and/or conclusions664

of the paper (regardless of whether the code and data are provided or not)?665

Answer: [Yes]666

Justification: Experimental setup is provided in Section 5.1 and training details are provided667

in Appendix Section E668

Guidelines:669
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• The answer NA means that the paper does not include experiments.670

• If the paper includes experiments, a No answer to this question will not be perceived671

well by the reviewers: Making the paper reproducible is important, regardless of672

whether the code and data are provided or not.673

• If the contribution is a dataset and/or model, the authors should describe the steps taken674

to make their results reproducible or verifiable.675

• Depending on the contribution, reproducibility can be accomplished in various ways.676

For example, if the contribution is a novel architecture, describing the architecture fully677

might suffice, or if the contribution is a specific model and empirical evaluation, it may678

be necessary to either make it possible for others to replicate the model with the same679

dataset, or provide access to the model. In general. releasing code and data is often680

one good way to accomplish this, but reproducibility can also be provided via detailed681

instructions for how to replicate the results, access to a hosted model (e.g., in the case682

of a large language model), releasing of a model checkpoint, or other means that are683

appropriate to the research performed.684

• While NeurIPS does not require releasing code, the conference does require all submis-685

sions to provide some reasonable avenue for reproducibility, which may depend on the686

nature of the contribution. For example687

(a) If the contribution is primarily a new algorithm, the paper should make it clear how688

to reproduce that algorithm.689

(b) If the contribution is primarily a new model architecture, the paper should describe690

the architecture clearly and fully.691

(c) If the contribution is a new model (e.g., a large language model), then there should692

either be a way to access this model for reproducing the results or a way to reproduce693

the model (e.g., with an open-source dataset or instructions for how to construct694

the dataset).695

(d) We recognize that reproducibility may be tricky in some cases, in which case696

authors are welcome to describe the particular way they provide for reproducibility.697

In the case of closed-source models, it may be that access to the model is limited in698

some way (e.g., to registered users), but it should be possible for other researchers699

to have some path to reproducing or verifying the results.700

5. Open access to data and code701

Question: Does the paper provide open access to the data and code, with sufficient instruc-702

tions to faithfully reproduce the main experimental results, as described in supplemental703

material?704

Answer: [No]705

Justification: Datasets used are open source and are referenced in 5.1. Extensive experiment706

settings are provided in Appendix Section E. The code will be open-sourced upon paper707

acceptance.708

Guidelines:709

• The answer NA means that paper does not include experiments requiring code.710

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/711

public/guides/CodeSubmissionPolicy) for more details.712

• While we encourage the release of code and data, we understand that this might not be713

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not714

including code, unless this is central to the contribution (e.g., for a new open-source715

benchmark).716

• The instructions should contain the exact command and environment needed to run to717

reproduce the results. See the NeurIPS code and data submission guidelines (https:718

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.719

• The authors should provide instructions on data access and preparation, including how720

to access the raw data, preprocessed data, intermediate data, and generated data, etc.721

• The authors should provide scripts to reproduce all experimental results for the new722

proposed method and baselines. If only a subset of experiments are reproducible, they723

should state which ones are omitted from the script and why.724
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• At submission time, to preserve anonymity, the authors should release anonymized725

versions (if applicable).726

• Providing as much information as possible in supplemental material (appended to the727

paper) is recommended, but including URLs to data and code is permitted.728

6. Experimental setting/details729

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-730

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the731

results?732

Answer: [Yes]733

Justification: Experimental setup is provided in Section 5.1 and training details are provided734

in Appendix Section E735

Guidelines:736

• The answer NA means that the paper does not include experiments.737

• The experimental setting should be presented in the core of the paper to a level of detail738

that is necessary to appreciate the results and make sense of them.739

• The full details can be provided either with the code, in appendix, or as supplemental740

material.741

7. Experiment statistical significance742

Question: Does the paper report error bars suitably and correctly defined or other appropriate743

information about the statistical significance of the experiments?744

Answer: [No]745

Justification: Our experiments were run once due to the significant computational cost746

associated with our setup (e.g., large model size, dataset scale, activations extraction, and747

model inferences). We do not report error bars or confidence intervals. We provide extensive748

experimentation across different settings, all of which support our claims.749

Guidelines:750

• The answer NA means that the paper does not include experiments.751

• The authors should answer "Yes" if the results are accompanied by error bars, confi-752

dence intervals, or statistical significance tests, at least for the experiments that support753

the main claims of the paper.754

• The factors of variability that the error bars are capturing should be clearly stated (for755

example, train/test split, initialization, random drawing of some parameter, or overall756

run with given experimental conditions).757

• The method for calculating the error bars should be explained (closed form formula,758

call to a library function, bootstrap, etc.)759

• The assumptions made should be given (e.g., Normally distributed errors).760

• It should be clear whether the error bar is the standard deviation or the standard error761

of the mean.762

• It is OK to report 1-sigma error bars, but one should state it. The authors should763

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis764

of Normality of errors is not verified.765

• For asymmetric distributions, the authors should be careful not to show in tables or766

figures symmetric error bars that would yield results that are out of range (e.g. negative767

error rates).768

• If error bars are reported in tables or plots, The authors should explain in the text how769

they were calculated and reference the corresponding figures or tables in the text.770

8. Experiments compute resources771

Question: For each experiment, does the paper provide sufficient information on the com-772

puter resources (type of compute workers, memory, time of execution) needed to reproduce773

the experiments?774

Answer: [Yes]775

Justification: Compute details are provided in Appendix Section F.776
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Guidelines:777

• The answer NA means that the paper does not include experiments.778

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,779

or cloud provider, including relevant memory and storage.780

• The paper should provide the amount of compute required for each of the individual781

experimental runs as well as estimate the total compute.782

• The paper should disclose whether the full research project required more compute783

than the experiments reported in the paper (e.g., preliminary or failed experiments that784

didn’t make it into the paper).785

9. Code of ethics786

Question: Does the research conducted in the paper conform, in every respect, with the787

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?788

Answer: [Yes]789

Justification: The proposed NeuronLens framework enables precise control of model be-790

haviour, benefiting research for model safety and reliability. While this improved understand-791

ing could potentially be misused, the work’s theoretical nature and focus on interpretability792

methods make immediate harmful applications are unlikely793

Guidelines:794

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.795

• If the authors answer No, they should explain the special circumstances that require a796

deviation from the Code of Ethics.797

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-798

eration due to laws or regulations in their jurisdiction).799

10. Broader impacts800

Question: Does the paper discuss both potential positive societal impacts and negative801

societal impacts of the work performed?802

Answer: [Yes]803

Justification: The proposed NeuronLens framework enables precise control of model be-804

haviour, benefiting research for model safety and reliability highlighted in Section 1 of the805

main paper text. In Appendix Section A impact statement is provided.806

Guidelines:807

• The answer NA means that there is no societal impact of the work performed.808

• If the authors answer NA or No, they should explain why their work has no societal809

impact or why the paper does not address societal impact.810

• Examples of negative societal impacts include potential malicious or unintended uses811

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations812

(e.g., deployment of technologies that could make decisions that unfairly impact specific813

groups), privacy considerations, and security considerations.814

• The conference expects that many papers will be foundational research and not tied815

to particular applications, let alone deployments. However, if there is a direct path to816

any negative applications, the authors should point it out. For example, it is legitimate817

to point out that an improvement in the quality of generative models could be used to818

generate deepfakes for disinformation. On the other hand, it is not needed to point out819

that a generic algorithm for optimizing neural networks could enable people to train820

models that generate Deepfakes faster.821

• The authors should consider possible harms that could arise when the technology is822

being used as intended and functioning correctly, harms that could arise when the823

technology is being used as intended but gives incorrect results, and harms following824

from (intentional or unintentional) misuse of the technology.825

• If there are negative societal impacts, the authors could also discuss possible mitigation826

strategies (e.g., gated release of models, providing defenses in addition to attacks,827

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from828

feedback over time, improving the efficiency and accessibility of ML).829
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11. Safeguards830

Question: Does the paper describe safeguards that have been put in place for responsible831

release of data or models that have a high risk for misuse (e.g., pretrained language models,832

image generators, or scraped datasets)?833

Answer: [NA]834

Justification: We do not release any new models or dataset. Neuronlens is a framework835

designed to understand the inner workings of large language models.836

Guidelines:837

• The answer NA means that the paper poses no such risks.838

• Released models that have a high risk for misuse or dual-use should be released with839

necessary safeguards to allow for controlled use of the model, for example by requiring840

that users adhere to usage guidelines or restrictions to access the model or implementing841

safety filters.842

• Datasets that have been scraped from the Internet could pose safety risks. The authors843

should describe how they avoided releasing unsafe images.844

• We recognize that providing effective safeguards is challenging, and many papers do845

not require this, but we encourage authors to take this into account and make a best846

faith effort.847

12. Licenses for existing assets848

Question: Are the creators or original owners of assets (e.g., code, data, models), used in849

the paper, properly credited and are the license and terms of use explicitly mentioned and850

properly respected?851

Answer: [Yes]852

Justification: The datasets and models used in the paper are referenced in Section 5.1853

Guidelines:854

• The answer NA means that the paper does not use existing assets.855

• The authors should cite the original paper that produced the code package or dataset.856

• The authors should state which version of the asset is used and, if possible, include a857

URL.858

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.859

• For scraped data from a particular source (e.g., website), the copyright and terms of860

service of that source should be provided.861

• If assets are released, the license, copyright information, and terms of use in the862

package should be provided. For popular datasets, paperswithcode.com/datasets863

has curated licenses for some datasets. Their licensing guide can help determine the864

license of a dataset.865

• For existing datasets that are re-packaged, both the original license and the license of866

the derived asset (if it has changed) should be provided.867

• If this information is not available online, the authors are encouraged to reach out to868

the asset’s creators.869

13. New assets870

Question: Are new assets introduced in the paper well documented and is the documentation871

provided alongside the assets?872

Answer: [Yes] .873

Justification: The paper provides a framework (NeuronLens) for understanding a large874

language model’s internal workings. The methodology is defined in section 5.875

Guidelines:876

• The answer NA means that the paper does not release new assets.877

• Researchers should communicate the details of the dataset/code/model as part of their878

submissions via structured templates. This includes details about training, license,879

limitations, etc.880
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• The paper should discuss whether and how consent was obtained from people whose881

asset is used.882

• At submission time, remember to anonymize your assets (if applicable). You can either883

create an anonymized URL or include an anonymized zip file.884

14. Crowdsourcing and research with human subjects885

Question: For crowdsourcing experiments and research with human subjects, does the paper886

include the full text of instructions given to participants and screenshots, if applicable, as887

well as details about compensation (if any)?888

Answer: [NA]889

Justification: No crowdsourcing is performed for this work.890

Guidelines:891

• The answer NA means that the paper does not involve crowdsourcing nor research with892

human subjects.893

• Including this information in the supplemental material is fine, but if the main contribu-894

tion of the paper involves human subjects, then as much detail as possible should be895

included in the main paper.896

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,897

or other labor should be paid at least the minimum wage in the country of the data898

collector.899

15. Institutional review board (IRB) approvals or equivalent for research with human900

subjects901

Question: Does the paper describe potential risks incurred by study participants, whether902

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)903

approvals (or an equivalent approval/review based on the requirements of your country or904

institution) were obtained?905

Answer: [NA]906

Justification: There are no human study participants for this work.907

Guidelines:908

• The answer NA means that the paper does not involve crowdsourcing nor research with909

human subjects.910

• Depending on the country in which research is conducted, IRB approval (or equivalent)911

may be required for any human subjects research. If you obtained IRB approval, you912

should clearly state this in the paper.913

• We recognize that the procedures for this may vary significantly between institutions914

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the915

guidelines for their institution.916

• For initial submissions, do not include any information that would break anonymity (if917

applicable), such as the institution conducting the review.918

16. Declaration of LLM usage919

Question: Does the paper describe the usage of LLMs if it is an important, original, or920

non-standard component of the core methods in this research? Note that if the LLM is used921

only for writing, editing, or formatting purposes and does not impact the core methodology,922

scientific rigorousness, or originality of the research, declaration is not required.923

Answer: [No]924

Justification: LLM was only used to help with editing texts.925

Guidelines:926

• The answer NA means that the core method development in this research does not927

involve LLMs as any important, original, or non-standard components.928

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)929

for what should or should not be described.930
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A Impact Statement931

This work advances neural network interpretability by providing a fine-grained understanding of932

concept encoding in language models. The proposed NeuronLens framework enables precise control933

of model behavior, benefiting research in model safety and reliability. While this improved under-934

standing could potentially be misused, the work’s theoretical nature and focus on interpretability935

methods makes immediate harmful applications unlikely.936

B Limitations937

While NeuronLens can disentangle polysemanticity to a degree using Gaussian Like Distribution,938

it is unable to completely disentangle concepts encoded in the polysemantic neurons, because there939

still is a significant overlap in the distributions of concepts in activations. Additionally, in this work,940

we use τ to be a fixed value of 2.5 to make the comparison of approaches fair, but τ selection can be941

optimized to be more sophisticated. We also get results primarily from the penultimate layer, and942

not the intermediate or earlier layers, however, we do give ablation and rationale for this choice in943

Appendix I944

C General LLM Capabilities945

We evaluate the general capabilities of large language models (LLMs) using the MMLU benchmark946

[Hendrycks et al., 2021] and perplexity scores on Wikipedia texts [Foundation]. Table 4 presents the947

comparative performance of neuron masking and activation range masking. Neuron masking leads to948

notable increases in perplexity, exceeding 3 points in the best case, whereas range masking results in949

a maximum increase of only 1.1. In terms of MMLU accuracy, neuron masking consistently reduces950

performance across all settings, while range masking preserves or improves performance in most951

cases, with degradation observed in only one instance.952

Table 4: Evaluation of LLMs latent capabilities using Wikipedia for perplexity and zeroshot MMLU
for testing generalisation capabilities. Llama-3.2-3B model

Dataset Base Values Neuron Masking Activation Range Masking

Perplexity MMLU Perplexity MMLU Perplexity MMLU

IMDB 7.007 0.530 10.990 0.515 7.550 0.530
SST2 7.007 0.530 11.688 0.510 8.150 0.537
AG-NEWS 7.007 0.530 12.757 0.510 8.022 0.533
Emotions 7.007 0.530 11.630 0.526 8.063 0.526
DBPedia-14 7.007 0.530 12.230 0.507 7.903 0.535

D Activation Intervention953

In the main text, we primarily presented results using a “zeroing out” strategy for neuron manipula-954

tion. This approach was chosen to compare neuron manipulation against range-based manipulation.955

However, zeroing out is considered a suboptimal strategy [Suau et al., 2024]. The primary concern956

with standard zeroing-out approaches is that they distort the activation distribution significantly,957

diverging from that of the original model. However, our range-based method selectively zeroes out958

only a narrow slice of the activation spectrum, thereby mitigating the adverse effects associated with959

hard erasure.960

In this section, we explore alternative, more optimized strategies for concept removal. We also961

introduce a novel range-based scaling strategy that has demonstrated superior results.962

Below, we explore various activation intervention strategies, comparing traditional neuron-level963

approaches with the nuanced range-based technique. Our comprehensive evaluation reveals that964

range-based manipulations consistently outperform neuron interventions across multiple metrics,965

with significantly less disruption to the model’s general capabilities.966

Among all techniques examined, our novel adaptive dampening approach emerges as the most967

effective, maintaining targeted concept suppression while minimizing collateral impact on auxiliary968
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concepts and preserving overall language modelling capabilities. This pattern holds true across969

different intervention methods including zeroing out, dampening, and mean replacement strategies.970

D.1 Dampening971

In their work, Suau et al. [2024] propose using a dampening function rather than setting neuron972

activations to zero outright. This approach, referred to as DAMP, corresponds to a specific choice973

of the intervention function ϕ(x) = αx, where 0 ≤ α ≤ 1. In this formulation, the activations974

of selected neurons are scaled down by a factor α instead of being completely suppressed. Here,975

x represents neuron activation. The rationale behind dampening is that a fixed intervention (like976

zeroing out) can disrupt the LLM’s inference dynamics, especially when a large number of neurons977

(k) are involved, thereby limiting its effectiveness. Dampening offers a less destructive intervention978

by allowing contextual signals to continue passing through the network. This, in turn, permits979

intervention on a larger set of expert neurons, potentially achieving stronger mitigation of the targeted980

concept.981

Table 5: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Dampening factor used is a = 0.125. Acc represents
class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to average
accuracy and average class prediction probability across other classes, respectively. The Base Values
indicate the baseline model performance, while Neuron Masking and Activation Range Masking show
deviations from the baseline performance. PPL ∆ and MMLU ∆ show changes in perplexity and
MMLU scores, respectively.

Class Base Values Neuron Masking (Deviations) Activation Range Masking (Deviations)

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆ Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -0.919 -0.545 -0.281 -0.309 3.161 -0.020 -0.924 -0.545 -0.276 -0.285 0.640 -0.010
Class 1 1.000 0.526 1.000 0.567 -0.988 -0.467 -0.246 -0.270 3.578 -0.015 -0.805 -0.466 -0.193 -0.206 0.725 0.015
Class 2 1.000 0.441 1.000 0.575 -0.864 -0.391 -0.461 -0.323 2.891 -0.030 -0.869 -0.389 -0.346 -0.282 0.718 0.005
Class 3 1.000 0.461 1.000 0.573 -0.974 -0.439 -0.411 -0.346 3.036 -0.025 -0.970 -0.438 -0.282 -0.283 0.653 0.010
Class 4 1.000 0.839 1.000 0.541 -0.382 -0.597 -0.367 -0.317 2.997 0.000 -0.382 -0.597 -0.334 -0.284 0.691 0.020
Class 5 1.000 0.339 1.000 0.568 -0.970 -0.326 -0.239 -0.246 3.503 0.010 -0.970 -0.325 -0.197 -0.187 0.810 0.015
Class 6 1.000 0.810 1.000 0.545 -0.233 -0.638 -0.194 -0.276 3.126 -0.010 -0.241 -0.637 -0.174 -0.203 0.697 -0.010
Class 7 1.000 0.595 1.000 0.562 -0.210 -0.382 -0.206 -0.226 3.037 0.000 -0.179 -0.376 -0.123 -0.143 0.546 0.015
Class 8 1.000 0.417 1.000 0.574 -0.310 -0.416 -0.335 -0.297 3.001 0.020 -0.346 -0.416 -0.200 -0.187 0.624 0.015
Class 9 1.000 0.526 1.000 0.567 -0.820 -0.465 -0.327 -0.264 3.369 -0.030 -0.809 -0.463 -0.213 -0.189 0.596 0.000
Class 10 1.000 0.505 1.000 0.569 -0.691 -0.466 -0.389 -0.314 3.732 0.000 -0.696 -0.465 -0.267 -0.198 0.695 -0.015
Class 11 1.000 0.497 1.000 0.569 -0.873 -0.432 -0.472 -0.289 3.070 -0.030 -0.865 -0.427 -0.335 -0.205 0.594 -0.015
Class 12 1.000 0.573 1.000 0.563 -0.720 -0.452 -0.295 -0.221 3.410 -0.045 -0.723 -0.451 -0.190 -0.163 0.595 0.035
Class 13 1.000 0.567 1.000 0.564 -0.951 -0.537 -0.226 -0.189 2.995 0.000 -0.955 -0.536 -0.157 -0.150 0.672 0.005

Table 5 presents a comparative analysis of two intervention strategies, neuron masking and activation982

range masking, when employing the Dampening technique with α = 0.5. The evaluation spans 14983

classes and utilizes the metrics: accuracy (Acc), confidence (Conf), class-wise accuracy (CAcc),984

class-wise confidence (CConf), alterations in perplexity (PPL), and MMLU score.985

A consistent trend emerges across the primary metrics (Acc, Conf, CAcc, and CConf), where986

activation range masking demonstrates superior performance over neuron masking. Interventions987

based on activation ranges lead to a notably smaller decline in the accuracy and confidence associated988

with auxiliary concepts. For example, in Class 3, while neuron masking results in an accuracy drop of989

-0.974 in the targeted class and auxiliary class accuracy decrease of -0.411, activation range masking,990

despite a comparable accuracy reduction in the targeted class (-0.970), shows a less severe impact on991

auxiliary class accuracy (-0.283). This pattern of activation range masking better preserves auxiliary992

class performance, is evident across all evaluated classes.993

Examining the broader effects on language modeling capabilities reveals significant distinctions994

between the two approaches. Neuron masking results in a considerable rise in perplexity (PPL),995

with increases ranging from +2.891 to +3.732 across all the classes. Furthermore, it tends to cause996

more pronounced negative shifts in MMLU scores, reaching as low as -0.045. Conversely, activation997

range masking results in substantially smaller increments in perplexity, falling within the +0.546 to998

+0.810 range, and frequently results in improved or minimally altered MMLU scores, with gains up999

to +0.035.1000

D.2 Mean Replacement1001

Another approach of activation replacement discussed in the literature[Suau et al., 2021] is replacing1002

it with the mean activation value. We provide the results for this type of replacement in Table 6.1003
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The mean replacement strategy corresponds to setting the intervention function to ϕ(x) = µ, where1004

µ is the mean activation of the neuron x computed over a general next-token prediction task on the1005

Wikipedia[Foundation].1006

Table 6: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Mean Activation µ is used as replacement value. Acc
represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to
average accuracy and average class prediction probability across other classes, respectively. The
Base Values indicate the baseline model performance, while Neuron Masking and Activation Range
Masking show deviations from the baseline performance. PPL ∆ and MMLU ∆ show changes in
perplexity and MMLU scores, respectively.

Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆ Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -1.000 -0.576 -0.685 -0.554 7.681 -0.025 -1.000 -0.576 -0.551 -0.545 0.687 -0.005
Class 1 1.000 0.526 1.000 0.567 -1.000 -0.526 -0.554 -0.550 8.437 -0.030 -1.000 -0.526 -0.356 -0.517 0.583 0.015
Class 2 1.000 0.441 1.000 0.575 -0.995 -0.441 -0.697 -0.556 7.567 -0.015 -0.995 -0.440 -0.574 -0.536 0.520 -0.010
Class 3 1.000 0.461 1.000 0.573 -1.000 -0.461 -0.766 -0.561 8.005 -0.015 -1.000 -0.461 -0.538 -0.534 0.543 0.010
Class 4 1.000 0.839 1.000 0.541 -1.000 -0.838 -0.724 -0.528 8.239 0.010 -0.995 -0.838 -0.502 -0.503 0.565 0.005
Class 5 1.000 0.339 1.000 0.568 -1.000 -0.339 -0.616 -0.551 7.753 0.010 -1.000 -0.339 -0.382 -0.510 0.552 0.005
Class 6 1.000 0.810 1.000 0.545 -0.313 -0.805 -0.549 -0.531 7.880 -0.005 -0.292 -0.805 -0.336 -0.499 0.547 0.020
Class 7 1.000 0.595 1.000 0.562 -1.000 -0.592 -0.491 -0.535 7.413 -0.010 -0.995 -0.591 -0.267 -0.449 0.462 0.000
Class 8 1.000 0.417 1.000 0.574 -0.928 -0.414 -0.632 -0.556 7.688 0.015 -0.934 -0.414 -0.298 -0.489 0.495 0.015
Class 9 1.000 0.526 1.000 0.567 -1.000 -0.526 -0.611 -0.544 8.057 -0.035 -1.000 -0.526 -0.370 -0.482 0.467 0.015
Class 10 1.000 0.505 1.000 0.569 -0.998 -0.505 -0.642 -0.558 8.791 -0.020 -0.998 -0.505 -0.406 -0.485 0.484 0.005
Class 11 1.000 0.497 1.000 0.569 -1.000 -0.497 -0.719 -0.543 7.903 0.025 -1.000 -0.497 -0.447 -0.459 0.397 -0.005
Class 12 1.000 0.573 1.000 0.563 -0.904 -0.572 -0.629 -0.543 8.046 -0.005 -0.896 -0.571 -0.375 -0.484 0.425 0.000
Class 13 1.000 0.567 1.000 0.564 -1.000 -0.566 -0.526 -0.533 7.543 -0.025 -0.998 -0.566 -0.341 -0.481 0.464 -0.010

In Table 6, we assess the effect of mean replacement using both neuron masking and activation1007

range masking. In every class, neuron masking results in more severe degradation than range-based1008

masking across all auxiliary and general metrics.1009

Across metrics (Acc, Conf, CAcc, and CConf), activation range masking consistently outperforms1010

neuron masking. The degradation in accuracy and confidence of auxiliary concepts is significantly1011

lower under range-based interventions. For instance, in Class 3, neuron masking causes a drop1012

of -1.000 in Acc and -0.766 in CAcc, whereas activation range masking yields a similar Acc drop1013

(-1.000) but a substantially smaller decline in CAcc (-0.538). A similar pattern repeats across all1014

classes; for example, in Class 0, neuron masking results in CAcc of -0.685 while activation range1015

masking yields -0.551. In Class 7, neuron masking shows a CAcc of -0.491 compared to -0.267 for1016

activation range masking.1017

Beyond auxiliary class performance, we observe substantial differences in how the two masking1018

methods affect general language modelling capabilities. Neuron masking leads to a large increase in1019

perplexity (PPL), ranging from +7.413 to +8.791 which is catastrophic, across classes, and induces1020

more negative shifts in MMLU scores (as low as -0.035 for Class 9, and also for Class 0 with -0.025,1021

Class 1 with -0.030, Class 10 with -0.020, and Class 13 with -0.025). In contrast, activation range1022

masking results in substantially smaller increases in perplexity (+0.397 to +0.687) and often yields1023

improved or near-zero changes in MMLU scores (up to +0.020 for Class 6, and several positive1024

values like +0.015 for Class 1, Class 8, and Class 9).1025

D.3 Adaptive Dampening1026

We propose a novel replacement method in which the intervention function ϕ(x) applies runtime-1027

controlled dampening based on the distance of the observed activation x from the center of a1028

predefined activation range. Specifically, the dampening factor a(x) is linearly scaled according1029

to the distance of x from the mean µ of the neuron’s activation distribution, within the range1030

[µ− 2.5σ, µ+ 2.5σ].1031

Let β ∈ [0, 1] denote the maximum dampening factor applied at the range boundaries. Then:1032

a(x) = β · |x− µ|
2.5σ

, and ϕ(x) = a(x) · x.

This ensures that when x = µ (the center of the range), a(x) = 0 and the activation is fully suppressed1033

via ϕ(x) = 0. At the boundaries (x = µ±2.5σ), a(x) = β, and the activation is minimally dampened.1034

Values within the range are scaled proportionally based on their normalized distance from the mean.1035

This adaptive dampening mechanism suppresses values near the mean while preserving those closer1036

to the range edges.1037
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The dampening factor β can be optimized for different neurons based on the concept information that1038

neuron provides. For this work, we use β = 0.5 across all neurons.1039

Table 7: Evaluation of Llama-3.2-3B on a DBPedia-14 dataset using neuron and range masking
techniques. 30% neurons were selected. Adaptive Dampening factor used is β = 0.5. Acc represents
class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to average
accuracy and average class prediction probability across other classes, respectively. The Base Values
indicate the baseline model performance, while Neuron Masking and Activation Range Masking show
deviations from the baseline performance. PPL ∆ and MMLU ∆ show changes in perplexity and
MMLU scores, respectively.

Class Base Values Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -0.927 -0.543 -0.215 -0.217 0.487 -0.015
Class 1 1.000 0.526 1.000 0.567 -0.791 -0.451 -0.134 -0.109 0.543 0.000
Class 2 1.000 0.441 1.000 0.575 -0.828 -0.380 -0.277 -0.215 0.540 -0.010
Class 3 1.000 0.461 1.000 0.573 -0.958 -0.432 -0.230 -0.214 0.492 0.010
Class 4 1.000 0.839 1.000 0.541 -0.346 -0.579 -0.261 -0.218 0.521 0.015
Class 5 1.000 0.339 1.000 0.568 -0.960 -0.319 -0.140 -0.116 0.609 -0.015
Class 6 1.000 0.810 1.000 0.545 -0.236 -0.613 -0.130 -0.122 0.524 -0.010
Class 7 1.000 0.595 1.000 0.562 -0.243 -0.388 -0.108 -0.080 0.408 0.005
Class 8 1.000 0.417 1.000 0.574 -0.440 -0.414 -0.152 -0.088 0.465 0.030
Class 9 1.000 0.526 1.000 0.567 -0.799 -0.459 -0.182 -0.131 0.445 0.005
Class 10 1.000 0.505 1.000 0.569 -0.684 -0.451 -0.222 -0.130 0.513 -0.010
Class 11 1.000 0.497 1.000 0.569 -0.836 -0.420 -0.308 -0.155 0.440 -0.005
Class 12 1.000 0.573 1.000 0.563 -0.720 -0.451 -0.172 -0.095 0.444 0.025
Class 13 1.000 0.567 1.000 0.564 -0.941 -0.530 -0.142 -0.098 0.502 0.010

In Table 7 we evaluate the adaptive dampening variant of the replacement function. This approach1040

outperforms both neuron masking and static activation masking across all metrics.1041

In auxiliary class metrics, adaptive dampening yields much smaller degradation. Auxilary class1042

accuracy (CAcc) and confidence (CConf) show significantly reduced drops compared to other1043

methods. For example, in Class 0, CAcc drops only −0.215 compared to −0.685 under neuron1044

masking and −0.551 under hard activation masking. The effect is consistent across classes, with1045

most CAcc and CConf drops staying well below −0.3, and in many cases below −0.15.1046

Language modeling metrics show this approach to be exceptionally efficient. Perplexity increases1047

are minimal, remaining within +0.408 to +0.609, substantially lower than all hard-masking variants.1048

MMLU deltas also stay close to zero, with several classes showing improvement (e.g., Class 8:1049

+0.030, Class 4: +0.015). Notably, no class suffers significant MMLU degradation.1050

E Training Details1051

For BERT, DistilBERT, and Llama, we utilize pretrained models. Since BERT, and DistilBert are1052

not inherently trained as a conversational agent, we use top-performing fine-tuned models from the1053

Hugging Face repository. For the Llama model, few-shot prompt completion is employed to predict1054

class labels. This involves providing a small number of training samples from the dataset to guide the1055

model’s predictions.1056

For GPT-2, we fine-tune the pretrained model across all datasets for three epochs. The input sequence1057

is constructed by concatenating the text with a <sep> token, followed by the class label, and ending1058

with an <eos> token. During training, the loss is back-propagated only for the class label token, while1059

all other tokens are assigned a skip label (-100). Additionally, all class labels are added to the model’s1060

dictionary as special single-token entries.1061

In the case of Bert-based models, record the activation of the CLS token, In the case of GPT-21062

and Llama models, we record the last token output when the class token is being predicted. The1063

intervention is applied to the appropriate token on the residual stream.1064

Dataset Preprocessing for Llama For Llama we process whole datasets in few shout settings and1065

only curate 2000 samples per class, where the model prediction was correct.1066
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F Compute Details1067

All experiments, including activation extraction and interventions on large language models (LLMs),1068

were conducted using an NVIDIA RTX 3090 GPU equipped with 24GB of VRAM. 64GB RAM.1069

G Saliency details1070

Max activations. Frankle and Carbin [2019] extract high neural activations as a saliency ranking1071

metric relying upon the rationale that maximally activating neurons are salient as these neurons play a1072

critical role in controlling the model’s output, highlighting their importance for a concept c.To identify1073

them, the column-wise mean of absolute neuronal activations in H l
c, H l

c is defined in Section2.3, is1074

computed, given that high negative activations also carry significant signals [Voita et al., 2023]. The1075

magnitude of the means is then considered as a ranking for concept c.1076

Probe analysis. Dalvi et al. [2019b] train a linear classifier on the hidden representations H l
c to1077

distinguish between concepts. The learned model weights are then utilized as a saliency ranking.1078

This process involves learning a weight matrix W ∈ Rd×|c|, where d is the hidden dimension and |c|1079

is the number of concept classes. The absolute weight values of each row in the weight matrix are1080

used as a ranking for the importance of each neuron for a given concept. To prevent the emergence of1081

redundant solutions characterized by minimal variations in the weights, the probe is trained using the1082

elastic regularization technique.1083

Probeless. Antverg and Belinkov [2022] examine individual neurons, without the need for auxiliary1084

classifiers, using the element-wise difference between mean vectors. The element-wise difference1085

between mean vectors is computed as r =
∑

c,c′∈C |q(c)− q(c′)|, where r ∈ Rd and d is the hidden1086

dimension. The final neuron saliency ranking is obtained by sorting r in descending order.1087

Table 8: Performance drops relative to Baseline configuration (i.e.: unaltered model’s performance)
for three techniques: Probeless, Probe, and Max. All values show the difference from Base values.
Results are for Emotions dataset on the GPT-2 model using 30% salient neurons of each method.
Metrics are detailed in 2.1.

Probeless Probe Max

Class Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

Class 0 -0.738 -0.733 -0.103 -0.097 -0.613 -0.650 -0.010 -0.038 -0.695 -0.751 -0.125 -0.124
Class 1 0.045 0.041 -0.113 -0.112 -0.014 -0.015 -0.010 -0.034 -0.879 -0.882 -0.019 -0.009
Class 2 -0.570 -0.541 -0.052 -0.057 0.017 0.009 -0.347 -0.359 -0.776 -0.736 -0.029 -0.032
Class 3 -0.164 -0.166 -0.035 -0.038 0.078 0.061 -0.047 -0.104 -0.713 -0.714 -0.006 -0.007
Class 4 -0.623 -0.617 -0.087 -0.084 -0.005 -0.010 -0.003 -0.020 -0.754 -0.753 -0.240 -0.248
Class 5 -0.817 -0.714 -0.101 -0.105 -0.206 -0.127 0.003 -0.010 -0.587 -0.601 -0.301 -0.308

H Hyperparameter Ablation1088

For target concept, τ values 0.3− 2.4 show decreasing accuracy/confidence, stabilizing at τ = 2.41089

(accuracy 0.6126). Beyond 2.4, negligible additional degradation occurs, indicating we’ve captured1090

the complete target concept activation range. Importantly, while target performance stabilizes after1091

τ = 2.4, auxiliary task performance declines after τ = 2.7. Complement accuracy stays above 0.931092

until then before dropping to 0.8795 at τ = 4.5. This aligns with normal distribution properties1093

where 95-99% of values fall within ±2.5 standard deviations.1094

I Layer Ablation1095

I.1 Statistical Results1096

We analyze concept level activation distributions across all 12 layers of GPT-2, measuring kurtosis1097

(where a value of 3.0 indicates a Gaussian distribution), skewness (where 0 indicates symmetry), and1098

practical normality in Table 10:1099

These results show that kurtosis values converge toward 3.0 (the Gaussian ideal) as layers progress,1100

skewness values remain near zero across all layers, and practical normality scores are close to 11101
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Table 9: Performance metrics for varying τ values.

τ Acc Conf CAcc CConf
0.3 0.9021 0.8858 0.9452 0.9358
0.6 0.8439 0.8185 0.9424 0.9327
0.9 0.7801 0.7486 0.9391 0.9263
1.2 0.7295 0.6950 0.9340 0.9174
1.5 0.6834 0.6482 0.9337 0.9093
1.8 0.6424 0.6141 0.9331 0.9000
2.1 0.6184 0.5926 0.9327 0.8910
2.4 0.6126 0.5858 0.9314 0.8846
2.7 0.6024 0.5798 0.9280 0.8800
3.0 0.5971 0.5776 0.9234 0.8777
3.3 0.5963 0.5786 0.9173 0.8753
3.6 0.5970 0.5794 0.9097 0.8729
3.9 0.5976 0.5802 0.9020 0.8698
4.2 0.5967 0.5798 0.8908 0.8642
4.5 0.5967 0.5798 0.8795 0.8577

Table 10: Statistical analysis of different layers showing skewness, kurtosis, and Kolmogorov-
Smirnov test results. GPT2 model. AG-News Dataset

Layer Kurtosis Skewness Practical Normality(10%)
1 3.9314 0.0430 0.7913
2 3.7622 -0.0091 0.9525
3 3.4109 -0.0143 0.9870
4 3.5582 -0.0073 0.9801
5 3.6145 0.0051 0.9730
6 3.5318 0.0086 0.9769
7 3.3461 0.0083 0.9880
8 3.2763 0.0037 0.9870
9 3.2267 0.0039 0.9860

10 3.2057 0.0029 0.9899
11 3.2105 -0.0002 0.9912
12 3.2061 -0.0014 0.9919

across all layers. Importantly, if the activations were not clustered into continuous intervals and were1102

in disconnected islands of activations, these would be reflected in the score for the practical normality1103

and other statistical metrics.1104

I.2 Qualitative Results1105

We expanded our visualization approach shown in Figures figs. 7 to 18 in Figure 4) to all layers1106

in the model. The visualizations demonstrate an interesting progression: while all layers exhibit1107

Gaussian-like distributions on the class level, class concepts aren’t separated in the activation spectrum1108

Gaussians of the early layers. This aligns with the understanding that lower layers capture more basic1109

features rather than high-level semantic features like class. However, distinct concept-level Gaussian1110

distributions begin forming as early as layers 5-6, becoming increasingly separable in deeper layers.1111

I.3 Masking Results1112

In Table 11 and Table 12 we provide results of applying both approaches on all layers of GPT-21113

model on Emotions dataset. From the results we can see that: Early layers (1-3) show highly variable1114

and often severe impacts: Layer 1 exhibits minimal effects (∆Acc = −0.113, ∆CAcc = −0.064),1115

while Layers 2-3 show extreme degradation (∆Acc ≈ −0.7, ∆CAcc > −0.5). Middle layers (4-8)1116

demonstrate inconsistent behavior with high variance in impacts. Layer 12, however, achieves an1117

optimal balance: it maintains substantial primary task impact (∆Acc = −0.571) while minimizing1118

auxiliary concept interference (∆CAcc = −0.060). This pattern holds true for both neuron masking1119

and range masking techniques, with range masking showing slightly better preservation of auxiliary1120
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Figure 7: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 1

Figure 8: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 2

Figure 9: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 3

Figure 10: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 4

Figure 11: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 5

Figure 12: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 6

concepts (∆CAcc = −0.045). The mid-range primary task degradation combined with minimal1121

auxiliary impact makes Layer 12 the most suitable for targeted interventions, offering better control1122

and specificity compared to earlier layers.1123
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Figure 13: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 7

Figure 14: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 8

Figure 15: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 9

Figure 16: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 10

Figure 17: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 11

Figure 18: Neuronal Activation Patterns of six
neurons on AG-News dataset. Layer 12
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Table 11: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron
and range masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf
denotes class prediction probability, and CAcc and CConf refer to average accuracy and average
class prediction probability across other classes, respectively. The Base Values indicate the baseline
model performance, while Activation Range Masking and Neuron Masking show deviations from the
baseline performance.

Layer Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

1

Class 0 0.970 0.957 0.915 0.904 -0.029 -0.071 -0.074 -0.100 0.006 0.002 -0.004 -0.005
Class 1 0.933 0.932 0.931 0.913 -0.011 -0.056 -0.090 -0.116 0.001 -0.003 -0.004 -0.004
Class 2 0.901 0.865 0.934 0.924 -0.206 -0.195 -0.052 -0.092 -0.019 -0.015 -0.001 -0.002
Class 3 0.926 0.924 0.932 0.919 -0.128 -0.152 -0.051 -0.090 -0.004 -0.005 -0.001 -0.002
Class 4 0.885 0.867 0.938 0.927 -0.055 -0.084 -0.061 -0.093 -0.016 -0.009 0.002 -0.001
Class 5 0.851 0.786 0.934 0.924 -0.249 -0.217 -0.055 -0.094 0.016 0.013 -0.004 -0.005

2

Class 0 0.970 0.957 0.915 0.904 -0.804 -0.808 -0.389 -0.386 -0.061 -0.133 -0.077 -0.096
Class 1 0.933 0.932 0.931 0.913 0.053 -0.003 -0.819 -0.781 -0.011 -0.049 -0.110 -0.145
Class 2 0.901 0.865 0.934 0.924 -0.868 -0.737 -0.515 -0.519 -0.365 -0.337 -0.077 -0.126
Class 3 0.926 0.924 0.932 0.919 -0.870 -0.805 -0.498 -0.501 -0.215 -0.248 -0.096 -0.153
Class 4 0.885 0.867 0.938 0.927 -0.729 -0.707 -0.461 -0.463 -0.042 -0.077 -0.076 -0.116
Class 5 0.851 0.786 0.934 0.924 -0.845 -0.769 -0.511 -0.508 -0.229 -0.188 -0.106 -0.163

3

Class 0 0.970 0.957 0.915 0.904 -0.896 -0.904 -0.824 -0.832 -0.647 -0.688 -0.517 -0.544
Class 1 0.933 0.932 0.931 0.913 -0.901 -0.916 -0.835 -0.832 -0.568 -0.607 -0.609 -0.630
Class 2 0.901 0.865 0.934 0.924 -0.868 -0.845 -0.838 -0.851 -0.605 -0.600 -0.589 -0.619
Class 3 0.926 0.924 0.932 0.919 -0.868 -0.896 -0.830 -0.840 -0.567 -0.605 -0.567 -0.596
Class 4 0.885 0.867 0.938 0.927 -0.800 -0.811 -0.849 -0.857 -0.502 -0.522 -0.513 -0.544
Class 5 0.851 0.786 0.934 0.924 0.022 0.081 -0.865 -0.881 -0.155 -0.124 -0.561 -0.596

4

Class 0 0.970 0.957 0.915 0.904 -0.650 -0.703 -0.698 -0.764 -0.608 -0.621 -0.499 -0.510
Class 1 0.933 0.932 0.931 0.913 -0.845 -0.884 -0.667 -0.725 -0.491 -0.519 -0.480 -0.491
Class 2 0.901 0.865 0.934 0.924 -0.858 -0.824 -0.772 -0.809 -0.488 -0.497 -0.506 -0.523
Class 3 0.926 0.924 0.932 0.919 -0.700 -0.808 -0.663 -0.739 -0.534 -0.546 -0.512 -0.528
Class 4 0.885 0.867 0.938 0.927 -0.239 -0.514 -0.754 -0.797 -0.304 -0.307 -0.452 -0.471
Class 5 0.851 0.786 0.934 0.924 -0.612 -0.463 -0.692 -0.765 -0.047 -0.038 -0.525 -0.541

5

Class 0 0.970 0.957 0.915 0.904 -0.838 -0.852 -0.492 -0.630 -0.695 -0.688 -0.554 -0.555
Class 1 0.933 0.932 0.931 0.913 -0.387 -0.563 -0.683 -0.714 -0.552 -0.564 -0.605 -0.599
Class 2 0.901 0.865 0.934 0.924 -0.702 -0.700 -0.634 -0.690 -0.472 -0.470 -0.607 -0.605
Class 3 0.926 0.924 0.932 0.919 -0.361 -0.507 -0.615 -0.692 -0.567 -0.575 -0.538 -0.539
Class 4 0.885 0.867 0.938 0.927 -0.873 -0.844 -0.525 -0.650 -0.668 -0.653 -0.594 -0.594
Class 5 0.851 0.786 0.934 0.924 -0.637 -0.573 -0.588 -0.681 -0.069 -0.022 -0.548 -0.553

6

Class 0 0.970 0.957 0.915 0.904 -0.720 -0.775 -0.829 -0.830 -0.484 -0.499 -0.318 -0.322
Class 1 0.933 0.932 0.931 0.913 -0.871 -0.887 -0.750 -0.768 -0.176 -0.195 -0.499 -0.499
Class 2 0.901 0.865 0.934 0.924 -0.895 -0.860 -0.735 -0.773 -0.680 -0.638 -0.335 -0.348
Class 3 0.926 0.924 0.932 0.919 -0.863 -0.884 -0.772 -0.793 -0.418 -0.431 -0.379 -0.381
Class 4 0.885 0.867 0.938 0.927 -0.621 -0.669 -0.743 -0.784 -0.430 -0.435 -0.247 -0.262
Class 5 0.851 0.786 0.934 0.924 -0.143 -0.086 -0.808 -0.831 -0.114 -0.070 -0.474 -0.478

J Class Wise Results1124

Here we provide the complete results for the datasets shown in Table 3. In Table 14 we provide1125

results on IMDB dataset on all selected models. In Table 15 we provide results on SST2 dataset on1126

all selected models. In Table 16 we provide results on Emotions dataset on all selected models. In1127

Table 17 we provide results on DBPedia-14 dataset on all selected models.1128
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Table 12: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron
and range masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf
denotes class prediction probability, and CAcc and CConf refer to average accuracy and average
class prediction probability across other classes, respectively. The Base Values indicate the baseline
model performance, while Activation Range Masking and Neuron Masking show deviations from the
baseline performance.

Layer Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

7

Class 0 0.970 0.957 0.915 0.904 -0.908 -0.901 -0.752 -0.753 -0.527 -0.538 -0.492 -0.498
Class 1 0.933 0.932 0.931 0.913 -0.884 -0.895 -0.743 -0.729 -0.484 -0.509 -0.330 -0.338
Class 2 0.901 0.865 0.934 0.924 -0.866 -0.835 -0.767 -0.765 -0.451 -0.442 -0.336 -0.355
Class 3 0.926 0.924 0.932 0.919 -0.786 -0.819 -0.641 -0.666 -0.445 -0.457 -0.331 -0.346
Class 4 0.885 0.867 0.938 0.927 -0.626 -0.618 -0.810 -0.817 -0.341 -0.335 -0.521 -0.532
Class 5 0.851 0.786 0.934 0.924 0.106 0.147 -0.810 -0.811 0.102 0.107 -0.547 -0.553

8

Class 0 0.970 0.957 0.915 0.904 -0.776 -0.791 -0.209 -0.291 -0.191 -0.312 -0.082 -0.114
Class 1 0.933 0.932 0.931 0.913 -0.585 -0.667 -0.412 -0.441 -0.591 -0.644 -0.199 -0.227
Class 2 0.901 0.865 0.934 0.924 -0.692 -0.716 -0.469 -0.496 -0.560 -0.562 -0.468 -0.486
Class 3 0.926 0.924 0.932 0.919 -0.657 -0.714 -0.415 -0.464 -0.468 -0.503 -0.230 -0.266
Class 4 0.885 0.867 0.938 0.927 -0.501 -0.509 -0.531 -0.569 -0.201 -0.234 -0.258 -0.290
Class 5 0.851 0.786 0.934 0.924 -0.092 -0.050 -0.634 -0.647 0.065 0.058 -0.279 -0.308

9

Class 0 0.970 0.957 0.915 0.904 -0.759 -0.768 -0.311 -0.351 -0.610 -0.661 -0.307 -0.328
Class 1 0.933 0.932 0.931 0.913 -0.570 -0.713 -0.319 -0.346 -0.906 -0.910 -0.267 -0.298
Class 2 0.901 0.865 0.934 0.924 -0.424 -0.520 -0.504 -0.531 -0.635 -0.643 -0.579 -0.595
Class 3 0.926 0.924 0.932 0.919 -0.810 -0.834 -0.501 -0.502 -0.759 -0.772 -0.502 -0.516
Class 4 0.885 0.867 0.938 0.927 -0.358 -0.357 -0.476 -0.481 -0.587 -0.566 -0.519 -0.527
Class 5 0.851 0.786 0.934 0.924 -0.133 -0.101 -0.546 -0.554 0.106 0.104 -0.450 -0.462

10

Class 0 0.970 0.957 0.915 0.904 -0.733 -0.741 -0.105 -0.126 -0.624 -0.659 -0.146 -0.163
Class 1 0.933 0.932 0.931 0.913 -0.389 -0.671 -0.178 -0.209 -0.899 -0.911 -0.254 -0.285
Class 2 0.901 0.865 0.934 0.924 -0.230 -0.513 -0.116 -0.224 -0.699 -0.735 -0.409 -0.451
Class 3 0.926 0.924 0.932 0.919 -0.434 -0.687 -0.081 -0.133 -0.898 -0.905 -0.401 -0.455
Class 4 0.885 0.867 0.938 0.927 -0.489 -0.506 -0.188 -0.256 -0.140 -0.186 -0.063 -0.102
Class 5 0.851 0.786 0.934 0.924 -0.306 -0.243 -0.157 -0.240 0.063 0.010 -0.095 -0.127

11

Class 0 0.970 0.957 0.915 0.904 -0.358 -0.496 -0.382 -0.414 -0.301 -0.441 -0.121 -0.148
Class 1 0.933 0.932 0.931 0.913 -0.800 -0.857 -0.078 -0.123 -0.858 -0.875 -0.128 -0.162
Class 2 0.901 0.865 0.934 0.924 -0.897 -0.861 -0.416 -0.450 -0.901 -0.864 -0.464 -0.500
Class 3 0.926 0.924 0.932 0.919 -0.923 -0.921 -0.427 -0.470 -0.913 -0.914 -0.354 -0.393
Class 4 0.885 0.867 0.938 0.927 -0.152 -0.212 -0.039 -0.075 -0.210 -0.239 -0.181 -0.204
Class 5 0.851 0.786 0.934 0.924 0.047 -0.028 -0.131 -0.173 0.053 0.002 -0.142 -0.159

12

Class 0 0.970 0.957 0.915 0.904 -0.550 -0.603 -0.013 -0.003 -0.542 -0.594 0.005 0.012
Class 1 0.933 0.932 0.931 0.913 -0.526 -0.545 0.001 0.012 -0.521 -0.538 -0.005 -0.004
Class 2 0.901 0.865 0.934 0.924 -0.416 -0.402 0.002 0.006 -0.419 -0.407 0.007 0.006
Class 3 0.926 0.924 0.932 0.919 -0.561 -0.576 -0.007 0.003 -0.561 -0.572 0.000 0.005
Class 4 0.885 0.867 0.938 0.927 -0.655 -0.658 -0.042 -0.034 -0.657 -0.659 -0.011 -0.003
Class 5 0.851 0.786 0.934 0.924 -0.718 -0.672 -0.300 -0.297 -0.718 -0.672 -0.267 -0.266

Table 13: Evaluation of selected models on the AG-News dataset using neuron and range masking
techniques. Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance. For GPT-2 50% and
for Llama-3.2-3B 30% neurons selected.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.945 0.936 0.949 0.927 -0.205 -0.587 0.004 -0.076 -0.198 -0.589 0.007 -0.010
Class 1 0.993 0.988 0.933 0.910 -0.225 -0.659 0.004 -0.077 -0.194 -0.650 0.003 -0.012
Class 2 0.905 0.881 0.962 0.945 -0.300 -0.536 0.014 -0.079 -0.298 -0.542 0.014 -0.009
Class 3 0.949 0.913 0.948 0.935 -0.354 -0.577 0.026 -0.065 -0.353 -0.579 0.025 -0.005

GPT-2

Class 0 0.955 0.951 0.941 0.928 -0.920 -0.926 -0.231 -0.224 -0.919 -0.925 -0.019 -0.008
Class 1 0.986 0.981 0.931 0.917 -0.926 -0.931 -0.253 -0.257 -0.912 -0.916 -0.054 -0.069
Class 2 0.897 0.886 0.960 0.949 -0.696 -0.737 -0.110 -0.132 -0.678 -0.725 -0.097 -0.306
Class 3 0.940 0.916 0.946 0.939 -0.940 -0.916 -0.024 -0.037 -0.887 -0.882 -0.080 -0.510

Llama-3.2-3B

Class 0 1.000 0.936 1.000 0.680 -0.995 -0.934 -0.530 -0.427 -0.995 -0.934 -0.345 -0.306
Class 1 1.000 0.742 1.000 0.744 -0.870 -0.680 -0.615 -0.599 -0.875 -0.681 -0.515 -0.503
Class 2 1.000 0.655 1.000 0.773 -0.895 -0.646 -0.795 -0.634 -0.895 -0.646 -0.655 -0.549
Class 3 1.000 0.642 1.000 0.778 -0.975 -0.641 -0.698 -0.630 -0.975 -0.640 -0.420 -0.459
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Table 14: Evaluation of selected models on the IMDB dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT Class 0 0.930 0.908 0.926 0.901 -0.169 -0.352 0.061 -0.066 -0.163 -0.359 0.059 0.035
Class 1 0.926 0.901 0.930 0.908 -0.211 -0.355 0.057 -0.091 -0.206 -0.361 0.056 0.025

GPT-2 Class 0 0.965 0.941 0.940 0.922 -0.935 -0.922 0.050 0.057 -0.905 -0.901 0.055 0.046
Class 1 0.940 0.922 0.965 0.941 -0.620 -0.667 0.005 0.018 -0.610 -0.657 0.015 0.027

Llama-3.2-3B Class 0 1.000 0.619 1.000 0.500 -0.643 -0.448 -0.515 -0.287 -0.640 -0.446 -0.502 -0.278
Class 1 1.000 0.500 1.000 0.619 -0.877 -0.410 -0.273 -0.304 -0.873 -0.409 -0.265 -0.303

Table 15: Evaluation of selected models on the SST2 dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT Class 0 0.890 0.882 0.930 0.925 -0.058 -0.308 0.029 -0.047 -0.075 -0.329 0.031 0.036
Class 1 0.930 0.925 0.890 0.882 -0.043 -0.318 0.033 -0.045 -0.045 -0.330 0.030 0.050

GPT-2 Class 0 0.950 0.937 0.981 0.978 -0.142 -0.158 0.010 0.012 -0.142 -0.167 0.009 0.010
Class 1 0.981 0.978 0.950 0.937 -0.187 -0.223 0.041 0.053 -0.176 -0.216 0.041 0.046

Llama-3.2-3B Class 0 1.000 0.620 1.000 0.690 -0.532 -0.459 -0.420 -0.424 -0.532 -0.456 -0.404 -0.415
Class 1 1.000 0.690 1.000 0.620 -0.289 -0.379 -0.326 -0.315 -0.284 -0.376 -0.306 -0.301

Table 16: Evaluation of selected models on the Emotions dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.960 0.935 0.901 0.851 -0.241 -0.718 0.013 -0.266 -0.222 -0.718 0.012 -0.055
Class 1 0.942 0.904 0.905 0.861 -0.223 -0.691 0.028 -0.254 -0.213 -0.692 0.032 -0.064
Class 2 0.824 0.723 0.926 0.889 -0.371 -0.533 0.016 -0.284 -0.352 -0.534 0.018 -0.115
Class 3 0.927 0.873 0.916 0.876 -0.247 -0.664 0.010 -0.256 -0.240 -0.667 0.012 -0.057
Class 4 0.884 0.837 0.922 0.880 -0.406 -0.646 0.012 -0.251 -0.402 -0.648 0.012 -0.066
Class 5 0.591 0.566 0.929 0.886 -0.303 -0.392 0.004 -0.299 -0.303 -0.397 0.005 -0.090

GPT-2

Class 0 0.969 0.956 0.913 0.903 -0.695 -0.751 -0.125 -0.124 -0.698 -0.749 -0.009 -0.009
Class 1 0.939 0.938 0.925 0.908 -0.879 -0.882 -0.019 -0.009 -0.879 -0.880 -0.016 -0.015
Class 2 0.902 0.872 0.932 0.923 -0.776 -0.736 -0.029 -0.032 -0.780 -0.739 -0.023 -0.028
Class 3 0.910 0.905 0.932 0.921 -0.713 -0.714 -0.006 -0.007 -0.715 -0.716 -0.002 -0.001
Class 4 0.869 0.854 0.938 0.927 -0.754 -0.753 -0.240 -0.248 -0.754 -0.753 -0.127 -0.133
Class 5 0.857 0.798 0.932 0.923 -0.587 -0.601 -0.301 -0.308 -0.587 -0.601 -0.280 -0.289

Llama-3.2-3B

Class 0 0.950 0.550 0.782 0.455 -0.950 -0.547 -0.655 -0.408 -0.945 -0.547 -0.571 -0.378
Class 1 0.905 0.498 0.804 0.473 -0.855 -0.495 -0.743 -0.433 -0.867 -0.494 -0.607 -0.404
Class 2 0.785 0.421 0.827 0.483 -0.785 -0.420 -0.771 -0.454 -0.785 -0.420 -0.658 -0.436
Class 3 0.790 0.482 0.833 0.476 -0.760 -0.477 -0.635 -0.423 -0.755 -0.476 -0.544 -0.402
Class 4 0.780 0.487 0.829 0.476 -0.780 -0.486 -0.534 -0.365 -0.780 -0.486 -0.444 -0.324
Class 5 0.536 0.296 0.855 0.498 -0.417 -0.284 -0.751 -0.465 -0.429 -0.282 -0.653 -0.434
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Table 17: Evaluation of selected models on the DBPedia-14 dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc
and CConf refer to average accuracy and average class prediction probability across other classes,
respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.972 0.966 0.992 0.991 -0.082 -0.702 0.001 -0.014 -0.076 -0.698 0.001 -0.000
Class 1 0.987 0.986 0.991 0.990 -0.030 -0.778 0.000 -0.017 -0.018 -0.770 0.000 -0.000
Class 2 0.987 0.985 0.991 0.990 -0.239 -0.814 0.001 -0.018 -0.217 -0.806 0.001 -0.000
Class 3 0.997 0.997 0.990 0.989 -0.008 -0.766 0.000 -0.019 -0.001 -0.731 0.000 -0.000
Class 4 0.984 0.983 0.991 0.990 -0.058 -0.777 0.001 -0.018 -0.032 -0.761 0.000 -0.000
Class 5 0.995 0.995 0.990 0.989 -0.007 -0.795 0.000 -0.017 -0.001 -0.771 0.000 -0.000
Class 6 0.975 0.974 0.992 0.991 -0.121 -0.807 0.000 -0.015 -0.112 -0.803 0.000 -0.001
Class 7 0.994 0.994 0.990 0.989 -0.028 -0.789 0.000 -0.017 -0.010 -0.767 0.000 -0.000
Class 8 1.000 1.000 0.990 0.989 -0.001 -0.808 0.000 -0.022 0.000 -0.772 0.000 -0.000
Class 9 0.999 0.998 0.990 0.989 -0.004 -0.837 0.000 -0.019 -0.001 -0.811 0.000 -0.000
Class 10 0.994 0.993 0.990 0.989 -0.025 -0.846 0.000 -0.016 -0.005 -0.831 0.000 -0.000
Class 11 0.997 0.997 0.990 0.989 -0.013 -0.751 0.000 -0.017 -0.001 -0.726 0.000 -0.000
Class 12 0.990 0.990 0.990 0.989 -0.018 -0.772 0.000 -0.017 -0.005 -0.755 0.000 -0.000
Class 13 0.994 0.994 0.990 0.989 -0.009 -0.740 0.001 -0.017 -0.001 -0.721 0.000 -0.000

GPT-2

Class 0 0.985 0.977 0.990 0.989 -0.860 -0.877 -0.133 -0.136 -0.850 -0.869 -0.002 -0.017
Class 1 0.995 0.992 0.990 0.988 -0.500 -0.567 -0.180 -0.192 -0.460 -0.544 -0.023 -0.024
Class 2 0.985 0.980 0.990 0.989 -0.890 -0.904 -0.189 -0.213 -0.880 -0.902 -0.004 -0.010
Class 3 0.995 0.995 0.990 0.987 -0.900 -0.933 -0.145 -0.143 -0.900 -0.927 -0.008 -0.017
Class 4 0.970 0.969 0.992 0.989 -0.715 -0.773 -0.224 -0.260 -0.695 -0.750 -0.042 -0.062
Class 5 0.995 0.993 0.990 0.988 -0.315 -0.446 -0.127 -0.192 -0.290 -0.432 -0.013 -0.025
Class 6 0.965 0.964 0.992 0.990 -0.925 -0.932 -0.052 -0.062 -0.910 -0.928 -0.006 -0.007
Class 7 1.000 0.998 0.989 0.987 -0.815 -0.865 -0.003 -0.008 -0.775 -0.846 -0.026 -0.057
Class 8 1.000 1.000 0.989 0.987 -0.995 -0.990 -0.148 -0.188 -0.900 -0.932 -0.026 -0.055
Class 9 1.000 1.000 0.989 0.987 -0.975 -0.979 -0.250 -0.268 -0.955 -0.958 -0.020 -0.049
Class 10 0.995 0.993 0.990 0.988 -0.595 -0.685 -0.045 -0.053 -0.590 -0.675 -0.005 -0.011
Class 11 0.985 0.984 0.990 0.988 -0.210 -0.453 -0.094 -0.118 -0.135 -0.396 -0.015 -0.034
Class 12 0.990 0.988 0.990 0.988 -0.930 -0.938 -0.293 -0.309 -0.855 -0.880 -0.013 -0.029
Class 13 1.000 0.999 0.989 0.987 -0.985 -0.986 -0.393 -0.416 -0.945 -0.981 -0.018 -0.044

Llama-3.2-3B

Class 0 1.000 0.586 1.000 0.559 -0.990 -0.584 -0.949 -0.473 -0.990 -0.584 -0.823 -0.441
Class 1 1.000 0.533 1.000 0.563 -1.000 -0.528 -0.870 -0.446 -0.970 -0.528 -0.706 -0.371
Class 2 1.000 0.467 1.000 0.568 -0.995 -0.462 -0.963 -0.477 -0.995 -0.461 -0.838 -0.432
Class 3 1.000 0.460 1.000 0.569 -0.995 -0.459 -0.981 -0.486 -0.995 -0.459 -0.815 -0.420
Class 4 1.000 0.828 1.000 0.539 -0.965 -0.809 -0.981 -0.454 -0.955 -0.808 -0.852 -0.412
Class 5 1.000 0.349 1.000 0.568 -1.000 -0.348 -0.882 -0.429 -0.989 -0.347 -0.585 -0.346
Class 6 1.000 0.809 1.000 0.541 -1.000 -0.787 -0.972 -0.449 -1.000 -0.787 -0.736 -0.366
Class 7 1.000 0.599 1.000 0.558 -0.855 -0.588 -0.918 -0.410 -0.860 -0.586 -0.489 -0.274
Class 8 1.000 0.420 1.000 0.572 -1.000 -0.420 -0.957 -0.467 -1.000 -0.420 -0.660 -0.335
Class 9 1.000 0.527 1.000 0.563 -1.000 -0.524 -0.842 -0.435 -0.995 -0.523 -0.552 -0.320
Class 10 1.000 0.505 1.000 0.565 -0.995 -0.503 -0.907 -0.464 -1.000 -0.503 -0.589 -0.322
Class 11 1.000 0.505 1.000 0.565 -0.975 -0.501 -0.862 -0.416 -0.970 -0.501 -0.579 -0.313
Class 12 1.000 0.560 1.000 0.561 -0.980 -0.545 -0.812 -0.417 -0.975 -0.544 -0.496 -0.310
Class 13 1.000 0.587 1.000 0.559 -0.990 -0.584 -0.722 -0.406 -0.985 -0.584 -0.588 -0.337
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