
PRIME-RL: Async & Decentralized RL Training at
Scale

Mika Senghaas1 Fares Obeid1 Sami Jaghouar1 William Brown1

Jack Min Ong1 Andrew Baker1 Justus Mattern1 Daniel Auras12

Jannik Straube1 Manveer Basra1 Aiman Ismail1 Johannes Hagemann1

Abstract

We present � prime-rl, an open-source framework for large-scale reinforcement
learning (RL). prime-rl is designed to scale seamlessly from a single node to
thousands of GPUs, making it suitable for tinkering, research, and production-
scale training. Tailored for agentic RL, it offers first-class support for multi-
turn interactions and tool use through its asynchronous architecture. Environ-
ments are constructed using the verifiers library and integrated with the
Environments Hub, enabling environment development to remain fully decou-
pled from the training infrastructure. To demonstrate its capabilities, we train
DeepSeek-R1-Distill-Qwen-32B on chain-of-thought (CoT) math reasoning
using 24 NVIDIA H200 GPUs. We measure up to 30K tokens per second in
aggregated throughput and reach a peak MFU of 38.46%.

1 Introduction

Scaling compute for training large language models (LLMs) with reinforcement learning with
verifiable rewards (RLVR) has emerged as the dominant paradigm for improving model performance
in post-training. Models such as OpenAI o3 [13], Grok 4 [22], and DeepSeek R1 [3] demonstrate
that training models via RL for long-context reasoning and agentic tool use greatly enhances their
capabilities, making them more effective both for everyday and specialized tasks.

However, existing open-source frameworks are often complex, monolithic, and designed without
modularity in mind [16]. This can make extensibility difficult, inhibit broad adoption, slow down
individual research projects, and lead to a fragmentation of ecosystem artifacts. In addition, no
framework is designed for the unique requirements set of decentralized RL, including support for
heterogeneous, dynamically-scaling or permissionless compute.

In this report, we present prime-rl, a framework for large-scale reinforcement learning, which
powers our internal post-training pipelines and public permissionless runs. prime-rl is easy-to-use
and hackable, yet performant and scalable enough to facilitate state-of-the-art RL post-training. We
highlight the following features:

1. First-class support for OpenAI-compatible async inference, verifiers environments [2],
and a public Environments Hub to standardize agentic RL training and evaluation

2. Support for end-to-end post-training, including SFT and multi-turn agentic RL

1Prime Intellect, Inc. Correspondence to: johannes@primeintellect.ai
2Partially while at ellamind

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/primeintellect-ai/prime-rl

3. Multi-node deployment with FSDP2 training and vLLM inference backend

4. Naturally asynchronous training for high-throughput performance in decentralized settings

5. Modular and extensible by nature, enabling high research velocity

2 Design & Architecture

2.1 Architecture

Three main abstractions facilitate RL training: the orchestrator, the trainer, and the inference service.

GPU 0 GPU 1

Trainer

GPU 0 GPU 1

Inference

GPU 2 GPU 3GPU 2 GPU 3

GPU 4 GPU 5

GPU 6 GPU 7

GPU 0 GPU 1

GPU 2 GPU 3

Orchestrator

CPU

Consumes batch, updates weights OAI API server + weight updating

Schedules rollout requests

Collects rollout requestsWrites training batch

Notifies of new weights

(+notifies new weights)

Core data and scheduling logic

Figure 1: Architecture. A RL training run involves the coordination of a trainer,
orchestrator and an inference service. The FSDP trainer and vLLM inference run

disaggregated, and can be individually deployed across multiple nodes.

Orchestrator. The orchestrator is a lightweight CPU process that handles the core data and scheduling
logic, serving as an intermediary between the trainer and inference service with bidirectional relays.
In one direction, it collects rollouts from the inference server, assembles them into packed batches,
and dispatches them to the trainer; in the other direction, it relays updated model weights from
the trainer to the inference service. The orchestrator utilizes verifiers environments to abstract
multi-turn rollout generation and scoring, leveraging async OpenAI-compatible inference clients.

Trainer. The trainer is responsible for producing an updated policy model given rollouts and
advantages. We use FSDP 2 [1] as the backend with compatibility for any HuggingFace (HF) model.
FSDP shards model parameters, gradients, and optimizer states, allowing training large models with
data parallelism and minimal GPU memory footprint. The trainer is inspired by torchtitan [10]
and relies on native PyTorch features to implement advanced parallelism techniques, such as tensor,
context or expert parallelism.

Inference Service. The inference service in its simplest form is a standard OpenAI-compatible
server with a vLLM [8] backend. The API specification is extended with three custom endpoints to
enable updating the server with the latest policy: /init_broadcaster is used to initialize a NCCL
process group if the NCCL weight broadcast backend is enabled, /update_weights is used to
update the policy, and /reload_weights is used to reset the weights to the base model in between
experiments. Otherwise, we rely on vLLM’s optimized kernels, parallelism strategies, and scheduling
for fast rollout generation. Given the disaggregated nature of the service architecture, it can be
directly extended to include multiple engines with a shared request pool, allowing operation across
multiple clusters and straightforward integration of alternative inference engines (e.g. SGLang [28],
Tokasaurus [7].

2.2 Data Flow

Here we describe the core data flow within a single training step for prime-rl. At the beginning of
a step, the orchestrator checks whether the inference service policy model should be updated with
the latest training checkpoint. If so, it sends a request /update_weights to trigger replacing vLLM
tensors in-place throughout the inference service. The orchestrator then samples prompts from the

2

data buffer, an abstraction used to define dynamic data sampling strategies, e.g. online difficulty
filtering [27] or difficulty pools [23]. Sampled prompts are sent to the verifiers environment,
which asynchronously schedules rollout generation and scoring. The verifiers environment returns
rollout results, including completions, vLLM logprobs, masks, and rewards, according to the spec
of the environment. Completed rollouts are then added to the data buffer; orchestrator scheduling
of rollouts continues until a sufficiently large batch is ready to be consumed by the trainer, e.g. as
determined by an online difficulty filtering strategy. The orchestrator then shards the batch of rollouts
across DP ranks, collates them into training-ready tensors, and dispatches them to each trainer. Each
FSDP rank consumes the local training batch and processes micro-batches while accumulating a
synchronized gradient. Upon completion of a global batch, the updated policy model is written as
a weight checkpoint to disk, from where it can be loaded by the inference service in future steps.
For asynchronous training, this entire process occurs in multiple parallel channels, staggered by
appropriate offsets (see Section 3.4 for more details). Checkpoints persist on disk only as long as
necessary for the asynchronicity level.

Trainer

Inference

Orchestrator

Consumes batch,

updates weights

OAI API server +

weight updating

Core data and

scheduling logic

Sample

prompts from

data buffer

Request

weight

update

Forward +

Backward

API/

File System

Verifiers

Environment

/v1/chat/completions

v1/completions

/update_weights

Step N

Update

weights

Request

generation

and scoring

Run

inference

Shard +

collate

into batch

API

File System
Request

weight

update

File System

API

Step N+1

If not enough

accepted rollouts

Figure 2: Data Flow. The data flow between the trainer, orchestrator and inference module during a
single training step. We show actions for each module, and their sequential dependencies from

left-to-right. For simplicity, we show a fully synchronous flow and hide non-essential logic.

3 Features

3.1 Verifiers & Environments Hub Integration

prime-rl has first-class support for RL environments developed with the verifiers library and
installed as standalone Python modules via the Environments Hub1. This decouples the development
of RL environments from training abstractions, allowing for quicker development and portability, e.g.
the same environment can be used with prime-rl, verifiers, trl [19], or any other trainer which
adopts support for verifiers environments.

An environment is a lightweight abstraction that encapsulates multi-turn rollout logic with native
tool calling support (search, code execution) or other external system interactions (games, user
simulators), along with dataset preprocessing and reward computation. Conceptually, verifiers
environments for RL training play the same role as datasets for SFT or pre-training; disentangling
environments from training infrastructure yields desirable compositionality and interoperability, as
multiple environments can be straightforwardly grouped into a single “mixture” environment, and
support both online and offline rollout generation (e.g. for use as evaluations). Environments manage
submission of inference requests and state information over the lifetime of a rollout, and return
completed rollouts to the orchestrator. A reward manager abstraction (“Rubric” in verifiers) lives
within the environment and provides configurable control and resources to support a broad range of
reward computation strategies, such as compound reward functions, global state references, LLM
judges, caching of expensive computations, and customizable parallelism strategies.

1URL omitted for double-blind review

3

Environments are built in isolation of training logic and can easily be tested against local or API
models. Once ready for training, they are pushed to the Environments Hub and immediately available
to the prime-rl trainer as installable Python modules. By adopting the verifiers spec, training and
evaluating inside of an environment works directly upon installation without any code modification
in prime-rl.

3.2 End-to-End Post-Training

Modern post-training typically combines supervised fine-tuning (SFT) and reinforcement learning
(RL) [17, 24]. To support this, our framework provides a unified interface for both methods. The SFT
and RL trainers share core modeling components, so any model usable for RL can also serve as an
SFT warm-up, and vice versa. This tight integration streamlines the overall post-training workflow.

3.3 Rayless Multi-Node Training

A key requirement of prime-rl is seamless scalability. It should be frictionless to take a research
idea developed on a single node to production-scale training running on a decentralized cluster with
hundreds of nodes. This motivates the key design choice to use FSDP as the training and vLLM
as the inference backend, and fully decouple those components. Crucially, it removes the need for
custom hardware orchestration logic as both have built-in support for multi-node deployments.

3.4 Decentralized Permissionless Training

Using prime-rl for globally distributed training with permissionless inference workers does not
require any changes to the trainer. The only difference is that the orchestrator does not communicate
with an inference server directly but will instead request rollout completions from an intermediate
scheduler component. The scheduler is responsible for load balancing the incoming rollout requests
into the permissionless inference pool and guarantee that rollout responses have been verified by
TOPLOC [12]. To this end, each worker in the inference pool will serve an extended OpenAI-
compatible spec with additional routes for generating and validating TOPLOC proofs. Each request is
first routed to an inference worker for generation. The generation response, including the associated
TOPLOC proof, is then routed to another worker in the pool for validation.

3.5 Asynchronous Off-Policy Training

In decentralized settings asynchronous execution of trainer and inference becomes a necessity to
avoid long blocking time. For this reason, prime-rl’s trainer and inference run disaggregated, i.e.
on different sets of (possibly non-colocated) GPUs.

At each step, all artifacts are identified by the step count n. For the trainer, this is the gradients gn and
model weights θn, and for the inference service, rollouts (xn, yn). At step 0, the inference service
uses θ0 (base model) to produce (x0, y0). The trainer subsequently uses (x0, y0) to compute g0 to
finally update the model as θ1 ← θ0 − g0.

In synchronous on-policy training, the inference engine stalls after producing (x0, y0) because it
requires θ1 to produce the next rollouts (x1, y1). To prevent this, we allow off-policy training,
which means that the inference service can asynchronously generate rollouts from an old policy
model up to some async_level. For example, if async_level=1, the inference service continues
generating (x1, y1) from θ0, while the trainer is producing θ1 in parallel. An example of such
overlapped, asynchronous computation is shown in Fig 3(a). More generally, for any async_level,
the inference service produces rollouts from θmin(0,n−async_level). In decentralized settings we often
need async_level ≥ 2 to fully hide the communication bottleneck from broadcasting the updated
model weights, as illustrated in Figure 3(b).

3.6 Mixture-of-Experts Support

We support the Mixture-of-Experts (MoE) [15] layer implementation from torchtitan [10]. This
implementation leverages a grouped matrix multiplication kernel for expert execution and provides
support for expert parallelism (EP). To monitor load distribution, we compute and log the maximum
violation load-balancing metric MaxViolation = maxi Loadi−Loadi

Loadi
as described in [20].

4

Trainer

Inference

Consumes batch,

updates weights

OAI API server +

weight updating

...

...

(a) One-Step Off-Policy

Trainer

Inference

Consumes batch,

updates weights

OAI API server +

weight updating

...

...

Broadcast ...

(b) Two-Step Off-Policy

Figure 3: Asynchronous Off-Policy Training. We show the execution graph of one-step (left) and
two-step (right) off-policy training. At step n, the inference engine uses θmin (0,n−async_level). In

colocated settings, one-step off-policy allows to fully overlap training and inference. In decentralized
settings, weight broadcasting may become a bottleneck, requiring higher levels of asynchrony.

3.7 Evals

Evaluation and training are tightly coupled through the use of verifiers, streamlining the process
of evaluating against a wide range of common benchmarks, including AIME [5, 14], SWE-Bench [6],
TerminalBench [18] or τ -bench [26]. Evaluation can be run both as part of an active training (online)
or as a standalone entrypoint (offline). When evaluating online, the orchestrator asynchronously
interleaves eval requests with training requests, effectively hiding any overhead, while providing
useful real-time feedback of the training performance.

4 Training Algorithm

We adopt a token-level [27] loss variant of the AIPO training objective introduced in Llama-RL [21],
and omit the entropy and KL loss terms. At each step, we sample N prompts from our dataset. For
each prompt x, we sample a group of rollouts {yi}Gi and use a verifier to assign scores si to each yi.
Then, the optimization objective is given by

JAIPO(θ) =
1∑N

j=1

∑G
i=1 |y

(j)
i |

N∑
j=1

G∑
i=1

|y(j)
i |∑

t=1

min

(
π(y

(j)
i,t | xj , y

(j)
i,<t)

µ(y
(j)
i,t | xj , y

(j)
i,<t)

, δ

)
Â

(j)
i,t (1)

where µ refers to the policy that generated the rollout and π refers to the current policy. The
token-level advantage is estimated as Âi,t = Si −mean({Si}Gi)O [11] and we use δ = 8.

We found it to be critical to address the following inference-trainer mismatch: Even when π and µ
share the same parameters θ, they can produce significantly different token probabilities, leading
to unexpected distribution shifts that can cause runs to crash multiple days into the experiments.
In our setup, we found it more stable to not recompute logprobs using our training backend, but
instead rely on the logprobs from vLLM directly to estimate µ(y

(j)
i,t | xj , y

(j)
i,<t). In this setup, this is

directly equivalent to including an importance-sampling correction between the trainer and inference
logprobs. For a more thorough investigation we point the reader to [25].

5 Experiments

5.1 Experiment Setup

To showcase prime-rl, we train DeepSeek-R1-Distill-Qwen-32B across 24 H200 GPUs on
math reasoning tasks with prime-rl. We detail the training setup with complete steps to reproduce
and report on training dynamics and efficiency.

Environment. We train on skywork-math2, a single-turn environment with challenging math
problems sourced from Skywork OR1’s training data [4]. For verification we use verifiers native
think parser and boxed-answer extraction and math-verify [9] for final reward assignment. We
filter the data prior to training to exclude overly easy and hard problems.

2URL omitted for double-blind review

5

RL Setup. At each step, we sample 128 prompts and generate 16 rollouts per prompt at temperature
0.7 and 16k maximum context length. We compute gradients with respect to the training objective
given in Equation ??. We perform 160 training steps with a constant learning rate of 1× 10−6.

Hardware Setup. We deploy the run across 24 NVIDIA H200 GPUs. We use a full node of 8 GPUs
for the trainer. All remaining 16 GPUs are used for inference with data parallel size 4 and tensor
parallel size 4 across two nodes. Because the trainer and inference were not distributed around the
world and had decent direct Ethernet based connection, we only require one-step off-policy to overlap
computation and prevent GPU idle time.

5.2 Experiment Results

Training Efficiency. As shown in Figure 4, the system maintained high throughput throughout
training. On the trainer, we achieved a throughput of 11.3K (±1K) tokens per second, while inference
reached 14.4K (±1.3K) tokens per second, highlighting a mild throughput imbalance. Nonetheless,
compute utilization remained high, reaching a peak Model FLOPs Utilization (MFU) of 38.46% on
the trainer. The experiment ran for 64 hours in total, consuming 1,536 GPU hours, with each training
step averaging 22.9 (±3.4) minutes.

0 20 40 60 80 100 120 140 160
Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
in

ut
es

Blocking Time

0 20 40 60 80 100 120 140 160
Steps

0

2500

5000

7500

10000

12500

15000

To
ke

ns
/s

Throughput

0 20 40 60 80 100 120 140 160
Steps

0

5

10

15

20

25

30

35

40

%

MFU

Trainer Inference
Figure 4: Training Efficiency. We sustain high throughput with little idle time

and achieve a peak MFU of 38.46% on the trainer in our experiment setup.

Training Dynamics. Throughout training, the run exhibited stable and healthy learning behavior, as
visible in Figure 5. The gradient norm remains consistent, without signs of vanishing or exploding
gradients. Similarly, the entropy across tokens shows no significant decline, suggesting that the
policy retains exploration and does not prematurely converge. Meanwhile, the reward trends upward,
indicating progressive improvement in performance. Together, these trends reflect a well-behaved
optimization process and steady policy refinement.

0 20 40 60 80 100 120 140 160
Steps

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

Gradient Norm

0 20 40 60 80 100 120 140 160
Steps

0.245

0.250

0.255

0.260

0.265

0.270

0.275

Entropy

0 20 40 60 80 100 120 140 160
Steps

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650
Reward

Figure 5: Training Dynamics. We report key indicators of training stability, including the
gradient norm, entropy and mean reward. The gradient norm and entropy are stable and

non-increasing, while the reward is going up, indicating healthy learning behavior.

6 Summary

In this report, we introduced prime-rl, our open-source framework for large-scale reinforcement
learning (RL). It is a feature-packed and battle-tested RL trainer designed for the age of agentic RL
training and decentralized compute. Its architecture disaggregates training and inference, enabling

6

efficient asynchronous execution. Key features include native integration with verifiers environ-
ments and the Environments Hub, end-to-end post-training (SFT + RL), and native MoE support. We
demonstrate the efficacy and robustness of the framework by training a 32B model on math reasoning
tasks, sustaining high throughput and stable optimization.

7

References
[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-

sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael
Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch
2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph
Compilation. In 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024.

[2] William Brown. Verifiers: Reinforcement Learning with LLMs in Verifiable Environments.
https://github.com/willccbb/verifiers, 2025. Commit abcdefg • accessed DD Mon
YYYY.

[3] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning, 2025.

[4] Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng,
Bo An, Yang Liu, and Yahui Zhou. Skywork Open Reasoner 1 Technical Report, 2025.

[5] Hugging Face H4. AIME 2024, 2024. 30 problems from AIME I & II (2024).

[6] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations, 2024.

[7] Jordan Juravsky, Ayush Chakravarthy, Ryan Ehrlich, Sabri Eyuboglu, Bradley Brown, Joseph
Shetaye, Christopher Ré, and Azalia Mirhoseini. Tokasaurus: An LLM Inference Engine for

8

https://github.com/willccbb/verifiers

High-Throughput Workloads. https://scalingintelligence.stanford.edu/blogs/
tokasaurus/, 2025.

[8] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large
Language Model Serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

[9] Hynek Kydlíček. Math-Verify: Math Verification Library.

[10] Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
Idreos. TorchTitan: One-stop PyTorch native solution for production ready LLM pre-training,
2025.

[11] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding R1-Zero-Like Training: A Critical Perspective, 2025.

[12] Jack Min Ong, Matthew Di Ferrante, Aaron Pazdera, Ryan Garner, Sami Jaghouar, Manveer
Basra, Max Ryabinin, and Johannes Hagemann. TOPLOC: A Locality Sensitive Hashing
Scheme for Trustless Verifiable Inference, 2025.

[13] OpenAI. OpenAI o3 and o4-mini System Card. System card.

[14] OpenCompass. AIME 2025, 2025. 30 problems from AIME 2025-I & II.

[15] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-
Experts Layer. In International Conference on Learning Representations, 2017.

[16] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. HybridFlow: A Flexible and Efficient RLHF Framework.
arXiv preprint arXiv: 2409.19256, 2024.

[17] 5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang
Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu,
Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu,
Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng
Yin, Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan,
Guo Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai,
Haoke Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan
Liu, Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi
Wang, Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan,
Jingxuan Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang,
Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan
Xu, Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu,
Shangtong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu
Yu, Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao
Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan
Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong
Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng
Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing
Wang, Yuntao Li, Yuxuan Zhang, Zezhen Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao,
Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang, Ziqiang Liu,
Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie Huang,
Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie Tang. GLM-4.5: Agentic, Reasoning, and
Coding (ARC) Foundation Models, 2025.

[18] The Terminal-Bench Team. Terminal-Bench: A Benchmark for AI Agents in Terminal Environ-
ments, Apr 2025.

9

https://scalingintelligence.stanford.edu/blogs/tokasaurus/
https://scalingintelligence.stanford.edu/blogs/tokasaurus/

[19] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer Reinforce-
ment Learning. https://github.com/huggingface/trl, 2020.

[20] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-Loss-Free
Load Balancing Strategy for Mixture-of-Experts, 2024.

[21] Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar
Gowda, Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, and Rui
Hou. LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient
Large-scale LLM Training, 2025.

[22] xAI. Grok 4. News announcement.

[23] LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang,
Hailin Zhang, Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang,
Shihua Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song,
Zihan Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao
Tian, Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou,
Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng
Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang,
Xin Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu,
Yuanyuan Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, and Zihao Yue. MiMo:
Unlocking the Reasoning Potential of Language Model – From Pretraining to Posttraining,
2025.

[24] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng
Zhou, and Zihan Qiu. Qwen3 Technical Report, 2025.

[25] Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao. Your
Efficient RL Framework Secretly Brings You Off-Policy RL Training, August 2025.

[26] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A Benchmark
for Tool-Agent-User Interaction in Real-World Domains, 2024.

[27] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming
Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze
Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan
Wang. DAPO: An Open-Source LLM Reinforcement Learning System at Scale, 2025.

[28] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng.
SGLang: Efficient Execution of Structured Language Model Programs, 2024.

10

https://github.com/huggingface/trl

A Reproducibility

The following commands where used to launch the experiments described in Section 5.

Inference (Node 0)
uv run inference \

--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--max -model -len 16384 \
--max -seq -len -to -capture 16384 \
--data -parallel -size 4 \
--tensor -parallel -size 4 \
--data -parallel -size -local 2 \
--data -parallel -address 192.168.0.113 \
--data -parallel -rpc -port 13345

Inference (Node 1)
uv run inference \

--worker -extension -cls
rl_framework.inference.vllm.worker.CheckpointWorker \

--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--max -model -len 16384 \
--max -seq -len -to -capture 16384 \
--data -parallel -size 4 \
--tensor -parallel -size 4 \
--data -parallel -size -local 2 \
--data -parallel -address 192.168.0.113 \
--data -parallel -rpc -port 13345 \
--data -parallel -start -rank 2 \
--headless

Orchestrator
uv run orchestrator \

--client.host 192.168.0.113 \
--num -train -workers 8 \
--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--environment.id skywork -math \
--environment.args ’{" solve_rate_field ":␣

"solve_rate_qwen_r1_distill_32b",␣"min_solve_rate ":␣0.001,␣
"max_solve_rate ":␣0.999} ’ \

--max -steps 500 \
--log.level debug \
--ckpt.interval 50 \
--ckpt.keep 1 \
--monitor.wandb.project prime -rl \
--monitor.wandb.name r1-distill -qwen32b -orchestrator \
--monitor.wandb.log -extras.interval 1 \
--outputs -dir ~/ shared/outputs \
--batch -size 2048 \
--micro -batch -size 1 \
--seq -len 16384 \
--rollouts -per -example 16 \
--sampling.temperature 0.7 \
--async -level 1

Trainer
uv run torchrun --nproc -per -node 8

src/rl_framework/trainer/rl/train.py \
--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--model.compile \
--model.ac \
--optim.lr 1e-6 \

11

--max -steps 500 \
--log.level debug \
--ckpt.interval 50 \
--ckpt.keep 1 \
--weights.interval 10 \
--monitor.wandb.project prime -rl \
--monitor.wandb.name r1-distill -qwen32b -trainer \
--monitor.wandb.log -extras None \
--outputs -dir ~/ shared/outputs \
--async -level 1

B RL Entrypoint

To streamline single-node RL experiments, prime-rl offers a simple entrypoint script. The script
takes in configuration files and launches subprocesses for the trainer, orchestrator, and optionally the
inference service. It manages hardware placement, validates shared configuration fields, and ensures
proper cleanup in the event of a failure. For better observability, we also provide a tmux layout script
that streams logs from each module into dedicated panes, offering a clean and organized view of the
training process (Figure 6).

Figure 6: Layout Script. The helper script tmux.sh streams the logs of the
trainer, orchestrator and inference service into three horizontal panes.

12

	Introduction
	Design & Architecture
	Architecture
	Data Flow

	Features
	Verifiers & Environments Hub Integration
	End-to-End Post-Training
	Rayless Multi-Node Training
	Decentralized Permissionless Training
	Asynchronous Off-Policy Training
	Mixture-of-Experts Support
	Evals

	Training Algorithm
	Experiments
	Experiment Setup
	Experiment Results

	Summary
	Reproducibility
	RL Entrypoint

