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Abstract

We present � prime-rl, an open-source framework for large-scale reinforcement
learning (RL). prime-rl is designed to scale seamlessly from a single node to
thousands of GPUs, making it suitable for tinkering, research, and production-
scale training. Tailored for agentic RL, it offers first-class support for multi-
turn interactions and tool use through its asynchronous architecture. Environ-
ments are constructed using the verifiers library and integrated with the
Environments Hub, enabling environment development to remain fully decou-
pled from the training infrastructure. To demonstrate its capabilities, we train
DeepSeek-R1-Distill-Qwen-32B on chain-of-thought (CoT) math reasoning
using 24 NVIDIA H200 GPUs. We measure up to 30K tokens per second in
aggregated throughput and reach a peak MFU of 38.46%.

1 Introduction

Scaling compute for training large language models (LLMs) with reinforcement learning with
verifiable rewards (RLVR) has emerged as the dominant paradigm for improving model performance
in post-training. Models such as OpenAI o3 [13], Grok 4 [22], and DeepSeek R1 [3] demonstrate
that training models via RL for long-context reasoning and agentic tool use greatly enhances their
capabilities, making them more effective both for everyday and specialized tasks.

However, existing open-source frameworks are often complex, monolithic, and designed without
modularity in mind [16]. This can make extensibility difficult, inhibit broad adoption, slow down
individual research projects, and lead to a fragmentation of ecosystem artifacts. In addition, no
framework is designed for the unique requirements set of decentralized RL, including support for
heterogeneous, dynamically-scaling or permissionless compute.

In this report, we present prime-rl, a framework for large-scale reinforcement learning, which
powers our internal post-training pipelines and public permissionless runs. prime-rl is easy-to-use
and hackable, yet performant and scalable enough to facilitate state-of-the-art RL post-training. We
highlight the following features:

1. First-class support for OpenAI-compatible async inference, verifiers environments [2],
and a public Environments Hub to standardize agentic RL training and evaluation

2. Support for end-to-end post-training, including SFT and multi-turn agentic RL
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3. Multi-node deployment with FSDP2 training and vLLM inference backend

4. Naturally asynchronous training for high-throughput performance in decentralized settings

5. Modular and extensible by nature, enabling high research velocity

2 Design & Architecture

2.1 Architecture

Three main abstractions facilitate RL training: the orchestrator, the trainer, and the inference service.
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Figure 1: Architecture. A RL training run involves the coordination of a trainer,
orchestrator and an inference service. The FSDP trainer and vLLM inference run

disaggregated, and can be individually deployed across multiple nodes.

Orchestrator. The orchestrator is a lightweight CPU process that handles the core data and scheduling
logic, serving as an intermediary between the trainer and inference service with bidirectional relays.
In one direction, it collects rollouts from the inference server, assembles them into packed batches,
and dispatches them to the trainer; in the other direction, it relays updated model weights from
the trainer to the inference service. The orchestrator utilizes verifiers environments to abstract
multi-turn rollout generation and scoring, leveraging async OpenAI-compatible inference clients.

Trainer. The trainer is responsible for producing an updated policy model given rollouts and
advantages. We use FSDP 2 [1] as the backend with compatibility for any HuggingFace (HF) model.
FSDP shards model parameters, gradients, and optimizer states, allowing training large models with
data parallelism and minimal GPU memory footprint. The trainer is inspired by torchtitan [10]
and relies on native PyTorch features to implement advanced parallelism techniques, such as tensor,
context or expert parallelism.

Inference Service. The inference service in its simplest form is a standard OpenAI-compatible
server with a vLLM [8] backend. The API specification is extended with three custom endpoints to
enable updating the server with the latest policy: /init_broadcaster is used to initialize a NCCL
process group if the NCCL weight broadcast backend is enabled, /update_weights is used to
update the policy, and /reload_weights is used to reset the weights to the base model in between
experiments. Otherwise, we rely on vLLM’s optimized kernels, parallelism strategies, and scheduling
for fast rollout generation. Given the disaggregated nature of the service architecture, it can be
directly extended to include multiple engines with a shared request pool, allowing operation across
multiple clusters and straightforward integration of alternative inference engines (e.g. SGLang [28],
Tokasaurus [7].

2.2 Data Flow

Here we describe the core data flow within a single training step for prime-rl. At the beginning of
a step, the orchestrator checks whether the inference service policy model should be updated with
the latest training checkpoint. If so, it sends a request /update_weights to trigger replacing vLLM
tensors in-place throughout the inference service. The orchestrator then samples prompts from the
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data buffer, an abstraction used to define dynamic data sampling strategies, e.g. online difficulty
filtering [27] or difficulty pools [23]. Sampled prompts are sent to the verifiers environment,
which asynchronously schedules rollout generation and scoring. The verifiers environment returns
rollout results, including completions, vLLM logprobs, masks, and rewards, according to the spec
of the environment. Completed rollouts are then added to the data buffer; orchestrator scheduling
of rollouts continues until a sufficiently large batch is ready to be consumed by the trainer, e.g. as
determined by an online difficulty filtering strategy. The orchestrator then shards the batch of rollouts
across DP ranks, collates them into training-ready tensors, and dispatches them to each trainer. Each
FSDP rank consumes the local training batch and processes micro-batches while accumulating a
synchronized gradient. Upon completion of a global batch, the updated policy model is written as
a weight checkpoint to disk, from where it can be loaded by the inference service in future steps.
For asynchronous training, this entire process occurs in multiple parallel channels, staggered by
appropriate offsets (see Section 3.4 for more details). Checkpoints persist on disk only as long as
necessary for the asynchronicity level.
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Figure 2: Data Flow. The data flow between the trainer, orchestrator and inference module during a
single training step. We show actions for each module, and their sequential dependencies from

left-to-right. For simplicity, we show a fully synchronous flow and hide non-essential logic.

3 Features

3.1 Verifiers & Environments Hub Integration

prime-rl has first-class support for RL environments developed with the verifiers library and
installed as standalone Python modules via the Environments Hub1. This decouples the development
of RL environments from training abstractions, allowing for quicker development and portability, e.g.
the same environment can be used with prime-rl, verifiers, trl [19], or any other trainer which
adopts support for verifiers environments.

An environment is a lightweight abstraction that encapsulates multi-turn rollout logic with native
tool calling support (search, code execution) or other external system interactions (games, user
simulators), along with dataset preprocessing and reward computation. Conceptually, verifiers
environments for RL training play the same role as datasets for SFT or pre-training; disentangling
environments from training infrastructure yields desirable compositionality and interoperability, as
multiple environments can be straightforwardly grouped into a single “mixture” environment, and
support both online and offline rollout generation (e.g. for use as evaluations). Environments manage
submission of inference requests and state information over the lifetime of a rollout, and return
completed rollouts to the orchestrator. A reward manager abstraction (“Rubric” in verifiers) lives
within the environment and provides configurable control and resources to support a broad range of
reward computation strategies, such as compound reward functions, global state references, LLM
judges, caching of expensive computations, and customizable parallelism strategies.

1URL omitted for double-blind review
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Environments are built in isolation of training logic and can easily be tested against local or API
models. Once ready for training, they are pushed to the Environments Hub and immediately available
to the prime-rl trainer as installable Python modules. By adopting the verifiers spec, training and
evaluating inside of an environment works directly upon installation without any code modification
in prime-rl.

3.2 End-to-End Post-Training

Modern post-training typically combines supervised fine-tuning (SFT) and reinforcement learning
(RL) [17, 24]. To support this, our framework provides a unified interface for both methods. The SFT
and RL trainers share core modeling components, so any model usable for RL can also serve as an
SFT warm-up, and vice versa. This tight integration streamlines the overall post-training workflow.

3.3 Rayless Multi-Node Training

A key requirement of prime-rl is seamless scalability. It should be frictionless to take a research
idea developed on a single node to production-scale training running on a decentralized cluster with
hundreds of nodes. This motivates the key design choice to use FSDP as the training and vLLM
as the inference backend, and fully decouple those components. Crucially, it removes the need for
custom hardware orchestration logic as both have built-in support for multi-node deployments.

3.4 Decentralized Permissionless Training

Using prime-rl for globally distributed training with permissionless inference workers does not
require any changes to the trainer. The only difference is that the orchestrator does not communicate
with an inference server directly but will instead request rollout completions from an intermediate
scheduler component. The scheduler is responsible for load balancing the incoming rollout requests
into the permissionless inference pool and guarantee that rollout responses have been verified by
TOPLOC [12]. To this end, each worker in the inference pool will serve an extended OpenAI-
compatible spec with additional routes for generating and validating TOPLOC proofs. Each request is
first routed to an inference worker for generation. The generation response, including the associated
TOPLOC proof, is then routed to another worker in the pool for validation.

3.5 Asynchronous Off-Policy Training

In decentralized settings asynchronous execution of trainer and inference becomes a necessity to
avoid long blocking time. For this reason, prime-rl’s trainer and inference run disaggregated, i.e.
on different sets of (possibly non-colocated) GPUs.

At each step, all artifacts are identified by the step count n. For the trainer, this is the gradients gn and
model weights θn, and for the inference service, rollouts (xn, yn). At step 0, the inference service
uses θ0 (base model) to produce (x0, y0). The trainer subsequently uses (x0, y0) to compute g0 to
finally update the model as θ1 ← θ0 − g0.

In synchronous on-policy training, the inference engine stalls after producing (x0, y0) because it
requires θ1 to produce the next rollouts (x1, y1). To prevent this, we allow off-policy training,
which means that the inference service can asynchronously generate rollouts from an old policy
model up to some async_level. For example, if async_level=1, the inference service continues
generating (x1, y1) from θ0, while the trainer is producing θ1 in parallel. An example of such
overlapped, asynchronous computation is shown in Fig 3(a). More generally, for any async_level,
the inference service produces rollouts from θmin(0,n−async_level). In decentralized settings we often
need async_level ≥ 2 to fully hide the communication bottleneck from broadcasting the updated
model weights, as illustrated in Figure 3(b).

3.6 Mixture-of-Experts Support

We support the Mixture-of-Experts (MoE) [15] layer implementation from torchtitan [10]. This
implementation leverages a grouped matrix multiplication kernel for expert execution and provides
support for expert parallelism (EP). To monitor load distribution, we compute and log the maximum
violation load-balancing metric MaxViolation = maxi Loadi−Loadi

Loadi
as described in [20].
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Figure 3: Asynchronous Off-Policy Training. We show the execution graph of one-step (left) and
two-step (right) off-policy training. At step n, the inference engine uses θmin (0,n−async_level). In

colocated settings, one-step off-policy allows to fully overlap training and inference. In decentralized
settings, weight broadcasting may become a bottleneck, requiring higher levels of asynchrony.

3.7 Evals

Evaluation and training are tightly coupled through the use of verifiers, streamlining the process
of evaluating against a wide range of common benchmarks, including AIME [5, 14], SWE-Bench [6],
TerminalBench [18] or τ -bench [26]. Evaluation can be run both as part of an active training (online)
or as a standalone entrypoint (offline). When evaluating online, the orchestrator asynchronously
interleaves eval requests with training requests, effectively hiding any overhead, while providing
useful real-time feedback of the training performance.

4 Training Algorithm

We adopt a token-level [27] loss variant of the AIPO training objective introduced in Llama-RL [21],
and omit the entropy and KL loss terms. At each step, we sample N prompts from our dataset. For
each prompt x, we sample a group of rollouts {yi}Gi and use a verifier to assign scores si to each yi.
Then, the optimization objective is given by

JAIPO(θ) =
1∑N

j=1

∑G
i=1 |y

(j)
i |

N∑
j=1

G∑
i=1

|y(j)
i |∑

t=1

min

(
π(y

(j)
i,t | xj , y

(j)
i,<t)

µ(y
(j)
i,t | xj , y

(j)
i,<t)

, δ

)
Â

(j)
i,t (1)

where µ refers to the policy that generated the rollout and π refers to the current policy. The
token-level advantage is estimated as Âi,t = Si −mean({Si}Gi )O [11] and we use δ = 8.

We found it to be critical to address the following inference-trainer mismatch: Even when π and µ
share the same parameters θ, they can produce significantly different token probabilities, leading
to unexpected distribution shifts that can cause runs to crash multiple days into the experiments.
In our setup, we found it more stable to not recompute logprobs using our training backend, but
instead rely on the logprobs from vLLM directly to estimate µ(y

(j)
i,t | xj , y

(j)
i,<t). In this setup, this is

directly equivalent to including an importance-sampling correction between the trainer and inference
logprobs. For a more thorough investigation we point the reader to [25].

5 Experiments

5.1 Experiment Setup

To showcase prime-rl, we train DeepSeek-R1-Distill-Qwen-32B across 24 H200 GPUs on
math reasoning tasks with prime-rl. We detail the training setup with complete steps to reproduce
and report on training dynamics and efficiency.

Environment. We train on skywork-math2, a single-turn environment with challenging math
problems sourced from Skywork OR1’s training data [4]. For verification we use verifiers native
think parser and boxed-answer extraction and math-verify [9] for final reward assignment. We
filter the data prior to training to exclude overly easy and hard problems.

2URL omitted for double-blind review
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RL Setup. At each step, we sample 128 prompts and generate 16 rollouts per prompt at temperature
0.7 and 16k maximum context length. We compute gradients with respect to the training objective
given in Equation ??. We perform 160 training steps with a constant learning rate of 1× 10−6.

Hardware Setup. We deploy the run across 24 NVIDIA H200 GPUs. We use a full node of 8 GPUs
for the trainer. All remaining 16 GPUs are used for inference with data parallel size 4 and tensor
parallel size 4 across two nodes. Because the trainer and inference were not distributed around the
world and had decent direct Ethernet based connection, we only require one-step off-policy to overlap
computation and prevent GPU idle time.

5.2 Experiment Results

Training Efficiency. As shown in Figure 4, the system maintained high throughput throughout
training. On the trainer, we achieved a throughput of 11.3K (±1K) tokens per second, while inference
reached 14.4K (±1.3K) tokens per second, highlighting a mild throughput imbalance. Nonetheless,
compute utilization remained high, reaching a peak Model FLOPs Utilization (MFU) of 38.46% on
the trainer. The experiment ran for 64 hours in total, consuming 1,536 GPU hours, with each training
step averaging 22.9 (±3.4) minutes.
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Figure 4: Training Efficiency. We sustain high throughput with little idle time

and achieve a peak MFU of 38.46% on the trainer in our experiment setup.

Training Dynamics. Throughout training, the run exhibited stable and healthy learning behavior, as
visible in Figure 5. The gradient norm remains consistent, without signs of vanishing or exploding
gradients. Similarly, the entropy across tokens shows no significant decline, suggesting that the
policy retains exploration and does not prematurely converge. Meanwhile, the reward trends upward,
indicating progressive improvement in performance. Together, these trends reflect a well-behaved
optimization process and steady policy refinement.
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Figure 5: Training Dynamics. We report key indicators of training stability, including the
gradient norm, entropy and mean reward. The gradient norm and entropy are stable and

non-increasing, while the reward is going up, indicating healthy learning behavior.

6 Summary

In this report, we introduced prime-rl, our open-source framework for large-scale reinforcement
learning (RL). It is a feature-packed and battle-tested RL trainer designed for the age of agentic RL
training and decentralized compute. Its architecture disaggregates training and inference, enabling
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efficient asynchronous execution. Key features include native integration with verifiers environ-
ments and the Environments Hub, end-to-end post-training (SFT + RL), and native MoE support. We
demonstrate the efficacy and robustness of the framework by training a 32B model on math reasoning
tasks, sustaining high throughput and stable optimization.
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A Reproducibility

The following commands where used to launch the experiments described in Section 5.

# Inference (Node 0)
uv run inference \

--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--max -model -len 16384 \
--max -seq -len -to -capture 16384 \
--data -parallel -size 4 \
--tensor -parallel -size 4 \
--data -parallel -size -local 2 \
--data -parallel -address 192.168.0.113 \
--data -parallel -rpc -port 13345

# Inference (Node 1)
uv run inference \

--worker -extension -cls
rl_framework.inference.vllm.worker.CheckpointWorker \

--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--max -model -len 16384 \
--max -seq -len -to -capture 16384 \
--data -parallel -size 4 \
--tensor -parallel -size 4 \
--data -parallel -size -local 2 \
--data -parallel -address 192.168.0.113 \
--data -parallel -rpc -port 13345 \
--data -parallel -start -rank 2 \
--headless

# Orchestrator
uv run orchestrator \

--client.host 192.168.0.113 \
--num -train -workers 8 \
--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--environment.id skywork -math \
--environment.args ’{" solve_rate_field ":␣

"solve_rate_qwen_r1_distill_32b",␣"min_solve_rate ":␣0.001,␣
"max_solve_rate ":␣0.999} ’ \

--max -steps 500 \
--log.level debug \
--ckpt.interval 50 \
--ckpt.keep 1 \
--monitor.wandb.project prime -rl \
--monitor.wandb.name r1-distill -qwen32b -orchestrator \
--monitor.wandb.log -extras.interval 1 \
--outputs -dir ~/ shared/outputs \
--batch -size 2048 \
--micro -batch -size 1 \
--seq -len 16384 \
--rollouts -per -example 16 \
--sampling.temperature 0.7 \
--async -level 1

# Trainer
uv run torchrun --nproc -per -node 8

src/rl_framework/trainer/rl/train.py \
--model.name deepseek -ai/DeepSeek -R1 -Distill -Qwen -32B \
--model.compile \
--model.ac \
--optim.lr 1e-6 \
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--max -steps 500 \
--log.level debug \
--ckpt.interval 50 \
--ckpt.keep 1 \
--weights.interval 10 \
--monitor.wandb.project prime -rl \
--monitor.wandb.name r1-distill -qwen32b -trainer \
--monitor.wandb.log -extras None \
--outputs -dir ~/ shared/outputs \
--async -level 1

B RL Entrypoint

To streamline single-node RL experiments, prime-rl offers a simple entrypoint script. The script
takes in configuration files and launches subprocesses for the trainer, orchestrator, and optionally the
inference service. It manages hardware placement, validates shared configuration fields, and ensures
proper cleanup in the event of a failure. For better observability, we also provide a tmux layout script
that streams logs from each module into dedicated panes, offering a clean and organized view of the
training process (Figure 6).

Figure 6: Layout Script. The helper script tmux.sh streams the logs of the
trainer, orchestrator and inference service into three horizontal panes.
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