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ABSTRACT

Robust out-of-distribution (OOD) detection is an indispensable component of
modern artificial intelligence (AI) systems, especially in safety-critical applica-
tions where models must identify inputs from unfamiliar classes not seen during
training. While OOD detection has been extensively studied in the machine learn-
ing literature—with both post hoc and training-based approaches—its effective-
ness under noisy training labels remains underexplored. Recent studies suggest
that label noise can significantly degrade OOD performance, yet principled solu-
tions to this issue are lacking. In this work, we demonstrate that directly combining
existing label noise-robust methods with OOD detection strategies is insufficient
to address this critical challenge. To overcome this, we propose a robust OOD
detection framework designed to cleanse feature embeddings, thereby mitigating
the adverse effects of noisy labels on OOD performance. Towards this, we intro-
duce an end-to-end training strategy that integrates loss correction methods from
the noisy-label learning literature with low-rank and sparse decomposition tech-
niques from signal processing. Building on this strategy, we derive a novel metric
that quantifies the “O0OD-ness” content within training data, which in turn leads to
a label noise-robust OOD detection scoring technique. Extensive experiments on
both synthetic and real-world datasets demonstrate that our method significantly
outperforms the state-of-the-art OOD detection techniques, particularly under se-
vere noisy label settings.

1 INTRODUCTION

Artificial intelligence (AI) models have achieved remarkable performance across myrid of domains
including computer vision and natural language processing. Yet, a persistent challenge arises in
real-world deployment: these models often fail to recognize inputs from unfamiliar data distribu-
tions, leading to overly confident and potentially misleading predictions (Goodfellow et al., [2014).
This limitation underscores the importance of out-of-distribution (OOD) detection for building trust-
worthy Al systems, particularly in high-stakes domains such as autonomous driving (Geiger et al.,
2012) and medical diagnostics (Schlegl et al.l 2017). The goal of OOD detection is not only to pro-
vide accurate prediction on seen data distributions but also to flag inputs from novel or unobserved
distributions (Hendrycks & Gimpel, 2016).

OOD detection has been an active topic of research in the field of Al for many decades; a re-
cent survey can be found in (Yang et all 2024). A key focus in this field is detecting seman-
tic shifts—scenarios where new, previously unseen classes appear in the test data, resulting in a
mismatch between the label spaces of in-distribution (ID) and OOD samples. A wide range of
methods have been proposed for OOD detection, including softmax/logit-based post-hoc techniques
(Hendrycks & Gimpel, [2016; [Liang et al., 2018; [Hendrycks et al., [2022} Sun & Lil 2022; Sun et al.,
20215 Dong et al., |2022) and feature distance-based strategies (Lee et al., [2018}; [Sun et al., 2022;
Ming et al., [2023; Sehwag et all 2021} |Ghosal et al 2024). As softmax/logit-based approaches
are often susceptible to overconfidence, recent research has increasingly focused on distance-based
methods—such as Mahalanobis distance (Lee et al.,[2018)) and k-nearest neighbors (KNN)(Sun et al.,
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Figure 1: The UMAP representations of the latent feature vectors h(x) learned using the cross en-
tropy loss-based training using the noisily labeled dataset {x,,, 3, } for various synthetic noise rates.
The false positive ratio (FPR) for OOD detection using kNN score is also reported. The clusters are
more distorted for the training data, losing the ID-ness characteristics, resulting in degraded perfor-
mance in OOD detection during test time.

2022)—due to their empirical success. These methods rely on the observation that feature represen-
tations extracted from OOD samples typically lie farther from the ID feature space. Since deep
neural networks naturally encode semantic similarity in their embeddings—forming well-structured
clusters for similar samples—distance-based approaches leverage this structure to better separate ID
and OOD samples. Nonetheless, most of these methods are developed under the assumption that
models are trained on clean, correctly labeled data. However, in practice, training datasets often
contain noisy labels, stemming from the scarcity of expert annotators and the high cost of accurate
label acquisition (Buhrmester et al., 2016). Recent empirical studies have brought serious attention
to this issue, revealing that the presence of label noise can significantly degrade the performance
of state-of-the-art OOD detection methods (Humblot-Renaux et al.| |2024). This highlights a critical
gap in current research and underscores the need to develop robust OOD detection frameworks that
remain reliable under real-world label noise.

The effect of label noise on training deep learning models has been extensively studied in recent
years; see the survey (Song et al.,[2022). It is now well-established that training deep neural network
(DNN) models with noisy labels can severely degrade classification performance, leading to poor
generalization and overfitting (Arpit et al., 2017; Zhang et al. 2016)). To address this, a variety of
label noise-robust methods have been proposed, including loss correction strategies such as proba-
bilistic modeling techniques (Liu & Tao||[2016; [Patrini et al.,|2017; L1 et al., [2021b; Xia et al., [2020;
Yang et al., [2021; |Cheng et al.,[2020), robust loss function designs (Zhang & Sabuncu, [2018a}; Lyu
& Tsang, [2019; Wang et al., 2019a), and in-built sample selection strategies (Jiang et al., 2018} |Yu
et al.| [2019; Nguyen et al.| 2019 Han et al., 2018a; L1 et al., 2020b). However, their effectiveness
in OOD detection when the training labels are noisy remains largely unexplored. The key chal-
lenge lies in the misalignment of objectives: while label noise methods aim to correct the prediction
probabilities within the training distribution, OOD detection requires learning discriminative feature
representations to detect the samples that does not belong to the training distribution. Hence, most
existing label-noise approaches exhibit poor OOD detection performance when applied directly, as
we will demonstrate in detail in subsequent sections.

Our Contributions. In this work, we investigate the critical challenge of robust OOD detection in
the presence of noisy labels in the training set. Unlike existing studies that focus solely on the empir-
ical limitations of current OOD detection methods (Humblot-Renaux et al.|[2024), we identify a key
gap: the label noise-robust methods improves generalization under noisy supervision for classifica-
tion settings, yet they are largely ineffective when directly applied for OOD detection. To address
this limitation, we have the following key contributions in this work:

* Robust OOD detection framework. We propose a novel distance-based OOD detection
framework that effectively cleanses feature embeddings, enhancing robustness under noisy
training labels. Our framework is accompanied by an easy-to-implement, end-to-end learn-
ing criterion, leveraging the loss correction techniques and low-rank and sparse decompo-
sition strategies.

* Novel OOD-detection scoring. The framework allows us to quantify the “OOD-ness” con-
tent of each training sample, producing a score that reflects its difficulty in training the OOD
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detector. Leveraging this score, we introduce an enhanced distance-based scoring function
that is more robust compared to existing metrics.

* Promising empirical evidence for OOD detection. We conduct extensive experiments using
synthetic noise settings, several real-world noisy datasets, e.g., CIFAR-10N, CIFAR-100N
(Weit et al., [2022), and Animal1ON (Song et al., 2019), and evaluate our approach across
diverse OOD datasets. Additionally, we perform detailed ablation studies on key hyperpa-
rameters to demonstrate the robustness of our approach.

To the best of our knowledge, this work is the first to offer a principled solution to the problem,
achieving substantial improvements over state-of-the-art OOD detection methods in the presence of
label noise.

2 PROBLEM STATEMENT

Consider an input feature space X C R”, where D denotes the dimensionality of the input features.
Let the label space be defined as ) = {1,..., K}, corresponding to K distinct classes for the
ID data. We define the training dataset D as D = {(x,,yn)}_,, x, € X, y, € ), where
x,, is the feature vector of the n-th training example, y,, is its associated ground-truth class label,
and N denotes the total number of training samples. Each pair (z,,y,) is assumed to be drawn
independently and identically distributed (i.i.d.) from an underlying joint distribution Pxy. Let b :
RP — R¥ denote a DNN that maps each input x,, to an L-dimensional latent feature representation
h(zx,). For the task of multi-class classification, we employ a projection head ¢ : RV — RX
to produce pre-softmax logits. Thus, the overall label prediction function is given by f(x,) =
o(c(h(zx,))), where o denotes the softmax function that output the class probabilities. We often
learn the parameters of these functions by training via cross-entropy (CE) minimization as follows:

N K
minimizeg Lcg(0; {@n, yn}) = — > Y Iyn = k]log(£(z4)))), (D)

n=1k=1
where 6 denotes the DNN parameters of both h and ¢ functions.

OOD Detection. Al systems are generally learned under the closed-world assumption, where it is
presumed that test samples are drawn from the same distribution as the training data. However, this
assumption often fails in practical scenarios, where models inevitably encounter samples that lie
outside the training distribution. These unfamiliar samples are known as OOD inputs (Hendrycks
& Gimpel, |2016). In classification tasks, such distributional shift may manifest as a semantic shift,
wherein some test instances originate from an unknown label space )°, disjoint from the known
label space, i.e., ) N Y° = (). The objective of OOD detection is to identify whether a given test
input belongs to the in-distribution (ID) or not, thereby preventing the model from making confident
predictions on OOD inputs. Thus, OOD detection can be considered as a binary classification task
that distinguishes ID samples from OOD ones. This can be formalized by a detection function:

() = ID if s(x) > 1,
971/ =1 00D if s(x) <,

where s(x) is a scoring function that quantifies the likelihood of @ belonging to the ID distribution,
and 7 is a predefined threshold.

2

Typically, scoring function s(x) is derived from the trained parameters of the underlying DNN
model. Several scoring functions have been proposed in the literature. Early OOD detection meth-
ods directly used the softmax outputs f(x) to score “OOD-ness” (Hendrycks & Gimpel, 2016
Liang et al., 2018]), but they suffered from overconfidence issues, reducing the desired ID-OOD sep-
arability. Further, pre-softmax activations-based approaches (e.g., by using the logits c(h(x))) were
introduced (Hendrycks et al., 2022; Sun & Li, 2022} |Sun et al., 2021} |[Dong et al.| [2022)), though
they remained sensitive to architecture and still faced overconfidence issues. Recently, distance-
based methods such as those based on Mahalanobis (Lee et al., 2018) and k-nearest neighbor (kKNN)
(Sun et al.,|2022; [Ming et al.,|2023; Sehwag et al.,2021; |Ghosal et al.|[2024) have gained traction by
leveraging the clusterability of latent feature representations h(x). In essence, the success of OOD
detection lies in the careful design and learning of the scoring function s(x) that can ensure the
ID-OOD separability during test time.
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Learning under Label Noise. Most studies in the domain of OOD detection assume that the DNN
classifier f and the scoring function s are learned using ground-truth labels y,,. However, the lack of
access to reliable ground-truth annotations is a significant challenge for robust OOD detection—see
an example in Fig. (1| where the clusterability of the latent representations h(x) is severely com-
promised under label noise, leading to significant degradation in ID-OOD separability for the kNN
score function. In scenarios where ground-truth labels y,, are difficult to obtain, we often rely on
their noisy counterparts, denoted by g,, € {1, ..., K}, associated with each data item x,,. In noisy
label settings, for many data items, the observed label does not match the true label, i.e., ¥, # yn.

The goal of label noise-robust OOD detection is two-fold: (i) accurately classify ID sam-
ples through a well-generalized predictor f, and (ii) reliably detect OOD instances using

a robust decision function g, despite learning them using the noisily labeled dataset D =
{(xfhgn)}g:la T, € Xa gn € y

3 PROPOSED APPROACH

In this section, we present our label noise-robust OOD detection framework. Our strategy is based
on cleansing the noise-corrupted latent feature space using an end-to-end training strategy, thereby
making it robust for OOD detection at test time. Towards this goal, our framework encompasses
three main components: i) loss correction module ii) low rank and sparse decomposition of latent
feature matrix iii) robust OOD detector using distance-based metrics, e.g., KNN.

Loss Correction. As demonstrated in Fig. [I] training directly with noisy labels (e.g., by using the
CE minimization as in equation [T| where the unobserved ground-truth labels y,, are replaced by the
observed noisy labels 7,,) leads to a corrupted latent feature space. To address this, we first inte-
grate a loss correction module to reduce the effect of label noise in learned features. Loss correction
strategies have attracted considerable attention in noisy label learning literature. Among these, prob-
abilistic noise modeling via the so-called transition matrices (Patrini et al.,[2017} Tanno et al.,[2019;
Li et al.,|2021b; [Ibrahim et al.,l|2023)) and robust loss function-based approaches (Zhang & Sabuncul,
2018a;|Lyu & Tsangl [2019; Wang et al.,[2019a) are particularly well-received, owing to their strong
theoretical foundations and robust empirical performance in classification tasks.

In general, loss correction strategies design a modified cross-entropy loss to train the classifier f on
the noisy dataset {x,,, §,, }, while aiming to predict the ground-truth labels, i.e.,

mi%imize LEYO,m; {T0, Tn}) @)
)

where 7 typically refers to additional model parameters according to specific loss designs. For in-
stance, in the case of transition matrix-based approaches (Patrini et al., [2017} [Tanno et al., 2019; L1
et al.| 2021b; [Ibrahim et al.} 2023)), 1 refers to the noise transition probabilities that learns the prob-
abilistic label confusion terms Pr(y, = k|y, = k). In sample selection approaches (Jiang et al.l
20185 Yu et al.,|2019; Nguyen et al., 2019; Han et al.,[2018a; L1 et al., 2020b)) , 17 instead represents
sample-weighting terms that regulate the contributions of clean and noisy sample—label pairs. In
contrast, robust loss function-based methods, e.g., (Zhang & Sabuncu, 2018a; [Wang et al., 2019a),
often do not introduce additional parameters—they directly design loss functions that are inherently
less sensitive to incorrect labels. For instance, symmetric cross-entropy (SCE) (Wang et al.,[2019a)
and generalized cross-entropy (GCE) (Zhang & Sabuncu, 2018a) can be viewed as hybrids of CE
loss and mean absolute error (MAE) loss, thereby combining the favorable convergence properties
of CE with the robustness of MAE against outliers.

Nonetheless, these loss correction strategies primarily operate by modifying the softmax prediction
outputs of the ID samples rather than directly correcting their feature embeddings. However, feature
embeddings are often more critical for OOD detection, particularly for the distance-based OOD
metrics such as k-nearest neighbor (Sun et all [2022) and Mahalanobis (Lee et al., [2018)). This
misalignment of objectives results in suboptimal performance in mitigating the effect of label noise
in OOD detection.

Low-rank plus Sparse Decomposition. To overcome the limitation of loss correction modules
in handling feature correction, we introduce the next key component of our framework. A critical
observation underlying its design is that, in the absence of label noise, latent feature vectors natu-
rally exhibit certain clustering patterns, reflecting their low-rank structure due to their class-specific
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organization—see the first UMAP plot in Fig. [T} This intrinsic structural tendency can be explicitly
leveraged in the training phase to encourage low-rank properties in the feature representations. To
this end, we adopt a low-rank and sparse decomposition strategy, drawing inspiration from classical
signal processing techniques (Candes et al.,[2011; Zhang et al., 2011).

Consider the latent feature representation h(x) of the input image « (e.g., the penultimate layer
encoding of the DNN model). Let us represent the latent feature matrix H as follows: H =
[A(z1),...,h(zy)] € RP*N, where D is the feature dimension and N is the number of training
samples. In order to exploit the low-rankness of the latent matrix H along with a sparse structure,
we assume that H ~ L + S, where L € RP*¥ is the low-rank component and S € RP>* ig
a column sparse matrix, i.e., most columns of S has zero /o norm. That means, the low-rank term
captures the underlying class structure information, whereas the sparse term can handle the outlier
data items that does not strictly conform to the low-rank assumption.

Learning L and S from the observed matrix H generally involves solving optimization problem of
the form (Candes et al., 2009; Wang et al., 2008):

Iiliél |L|« + A|S||21 st H=L+S,

where || L||.. denotes the nuclear norm of L to promote the low-rankness and ||.S||2,1 denotes the
matrix mixed norm that promotes column sparsity in S. Here, A > 0 is a regularization parameter
that balances the contributions of the low-rank and sparse terms. As computing the nuclear norm
involves costly operations like singular value decomposition, we adopt an efficient power iteration
(PD)-based low-rank approximation strategy (Rokhlin et al., [2010; |Gul 2015)) in our training phase.
Specifically, The method estimates the top-K left singular vectors of the latent representation H
by iteratively refining a randomly initialized orthonormal basis @ € RP*¥ through alternating
projections of H and orthonormalization via QR decomposition. Here, The rank K can be selected
according to the number of classes (or based on the number of coarse-grained classes in the case of
datasets with very large label space). Using the learned @, we decompose the feature matrix as

Hyp = [hip(21), ..., hip(@n)] = (QQT)H, Hoop = [hoon (1), - - ., hoop(xy)] = H—Hp,

where Hyp € RP*N represents the ID component and Hpop € RP*N contains residual features

that may potentially carry non-ID information (or OOD-like components). Further, to enforce the
column sparsity in the matrix Hoop, we employ the following regularization term:

N [ b
Loparse = [ Hoopll21 = > 1| Y (Hoop)?;- “4)
=1 \i=1

Finally, the proposed method is trained by minimizing a joint objective that combines the modified
cross-entropy loss as explained in equation 3| with the regularizer in equation 4}

E}' = Lgl]gd + A Esparsw

where A > 0 is a regularization hyperparameter that controls the strength of the column-sparsity
term. The detailed algorithm is presented in the supplementary section.

Robust OOD Detection with Refined Feature Representations. To detect OOD samples at test
time, we propose a feature distance—based score with a robust selection strategy for reference
embeddings. Specifically, for each training sample x,,, we assign an OOD-ness score defined as
o(x,) = ||h(x,) — hip(x,)||2, where larger scores indicate greater deviation from ID character-
istics (e.g., noisy or ambiguous samples), while smaller scores correspond to clean, representative
ID examples—also see Fig. [3a]in Sec. ] Based on this score, we retain only the most challenging
examples by selecting

S={nec[N]|o(z,) > ap}, ay, = Quantile(; _, ({o(n) 101 ), (5)

so that the top (1 — p)% of samples with the highest OOD-ness scores are used to construct a robust
detector, where p € [0, 1). For each selected sample n € S, we compute the £5-normalized feature
vectors up (x,,) = hip(@,)/||hip(x,)||2- Similarly, the test sample x* is mapped to its normalized
feature u(x*) = h(z*)/||h(x*)||2, whose distance to the stored ID embeddings {wp(x,)}nes
is then evaluated. For example, using kNN distance, we have the score defined as sy (x*) =
- Hu(w*) - uIU];) ’ ,» Where ul(l];) denotes the k-th nearest embedding in S. A similar modified metric
can be derived using Mahalanobis distance as well. A decision threshold 7 of the detection function
g- is chosen based on a validation set to ensure a high ID recall (e.g., 95%).
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Table 1: OOD detection performance on CIFAR10 with synthetic label noise across different OOD
datasets; The top two performing algorithms (in terms of average FPR95) are highlighted in bold.

Method SVHN FashionMNIST LSUN iSUN DTD/Texture Places365 Average
FPR95] AUROCT FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95S AUROC FPR95 AUROC

Noise rate = 10%

KNN 34.23 93.92 38.51 93.57 17.71 96.66 21.72 95.93 28.58 94.04 62.26 84.62 33.84 93.12
MSP 73.54 84.82 54.92 88.64 32.84 9449 55.18 89.70 77.02 75.86 69.01 80.33 60.42 85.64
ODIN 87.82 60.19  64.22 79.77 2442 94.56 32,99 91.49 80.30 56.06 78.84 66.87 61.43 74.82
Energy 80.31 77.93 57.89 84.84 17.74 96.65 54.63 88.38 82.43 62.42 7829 72.39 60.37 79.12
ReAct 96.77 53.22  63.00 87.87 49.38 90.45 72.98 81.08 92.89 44.08 75.21 75.29 75.04 72.00
Mahalanobis 31.71 91.10 72.56 74.47 28.29 93.87 52.77 81.81 49.11 80.53 94.74 44.55 54.86 T77.72
CIDER 99.64 51.13  99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.80 29.83
SSD+ 90.96 73.67 98.72 46.18 99.69 40.58 100.00 26.23 98.06 33.48 99.15 37.90 97.76 43.01
SNN 49.71 91.73  29.72 95.06 20.96 96.25 25.36 95.23 34.26 92.53 56.29 86.46 36.05 92.88
SCE 5.97 98.96 12.60 97.80 2.93 99.44 15.62 97.01 27.16 94.28 59.64 85.79 20.66 95.55
GCE 7.81 98.50 16.20 97.33 5.88 98.96 12.03 97.92 31.63 93.56 47.83 89.35 20.23 95.94

Co-teaching 40.12 90.87 99.29 59.93 75.83 76.34 96.95 54.21 49.45 82.48 93.19 48.57 75.81 68.73
DivideMix 62.65 87.37 68.10 81.99 49.01 91.24 42.84 91.52 37.48 92.79 77.16 75.03 56.21 86.66

cM 6.14 98.90 15.80 97.05 6.03 98.91 10.40 98.12 19.08 96.47 53.54 87.17 18.50 96.10
VolMinNet 2.64 99.47 5.18 98.94 5.00 98.98 9.26 98.24 21.60 95.86 56.16 87.43 16.64 96.49
NOODLE 3.51 99.28 5.03  98.97 3.31 99.33 3.05 99.22 16.61 96.78 48.02 89.62 1326 97.20
Noise rate = 30%
KNN 23.80 95.80 36.15 93.43 27.04 94.61 22.03 95.86 39.50 90.40 69.76 83.53 36.38 92.27
MSP 76.88 80.34 56.16 87.14 29.90 93.92 58.82 88.30 79.04 71.54 74.98 76.61 62.63 82.97
ODIN 83.79 61.60 50.70 83.57 22.26 94.83 35.64 89.98 79.68 54.97 83.19 60.62 59.21 74.26
Energy 76.67 76.82 51.45 86.81 19.38 95.65 66.77 84.97 80.89 62.95 77.32 72.32 62.08 79.92
ReAct 88.89 67.41 62.61 85.50 21.63 95.34 90.19 65.23 91.33 51.51 82.51 68.95 72.86 72.33
Mahalanobis 37.86 90.25 50.42 85.21 26.98 93.29 60.92 79.60 52.75 77.45 9594 40.86 54.15 77.78
CIDER 99.64 51.13  99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.82 29.81
SSD+ 91.27 73.92  98.72 46.08 99.69 40.36 100.00 26.00 98.06 33.49 99.15 37.93 97.82 42.96
SNN 23.37 95.72  34.55 94.11 25.91 94.90 34.38 92.36 42.27 89.39 65.06 84.19 37.59 91.78
SCE 19.48 96.45 25.84 95.37 16.58 96.57 61.71 87.42 35.50 91.76 74.66 79.27 38.96 91.14
GCE 58.38 91.40 20.37 96.64 11.32 97.95 12.38 97.73 30.53 94.08 51.59 88.18 30.76 94.33

Co-teaching 50.10 83.16  99.99 20.37 96.73 64.14 97.86 41.70 53.71 79.45 93.84 48.63 82.04 56.24
DivideMix 58.39 90.07 31.17 94.93 27.86 95.59 16.38 96.93 36.28 92.76 59.28 84.34 38.22 92.44
CcM 22.04 96.76 8.79 98.04 10.17 98.12 23.30 95.64 23.71 94.99 55.42 86.90 2390 95.08
VolMinNet 4.99 99.04 14.01 97.09 9.48 98.33 51.23 89.68 27.84 93.44 59.25 85.42 27.80 93.84

NOODLE 1.84 99.60 19.66 96.36 7.28 95.63 10.76 97.89 20.67 95.85 57.50 85.87 19.62 95.68
Noise rate = 50%
KNN 65.53 85.64 37.84 93.71 30.61 93.38 45.41 89.21 43.81 89.06 74.98 79.58 49.70 88.43
MSP 96.92 53.68 80.68 77.70 47.78 89.67 67.84 83.23 82.50 68.45 81.12 73.63 76.14 74.40
ODIN 94.94 44.15 71.46 80.28 34.04 91.82 47.51 88.11 79.61 60.80 82.87 66.17 68.40 71.89
Energy 97.93 46.79  83.41 76.67 39.77 90.87 67.60 81.00 85.43 60.47 82.28 69.91 76.07 70.95
ReAct 99.19 24.75 90.11 64.20 50.47 85.45 78.12 67.79 93.79 39.56 86.40 62.25 83.02 57.33
Mahalanobis 55.77 83.12  59.93 85.98 31.23 93.54 45.17 88.63 48.90 81.70 93.28 51.47 55.71 80.74
CIDER 99.65 51.22 99.91 27.39 100.00 9.42 99.84 27.25 93.72 39.31 99.81 24.37 98.82 29.83
SSD+ 91.35 74.03 98.75 46.17 99.74 40.57 100.00 25.89 98.06 33.47 99.15 37.91 97.84 43.01
SNN 71.41 83.96 68.22 87.66 53.56 89.27 63.49 80.99 56.95 85.48 82.28 77.12 65.99 84.08
SCE 14.10 97.40 42.30 90.96 25.18 94.09 67.17 80.81 51.51 84.65 70.67 77.75 45.15 87.61
GCE 19.19 96.43 29.10 95.06 22.98 9540 53.92 86.31 48.35 87.54 65.83 83.58 39.89 90.72

Co-teaching 57.05 76.43  99.97 28.21 99.23 55.11 96.99 52.50 54.45 78.87 94.22 47.36 83.65 56.41
DivideMix 24.69 95.75 40.94 93.32 37.02 94.36 20.81 96.10 53.10 89.35 56.39 86.71 38.82 92.60
cM 17.37 96.91 21.93 95.56 17.16 96.58 39.52 92.86 30.23 93.36 61.88 84.82 3135 93.35
VolMinNet 13.01 97.74 15.36 97.11 14.18 97.24 60.13 80.22 45.85 87.40 55.26 86.94 33.96 91.11

NOODLE 6.35 98.43 17.83 96.58 7.09 98.50 32.28 93.92 30.09 92.47 70.41 81.24 2734 93.52

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our label noise-robust OOD detection framework,
which is named as Noise-robust Qut-Of-Distribution Learning (NOODLE)

Datasets. For synthetic label noise settings, we consider CIFAR-10 (Krizhevskyl 2009) as ID
dataset. For synthetic label noise generation, we adopt class-independent symmetric noise, where
every true label has the same probability of being corrupted, and when corrupted, it is flipped uni-
formly at random to any of the other K — 1 classes, regardless of the original class. We vary the
noise rate at 10%, 30%, and 50% to simulate different levels of noise severity. To test under real-
istic label noise, we also consider the human-annotated noisy label datasets CIFAR-10N, CIFAR-
100N (Wei et al) 2022)), and Animal-10N (Song et al., [2019). These are annotated by the crowd
workers from the popular crowdsourcing platform Amazon Mechanical Turk (AMT). CIFAR-10N
provides five types of noisy label sets: worst, aggregate, randoml, random2, and random3, having
40.21%, 9.03%, 17.23%, 18.12%, and 17.64% overall noise rates, respectively. Animal-10N con-
tains human-annotated labels with noise rate 8%, whereas CIFAR-100N has noise rate of 40.20%.
As OOD datasets during test time, we consider several benchmark datasets, including SVHN (Netzer
et al.,[2011)), FashionMNIST (Xiao et al.,[2017), LSUN (Yu et al.,[2016), iSUN (Pan & Gird-1-Nieto,
2013)), Texture (Cimpoi et al.,[2013)), and Places365 (Zhou et al., 2016).
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Table 2: Average OOD detection performance on noisy real datasets; The top two performing algo-
rithms (in terms of average FPR95) are highlighted in bold.

Method CIFAR-10N Animal-10N CIFAR-100N

Clean Worst Agg Randl Rand2 Rand3 FPR95 AUROC FPR95 AUROC

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

KNN 21.06  95.80 3248 92.89 2395 94.84 3548 92.65 31.99 92.70 27.27 94.09 7044 77.04 4320 86.54
MSP 56.43  90.07 60.15 8549 55.04 88.21 60.75 86.62 56.44 86.50 53.90 86.70 90.64 59.90 81.08 72.66
ODIN 33.10 9247 4531  86.69 43.83 89.03 49.12 86.56 46.71 84.24 41.91 87.37 76.97 62.55 7172 76.64
Energy 39.15 92.03 47.30 87.75 56.03 87.90 54.89 87.24 50.31 86.11 42.74 88.90 75.60 74.52 7893 51.74
ReAct 60.31 83.12 65.89 78.86 47.17 91.01 68.77 76.92 65.46 79.83 57.81 81.24 79.00 71.15 76.24 67.63
Mahalanobis 47.22 8291 53.57 80.61 51.14 81.76 55.26 80.05 44.25 84.60 4837 8337 54.54 73.00 75.15 65.47
CIDER 98.03 48.64 97.80 41.06 86.49 42.86 74.94 6246 98.01 48.64 91.04 43.09 98.44 39.78 98.59  38.10
SSD+ 99.10 4836  99.84 26.24 9947 29.79 9586 40.95 94.99 4545 99.38 3276 85.60 48.86 98.62  38.03
SNN 22.60 95.53 30.87 92.78 2514 94.18 29.87 93.76 30.74 9294 3426 92.12 3143 9365 43.15 87.13
SCE 19.71  95.62 34.53 9211 22.87 94.76 2290 94.77 2442 94.25 24.81 9440 31.97 9347 46.13 83.15
GCE 18.56  96.33  35.75 91.50 19.44  96.03 2347 95.11 1889 95.86 19.78 95.61 36.62 91.65 68.54 77.54

DivideMix 40.81 89.16 39.32 91.53 65.83 81.83 66.64 84.52 59.27 84.22 24.81 9440 34.27 9177 56.28 82.92
Co-teaching 81.94 5815 8214 60.68 77.98 63.71 5342 7423 77.59 62.76 81.94 58.15 6847 61.72 81.68 59.61

cM 1832 96.33  36.28 89.66 21.22 9517 2472 9461 2362 9504 2070 9551 3350 9275 49.52 8541
VolMinNet 1500 96.89 3752 91.60 23.37 9496 2290 9515 1880 96.15 22.19 95.02 29.26 94.09 56.65 81.39
NOODLE 1460 96.81 2545 94.71 1652 96.46 16.66 96.42 1546 96.70 1549 96.50 2525 95.13 3519 89.52
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Figure 2: The UMAP representations of the latent feature vectors h(x) learned using (a) CM ap-
proach (transition matrix-based label noise correction) with cross-entropy loss, and (b) NOODLE,
our proposed approach, on the CIFAR-10 dataset with synthetic label noise.

Baselines. We compare our proposed method with several OOD detection baselines as well as dif-
ferent label noise-robust techniques. Regarding the OOD detection baselines, we consider MSP
(Hendrycks & Gimpel, 2017), ODIN (Liang et al., |2018)), Energy (Liu et al., [2020), ReAct (Sun
et al., 2021), Mahalanobis (Lee et al., 2018)), KNN (Sun et al., 2022)), CIDER (Ming et al.| [2023),
SSD+ (Sehwag et al., 2021), and SNN (Ghosal et al., 2024). MSP, ODIN and Energy are softmax-
based approaches. MSP relies only on softmax output of the model, while ODIN uses an additional
temperature scaling hyperparameter. Energy method computes an energy-based metric from the
model outputs, identifying test samples with higher energy as OOD. ReAct is a logit-based ap-
proach. Mahalanobis, KNN, CIDER, SSD+, and SNN are distance-based approaches. The distance-
based methods—such as KNN, CIDAR, and SNN all advocate the use of non-parametric KNN-based
score (Sun et al., [2022) for OOD detection.

Regarding label-noise-robust learning methods, we consider different lines of approach for our eval-
uation. Specifically, we consider CM (Li et al.| [2021a), VolMinNet (Li et al., 2021a), SCE (Wang
et al.,[2019b), GCE (Zhang & Sabuncul |2018b), DivideMix (Li et al.,|2020a)), and Co-Teaching (Han
et al., 2018b). Here, CM and VolMinNet are probabilistic noise-modeling approaches that rely on
transition matrices to correct label noise. GCE and SCE are robust loss function—based approaches
that are variants of the cross-entropy loss. DivideMix and Co-Teaching are sample-selection-based
approaches that focus on reweighting samples based on the presence of label noise. For OOD perfor-
mance evaluation, we use the kNN-based metric for all these methods, unless specified otherwise.

Implementation Settings. We use a CNN-based architecture, DenseNet-101(Huang et al.,[2016), as
the backbone model for all datasets. We train the model from scratch using the ID datasets. During
training for CIFAR-10N and Animal-10N, we set the number of epochs to 100 and use a batch size
of 64. First, we extract penultimate layer’s features and then apply global average pooling following
by ¢5-normalization before performing the PI-based low-rank decomposition module of our NOO-
DLE approach. We initialize the transition matrices as identity matrices of appropriate size in the
case of CM-based approaches. For all datasets, we choose stochastic gradient descent (SGD) as the
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Figure 3: (a) Learned “OOD-ness” score o(x,,) for CIFAR-10N training images. Top: top-10 sam-
ples with the highest o(x,,) scores. Bottom: bottom-10 samples with the lowest o(x,,) scores. (b)
OOD performance of NOODLE with (p = 0.5) and without (p = 0) robust selection strategy.
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Figure 4: Comparison of OOD detection performance (FPR95]) on CIFAR-10N. (a) Different KNN
variants of NOODLE (b) Different Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)”
refers to NOODLE with X as loss correction strategy and Y as OOD distance metric.

optimizer with a momentum of 0.9 and a weight decay of 1 x 10~*. We tune the hyperparameters
A from the set of values {0.0001,0.0005,0.001,0.005,0.1} and p from {0, 0.3,0.5}. For the NOO-
DLE approach, we consider different options for loss correction strategies such as CM and SCE. In
terms of distance metrics in NOODLE approach, we consider both kNN and Mahalanobis scores as
OOD detection metrics. We present the best performing variants of the NOODLE approach in the
main result tables, yet present the detailed ablation study across different combinations of loss cor-
rection and distance metrics in the later sections. We evaluate the OOD detection performance using
two widely recognized metrics, i.e., the false positive rate at 95% true positive rate (FPR95) and area
under the receiver operating characteristic curve (AUROC). We also present the ID Accuracy (ID
ACC) under different settings in the supplementary section.

Results. Table [T] presents the OOD detection performance of the baselines and our method under
symmetric label noise across different noise rates for CIFAR-10 dataset. We can observe that OOD
detection baselines that lack label noise-robust training strategy are significantly impacted by high
levels of label noise. In contrast, the label noise-robust approaches, especially those based on prob-
abilistic modeling such as CM and VolMinNet maintain relatively strong performance under noisy
conditions. Notably, our proposed method, NOODLE, consistently outperforms all other approaches
under test in terms of both average FPR95 and AUROC. Our approach is particularly effective at
higher noise rates. For example, at 50% noise rate, NOODLE achieves the best performance, with
an average FPR95 of 27.34% which represents a reduction in FPR9S5 of up to 12.5% compared to
the best baseline method.

Table [2] presents the OOD detection performance on the real noise datasets which are annotated by
unreliable crowd workers. For CIFAR-10N “worst” noise level (the noise rate is about 40.21%),
NOODLE achieves a 9.5% reduction in FPR95 and a 1.07% increase in AUROC compared to the
best performing baseline SNN. Across other noise settings of CIFAR-10N as well, NOODLE consis-
tently outperforms all baselines. A similar trend is observed on the Animal-10N dataset: while label
noise-robust methods such as SCE, CM, and VolMinNet improve FPR95 over other non-robust tech-
niques, NOODLE achieves an additional reduction of approximately 14% compared to the closest
baseline. For CIFAR-100N which is more challenging under noisy settings, NOODLE substantially
outperforming all the baselines with an improvement of about 15% in FPR95 compared to the best
performing baseline. More experiment results are presented in the supplementary section.
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Figure 5: Comparison of OOD detection performance (FPR95]) on Animal-10N and CIFAR-100N
datasets. (a) CM vs NOODLE with KNN metric (b) SCE vs NOODLE with KNN metric (c) Differ-
ent Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)” refers to NOODLE with X as loss
correction strategy and Y as OOD distance metric.

ID vs OOD Features. From Fig. (1} it is evident that higher noise levels distort the feature space,
leading to less compact and more intermixed clusters. This feature distortion degrades the over-
all OOD detection performance, as we see in our experiments. To illustrate how label noise-robust
methods mitigate this issue, we examine the UMAP visualizations in Fig. [2] where the learned fea-
tures h(x) of the test data for both ID and OOD samples are presented. Here, we compare the feature
representations from one of the competing baseline, i.e., CM and our approach NOODLE. For CM,
one can observe that cluster distortions are mitigated compared to the scenarios as in Fig. [T} show-
ing that loss correction strategy helps in feature cleaning to some extend. Nonetheless, ID and OOD
sample mixups are still present significantly, especially near the boundaries. In contrast, NOODLE
produces more compact and well-separated clusters even under high noise rates with much reduced
feature mix-up between ID and OOD samples. We also observe the effectiveness of the proposed
OOD-ness score in Fig. 3| The “O0D-ness” score o(x,,) clearly differentiates the samples that are
more ID-like from those that are not in Fig. [3a] In addition, as shown in Fig. [3b] the average FPR
decreases across different real label noise settings when applying the sample selection strategy based
on the learned scores o(x,,).

Ablation Study. Here, we study the effect of the low-rank and sparse decomposition module in the
NOODLE framework under different loss correction strategies and OOD detection metrics. Specif-
ically, we analyze CM and SCE strategies for loss correction, and kNN and Mahalanobis scores
for the feature distance-based OOD detection. Fig. ffa] shows how the NOODLE variant with CM
as loss correction and £NN as the distance metric substantially advance the OOD detection perfor-
mance for CIFAR-10N dataset. The SCE variant of the NOODLE version is also reasonably good,
yet CM variant (i.e., NOODLE(CM, KNN)) performs much better in all scenarios in CIFAR-10N.
For example, in worst case noise version, NOODLE (CM, KNN) reduces FPR95 to 27.94% from
32.48% by KNN, showing its robustness even in challenging settings. We can also observe simi-
lar improvement in performance in Fig. @b] where CM-Mahalanobis variant of the NOODLE also
exhibits impressive OOD detection performance across scenarios. These results suggest that un-
der different strategies of loss correction and various OOD detection metrics, the feature cleansing
strategy of the NOODLE is effective in improving the ID-OOD separability. We also present sim-
ilar analysis for other datasets such as Animal-10N and CIFAR-100N in Fig. 5] In CIFAR-100N
dataset, the SCE-Mahalanobis variant of NOODLE achieves the best performance, likely because
estimating transition matrices for CM-based methods becomes increasingly difficult as the number
of classes grows. Nevertheless, our key idea of feature cleaning via low-rank sparse decomposition
consistently enhances performance across different settings.

5 CONCLUSION

In this work, we introduce a novel framework for OOD detection under noisy labels that addresses
the limitations of existing methods by correcting label noise and enhancing OOD performance.
By leveraging low-rank ID feature representations, a carefully designed learning criterion, and ro-
bust OOD distance metric, our approach provides greater flexibility and effectiveness in improving
ID-OO0D separability, even in highly noisy settings. Experimental results across multiple bench-
marks and challenging OOD scenarios demonstrate the superiority of our method, highlighting its
ability to tackle the challenging problem of OOD detection under noisy labels.
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Supplementary Material of “Tackling the Noisy Elephant in the Room: Label Noise-robust
Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition”

A NOTATION

We use the following notation throughout the paper: z, , , and X represent a scalar, a vector, a
matrix, and a tensor, respectively. Both z; and [z]; denote the ith entry of the vector . [X|; ; denote
the (4, j)th entry of the matrix X . x; denotes the ith row of the matrix X; [I] means an integer
set {1,2,...,I}. denote transpose. X > 0 implies that all the entries of the matrix X are non-
negative. I[A] denotes an indicator function for the event A such that I[A] = 1 if the event A
happens, otherwise I[A] = 0. CE(x,y) = — Zszl Ily = k]log(x(k)) denotes the cross entropy
function. I denotes an identity matrix of appropriate size. 1 x denotes an all-one vector of size K.
|C| denotes the cardinality of the set C. AX denotes a (K — 1)-dimensional probability simplex such
that AX = {u e RE |u>0,1Tu = 1}.

B ALGORITHM DESCRIPTION

In this section, we present the NOODLE algorithm. Algorithm[I]provides the complete, step-by-step
procedure of our approach using the transition matrix-based loss correction strategy. As discussed
earlier, we obtain ID features via a low-rank sparse decomposition. The decomposition routine is
detailed in Algorithm[2]

Algorithm 1 Proposed approach NOODLE

Input: Noisily labeled data {(x,,, )}, where &,, € X, J,, € Y, Niter» stopping criterion, K
as number of classes
Output: Estimated parameters 6 and T
Initialize Transition Matrix T to identity matrices Ix
Initialize the parameters @ of the neural network function class F
while stopping criterion is not reached do
while stopping criterion is not reached do
Draw a random batch B
H <« [h(z1),...,h(xN)] // features from batch B as per Eq. ??
Q + ApproxTopKSingularVectors(H , K, njter)
Hp +— (QQ"H
Hoop <+ H — Hpp
10: Compute VLz(T, B, Hoop))
11: T, 0+ SGDOptlleQI‘(T, VLp (T, B, HOOD))
12:  end while
13: end while

PRI AR

°

C MORE EXPERIMENT RESULTS

In this section, we present more detailed evaluations. While the summary results for CIFAR-10N
were reported earlier, we now provide dataset-wise OOD performance along with ID accuracy in
Table [3] and Table[d] To ensure fairness, all post-hoc methods are evaluated using the same encoder
trained with cross-entropy loss, thereby avoiding any bias in performance analysis. For CIDER
and SSD+, we follow prior work but replace their default ResNet-18 encoder with DenseNet-101
for consistency. As a result, these methods may require additional fine-tuning to fully realize their
potential. For Animal-10N, the dataset-specific results are reported in Table [5] We find that most
baseline methods struggle to achieve a good balance between ID accuracy and OOD detection. In
contrast, our proposed method NOODLE delivers consistently strong results across both metrics.

Finally, detailed results on CIFAR-100 are shown in Table @ As expected, CIFAR-100 is consid-
erably more challenging, leading to significant performance degradation for most baselines. Never-
theless, NOODLE achieves the best OOD detection performance while maintaining a competitive
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Algorithm 2 ApproxTopKSingularVectors

Input: Feature matrix H € RV*P, target rank %, number of iterations n;ger
Output: Orthonormal matrix @ € RP** spanning the approximate top-k right singular vectors
of H

Randomly initialize Q € RP** // D: feature dimension, k: target rank
for : = 1 to njier do
Z+ H'(HQ) // project Q into column space of H
Q + QRDecomposition(Z) // obtain orthonormal basis of Z’s column space
end for
return Q // spans approximate top-k right singular vectors of H

Table 3: OOD detection performance (FPR95] / AUROCT) on CIFAR-10 under different noise

setti

ngs using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.

FPR95, AUROC! FPR95, AUROCt FPR95, AUROCt FPR95, AUROCt FPR95, AUROC FPR95, AUROCT FPR95|, AUROCt

Clean
KNN 10.25 98.26 10.95 98.03 13.21 97.64 17.05 96.87 25.30 95.31 49.58 88.70 21.06 95.80 93.32
MSP 72.54 87.37 49.86 92.74 34.70 95.33 46.04 93.34 68.51 85.16 66.90 86.46 56.43 90.07 93.32
ODIN 55.88 89.16 16.01 97.23 3.01 99.12 8.47 98.20 60.46 82.84 54.77 88.30 33.10 92.47 93.32
Energy 73.05 87.23 15.64 97.18 4.44 98.86 23.22 96.16 67.02 83.48 51.52 89.30 39.15 92.03 93.32
ReAct 97.03 61.00 44.59 93.52 28.01 95.84 41.26 93.42 88.14 68.86 62.85 86.07 60.31 83.12 93.32
Mahalanobis  4.51 99.13 2.47 99.31 0.63 99.75 14.79 97.38 22.46 95.08 69.08 82.08 18.99 95.45 93.32
CIDER 89.25 86.21 100.00 46.56 100.00 51.96 100.00 29.81 99.04 35.07 99.90 42.25 98.03 48.64 94.03
SSD+ 99.25 62.41 96.42 53.98 100.00 42.95 99.90 43.05 99.18 41.64 99.87 46.14 99.10 48.36 94.03
SNN 8.68 98.35 21.49 96.22 9.22 98.42 19.46 96.72 26.99 94.97 49.74 88.52 22.60 95.53 94.15
SCE 4.59 99.13 15.47 97.06 1.96 99.58 10.60 98.06 29.31 92.84 56.36 87.03 19.71 95.62 91.09
GCE 11.33 98.02 11.73 98.00 7.16 98.73 9.06 98.30 21.70 96.15 50.39 88.80 18.56 96.33 93.54
DivideMix 22.35 94.72 36.90 91.74 33.41 90.87 46.05 87.62 47.11 86.55 58.04 84.45 40.81 89.16 81.22
Co-teaching 56.55 74.88 99.90 36.86 95.18 58.31 96.28 61.89 55.83 78.99 94.03 48.08 81.94 58.15 86.22
cM 8.35 98.64 8.39 98.49 7.16 98.67 15.19 97.31 19.72 96.36 51.14 88.54 18.32 96.33 94.39
VolMinNet 2.45 99.48 13.06 97.57 5.96 98.93 6.25 98.85 15.96 97.07 46.30 89.42 15.00 96.89 94.56
NOODLE 3.06 99.35 5.44 98.86 4.92 99.06 9.73 98.03 15.48 96.80 48.96 88.72 14.60 96.81 98.37
Noise = Worst
KNN 9.17 98.28 27.89 94.95 15.76 96.98 38.41 92.03 36.21 90.94 67.46 84.15 92.89 80.79
MSP 56.74 87.97 50.54 89.33 38.83 93.72 62.58 87.03 78.16 76.44 74.04 78.44 85.49 80.79
ODIN 45.45 90.96 33.09 93.31 13.41 97.43 32.36 93.02 71.68 72.39 75.89 73.02 86.69 80.79
Energy 37.62 93.17 35.78 93.28 14.57 97.00 47.39 90.98 76.06 74.61 72.39 77.45 87.75 80.79
ReAct 70.94 82.60 52.84 90.05 36.40 93.87 68.31 81.53 88.92 54.21 77.90 70.87 78.86 80.79
Mahalanobis  4.41 98.97 19.95 96.33 10.05 98.07 30.50 92.65 33.69 89.11 87.96 60.38 89.25 80.79
CIDER 99.88 30.48 96.13 49.01 99.94 33.75 99.21 35.94 92.91 54.56 98.73 42.62 41.06 24.22
SSD+ 99.96 43.94 99.94 33.16 99.98 13.02 100.00 16.11 99.50 18.12 99.67 33.06 26.24 19.85
SNN 10.98 97.95 24.49 95.67 16.61 96.76 31.84 93.96 33.92 90.69 67.36 81.67 92.78 80.57
SCE 12.39 97.67 28.98 94.52 17.71 96.62 49.37 89.63 34.61 91.13 64.11 83.10 92.11 83.48
GCE 10.53 98.18 21.72 96.09 15.71 97.05 55.81 87.25 45.69 87.86 65.02 82.54 91.50 83.49
DivideMix 44.70 93.52 48.20 89.20 38.09 90.29 15.35 96.70 32.06 94.42 : 85.09 91.53 80.23
Co-teaching 50.04 85.37 99.95 29.04 99.61 58.63 96.88 58.36 52.15 82.65 94.22 50.03 60.68 86.34
cM 8.61 98.29 17.92 96.78 28.37 90.87 56.29 81.97 39.24 88.19 67.23 81.87 89.66 76.26
VolMinNet 7.58 98.33 42.88 90.42 19.70 95.50 43.71 89.08 40.90 87.46 70.64 77.54 89.72 76.30
NOODLE 3.17 99.47 21.57 96.21 7.57 98.03 28.09 97.28 30.52 92.53 61.75 84.71 94.71 83.72
Noise = Aggre
KNN 11.37 97.91 18.32 96.70 9.93 98.11 18.12 96.35 23.69 95.43 62.26 84.54 23.95 94.84 89.93
MSP 57.75 89.45 47.16 90.89 27.74 95.11 88.27 67.84 83.15 69.89 82.42 55.04 88.21 89.93
ODIN 49.75 91.54 30.78 94.69 9.29 98.25 92.13 65.18 82.01 74.50 75.54 43.83 89.03 89.93
Energy 66.66 88.00 40.23 93.66 18.07 97.10 88.41 71.46 81.96 74.80 78.26 56.03 87.90 89.93
ReAct 66.66 88.00 40.23 93.66 18.07 97.10 88.41 71.46 81.96 21.61 96.92 47.17 91.01 89.93
Mahalanobis  4.41 98.97 19.95 96.33 10.05 98.07 30.50 92.65 33.69 89.11 87.96 60.38 31.09 89.25 89.93
CIDER 28.18 91.29 99.98 34.71 96.13 49.01 100.00 22.14 94.47 34.71 96.37 48.95 86.49 42.86 25.24
SSD+ 99.64 43.12 99.90 31.72 99.87 36.56 100.00 97.41 39.38 100.00 6.48 99.47 29.79 19.22
SNN 6.15 98.90 14.36 97.33 8.61 98.32 35.76 26.12 94.45 59.86 83.74 25.14 94.18 90.00
SCE 4.32 99.14 19.12 96.41 4.92 98.98 19.90 24.98 94.82 63.95 82.82 22.87 94.76 90.45
GCE 1.94 99.64 11.17 98.11 7.57 98.58 14.44 28.63 94.62 52.86 87.84 19.43 96.03 91.55
DivideMix 77.88 85.56 84.07 74.54 48.41 87.26 59.81 49.49 86.58 74.63 78.99 65.72 81.83 73.44
Co-teaching 48.52 80.16 99.49 39.54 94.18 58.15 86.59 45.46 84.21 93.64 47.65 77.98 63.71 86.15
CcM 7.82 98.68 13.01 97.55 8.41 98.30 12.70 22.45 95.18 62.91 83.70 21.22 95.17 78.82
VolMinNet 3.88 99.17 10.28 98.08 8.46 98.32 31.84 29.41 93.06 56.36 87.27 23.37 94.96 91.86
NOODLE 1.34 99.75 17.07 97.21 2.26 98.95 8.42 17.15 96.21 52.88 88.41 16.52 96.46 91.57
and balanced ID accuracy, highlighting its robustness under difficult conditions. We also provide
ablation study of hyperparameter A in Table[7} We see the more lower value of A FPR performance

is good.Therefore, we choose low value of A in our experimental settings.
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Table 4: OOD detection performance (FPR95| / AUROCT) on CIFAR-10 using a DenseNet-100
encoder under random1, random2, and random3 noise.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.
FPR95| AUROCT FPR95| AUROCT FPR95| AUROCt FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT FPR95| AUROCT

Noise = random1

KNN 26.55 95.11 32.22 94.66 19.98 96.43 36.27 92.58 30.12 93.01 67.75 84.12 35.48 92.65 88.03
MSP 63.91 89.44 56.80 88.35 33.35 94.64 70.25 83.87 70.71 81.70 69.47 81.73 60.75 86.62 88.03
ODIN 55.83 87.93 43.60 91.41 11.17 98.01 46.12 89.4 65.07 77.53 72.94 75.16 49.12 86.56 88.03
Energy 81.76 85.45 39.75 92.56 11.32 97.78 63.37 86.34 68.55 80.04 64.57 81.25 54.89 87.24 88.03
ReAct 97.67 60.00 57.46 89.81 28.41 95.32 72.90 78.42 86.65 69.53 75.58 68.77 88.03
Mahalanobis 16.86 96.22 48.89 88.49 13.62 97.36 50.63 82.90 36.24 92.57 50.57 88.03
CIDER 54.22 82.56 69.96 72.92 96.13 49.01 100.00 22.14 94.47 93.35 48.34 26.02
SSD+ 90.68 45.50 94.43 48.88 99.66 29.40 99.66 35.47 92.61 98.11 47.00 22.05
SNN 16.25 97.07 35.63 93.93 15.74 97.05 23.81 95.32 26.77 61.03 85.28 87.13
SCE 17.45 97.24 10.51 97.91 5.81 98.81 14.95 97.11 25.83 62.82 83.86 89.81
GCE 6.38 98.87 11.85 97.92 11.48 97.93 23.18 96.11 31.91 56.04 86.58 90.46
DivideMix 89.21 84.82 62.24 86.97 56.76 88.52 68.00 80.74 50.85 72.78 79.19 77.14
Co-teaching 51.32 81.34 49.00 83.00 52.00 87.00 23.18 96.11 74.58 94.74 62.07 86.44
CcM 3.13 99.35 18.50 96.55 15.74 97.22 21.04 96.18 25.85 64.08 83.69 90.31
VolMinNet 5.48 99.01 15.74 97.11 6.92 98.75 22.86 95.86 30.30 56.10 86.06 90.53
NOODLE 3.21 99.47 15.65 97.21 5.23 98.93 5.03 98.85 12.79 97.69 58.03 86.35 90.36
Noise = random2
KNN 6.29 98.73 41.05 91.75 19.28 96.04 24.92 95.02 30.85 92.20 69.53 82.43 31.99 92.70 87.79
MsP 53.36 89.13 58.24 84.86 30.82 94.26 48.26 91.41 73.00 80.23 74.98 79.10 56.44 86.50 87.79
ODIN 44.99 87.97 56.14 83.96 13.74 97.24 19.78 94.78 68.03 73.23 77.58 68.27 46.71 84.24 87.79
Energy 60.00 87.44 50.75 87.08 17.62 96.63 29.00 93.97 71.31 76.10 73.20 75.42 50.31 86.11 87.79
ReAct 78.12 80.74 56.58 86.77 30.49 94.12 62.46 86.31 87.27 61.33 77.87 69.69 65.46 79.83 87.79
Mahalanobis 11.94 96.96 69.11 81.20 23.57 95.12 36.79 87.81 38.72 86.17 94.13 48.44 45.71 82.62 87.79
CIDER 89.16 86.14 99.99 46.58 99.90 42.25 100.00 29.81 99.04 35.07 100.00 51.96 98.01 48.64 25.46
SSD+ 99.36 35.10 90.31 57.22 93.77 55.07 99.56 33.89 91.78 42.09 95.15 49.31 94.99 45.45 23.45
SNN 4.84 99.05 42.45 92.36 19.44 96.04 17.68 96.06 33.90 91.82 66.09 82.28 30.74 92.94 88.11
SCE 6.17 98.78 15.97 97.16 13.15 97.50 24.60 95.04 25.41 94.60 61.19 82.42 24.42 94.25 89.72
GCE 2.02 99.57 18.91 96.46 5.57 98.84 9.06 98.09 19.47 96.02 55.29 86.18 18.89 95.86 90.29

DivideMix 79.28 78.13 68.73 80.40 55.05 86.76 26.58 94.70 51.37 87.91 74.59 77.40 59.27 84.22 78.30
Co-teaching 51.32 81.34 99.87 32.07 74.58 69.89 94.74 62.07 52.39 81.73 92.63 49.46 77.59 62.76 85.99

CcM 1.83 99.62 16.84 97.00 17.64 96.72 18.08 96.81 27.96 94.45 59.38 85.66 23.62 95.04 90.29
VolMinNet 3.95 99.25 15.59 97.29 8.74 98.36 8.31 98.42 22.82 95.84 53.37 87.74 18.80 96.15 94.35
NOODLE 2.14 99.49 12.51 97.82 3.98 99.05 5.02 98.87 17.78 95.74 52.42 87.89 15.46 96.70 90.25

Noise = random3

KNN 8.79 98.41 29.45 93.81 12.45 97.66 28.16 94.63 25.80 94.26 58.99 85.76 27.27 94.09 87.77
MSP 50.92 90.23 44.39 89.13 25.79 95.34 69.78 81.85 67.02 81.86 65.51 81.76 53.90 86.70 87.77
ODIN 41.84 90.63 30.77 92.45 8.82 98.25 42.48 89.24 60.35 77.22 67.20 76.41 41.91 87.37 87.77
Energy 40.77 92.63 26.49 93.06 8.85 98.19 57.99 85.82 64.08 80.66 58.27 83.06 42.74 88.90 87.77
ReAct 77.62 77.76 34.33 16.16 96.96 67.01 79.29 85.32 62.89 66.42 77.99 57.81 81.24 87.77
Mahalanobis  7.87 98.31 26.49 94.4: 7.01 98.64 54.91 82.04 28.95 90.66 87.15 57.60 35.40 86.95 87.77
CIDER 98.96 18.22 98.75 24.24 75.41 69.92 91.38 57.40 88.28 38.09 93.45 50.68 91.04 43.09 23.21
SSD+ 99.54 26.49 99.02 42.89 100.00 33.08 100.00 33.42 98.54 17.58 99.15 43.08 99.38 32.76 19.20
SNN 12.97 97.67 34.27 91.84 16.04 96.81 53.01 89.46 29.40 92.96 59.90 83.95 34.26 92.12 87.94
SCE 6.08 98.81 16.65 96.94 13.47 96.64 24.29 95.55 23.32 95.23 65.06 83.22 24.81 94.40 89.39
GCE 7.30 98.63 17.23 96.88 5.28 98.96 10.88 97.86 20.04 95.84 57.98 85.49 19.78 95.61 90.71

DivideMix 26.15 95.47 57.09 89.78 38.77 92.91 46.40 89.32 49.93 87.99 74.53 80.78 48.81 89.38 69.20
Co-teaching 50.65 80.80 99.96 23.83 99.55 56.65 95.49 58.16 52.45 80.56 93.54 48.86 81.94 58.15 86.53

cM 2.56 99.48 12.00 97.75 6.82 98.60 23.46 95.99 23.74 94.94 55.65 86.32 20.70 95.51 90.79
VolMinNet 9.80 98.06 10.10 98.02 7.61 98.40 24.25 95.63 25.74 94.40 55.65 85.58 22.19 95.02 94.36
NOODLE 2.31 99.41 12.31 97.82 3.34 99.25 5.26 98.79 17.56 95.86 52.15 87.86 15.49 96.50 90.37

Table 5: OOD detection performance (FPR95) / AUROC?T) on Animal-10N with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.
FPR95| AUROCtT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT
KNN 45.29 89.55 58.05 90.30 66.19 79.93 90.66 62.18 7317 74.54 89.26 65.71 70.44 77.04 81.52
MSP 93.12 64.84 82.74 79.61 84.00 74.53 96.60 34.67 96.97 41.18 90.40 64.56 90.64 59.90 81.52
ODIN 79.29 64.67 51.20 88.26 48.52 87.84 96.52 34.97 95.43 36.66 90.85 62.89 76.97 62.55 81.52
Energy 81.91 74.54 66.32 88.64 31.94 94.83 96.32 45.16 89.02 69.24 88.09 74.71 75.60 74.52 81.52
ReAct 79.18 77.62 72.85 85.98 42.96 92.02 95.69 58.85 91.88 52.46 91.43 59.99 79.00 71.15 81.52
Mahalanobis 31.73 91.49 97.47 42.44 68.73 66.87 4.87 98.87 33.39 86.64 91.04 51.67 54.54 73.00 81.52
CIDER 98.86 39.21 98.50 78.80 96.32 61.83 97.93 37.85 99.89 20.98 99.19 39.05 98.44 39.78 20.24
SSD+ 74.30 66.08 89.00 57.00 97.69 31.96 66.50 65.96 91.21 43.10 98.31 37.19 85.60 48.86 19.60
SNN 41.40 91.28 11.58 97.79 12.04 97.63 39.68 91.61 29.22 93.29 54.67 90.27 31.43 93.65 81.52
SCE 29.06 90.96 41.71 93.05 27.00 94.63 9.45 98.39 29.59 94.10 55.03 89.71 31.97 93.47 81.22
GCE 28.98 91.90 43.05 91.28 23.75 94.14 27.02 95.91 30.18 92.52 66.74 84.15 36.62 91.65 80.86

DivideMix 16.15 96.44 19.84 96.28 18.42 95.98 60.56 86.34 40.14 85.92 50.52 89.62 34.27 91.77 79.63
Co-teaching 68.04 83.45 99.90 8.68 84.54 55.97 11.71 97.11 49.72 82.39 96.92 42.70 68.47 61.72 74.08
CcM 25.84 95.25 15.41 97.22 13.42 97.44 63.61 84.11 37.06 90.88 45.65 91.58 33.50 92.75 82.48
VolMinNet 15.08 96.79 29.22 94.51 11.80 97.73 40.62 90.67 25.20 94.64 53.63 90.21 29.26 94.09 81.78

NOODLE 26.49 94.77 24.41 95.75 11.36 97.86 17.29 96.70 18.21 96.33 53.76 89.37 25.25 95.13 82.98

16



Under review as a conference paper at ICLR 2026

Table 6: OOD detection performance (FPR95] / AUROCT) on CIFAR-100 with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.
FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROC{ FPR95| AUROCT FPR95| AUROC? FPR95| AUROCT
KNN 11.08 97.63 42.68 92.88 28.07 93.32 53.09 81.81 32.73 91.70 91.56 61.90 43.20 86.54 52.48
MsP 86.65 75.40 76.23 81.21 52.72 88.08 88.69 67.64 92.36 60.23 89.81 63.40 81.08 72.66 52.48
ODIN 93.41 68.56 58.06 87.70 26.85 95.10 70.69 83.42 92.78 59.70 88.51 65.36 71.72 76.64 52.48
Energy 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 99.29 3.46 98.31 6.41 78.93 51.74 52.48
ReAct 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 38.90 83.94 66.32 76.24 67.63 52.48
Mahalanobis 64.60 82.25 99.38 44.82 95.23 49.37 53.12 83.45 84.50 96.43 48.47 75.15 65.47 52.48
CIDER 98.86 39.76 99.33 29.09 99.19 39.05 96.36 61.84 37.85 99.89 20.99 98.59 38.10 19.76
SSD+ 99.00 39.35 99.33 29.07 99.19 39.05 96.36 61.84 37.85 99.89 20.99 98.62 38.03 15.56
SNN 16.78 96.78 35.98 93.88 91.30 61.59 56.80 84.25 92.35 27.24 93.93 43.15 87.13 58.06
SCE 16.87 96.64 14.13 97.12 30.67 91.97 75.99 62.21 86.01 88.84 64.92 46.13 83.15 60.74
GCE 63.18 82.35 58.27 88.42 63.09 77.88 80.78 66.52 82.63 87.90 67.42 68.54 77.54 58.21

DivideMix 30.53 94.00 37.22 93.63 67.81 83.31 67.09 70.49
Co-teaching 51.77 83.17 99.96 27.69 85.42 66.48 98.34 47.85

85.01 86.47 71.10 56.28 82.92 33.26
79.01 95.20 53.47 81.68 59.61 46.18

cM 3524 9209  40.79 9255 3679 90.95 5459 79.49 89.36 8926  68.02 4952 8541  59.06
VolMinNet 36.03  91.87 5023 9122 4513  88.00 7476 6176 88.84 9049  66.66  56.65  81.39  60.10
NOODLE 2112 9597 2044 9646 524 9876 3920  91.36 89.97  87.67 6459 3519 8952  60.89
A SVHN FashionMNIST LSUN iSUN Texture Places365 AVG

FPR | AUROC 1| FPR AUROC | FPR AUROC | FPR AUROC | FPR AUROC | FPR AUROC | FPR AUROC
0.0001| 3.23 99.31 23.67 9581 | 8.08 9840 |36.55 93.57 (3298 91.67 |63.14 8391 |27.94 93.78
0.0005 | 19.66 9599 4248 90.61 |25.72 94.65 |18.28 95.86 |33.81 91.92 |59.99 82.62 |3332 9194
0.001 | 29.12 94.13 |47.44 90.18 |36.82 92.17 |31.88 92.10 |56.01 83.47 |57.17 84.44 |43.07 89.42

Table 7: OOD detection performance for different A values for the“worst” noise case. ID dataset is
CIFAR-10 and the encoder architecture is DenseNet-101.
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