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Abstract

We frame the problem of learning stochastic differential equations (SDEs) from
noisy observations as an inference problem and aim to maximize the marginal
likelihood of the observations in a joint model of the latent paths and the noisy
observations. As this problem is intractable, we derive an approximate (variational)
inference algorithm and propose a novel parameterization of the approximate distri-
bution over paths using a sparse Markovian Gaussian process. The approximation
is efficient in storage and computation, allowing the usage of well-established opti-
mizing algorithms such as natural gradient descent. We demonstrate the capability
of the proposed method on the Ornstein–Uhlenbeck process.

1 Introduction

Dynamical systems in the real world are often well represented using stochastic differential equations
(SDEs, [15]) incorporating the laws of physics and sources of stochasticity. They appear naturally in
applications like finance, healthcare, gene modelling, etc. [4, 8]. An active area of research within the
machine learning community is to develop algorithms to learn SDEs from observations of dynamical
systems [2, 14, 6, 20]. Following these early works, we frame the SDE learning problem as an
inference problem: maximizing the marginal likelihood of observations under a generative model
of the unobserved path (SDE prior) and the observations. For non-linear SDEs, this problem is
intractable, so we use the variational inference framework [3] to derive and approximate the posterior.

As in Archambeau et al. [2], we introduce an approximate posterior process over paths in the
form of a multi-output Markovian Gaussian process and frame the inference and learning problem
as the maximization of a lower bound to the marginal likelihood (ELBO). This particular choice
of the approximate posterior process leads to a tractable ELBO that can be efficiently evaluated
and optimized. Crucially, it exploits the fact that the marginal statistics (mean and covariance) of
Markovian Gaussian processes are obtained in closed form and cheaply by solving simple linear
ordinary differential equations (ODEs). In practice, the Markovian Gaussian process is parameterized
as a time-varying linear SDE and discretized on a fine temporal grid, leading to further approximations,
and high storage and computation costs.

In this work, we propose an alternative parameterization to the approximate distribution over paths
using a conditioned stationary Markovian Gaussian process, inspired by the doubly-sparse Gaussian
process [1]. The key idea is to learn pseudo-observations such that a simple stationary GP conditioned
on these pseudo-observations provides a good approximation to the intractable posterior, as measured
by the Kullback–Leibler (KL) divergence. The proposed approximation reduces the complexity both
in memory and time, allowing the usage of well-established optimizing algorithms such as natural
gradient descent. The capability of the proposed method is demonstrated on the Ornstein–Uhlenbeck
(OU) process.
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Figure 1: Ornstein–Uhlenbeck process: (a) The evolution of the drift of the sparse Markovian
Gaussian process over iterations along with the prior SDE and the true SDE drift; (b) GPR posterior
and approximated posterior mean and 95% confidence interval of the proposed method along with
the simulated trajectory and the noisy observations.

This work is a direct extension of Archambeau et al. [2] which performs variational inference over the
latent state path using a Gaussian Process as an approximate posterior process. Within the variational
framework, alternative parameterizations for the posterior process have been used. In Li et al. [10], the
drift of a non-linear SDE is parameterized. The resulting ELBO is not tractable but posterior sample
path can be approximately generated (after a discretization of the time axis) to provide unbiased
estimate of the ELBO and its gradient for stochastic optimization. Our approach bears similarity
with the probabilistic numerics approach to solve or fit ODEs to data, whereby the solution is cast as
an inference in a generative model with Markovian GP prior over the solution and two likelihoods:
one enforcing a fit to observed data and a second enforcing ‘gradient-matching’, i.e. the gradient of
the process is in agreement with the ODE [16, 18]. Both terms arise naturally in our framework in
the form of the expected log-likelihood of the observations under the posterior process (variational
expectations) and a distance between prior and posterior drifts (Girsanov term), respectively the first
and second term in Eq. (2).

The contributions of this paper are: (i) We provide an alternate parameterization to the approximate
distribution over paths using a conditioned Markovian Gaussian process. (ii) The proposed approxi-
mation leads to a more efficient method both in terms of memory and time. (iii) The proposed method
catalyzes the usage of well-established and efficient optimizing algorithms such as natural gradient
descent.

2 Methods

We model an observed dynamical system on a time interval [0, τ ] using an SDE:
dxt = fθ(xt, t) dt+ Ldβt, where fθ(xt, t) is the drift function, LL> = Σ is the (time-invariant)
diffusion coefficient, and dβt is the standard Brownian motion. We focus on systems where the
diffusion term is constant, and the state x is indirectly observed at n discrete time points ti via an
observation model providing the likelihood {p(yi | xi)}tni=t1 . The aim is to learn the θ parameter(s)
of fθ(xt, t) given observations by maximizing the marginal likelihood pθ(yt1,...,tn). We consider
the scenario where the model has arbitrary likelihood, and the drift of the SDE fθ(xt, t) is non-linear.
Computing the posterior distribution over state paths and the marginal likelihood is intractable, we
thus resort to an approximate inference scheme: variational inference [3].

2.1 Variational inference

Variational inference (VI) turns an inference problem into an optimization problem. By introducing
a distribution q over paths, a lower bound to the log-evidence L(q) ≤ log p(y) is constructed via
Jensen’s inequality: L(q) = Eq log p(y,x)

q(x) = Eq log p(y | x) − DKL [q(x) ‖ p(x)]. This bound is
optimized for q ∈ Q, where Q is a family of distributions chosen to lead to a tractable bound. We
will refer to this bound as the evidence lower bound (ELBO). The gap in the bound can be shown to
be the KL divergence between the q and the true posterior, log p(y)− L(q) = DKL [q(x) ‖ p(x | y)].
Thus, the optimal q∗ = arg minL(q) also provides an approximation to the posterior p(x | y).
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We choose the approximating distribution family Q to be that of Gaussian processes (GP, [13]). In
this setting, valid Gaussian processes are Markovian and correspond to the class of linear SDEs.
Archambeau et al. [2] proposed using markovian Gaussian process for q by directly parameterizing
the drift of the SDE as an affine function of the state: q(x(·)) : dxt = fL(xt, t) +

√
Σ dβt,

where fL(xt, t) = −At xt + bt, and At, bt are functions of time referred to as the variational
parameters. Note that the diffusion term is set to the prior diffusion which is necessary to obtain a valid
bound. In practice, optimizing over functions At, bt requires further assumptions or approximations.
Archambeau et al. [2] resort to the later and discretize the continuous time SDEs, of both the prior
and approximate posterior, over a fine time grid. This turns functions At, bt into vectors which can
be optimized using standard optimization techniques, albeit at the expense of modifying the prior
assumptions on the dynamical system.

We now propose an alternative parameterization for q that does not require to approximate the prior
SDE. We do so by choosing q to be a conditioned Markovian GP (or sparse Markovian GP) built by
conditioning the states x(z) of a stationary Markovian GP rφ at time indices z to a Gaussian variable
with distribution wψ. We refer to z as inducing inputs and x(z) as inducing states. Informally,
this leads to a factorization of the density over paths, q{φ, ψ} (x(·)) = rφ (x̄(·) | x(z)) wψ(x(z)),
where x(·) are the states for all time inputs and x̄(·) = x(·) \ x(z), i.e., all states except the inducing
states x(z) at inducing input z. The Markovian GP rφ can be represented as an LTI-SDE [15];
rφ (x) : dxt = fφ xt dt+ Ldβt, and, as in Archambeau et al. [2] we restrict the diffusion term to be
the same as that of the prior SDE. Thus, {φ, ψ} are the variational parameters.

The ELBO introduced in Section 2.1 requires the computation of the KL divergence between the
approximate posterior and the true posterior processes. For Markovian processes, this can be done
using Girsanov theorem [7],

DKL [q(x) ‖ p(x)] =
1

2

∫ τ
t=0

Eq(xt) ||fθ(xt) − fφ xt||2Σ−1dt + DKL [w(x(z)) ‖ r(x(z))] . (1)

Thus, the ELBO for the proposed model is
L =

∑n
i=0 Eq(x(ti))[l(xi)] +

∫ τ
t=0

Eq(xt) [g(xt)] dt−DKL [w(x(z)) ‖ r(x(z))] , (2)

where g(xt) = − 1
2 (fθ(xt)− fφ xt)

>
Σ−1 (fθ(xt)− fφ xt), and l(xi) = log p(yi | xi), with

the observations assumed independent and identically distributed. The ELBO in Eq. (2)
can be further written as L = Lsde + Lsvgp, where Lsde =

∫ τ
t=0

Eq(xt) [g(xt)] dt, and
Lsvgp = −DKL [w(x(z)) ‖ r(x(z))] +

∑n
i=0 Eq(x(ti))[l(xi)] which is identical to the ELBO of the

SVGP model [17], considering r as the pseudo prior. The ELBO can be interpreted intuitively. It
consists of two parts: Lsde aims to keep the Markovian GP r close to the original prior SDE, whereas
Lsvgp aims to learn the variational parameters {φ, ψ} considering r as the prior. A key feature of
our approach is that marginal posterior predictions q(x(t)) necessary to evaluate the ELBO can be
computed in parallel for all time inputs t, unlike in Archambeau et al. [2] where those statistics
require classical sequential Kalman smoothing recursions.

2.2 Optimization

The ELBO is optimized in a two-step iterative algorithm, following the variational EM algorithm
[11], as shown in Alg. 1. We use gradient descent to learn the θ parameters of the prior SDE whereas
for inference, i.e. learning q, natural gradient descent is used for parameters ψ of the distribution wψ
and gradient descent for φ parameters.

Natural gradient descent can be used when optimizing an objective over a distribution. The resulting
optimization is invariant to the choice of parameterization. We use the formulation of natural gradient
descent as mirror descent [12] in the mean parameterization which provides an update for the the
natural parameterization of the distribution [9] (See App. A for a description of parameterizations of
the multivariate normal distribution). Noting ηr the natural parameters of r(x(z)) and parameterizing
w(x(z)) in the natural form η = ηr + λ, we get the natural gradient updates:

λt+1 = γt∇µ α+ (1− γt)λt , (3)

where γt = 1
1+ρt

, and α =
∫ τ
t=0

(
Eq(xt) [g(xt)] +

∑n
i=0 δ(t− tn)Eq(x(ti))[l(xi)]

)
dt, with µ being

the mean parameter, λ the natural parameter of w, and δ is the dirac function. The gradient of α is
available in closed-form via the chain-rule (see App. B). It takes the form of a time integral which we
approximate via Riemann sum.
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3 Experiments

We showcase the inference capability of our method on the Ornstein–Uhlenbeck process. The
inducing variables are taken to be same as the observations points and are not optimized. Also, the
learning step is not performed for this experiment. However, both of these can be easily integrated.

The Ornstein–Uhlenbeck (OU) process is a stochastic process of a particle going through a
Brownian motion [19]. It is defined by a stationary Markovian GP expressed by an SDE,
dx(t) = −ax(t) dt+ σ dβ(t), where drift function is f(xt) = −axt, diffusion function is σ,

Algorithm 1: Optimization
η, ν, γ ← learning rates
while not converged do

θn+1 ← θn + ν∇θ Lsde

while not converged do
while not converged do

Natural gradient step:
λ̄n+1 ← γt∇µ α+ (1−γt) λ̄n

end
Hyperparameter gradient step:
φn+1 ← φn + η∇φ L

end
end

and Brownian motion has q spectral density. We
simulate the OU SDE using Euler–Maruyama
and observe states at random time-intervals via
a Gaussian likelihood observation model. For
the experiment, likelihood variance is fixed and
not optimized. More details about the experi-
ment setup are given in App. C. The induced
stationary covariance function of OU process is
κ(t, t′) = ϕ

2λ exp(λ‖t− t′‖), where ϕ = σ2 q,
which is identical to the Matérn 1/2 kernel. Thus,
we perform Gaussian process regression (GPR)
with Matérn-1/2 kernel to get the exact posterior.
We apply the proposed method to approximate the
posterior with q(x(·)) = r(x(·) | x(z))w(x(z)),
where the kernel of r is the modified Matérn-1/2;
whose diffusion coefficient matches that of the prior SDE.

App. C(Fig. 3) showcases the evolution of the ELBO over iterations during optimization as well as
of its different components. The evolution of the drift of the sparse Markovian Gaussian process
r is shown in Fig. 1a from which we infer that the drift converges to a good approximation. The
posterior approximated by the proposed method along with the GPR posterior is shown in Fig. 1b
which showcases the capability of the model to approximate the posterior which is very close to the
exact GPR posterior.

4 Limitations and Extensions

The proposed method can be summarized as performing GP regression with a pseudo Markovian GP
prior, while ensuring that the drift of this pseudo prior matches that of the prior SDE. A stationary GP
has a linear drift and can not be expected to approximate well a non-linear drift. For example, as is, the
proposed method could not learn the double well system of Archambeau et al. [2] whose drift is saw-
tooth like. A natural extension, which we are currently investigating, is to use a piecewise stationary
Markovian GP whose drift coefficient is different in between each consecutive pair of inducing points
fφ,t =

∑
m δ(zm < t ≤ zm+1)fφm . Each sub-drift fφm would thus only approximate the prior SDE

drift locally in time, and thus locally in the state-space. Alternatively, a mixture of Markovian GPs
could be used which would, once learned, automatically cluster the state-space to provide a global
approximation to the prior drift as in Fox et al. [5].

5 Conclusion

In this paper, we proposed a method to learn the SDE based on a set of noisy observations. The
focus was on non-linear SDEs with a complex observation model leading to an intractable posterior.
Gaussian processes (GPs) are often used as approximate posterior over SDE paths. However, the
resulting algorithm has a high number of parameters with high complexity both in terms of storage and
time. We explore the advances related to sparse GPs and present a novel alternate parameterization
to the approximate distribution over SDE paths based on a sparse Markovian Gaussian process.
The proposed method has fewer parameters, the ELBO calculation is parallelizable in contrast to
the current methods, and allows the usage of well-defined optimization algorithms such as natural
gradient descent for better convergence. We demonstrated the model capability on an Ornstein–
Uhlenbeck process, for which the ‘ground-truth’ is available. The results show that the new approach
works as intended and encourages further research on the applicability of this method.
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Supplementary Material:
Sparse Gaussian processes for stochastic differential

equations

A Multivariate normal parameterizations

The multivariate normal (MVN) is often parameterized in terms of its source parameters: the mean and
the covariance matrix (m,S). The MVN distribution is part of the exponential family which provides
additional parameterizations of interest. Distributions in the exponential family have densities of the
form

p(x) = exp(t(x)>η − a(η)), (4)

where t(x) are the sufficient statistics, η ∈ Rd the natural parameters, and a(η) the log partition
function defined by a(η) = log

∫
exp(t(x)>η))dx. For a given natural parameterization η, there is

an associated expectation parameterization µ = Eη [t(x)]. For the MVN distribution, the sufficent
statistics are given by t(x) = (x,xx>) and the natural parameters in terms of source parameters are
η = (S−1m,−1/2S−1).

B Method

B.1 Variational posterior and chain rule

Similar to Adam et al. [1], using the state-space parameters, the conditional of the sparse Markovian
GP is r(xt | xz) ∼ N (Pt vt,Tt), where vt = (ut−, ut+) are the inducing variable pairs, and Pt

and Tt are the matrices depending on the previous state transitions. With the probability density
of the inducing variables being Gaussian, w(xz) ∼ N (µwz , Σwzwz ), the variational posterior is
q(xt) ∼ N (µt,Σt), where µt = Pt µwt and Σt = Tt + PtΣwtwtP

>
t .

Using the variational posterior, for any function f1(·) we get the following chain-rule
∇Σwtwt

f1(·) = ∇Σtf1(·)×∇Σwtwt
Σt.

B.2 Gradient calculation

By using the variational posterior and the chain rule, the gradients of g required for the natural
gradient update Eq. (3) is

∂µ(2)α =
1

2

[∫
τ

P>τ ∂
2
µτ µτ α1(τ)Pτ dτ +

∑
n P>n ∂

2
µn µn α2(n)Pn

]
, (5)

∂µ(1)α =
∫
τ

P>τ ∂µτ α1(τ) dτ +
∑
n P>n ∂µn α2(n)

+
∫
τ

P>τ ∂
2
µτ µτ α1(τ)Pτ µwτ dτ +

∑
n P>n ∂

2
µn µn α2(n)Pn µwn , (6)

where α1(τ) = Eq(xτ )[h(xτ )] and α2(n) = Eq(xn)[log p(yn | xn)].

C Experiment details

The OU SDE parameters used for the simulating the data is a = −0.5, L = 1, and q = 0.2. We
simulate the SDE using Euler–Maruyama with the time-step 0.01 and randomly select 20 observation
samples on it. We use a Gaussian observation model with zero mean and variance of 0.01. For the
psuedo prior, we randomly draw drift and diffusion values from a unit Gaussian. Adam optimizer
is used for optimizing the hyperparameters with initial learning rate of 0.1 and the learning rate for
natural gradient descent is set to 0.2.
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Figure 2: Ornstein–Uhlenbeck process: Approximated posterior mean and 95% confidence interval
of the proposed method along with the simulated trajectory and the noisy observations.
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Figure 3: Ornstein–Uhlenbeck process: The evolution of the (a) Girsanov value; (b) Kullbeck–Liebler
divergence value; (c) Expected log-likelihood value; (d) Negative ELBO; over training iterations.
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