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ABSTRACT

Large Vision-Language Models (LVLMs) excel in diverse cross-modal tasks.
However, object hallucination, where models produce plausible but inaccurate
object descriptions, remains a significant challenge. In contrast to previous work
focusing on LLM components, this paper is the first to trace LVLM hallucina-
tions to visual encoders and identifies three key issues: statistical bias, inher-
ent bias, and vulnerability. To address these challenges, we propose SHIELD,
a training-free framework that mitigates hallucinations through three strategies:
re-weighting visual tokens to reduce statistical bias, introducing noise-derived to-
kens to counter inherent bias, and applying adversarial attacks with contrastive
decoding to address vulnerability. Experiments demonstrate that SHIELD ef-
fectively mitigates object hallucinations across diverse benchmarks and LVLM
families. Moreover, SHIELD achieves strong performance on the general LVLM
benchmark, highlighting its broad applicability. Code is available at https:
//github.com/hukcc/SHIELD.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Bai et al., 2023b; Liu et al., 2023b; Dai et al., 2023) com-
bine visual and textual information and have advanced significantly in cross-modal tasks. Despite
these advances, they suffer from object hallucination, generating object descriptions that may appear
reasonable but misrepresent the image, either by misidentifying attributes (e.g., color, quantity, posi-
tion) or by introducing non-existent objects. This issue poses reliability and safety risks in domains
such as healthcare (Hu et al., 2023; Wang et al., 2023b), autonomous systems (Chen et al., 2024a;
Wu et al., 2023), and robotics (Mai et al., 2023; Liu et al., 2023a).

Various approaches have been proposed to mitigate object hallucinations. Early efforts, such as fine-
grained modality alignment (Biten et al., 2022) and data augmentation to reduce co-occurrence bias
(Kim et al., 2023; Rohrbach et al., 2018), were designed for small-scale VLMs but fail to generalize
to LVLMs (Kaplan et al., 2020; Wei et al., 2022). More recent research falls into two categories:
training-required and training-free methods. Training-required methods, including preference opti-
mization (Ouali et al., 2024), post-hoc revisers (Zhou et al., 2024), and RLHF (Sun et al., 2024a),
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Figure 1: Key issues underlying object hallucinations in LVLMs. Statistical bias: the visual encoder
overemphasizes frequent visual patterns, distorting fine-grained perception. Inherent bias: the en-
coder produces erroneous representations of dominant objects in the pretraining data, regardless of
input. Vulnerability: the encoder is sensitive to minor perturbations, yielding unreliable features.
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improve factual consistency but demand substantial human and computational resources. In con-
trast, training-free methods, such as contrasting outputs from distorted inputs (Leng et al., 2024) or
applying over-trust penalties during decoding (Huang et al., 2024), offer a more efficient alterna-
tive. However, these approaches primarily focus on the LLM component, leaving the role of visual
encoders underexplored.

This paper is the first to trace LVLM hallucinations to visual encoders, filling this gap by identifying
three key issues: statistical bias, inherent bias, and vulnerability, as illustrated in Figure 1. Despite
large-scale pretraining, these encoders remain affected by imbalanced distributions of visual con-
cepts in the pretraining data, resulting in statistical and inherent biases. Statistical bias leads the
visual encoder to overemphasize tokens related to frequent visual patterns, thereby distorting the
perception of details. Inherent bias leads the visual encoder to produce representations of dominant
objects in the pretraining data, regardless of the input, even when it is meaningless. Furthermore,
vulnerability, arising from insufficient robustness to noise and perturbations during pretraining, leads
the encoder to produce inaccurate visual representations even with small perturbations.

To address bias and vulnerability in visual encoders that hinder feature extraction and amplify hal-
lucinations in LVLMs, we propose SHIELD, a training-free method combining token re-weighting,
token subtraction, and contrastive decoding. Specifically, token re-weighting alleviates statistical
bias by distributing attention across more tokens relevant to the ground-truth objects, thus avoiding
fine-grained distortion from overemphasized tokens. In parallel, token subtraction mitigates inher-
ent bias by estimating erroneous representations related to dominant objects in pretraining data via
noise input and eliminating them through token-level subtraction. To address vulnerability, con-
trastive decoding exposes hallucinations with a perturbed image and suppresses them by contrasting
with outputs from a natural image.

Experiments demonstrate that SHIELD consistently improves performance on object hallucination
benchmarks, including CHAIR (Rohrbach et al., 2018), POPE (Li et al., 2023), the hallucination
subset of MME (Fu et al., 2023), and GPT-4o-aided evaluations on LLaVA-Bench (Liu et al., 2023b).
Moreover, these improvements are observed across diverse LVLM families, such as LLaVA (Liu
et al., 2023b), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al., 2023b). Beyond object
hallucination mitigation, SHIELD also enhances general perception capabilities, as evidenced by
improvements on the full MME benchmark (Fu et al., 2023), highlighting its broader applicability.

Our contributions are summarized as follows:

• We analyze the role of visual encoders in contributing to object hallucinations in LVLMs, focusing
on statistical bias, inherent bias, and vulnerability.

• We propose SHIELD, a training-free method that mitigates object hallucinations by reducing sta-
tistical bias via token re-weighting, alleviating inherent bias using token subtraction, and address-
ing vulnerability through contrastive decoding.

• Comprehensive experiments validate SHIELD’s effectiveness in mitigating object hallucinations
across diverse benchmarks and LVLM families. Moreover, its strong performance on the general
LVLM benchmark highlights its broad applicability.

2 RELATED WORK

2.1 LARGE VISION LANGUAGE MODELS (LVLMS)

Recent advances in large-scale foundation models and multimodal learning have accelerated the
development of Large Vision-Language Models (LVLMs). By combining Large Language Models
(LLMs) (Bai et al., 2023a; Brown et al., 2020; Chiang et al., 2023; Chowdhery et al., 2023; Gilardi
et al., 2023; Raffel et al., 2020; Taori et al., 2023; Tay et al., 2023; Touvron et al., 2023) with cross-
modal frameworks such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022), LVLMs integrate
visual and textual information for more comprehensive understanding. Nevertheless, LVLMs across
different architectures, including LLaVA-1.5 (Liu et al., 2024), InstructBLIP (Dai et al., 2023), and
Qwen-VL (Bai et al., 2023b), still suffer from hallucinations, particularly in fine-grained object
recognition and challenging visual grounding. Such errors, often involving non-existent objects or
misidentified attributes, remain a key challenge for reliability in real-world applications.
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Figure 2: Statistics show that hallucinations stem from bias and vulnerability. (a) The X-axis shows
the peak-to-average L2 norm ratio of visual tokens, measuring the deviation of the highest-norm
token from the average, and the Y-axis shows the proportion of hallucinating samples at each level.
Stronger overemphasis leads to higher hallucination rates. (b) The X-axis lists objects, and the Y-
axis shows hallucination occurrences under meaningless inputs. Dominant objects are more likely
to be falsely perceived as present. (c) The X-axis denotes the number of attack steps, and the Y-axis
shows the F1 score. Even small perturbations increase hallucinations and degrade performance.

2.2 OBJECT HALLUCINATION IN LVLMS

Approaches to mitigating object hallucinations in LVLMs can be grouped into training-required and
training-free methods. Training-required methods reduce hallucinations by optimizing model pa-
rameters or training auxiliary modules. Prominent methods include CLIP-DPO (Ouali et al., 2024),
leveraging CLIP-based similarity ranking for preference optimization; LURE (Zhou et al., 2024),
using post-hoc revisers to align text with visual input; and LLaVA-RLHF (Sun et al., 2024a), incor-
porating human feedback through reinforcement learning. Training-free methods improve decoding
without modifying model. Representative approaches include Visual Contrastive Decoding (VCD)
(Leng et al., 2024), which contrasts outputs from natural and blur inputs to mitigate hallucinations,
OPERA (Huang et al., 2024), which reduces overconfidence through penalty mechanisms and token-
level adjustments, HALC (Chen et al., 2024b), which employs adaptive focal-contrast decoding to
provide token-wise visual grounding during inference, MARINE (Zhao et al., 2025a), which incor-
porates image-grounded guidance from external vision models, and VTI (Liu et al., 2025), which
steers latent representations to stabilize vision features at test time. While effective, these methods
rarely address the bias and vulnerability of visual encoders, which this work aims to address.

3 METHOD

3.1 HALLUCINATIONS STEM FROM VISUAL ENCODER

Accurate visual feature extraction is crucial for LVLMs to generate reliable outputs. However, bias
and vulnerability in visual encoders distort features, intensifying object hallucinations. This section
delves into these challenges.

3.1.1 STATISTICAL AND INHERENT BIAS IN VISUAL ENCODER

Most LVLMs adopt visual encoders derived from pretrained CLIP models. Although these encoders
benefit from large-scale pretraining, they are influenced by the imbalanced distribution of visual
concepts in the pretraining data. Specifically, certain visual concepts appear far more frequently
than others, while rare or context-dependent elements are severely underrepresented (Parashar et al.,
2024). As a result, the model develops a strong inductive bias toward frequent patterns and dominant
objects, giving rise to both statistical and inherent bias.

Statistical bias denotes the visual encoder’s over-reliance on frequent visual patterns in the pretrain-
ing data, causing overemphasis on the corresponding tokens with disproportionately high L2 activa-
tion values (Darcet et al., 2024). This overemphasis distorts the downstream LLM’s perception of
fine-grained details by directing attention to overweighted tokens (Kang et al., 2025), often resulting
in hallucinations. Analysis of LLaVA-1.5’s responses and visual tokens on the POPE COCO subset
(Figure 2a) shows that the proportion of hallucinated samples grows with stronger token overem-
phasis, measured by the peak-to-average L2 ratio (the deviation of the highest-norm token from the
mean among visual tokens).
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Figure 3: Illustration of the proposed SHIELD framework. Given an input image and a query text,
the visual encoder produces tokens affected by statistical bias (overemphasized tokens ), inherent
bias (erroneous representations ), and vulnerability (inaccurate features ). SHIELD addresses
these issues through three modules: (i) Token Re-weighting, which redistributes attention to more
ground-truth-object relevant tokens to alleviate overemphasis ( ); (ii) Token Subtraction, which
estimates and removes erroneous representations ( ) via noise-derived tokens; and (iii) Contrastive
Decoding, which exposes inaccurate features ( ) using attacked images and suppresses correspond-
ing outputs by contrasting them with those from the natural image.

Inherent bias is the visual encoder’s overdependence on dominant objects in the pretraining data,
leading it to generate erroneous representations of these objects regardless of the input, even when
meaningless. As shown in Figure 2b, analysis of LLaVA-1.5’s responses to the POPE COCO random
split questions with meaningless images (random noise) as input shows frequent hallucinations of
dominant objects such as cars, chairs, and tables, defined as cases where the model incorrectly
predicts the presence of queried objects.

3.1.2 VULNERABILITY IN VISUAL ENCODER

The vulnerability of visual encoders is another key factor contributing to object hallucinations. It
arises from their limited robustness to noise and subtle perturbations (Mao et al., 2023), making them
susceptible to constructing inaccurate visual representations under such disturbances. As shown in
Figure 2c, the performance of LLaVA-1.5 drops sharply on the POPE COCO subset even with a few
attack steps, demonstrating that minor perturbations can exploit this weakness and yield unreliable
features.

3.2 SHIELD: SUPPRESSING HALLUCINATIONS IN LVLM ENCODERS VIA BIAS AND
VULNERABILITY DEFENSE

Building on these observations, we propose SHIELD, a training-free method to mitigate object hal-
lucinations by addressing statistical bias, inherent bias, and vulnerability in visual encoders, as il-
lustrated in Figure 3. SHIELD integrates three strategies. Token re-weighting distributes attention
across more tokens relevant to ground-truth objects, thereby reducing fine-grained distortion from
overemphasized tokens and alleviating statistical bias. Token subtraction estimates erroneous repre-
sentations of dominant objects in the pretraining data using noise input and removes them through
token-level subtraction, thus mitigating inherent bias. Finally, contrastive decoding applies pertur-
bations to the input image to expose hallucinations and suppresses them by contrasting outputs with
those from the natural image, countering vulnerability.
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Figure 4: Mitigating Statistical Bias. Visual tokens
are re-weighted via a similarity matrix between vi-
sual tokens and naive caption tokens, emphasizing
more ground-truth-object relevant tokens and reduc-
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Figure 5: Reducing Inherent Bias. K noise
inputs are used to estimate erroneous rep-
resentations of dominant objects in the pre-
training data, which are then removed from
visual tokens via feature subtraction.

3.2.1 FORMULATION OF LVLM INFERENCE

A LVLM’s inference can be described in three stages. First, the visual encoder E(·) extracts N
visual tokens from the raw image v:

xv = x0, x1, . . . , xN−1 = E(v). (1)

Next, given xv and the query text t, the LLM computes the output logits for token yi at step i,
conditioned on the preceding sequence y<i:

logit(yi | xv, t, y<i) = LLM(xv, t, y<i). (2)

Finally, the logits are transformed into a probability distribution over the vocabulary via softmax,
from which the next token is selected according to the decoding strategy:

p(yi | xv, t, y<i) = softmax [logit(yi | xv, t, y<i)] . (3)

Autoregressive repetition of the second and third stages produces the final textual output.

3.2.2 MITIGATING STATISTICAL BIAS

As discussed in Section 3.1.1, statistical bias causes the visual encoder to overemphasize tokens
associated with frequent visual patterns, distorting fine-grained perception. To address this, token
re-weighting is applied based on the similarity between visual tokens and naive caption tokens,
encouraging the model to attend to more tokens relevant to ground-truth objects.

As shown in Figure 4, token re-weighting begins with generating a naive caption cnaive using the
vanilla LVLM for the given image v:

cnaive = VanillaLVLM
(
v,“Please describe this image”

)
. (4)

The CLIP text encoder Et(·) (paired with E(·) during CLIP pretraining) then encodes the caption
into P tokens:

c = {c0, c1, . . . , cP−1} = Et(c
naive). (5)

Given the caption tokens c and the visual tokens xv , a similarity matrix M ∈ RN×P is computed:

M =
xvc⊤

∥xv∥2 · ∥c∥2
. (6)

From M, weights Wv are obtained by taking the maximum along the caption dimension and nor-
malizing to [0, 1]:

Wv = norm(max
j

Mi,j), Wv ∈ RN . (7)

Finally, the weights are applied via residual addition (⊙: element-wise multiplication) to emphasize
visual tokens corresponding to captioned objects, yielding statistical-bias-corrected tokens xv ′:

xv ′ = xv + xv ⊙Wv. (8)

Although the naive caption cnaive may introduce hallucinations, they do not affect re-weighting, as
hallucinated objects fail to match any visual tokens with high similarity during similarity matrix M
computation. Thus, token re-weighting remains focused on ground-truth objects.

5
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3.2.3 REDUCING INHERENT BIAS

As in Section 3.1.1, inherent bias leads the visual encoder to produce erroneous representations of
dominant objects in the pretraining data, regardless of the input. To counter this, token subtraction
introduces noise inputs to estimate such erroneous features and removes them from the visual tokens.

As shown in Figure 5, K random noise inputs ni (with the same size as the image) are passed through
the visual encoder. The resulting tokens are averaged to estimate erroneous representations, which
are then subtracted from the statistical-bias-corrected tokens xv ′, yielding bias-reduced tokens:

xv ′′ = xv ′ − 1

K

K∑
i=1

E(ni). (9)

Since inherent bias depends only on visual encoder parameters, the estimation of erroneous repre-
sentations from noise inputs can be pre-calculated for each model to improve efficiency.

The bias-reduced tokens xv ′′, together with the query text t, are subsequently fed into the LLM to
produce bias-reduced logits:

logit
(
yi | xv ′′, t, y<i

)
= LLM

(
xv ′′, t, y<i

)
. (10)

3.2.4 ADDRESS VULNERABILITY
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Figure 6: Addressing Vulnerability. An attack tensor con-
structed from the input image and its naive caption via adversar-
ial learning is applied to reveal objects likely to be hallucinated,
followed by contrastive decoding to suppress their generation.

As noted in Section 3.1.2, the
visual encoder lacks robustness
to subtle perturbations and noise,
making it susceptible to inac-
curate representations, especially
when key pixels are disturbed. To
counter this vulnerability, a two-
step strategy is adopted: adversar-
ial attack is first applied to reveal
objects likely to be hallucinated,
followed by contrastive decoding
to suppress the probability of gen-
erating the corresponding outputs
during inference.

To expose vulnerability-induced hallucinations, an attack tensor is constructed from the input image
v and its naive caption cnaive (Equation 4) using the visual encoder E(·) and its paired text encoder
Et(·). As illustrated in Figure 6, a learnable perturbation δ is added to the input image and refined
via backpropagation. The adversarial loss is defined as the cosine similarity between the global
representation of the perturbed image and that of the naive caption:

ladv = cos
(
E(v + δ), Et(c

naive)
)
. (11)

The final attack tensor δ∗ is obtained by minimizing ladv via gradient descent with learning rate l:

δ∗ = argmin
δ

ladv. (12)

During inference, the attack tensor δ∗ is added to the input image to produce vulnerability-induced
inaccurate visual representations:

xv = {x̄0, x̄1, . . . , x̄N−1} = E(v + δ∗). (13)

These inaccurate representations are then used to produce adversarial logits:

logit
(
yi | xv, t, y<i

)
= LLM

(
xv, t, y<i

)
. (14)

To suppress hallucinations revealed by the attack tensor, contrastive decoding is applied. At each
decoding step i, SHIELD contrasts the bias-reduced logits with the adversarial logits to adjust the
output probability distribution, where α controls the impact of contrastive decoding:

pshield(yi) = softmax
[
(1 + α) logit(yi | xv ′′, t, y<i)− α logit(yi | xv, t, y<i)

]
, (15)
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Table 1: CHAIR Hallucination Evaluation

LLaVA-1.5 InstructBLIP Qwen-VLMethod
CS↓ CI↓ CS↓ CI↓ CS↓ CI↓

Vanilla 48.8 14.2 54.6 24.8 49.2 13.1
VCD 46.8 13.2 44.0 13.6 46.4 11.9

OPERA 44.6 12.8 46.4 14.2 34.6 9.5
Ours 36.6 10.3 40.4 10.9 28.9 9.2

Table 2: GPT4o-aid Hallucination Evaluation

LLaVA-1.5 InstructBLIP Qwen-VLMethod
C↑ D↑ C↑ D↑ C↑ D↑

Vanilla 4.9 5.0 4.2 4.2 6.2 4.6
VCD 5.5 5.5 5.1 5.5 6.5 5.7

OPERA 5.6 6.0 5.3 5.2 6.5 5.6
Ours 6.2 6.1 5.6 5.3 6.9 5.8

Following (Leng et al., 2024), an adaptive plausibility constraint is introduced to avoid implausible
outputs. Only tokens with probabilities no smaller than a fraction β of the maximum are retained:

νtoken(yi) = { yi ∈ ν : p(yi) ≥ βmax
ω

p(ω) }, (16)

where ν is the vocabulary and νtoken(yi) is the valid subset at step i. The threshold β determines
truncation aggressiveness. For tokens not in νtoken(yi), probabilities are set to zero.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

To evaluate the effectiveness of SHIELD in mitigating hallucinations, three representative LVLMs
were selected: LLaVA-1.5 (Liu et al., 2024), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai
et al., 2023b). SHIELD was compared against the corresponding vanilla LVLMs and two recent
training-free methods, VCD (Leng et al., 2024) and OPERA (Huang et al., 2024). Following their
original setups, vanilla LVLMs and VCD adopted sampling-based decoding, while OPERA em-
ployed beam search decoding with a penalty term on logits to reduce overconfidence. For SHIELD,
sampling-based decoding was used, drawing from the modified post-softmax distribution. Unless
otherwise specified, α = 2, β = 0.35, K = 32, and l = 0.02 were applied across all LVLMs, where
α controls the strength of contrastive decoding, β sets the truncation threshold in the plausibility
constraint, K denotes the number of noise inputs for estimating inherent bias, and l is the learning
rate for optimizing the attack tensor. Hyper-parameters ablation are provided in the Appendix C. All
experiments were conducted on a single RTX A6000 GPU.

4.2 QUANTITATIVE RESULTS

This section evaluates the effectiveness of SHIELD in mitigating hallucinations for both detailed
descriptions and simplified VQA answers.

CHAIR Evaluation. The CHAIR metric (Rohrbach et al., 2018) measures object hallucination in
image captioning by calculating the proportion of objects mentioned in captions that are not present
in the ground-truth label set. It consists of two dimensions: a sentence-level score CS and an
instance-level score CI , which are defined as:

CS =
|sentences with hallucinated objects|

|all sentences|
, CI =

|hallucinated objects|
|all objects mentioned|

.

Following (Huang et al., 2024), evaluation is performed on 500 randomly selected images from
the COCO 2014 validation set (Lin et al., 2014), using the prompt “Please describe this image in
detail.” To ensure fairness, generated captions are truncated to a maximum of 512 tokens.

As shown in Table 1, SHIELD consistently outperforms all previous training-free methods on both
CS and CI , achieving up to 18% improvement over the second-best method, OPERA, on LLaVA-
1.5. This performance gain stems from SHIELD’s ability to counter biases and vulnerability in the
visual encoder, thereby reducing hallucination risk in detailed descriptions.

GPT-4o Assisted Evaluation. While CHAIR effectively evaluates object-level hallucinations, it
fails to capture errors in attributes, locations, or relations. To complement this, we employ GPT-4o, a
strong multi-modal assistant, to assess LVLM outputs on the LLaVA-Bench dataset. GPT-4o scores
responses on correctness (C) and detailedness (D) from 0–10, with higher correctness indicating
fewer hallucinations. The evaluation explicitly targets objects mentioned but absent from the image,
as well as errors in attributes, colors, positions, or relationships. Further details are provided in the
Appendix A.1.
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Table 3: POPE Hallucination Evaluation on COCO subset

Random Popular Adversarial AverageLVLM Method Accuracy ↑ F1 ↑ Accuracy ↑ F1 ↑ Accuracy ↑ F1 ↑ Accuracy ↑ F1 ↑
Vanilla 83.2 81.3 81.8 80.0 78.9 77.5 81.3 79.6
VCD 87.7 87.1 85.3 85.0 80.8 81.3 84.6 84.4

OPERA 89.1 89.0 86.0 86.3 79.1 80.9 84.7 85.4LLaVA-1.5

Ours 91.3 91.1 87.4 87.6 82.5 83.6 87.0 87.4
Vanilla 80.7 80.4 78.2 78.3 75.8 76.5 78.2 78.4
VCD 84.5 83.6 81.4 81.0 79.5 79.5 81.8 81.3

OPERA 89.8 89.6 83.4 84.0 80.7 81.8 84.6 85.1InstructBLIP

Ours 88.2 87.6 84.6 84.3 82.2 82.4 85.0 84.8
Vanilla 84.7 82.6 84.1 82.0 82.2 80.3 83.6 81.6
VCD 88.6 87.8 87.1 86.4 84.2 83.9 86.6 86.0

OPERA 86.1 84.2 85.7 83.8 83.9 82.1 85.2 83.3Qwen-VL

Ours 89.2 88.6 87.6 87.1 84.3 84.2 87.0 86.6

Table 4: MME Hallucination Evaluation

Object-level Attribute-levelLVLM Method Existence Score ↑ Count Score ↑ Position Score ↑ Color Score ↑ Total Score ↑

Vanilla 175.6 124.6 114.0 151.0 565.3
VCD 184.6 138.3 128.6 153.0 604.6

OPERA 180.6 133.3 123.3 155.0 592.3LLaVA-1.5

Ours 195.0 141.6 148.3 183.3 668.3
Vanilla 141.0 75.3 66.6 97.3 380.3
VCD 168.3 92.3 64.0 123.0 447.6

OPERA 156.0 78.3 55.0 95.0 384.3InstructBLIP

Ours 170.0 75.0 88.3 128.3 461.6
Vanilla 155.0 127.6 131.6 173.0 587.3
VCD 156.0 131.0 128.0 181.6 596.6

OPERA 165.0 145.0 133.3 180.0 623.3Qwen-VL

Ours 180.0 170.0 128.3 190.0 668.3

As shown in Table 2, SHIELD achieves substantial gains in correctness, confirming its effectiveness
in mitigating hallucinations. In contrast, improvements in detailedness are modest, since the method
primarily addresses bias and vulnerability in the visual encoder rather than enhancing fine-grained
descriptive coverage.

POPE Evaluation. Similar to CHAIR, POPE (Li et al., 2023) evaluates existence-level hallucina-
tions in LVLMs. It adopts a VQA-style format (e.g., “Is there a {object} in the image?”) to test
whether models correctly associate images with specific objects. POPE includes three splits: “ran-
dom” for random objects, “popular” for frequent objects, and “adversarial” for objects semantically
related to those in the image. The evaluation is conducted on three subsets: COCO, A-OKVQA,
and GQA. Additional results are provided in Appendix B.1.

As shown in Table 3, SHIELD outperforms previous training-free methods across most splits of
the COCO subset. Although all methods show performance drops from Random to Adversarial,
SHIELD more effectively mitigates hallucinations in the challenging Adversarial split, highlighting
that biases and vulnerability in visual encoders are major contributors to hallucinations. For In-
structBLIP, however, the improvements are limited since its Q-Former module constrains the use of
modified visual features, thereby diminishing the benefits of SHIELD.

MME Hallucination Subset Evaluation. Although POPE adopts a VQA format effective for eval-
uating object-existence-level hallucinations, it does not capture attribute-level aspects such as count,
position, and color. To address this limitation, the MME hallucination subsets (Fu et al., 2023)
provide a more comprehensive benchmark. Following (Yin et al., 2023), we evaluate object-level
hallucinations using the existence and count subsets, and attribute-level hallucinations using the
position and color subsets. Performance is reported using the combined metrics of accuracy and
accuracy+ as defined in the official implementation.

As shown in Table 4, SHIELD achieves consistent improvements across all models, leading to higher
total scores. By correcting statistical bias in visual encoders, SHIELD reduces the impact of overem-
phasized tokens on fine-grained perception, thereby significantly mitigating attribute-level halluci-
nations.

Attribute and Relation Level Hallucination Evaluation. To further evaluate hallucinations at the
attribute and relation level, we conduct experiments on the AMBER benchmark (Wang et al., 2023a),
comparing against a series of baselines based on LLaVA-1.5 7B. AMBER offers a comprehensive
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Table 5: AMBER Hallucination Evaluation

Method Generative Task Discriminative Task AMBER
Score

CHAIR↓ Cover↑ Hallucination↓ Cognition↓ Accuracy↑ Precision↑ Recall↑ F1↑

Vanilla 9.2 41.3 29.2 3.7 65.7 83.2 64.7 73.2 82.0
VCD 8.1 44.2 28.6 3.1 68.3 85.8 65.2 74.0 82.9
OPERA 8.3 43.1 31.2 2.9 76.0 79.2 83.8 81.4 86.5
Ours 6.4 46.1 25.1 1.8 78.3 89.1 76.6 82.4 88.0

Table 6: MME Full Set Evaluation

Method Perception↑ Cognition↑ Total Score↑
Vanilla 1279.2 352.9 1632.1
VCD 1363.9 353.2 1717.1

OPERA 1413.0 304.2 1717.2
Ours 1473.0 337.8 1810.8

Table 7: Module Ablation on CHAIR

Module CS↓ CI↓
Vanilla LLaVA-1.5 48.8 14.2

+ adaptive plausibility constraint 50.2 13.8
+ address vulnerability (Ours) 46.4 12.8
+ mitigate statistical bias (Ours) 40.4 11.0
+ reduce inherent bias (Ours) 36.6 10.3

suite of generative and discriminative metrics, explicitly covering existence, attribute, and relation
hallucinations, making it a strong benchmark for assessing multimodal hallucination across diverse
tasks. As shown in Table 5, our method achieves the highest Amber Score (88.0) and consistently
outperforms all baselines across most metrics, demonstrating effective mitigation of hallucinations.

Figure 7: Evaluation on the full MME. Larger
radar indicate better performance.

LVLM General Evaluation. To evaluate
the overall performance of SHIELD-enhanced
LVLMs, we conduct experiments on the full MME
benchmark (Fu et al., 2023) using the LLaVA-1.5
7B model. The benchmark covers ten perception-
related subtasks (including four hallucination-
related) and four cognition-oriented ones. Perfor-
mance is reported using both accuracy and accu-
racy+ as defined in the official implementation.

As shown in Table 6 and Figure 7, SHIELD not
only improves hallucination-related performance
but also yields notable gains in perception tasks
such as OCR and Posters, thereby enhancing the
overall capability of the model. Further details are
provided in the Appendix B.2.

4.3 ABLATION STUDY

Module Ablation. To assess the effectiveness of SHIELD, we performed ablation studies on each
module using the CHAIR benchmark with the LLaVA-1.5 7B model. The adaptive plausibility
constraint, a key element of contrastive decoding, was also ablated to evaluate its role in mitigating
hallucinations. As shown in Table 7, all modules contribute notably to reducing hallucinations.

Although integral to contrastive decoding, the adaptive plausibility constraint alone was less ef-
fective, indicating that filtering low-probability candidates cannot fully suppress hallucinations. In
contrast, each SHIELD module individually reduced hallucination frequency, with their full com-
bination achieving the greatest improvement. Notably, after addressing vulnerability, adding the
statistical bias mitigation module yielded a further 13% reduction, highlighting statistical bias as a
major source of hallucinations, particularly in longer descriptions.

Visualization. Figure 8 illustrates SHIELD’s effectiveness in mitigating biases and reducing vul-
nerability in visual encoders. Figure 8a demonstrates that re-weighting visual tokens alleviates sta-
tistical bias by distributing attention across more object-relevant tokens and reducing overemphasis
on specific ones, thereby improving fine-grained perception. Figure 8b illustrates SHIELD’s effect
on the POPE COCO subset with ambiguous inputs, showing that by leveraging noise-derived tokens
to remove inaccurate representations, SHIELD significantly reduces hallucinations of dominant ob-
jects in pretraining data. Finally, Figure 8c highlights SHIELD’s robustness against perturbations,
where SHIELD-enhanced LLaVA-1.5 exhibits substantially less performance degradation under in-
creasing attack steps.
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Figure 8: (a) Token Re-weighting highlights more object-relevant tokens. (b) Token Subtraction
removes erroneous representations, reducing hallucinations associated with dominant objects in the
pretraining data. Blue-only categories indicate zero hallucinations with our method. (c) Contrastive
Decoding improves robustness to perturbations, mitigating vulnerability-induced hallucinations.

Table 8: Efficiency Comparison on CHAIR

Method CS↓ T (s/sample)↓ Mem↓
Vanilla 48.8 2.59 15.69GB
VCD 46.8 4.89 16.52GB
OPERA 44.6 24.01 34.88GB
Ours 36.6 7.34 18.17GB

Table 9: Module Efficiency on CHAIR

Module T (s/sample)↓ Mem↓
Vanilla 2.59 15.69GB
w/ Mitigate Statistical Bias 4.64 16.56GB
w/ Reduce Inherent Bias 2.63 16.50GB
w/ Address Vulnerability 7.30 18.17GB
Ours (All Modules) 7.34 18.17GB

Inference Overhead Analysis. To assess the computational cost of SHIELD, we evaluate its hal-
lucination ratio, runtime, and peak GPU memory usage on the CHAIR benchmark with LLaVA-1.5
7B. As shown in Table 8, SHIELD achieves the lowest hallucination ratio (CS = 36.6) while main-
taining acceptable inference overhead. In particular, it runs substantially faster than OPERA and
provides a more favorable trade-off between hallucination reduction and computational efficiency
compared to VCD. To further analyze the sources of computational cost, we conduct a module-wise
ablation study using the CHAIR benchmark and LLaVA-1.5 7B, as shown in Table 9. The majority
of overhead arises from the Address Vulnerability and Mitigate Statistical Bias modules, both of
which require caption generation. In particular, Address Vulnerability further involves adversarial
tensor computation, increasing runtime to 7.30 seconds per sample and memory usage to 18.17 GB.
The Mitigate Statistical Bias module, which only relies on caption generation, increases runtime to
4.64 seconds and memory to 16.56 GB. For reference, caption generation alone takes 2.05 seconds
and 16.56 GB. In contrast, the Reduce Inherent Bias module introduces minimal overhead, adding
only 0.04 seconds and 0.81 GB. Notably, the full SHIELD configuration incurs negligible additional
cost beyond Address Vulnerability. These results indicate that most overhead is concentrated in
caption generation and adversarial tensor computation, and that the overall trade-off can be flexibly
adjusted by tuning caption length or the number of adversarial optimization steps.

5 CONCLUSION

This paper investigates object hallucinations in LVLMs, tracing their origin to visual encoders. De-
spite large-scale pretraining, these encoders suffer from three issues: statistical bias, which overem-
phasizes frequent patterns and distorts fine-grained perception; inherent bias, which induces er-
roneous representations related to dominant objects in pretraining data; and vulnerability, which
makes encoders sensitive to minor perturbations and results in inaccurate features. To address these
challenges, we propose SHIELD, a training-free framework that integrates token re-weighting, to-
ken subtraction, and contrastive decoding. Token re-weighting alleviates statistical bias by dis-
tributing attention to more ground-truth-relevant tokens. Token subtraction mitigates inherent bias
by estimating and removing erroneous dominant-object representations using noise-derived tokens.
Contrastive decoding counters vulnerability by exposing hallucinations via perturbed image and
suppressing them through contrast with natural inputs. Extensive experiments demonstrate that
SHIELD not only achieves significant improvements on hallucination benchmarks but also enhances
general perception tasks, highlighting its effectiveness and broad applicability.

Future work could explore the design of more robust visual encoders to further reduce bias and
vulnerability, as well as the optimization of adversarial attack mechanisms to lower computational
costs for real-time applications.
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ETHICS STATEMENT

In this paper, we propose SHIELD, a method that mitigates bias and vulnerability to reduce hallu-
cinations in LVLMs, thereby enhancing their safety and reliability for the community. Outputs of
SHIELD may occasionally contain inappropriate content inherited from the base model, and such
outputs do not reflect the authors’ views. We strictly adhere to the ICLR ethical research standards
and applicable laws. To the best of our knowledge, this work complies with the General Ethical
Principles.

REPRODUCIBILITY STATEMENT

We follow the ICLR reproducibility standards and ensure the reproducibility of our work. All
datasets used for inference and evaluation are publicly available, and detailed experimental settings,
including hyper-parameters and implementation steps, are documented in the paper and Appendix.
Furthermore, we will release our code upon acceptance, enabling other researchers and practitioners
to easily reproduce and extend our results.
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Table 10: The Prompt used for GPT4o-aid evaluation

GPT-4o Prompt

You are required to score the performance of four AI assistants in describing a given image. You should pay extra attention to the
hallucination, which refers to the part of descriptions that are inconsistent with the image content, such as claiming the existence of
something not present in the image or describing incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate
the responses of the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the following criteria:
1: Correctness: whether the response is accurate with respect to the image content. Responses with fewer hallucinations should be given
higher scores.
2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions should not count as necessary
details.
Please output the scores for each criterion, containing only four values indicating the scores for Assistant 1, 2, 3 and 4, respectively. The
four scores are separated by a space. Following the scores, please provide an explanation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]
[Assistant 2]
{}
[End of Assistant 2]
[Assistant 3]
{}
[End of Assistant 3]
[Assistant 4]
{}
[End of Assistant 4]
Output format:
Correctness: <Scores of the four answers>
Reason:
Detailedness: <Scores of the four answers>
Reason:

A DETAILED EXPERIMENTAL SETUP

A.1 GPT-4O ASSISTED EVALUATION

Following (Yin et al., 2023), we use GPT-4o to evaluate vanilla LVLM, VCD, OPERA, and our pro-
posed SHIELD. Given a LVLM and an image, descriptions are generated using the prompt, “Please
describe this image in detail”. Using the evaluation prompt shown in Table 10, GPT-4o rates the four
descriptions on a scale of 0 to 10 across two aspects: Correctness, which measures the consistency
between the description and the image, assigning higher scores to highly consistent descriptions
and lower scores to those with hallucinations, and Detailedness, which evaluates how comprehen-
sively the description captures image details. The prompt instructs GPT-4o to disregard biases from
sequential order and focus on inconsistencies, such as objects mentioned but absent in the image,
including incorrect colors, positions, or relationships. Leveraging its analytical capabilities, GPT-4o
performs a thorough and detailed evaluation.

Table 11: Comparison on POPE A-OKVQA and GQA Subset using LLaVA-1.5

Random Popular Adversarial AverageDataset Method Accuracy↑ F1↑ Accuracy↑ F1↑ Accuracy↑ F1↑ Accuracy↑ F1↑
Vanilla 83.4 82.5 79.9 79.5 74.0 75.1 79.1 79.0
VCD 86.1 86.3 81.8 82.8 74.9 77.7 80.9 82.2

OPERA 88.1 88.5 83.3 84.5 73.8 77.7 81.7 83.5AOKVQA

Ours 90.3 89.9 85.3 85.5 77.2 79.1 84.2 84.8
Vanilla 83.7 82.9 78.1 78.3 75.0 76.0 78.9 79.0
VCD 86.6 86.9 80.7 82.2 76.0 78.7 81.1 82.6

OPERA 88.6 89.1 79.8 82.1 75.0 78.8 81.1 83.3GQA

Ours 90.5 90.3 84.2 84.8 79.5 81.0 84.7 85.3

B MORE RESULTS

B.1 POPE EVALUATION ON AOKVQA & GQA

To further validate the effectiveness of SHIELD, we conducted experiments on POPE using
AOKVQA and GQA datasets under random, popular, and adversarial settings with the LLaVA-1.5
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7B model. As shown in Tables 11, SHIELD significantly reduces hallucinations compared to previ-
ous methods. On average, SHIELD achieves an absolute improvement of 2.5 in Accuracy and 1.3 in
F1 score on AOKVQA, and 3.6 in Accuracy and 2.0 in F1 score on GQA. Notably, SHIELD is par-
ticularly effective under the challenging Adversarial setting, underscoring biases and vulnerability
in visual encoders as key contributors to object hallucination in these scenarios.

Table 12: Results on MME perception-related tasks using LLaVA-1.5

Method Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR
Vanilla 175.67 124.67 114.00 151.00 127.82 113.59 148.30 129.95 102.20 92.00
OPERA 180.67 133.33 123.33 155.00 136.39 128.53 154.25 154.25 122.25 125.00

VCD 184.66 138.33 128.67 153.00 132.11 120.94 152.20 140.45 109.60 104.00
Ours 195.00 141.67 148.33 183.33 139.46 118.24 153.25 140.50 118.25 135.00

Table 13: Results on MME cognition-related tasks using LLaVA-1.5

Method Common Sense Reasoning Numerical Calculation Text Translation Code Reasoning
Vanilla 106.43 72.50 95.50 78.50
OPERA 114.29 40.00 87.50 62.50

VCD 111.29 68.50 89.50 84.00
Ours 122.86 57.50 82.50 75.00

B.2 DETAILED RESULTS ON MME

Table 12 presents the results on perception-related tasks of the MME benchmark using the LLaVA-
1.5 7B model. Compared to the vanilla LVLM, SHIELD achieves overall improvements, highlight-
ing its ability to reduce hallucinations and enhance perception capabilities. This improvement likely
stems from SHIELD’s effectiveness in mitigating biases and vulnerabilities, thereby recalibrating
the LVLM’s visual feature extraction. When compared to previous methods, SHIELD achieves a
higher total perception score (Table 6) but exhibits limited improvements on tasks requiring exter-
nal knowledge beyond the input image (e.g., Celebrity, Scene, Landmark, Artwork). This limitation
may result from contrastive decoding in SHIELD, which directs the LVLM to prioritize visual inputs
over leveraging prior knowledge embedded in the LLM.

Furthermore, Table 13 showcases the results on cognition-related tasks within the MME benchmark
using the LLaVA-1.5 7B model. The results show that applying SHIELD improves the LVLM’s
recognition on complex visual scenes (e.g., Common Sense Reasoning) but performs poorly on
simpler visual scenes (e.g., Numerical Calculation, Text Translation, and Code Reasoning). This
may be because simpler visual inputs are less likely to induce hallucinations, while contrastive
decoding in SHIELD may limit the utilization of prior knowledge embedded in the LLM.

Table 14: GPT-4 Assisted Evaluation on MMHal-Bench

Method Overall ↑ Hallucination ↓ Attr. ↑ Adv. ↑ Comp. ↑ Cnt. ↑ Rel. ↑ Env. ↑ Hol. ↑ Other ↑

Vanilla 2.21 0.70 2.75 2.00 2.50 2.50 1.67 2.17 1.83 2.25
Ours 2.65 0.61 2.42 1.83 2.58 2.67 2.83 3.92 2.08 2.83

B.3 GPT-4 ASSISTED EVALUATION ON MMHAL-BENCH

Table 14 presents results on MMHal-Bench (Sun et al., 2024b), a benchmark designed to evaluate
hallucinations in open-ended multimodal tasks. It spans eight hallucination-related categories, in-
cluding attribute, adversarial object, comparison, counting, relation, environment, holistic descrip-
tion, and other visually grounded errors. To ensure up-to-date evaluation, we re-assess both the
vanilla LLaVA-1.5 7B and our method using the latest version of GPT-4, as the original benchmark
relied on the deprecated gpt-4-0314. Our method significantly reduces hallucination and im-
proves performance across most categories, with the most notable gains observed in relation and
environment understanding.

16



Published as a conference paper at ICLR 2026

Table 15: Extended Evaluation on Recent VLMs Variants (POPE COCO Adversarial Split)

Method Qwen2-VL (7B) Qwen2.5-VL (7B) Qwen3-VL (8B)
Accuracy (↑) F1 Score (↑) Accuracy (↑) F1 Score (↑) Accuracy (↑) F1 Score (↑)

Vanilla 85.3 84.5 85.6 85.1 86.2 85.8
Ours 86.1 85.4 86.8 86.0 87.4 86.6

B.4 EXTENDED EVALUATION ON RECENT VLMS

The VLMs used in our main experiments (LLaVA-1.5, InstructBLIP, and Qwen-VL) follow standard
practice in recent multimodal hallucination studies, ensuring fair and reproducible comparison. To
further evaluate the generalization of SHIELD, we extend our experiments to more recent Qwen-
VL variants: Qwen2-VL (7B), Qwen2.5-VL (7B), and the newly released Qwen3-VL (8B). Notably,
Qwen3-VL 8B was released in November 2025 and represents the latest generation of the Qwen-VL
family. We report results on the POPE COCO adversarial split.

As shown in Table 15, SHIELD consistently improves both accuracy and F1 score across all models.
These results demonstrate the effectiveness of our approach on more capable and recently released
VLMs.

Table 16: Comparison with Training-Free and Training-Based Methods on CHAIR (512 tokens)

Method Training CS (↓) CI (↓)

Vanilla ✗ 48.8 14.2
DoLa (Chuang et al., 2024) ✗ 47.7 13.8
ICD (Wang et al., 2024) ✗ 47.4 13.9
VCD (Leng et al., 2024) ✗ 46.8 13.2
TAME (Tang et al., 2025) ✗ 45.2 14.0
OPERA (Huang et al., 2024) ✗ 44.8 12.8
SID (Huo et al., 2025) ✗ 44.2 12.2
LLaVA-RLHF (Sun et al., 2024b) ✓ 43.6 10.5
CCA-LLaVA (Xing et al., 2024) ✓ 43.0 11.5
Less is More (Yue et al., 2024) ✓ 40.2 12.3
MCA-LLaVA (Zhao et al., 2025b) ✓ 38.0 10.9
SHIELD (Ours) ✗ 36.6 10.3

B.5 EXTENDED COMPARISON WITH EXISTING HALLUCINATION MITIGATION METHODS

To provide a more comprehensive evaluation, we expand our comparison to include a wider set
of hallucination mitigation methods on the CHAIR benchmark. These include both training-free
methods (DoLa, ICD, VCD, TAME, OPERA, SID, and Ours) and training-required approaches
(LLaVA-RLHF, CCA-LLaVA, Less is More, and MCA-LLaVA). All methods are implemented with
LLaVA-1.5 7B to ensure consistency in backbone and evaluation setup.

As shown in Table 16, our method outperforms all training-free baselines and remains competitive
with training-based methods. Notably, SHIELD achieves the lowest hallucination rates on both
sentence and instance levels while requiring no additional VLM fine-tuning.

C ADDITIONAL HYPER-PARAMETERS ABLATION

C.1 EFFECT OF α IN CONTRASTIVE DECODING

Table 17 presents the results of an ablation study on α, which controls the impact of contrastive
decoding combined with adversarial attacks. The study shows a significant reduction in hallucina-
tions on the CHAIR benchmark as α increases from 1.0 to 2.0, demonstrating the effectiveness of
addressing vulnerabilities.

C.2 EFFECT OF β IN ADAPTIVE PLAUSIBLE CONSTRAINT

Table 18 presents the results of an ablation study on β, which controls the adaptive plausibility con-
straint. A larger β indicates more aggressive truncation, retaining only high-probability tokens. As
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Table 17: α Ablation

α CS↓ CI↓
1.0 41.6 11.6
1.5 40.2 11.2
2.0 36.6 10.3
2.5 38.4 10.7

Table 18: β Ablation

β CS↓ CI↓
0.20 36.8 11.2
0.25 38.0 11.0
0.30 36.2 10.3
0.35 36.6 10.3

Table 19: K Ablation

K CS↓ CI↓
8 39.6 11.3

16 38.2 10.8
32 36.6 10.3
64 38.4 11.5

Table 20: l Ablation

l CS↓ CI↓
0.01 37.8 11.2
0.02 36.6 10.3
0.03 38.0 11.2
0.04 43.2 11.6

β increases, changes in hallucination reduction exhibit minor fluctuations, suggesting that while the
adaptive plausibility constraint, as an integral part of contrastive decoding, prevents the generation
of implausible content, it plays a limited role in alleviating object hallucinations.

C.3 EFFECT OF K IN REDUCING INHERENT BIAS

Table 19 presents the results of an ablation study on K, which specifies the number of noise inputs
used to estimate inherent bias for subsequent removal from visual tokens. Increasing K improves the
accuracy of inherent bias estimation, resulting in more effective hallucination mitigation. However,
when K becomes excessively large, the estimated bias converges toward zero, limiting its impact on
mitigating hallucinations.

C.4 EFFECT OF l IN ADDRESSING VULNERABILITY

Table 20 presents the results of an ablation study on the learning rate within Vulnerability Address-
ing, which controls the granularity of adversarial attack tensor computation. When the learning rate
is too large, the generated attack tensor fails to adapt effectively to image details, reducing its effec-
tiveness. Consequently, the subsequent contrastive decoding process cannot adequately minimize
hallucinations caused by vulnerabilities in the visual encoder.

C.5 EFFECT OF ATTACK STEP IN ADDRESSING VULNERABILITY

Table 21: Attack Steps Ablation

Steps CS↓ CI↓
15 40.8 11.6
30 36.6 10.3
45 36.6 10.4

Table 21 presents an ablation study on the number of adversarial
optimization steps in addressing vulnerability module. This pa-
rameter controls how thoroughly the attack tensor explores en-
coder weaknesses. The results show that performance saturates
at 30 steps, with no further gains at 45 steps.

D ADDITIONAL ANALYSIS

Table 22: Class-wise hallucination rate (%) under different noise settings on POPE COCO

Input person skis snowboard bird backpack skateboard bowl scissors knife keyboard carrot refrigerator remote sandwich sink

Noise Img 100 80 30 30 20 20 20 10 10 10 10 10 10 10 0
Noise Tok 0 10 10 0 10 0 0 10 0 10 0 0 10 0 20

D.1 ADDITIONAL INHERENT BIAS ANALYSIS

To further examine inherent bias in the visual encoder, we conduct a controlled experiment using
the POPE COCO subset. For each object category, we design 10 identical POPE-style questions
(e.g., “Is there a {object} in the image?”) and evaluate hallucination rates under two distinct noise
settings. In the first setting, the visual encoder receives noise as image input (Noise Image), while in
the second, the original image is retained but its visual tokens are replaced with noise embeddings
(Noise Visual Tokens).

We measure the proportion of “Yes” responses, which indicate hallucination, for each object. As
shown in Table 22, hallucinations under the Noise Image setting are heavily skewed, with certain
categories (e.g., person) being disproportionately predicted. In contrast, hallucination rates under
Noise Visual Tokens remain uniformly across categories. These findings confirm that the visual

18



Published as a conference paper at ICLR 2026

encoder exhibits class-specific inherent biases, which can be effectively revealed through noise-
based evaluation.

To mitigate the impact of randomness from individual noise inputs, SHIELD averages responses
over K noise inputs. This aggregation helps reduce variance and provides a more stable estimate of
the encoder’s bias tendencies.

RawCaption:
In the image, there is a microwave oven sitting on top of a
counter. The microwave is placed next to a toaster oven, and
both appliances appear to be clean and well-maintained.
Above the microwave and toaster oven, there is a sign with
suggestions to keep everyone

Hallucinated Caption:
The image features a kitchen with a microwave sitting on
top of a counter. The microwave is placed on a shelf, and
there is a sign above it, possibly providing instructions or
suggestions. The kitchen also has a refrigerator, which is
located on the left side of the scene.

Figure 9: Example naive captions with and without plausible hallucination. The hallucinated version
includes a refrigerator not present in the image.

Table 23: Impact of Plausible Hallucinations in Naive Caption

Model Accuracy (↑) F1-Score (↑)

Vanilla 78.90 77.50
Ours w/ Raw Caption 80.13 79.14
Ours w/ Hallucinated Caption 79.83 78.81

D.2 PLAUSIBLE HALLUCINATION IN NAIVE CAPTION ANALYSIS

To assess the effect of plausible hallucinations in naive captions, we conduct a controlled experiment
on the POPE COCO adversarial subset. We simulate plausible hallucinations by introducing mild
noise into the visual input during naive caption generation. This can produce hallucinated objects
that are contextually reasonable but not actually present in the image.

Figure 9 shows one representative example where the hallucinated caption mentions a “refrigerator”,
which is plausible in the context but does not appear in the image. Despite this, grounded elements
such as “microwave” and “sign” remain in the caption, which continue to support effective token
re-weighting. The impact of such plausible hallucinations is limited because they typically have
lower visual grounding and do not dominate the token distribution.

To quantify this, we compare SHIELD’s performance when using raw versus hallucinated captions.
As shown in Table 23, the drop in performance is minor, indicating robustness of SHIELD to plau-
sible caption noise.

Table 24: Effect of Attack Strategy on CHAIR

Configuration CS (↓) CI (↓)

Vanilla 48.8 14.2
Ours w/ FGSM-based Vulnerability Module 39.2 11.5
Ours w/ PGD-based Vulnerability Module 37.2 11.3
Ours (Learnable Attack) 36.6 10.3

D.3 ATTACK STRATEGY ANALYSIS

To evaluate the design of our vulnerability addressing module, we compare our learnable perturba-
tion with standard adversarial attacks that use fixed step sizes, such as FGSM (Goodfellow et al.,
2015) and PGD (Madry et al., 2018). Instead of relying on fixed-magnitude updates, our method
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learns a fine-grained perturbation through adversarial optimization between the visual encoder and
its paired CLIP text encoder (see Section 3.2.4). Conditioned on both the image and naive caption,
the perturbation is specifically optimized to expose vulnerabilities in the encoder, offering more
flexible and precise control than fixed-step-size attacks.

To validate its effectiveness, we evaluate multiple configurations on the CHAIR benchmark, includ-
ing variants where the vulnerability addressing module is implemented with FGSM or PGD instead.
As shown in Table 24, while all configurations incorporating the vulnerability module help reduce
hallucinations, our learnable attack achieves the lowest scores on both CS and CI .

Prompt: Please describe this image in detail.

Vanilla: The image features a close-up view of a tray with several 
pieces of battered and fried fish arranged to resemble a map of the 
world. The fish tray contains many countries, showcasing the fragrant 
and appetizing meal. A total of 15 pieces of fried chicken are displayed 
across the tray, each figuratively representing a country within the map. 
The arrangement provides an artistic representation of the world, crafted 
through the presentation of delicious, frosted friendly fish.

VCD: The image showcases a delicious fried chicken dinner served on a
metal tray. The chicken is cut into pieces and arranged all over the tray,
with some pieces placed near the edges and others in the middle of the
tray. The tray is filled with various pieces of fried chicken, making it a
delightful sight for those who love chicken. The dish appears to be ready
to be eaten, inviting people to indulge in the appetizing meal.

SHIELD (Ours): The image features a tray with various pieces of fried chicken arranged to resemble a map of the world. The 
chicken pieces are spread across the tray, with some placed closer to the top, middle, and bottom of the tray, while others 
are positioned more towards the edges. The chicken is golden brown and crispy, making it an appetizing sight. The map-like 
presentation of the fried chicken pieces adds a creative touch to the dish, making it a unique and fun way to enjoy a meal.

OPERA: The image features a tray filled with various pieces of fried 
chicken, arranged to resemble a map of the world, complete with 
continents, countries, and oceans. The chicken cutlets come together to 
depict different regions, showcasing creativity and attention to detail. The 
tray is placed on a dining table, ready to be enjoyed.

(a) Case Study on LLaVA-Bench No.14

Prompt: Please describe this image in detail.

Vanilla: In the image, there are several vehicles on a busy city street. A man is hitching a blue ironing 
board on the back of a moving taxi, who is driving right behind a traffic light. Another car can be seen
located towards the left side of the scene. A clock tower is visible in the background, standing tall in 
the distance. A knapsack is also visible in the middle of the street, which marks another interesting 
detail in the bustling urban environment. The taxi appears to be passing through the intersection 
carefully, making the scene a dynamic depiction of city life.

VCD: The image shows a man standing on top of a yellow SUV, ironing clothes on an ironing board.
The vehicle appears to be a taxi, and the man is skillfully balancing on top of the moving car, likely as
a unique advertising or promotional stunt. There are several potted plants scattered throughout the 
scene, with some placed close to the taxi and others further away. Additionally, a few traffic lights can 
be seen in the background, indicating that the scene is likely taking place on a busy city street.

SHIELD (Ours): The image shows a busy city street with a man standing on the back of a yellow taxi, ironing clothes. The taxi is driving down the street, surrounded by other vehicles
such as cars and trucks. The man appears to be focused on his task, possibly trying to dry the clothes quickly in the bustling urban environment. The scene captures the hustle and bustle
of city life, where people are always on the move and multitasking.

OPERA: In the image, a man is standing on the back of a yellow taxi cab, holding a blue shirt. He 
appears to be ironing the shirt while riding in the back of the taxi. The taxi is surrounded by other 
vehicles, including a truck on the left side and a car on the right side. The man is wearing a tie, which 
is visible as he stands on the back of the taxi. The scene captures a unique and unconventional 
moment, as the man takes advantage of the taxi's space to get work done on-the-go.

(b) Case Study on LLaVA-Bench No.10

Figure 10: Examples from LLaVA-Bench demonstrate the effectiveness of our method in correcting
hallucinations. Hallucinated content is highlighted in red, and key information is highlighted in
green.

E CASE STUDY

Figures 10 present two case studies demonstrating how vanilla LVLMs and previous methods, given
identical prompts and images, can produce object hallucinations due to biases and vulnerabilities in
the visual encoder. For instance, in Figure 10a, shadows and blurriness along the tray’s edges expose
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visual encoder vulnerabilities, leading the vanilla LVLM to misidentify fried chicken as fried fish.
Similarly, in Figure 10b, statistical bias causes the vanilla LVLM to overemphasize tokens associated
with frequent visual concepts in CLIP’s pre-training data, thereby distorting detail perception and
incorrectly identifying the ironing board as being the same blue color as the shirt. In contrast,
SHIELD effectively mitigates hallucinations while preserving the coherence and informativeness of
the generated text.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT for two purposes: (i) polishing grammar and improving readability, and (ii) assisting
in the evaluation of LVLM outputs. All research ideas and analyses were conducted by the authors,
who take full responsibility for the content.
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