
Controlling Continuous Relaxation for
Combinatorial Optimization

Yuma Ichikawa
Fujitsu Limited, Kanagawa, Japan

Department of Basic Science, University of Tokyo

Abstract

Unsupervised learning (UL)-based solvers for combinatorial optimization (CO)
train a neural network that generates a soft solution by directly optimizing the
CO objective using a continuous relaxation strategy. These solvers offer several
advantages over traditional methods and other learning-based methods, particu-
larly for large-scale CO problems. However, UL-based solvers face two practical
issues: (I) an optimization issue, where UL-based solvers are easily trapped at
local optima, and (II) a rounding issue, where UL-based solvers require artificial
post-learning rounding from the continuous space back to the original discrete
space, undermining the robustness of the results. This study proposes a Continuous
Relaxation Annealing (CRA) strategy, an effective rounding-free learning method
for UL-based solvers. CRA introduces a penalty term that dynamically shifts
from prioritizing continuous solutions, effectively smoothing the non-convexity
of the objective function, to enforcing discreteness, eliminating artificial rounding.
Experimental results demonstrate that CRA significantly enhances the performance
of UL-based solvers, outperforming existing UL-based solvers and greedy algo-
rithms in complex CO problems. Additionally, CRA effectively eliminates artificial
rounding and accelerates the learning process.

1 Introduction

The objective of combinatorial optimization (CO) problems is to find the optimal solution from a
discrete space, and these problems are fundamental in many real-world applications [Papadimitriou
and Steiglitz, 1998]. Most CO problems are NP-hard or NP-complete; making it challenging to solve
large-scale problems within feasible computational time. Traditional methods frequently depend on
heuristics to find approximate solutions; however, considerable insights into the specific problems are
required. Alternatively, problems can be formulated as integer linear programming (ILP) and solved
using ILP solvers. However, ILP lacks scalability when applied to problems with graph structures.

Recently, several studies have used machine learning methods to handle CO problems by learning
heuristics. Most of these studies focus on supervised learning (SL)-based solvers [Hudson et al.,
2021, Joshi et al., 2019, Gasse et al., 2019, Selsam et al., 2018, Khalil et al., 2016], which require
optimal solutions to CO problems as supervision during training. However, obtaining optimal
solutions is challenging in practice, and SL-based solvers often fail to generalize well [Yehuda et al.,
2020]. Reinforcement learning (RL)-based solvers [Yao et al., 2019, Chen and Tian, 2019, Yolcu
and Póczos, 2019, Nazari et al., 2018, Khalil et al., 2017, Bello et al., 2016] avoid the need for
optimal solutions but often suffer from notoriously unstable training due to poor gradient estimation
and hard explorations [Mnih et al., 2015, Tang et al., 2017, Espeholt et al., 2018]. Unsupervised
learning (UL)-based solvers have recently attracted much attention [Schuetz et al., 2022a, Karalias
and Loukas, 2020, Amizadeh et al., 2018]. UL-based solvers follow a continuous relaxation approach,
training a UL model to output a soft solution to the relaxed CO problem by directly optimizing a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

differentiable objective function, offering significantly stable and fast training even for large-scale
CO problems. Notably, the physics-inspired GNN (PI-GNN) solver [Schuetz et al., 2022a] employs
graph neural networks (GNN) to automatically learn instance-specific heuristics and performs on
par with or outperforms existing solvers for CO problems with millions of variables without optimal
solutions. While these offer some advantages over traditional and other machine learning-based
solvers, they face two practical issues. The first issue is an optimization issues where UL-based
solvers are easily trapped at local optima. Due to this issue, Angelini and Ricci-Tersenghi [2023]
demonstrated that the PI-GNN solver [Schuetz et al., 2022a] could not achieve results comparable
to those of the degree-based greedy algorithm (DGA) [Angelini and Ricci-Tersenghi, 2019] on
maximum independent set (MIS) problems in random regular graphs (RRG). Wang and Li [2023]
also pointed out the importance of using dataset or history, and initializing the GNN with outputs
from greedy solvers to help the PI-GNN solver overcome optimization challenges. This issue is a
crucial bottleneck to the applicability of this method across various real-world applications. The
second issue relates to the inherent ambiguity of the continuous relaxation approach. This approach
necessitates artificial rounding from the soft solution, which may include continuous values, back
to the original discrete solution, potentially undermining the robustness of the results. While linear
relaxation can provide an optimal solution for original discrete problems on bipartite graphs [Hoffman
and Kruskal, 2010], it typically leads to solutions with 1/2 values, which is known to half-integrality
[Nemhauser and Trotter Jr, 1974], in which existing rounding methods [Schuetz et al., 2022b, Wang
et al., 2022] completely lose their robustness. For NP-hard problems with graph structures, such as
the MIS and MaxCut, semidefinite programming (SDP) relaxations have been proposed as effective
approximation methods [Lovász, 1979, Goemans and Williamson, 1995]. However, these approaches
rely on rounding techniques, such as spectral clustering [Von Luxburg, 2007], to transform relaxed
solutions into feasible ones, which often fails to obtain optimal solutions.

To address these issues, we propose the Continuous Relaxation Annealing (CRA). CRA introduces a
penalty term to control the continuity and discreteness of the relaxed variables, with a parameter γ to
regulate the intensity of this penalty term. When the parameter γ is small, the relaxed variable tends
to favor continuous solutions, whereas a large γ biases them toward discrete values. This penalty term
also effectively eliminates local optimum. Moreover, a small γ forces the loss function to approach
a simple convex function, encouraging active exploration within the continuous space. CRA also
includes an annealing process, where γ is gradually increased until the relaxed variables approach
discrete values, eliminating the artificial rounding from the continuous to the original discrete space
after learning. In this study, the solver that applies the CRA to the PI-GNN solver is referred to
as the CRA-PI-GNN solver. We also demonstrate the benefits of the CRA through experiments on
benchmark CO problems, including MIS, maximum cut (MaxCut), and diverse bipartite matching
(DBM) problems across graphs of varying sizes and degrees. The experimental results show that the
CRA significantly enhances the performance of the PI-GNN solver, outperforming the original PI-
GNN solver, other state-of-the-art learning-based baselines, and greedy algorithms. This improvement
is achieved by directly optimizing each instance without any history, e.g., previous optimal solutions
and the information of other instances. Additionally, these experiments indicate that the CRA
accelerates the learning process of the PI-GNN solver. Notably, these results overcome the limitations
pointed out by Angelini and Ricci-Tersenghi [2023], Wang and Li [2023], highlighting the further
potential of UL-based solvers.

Notation We use the shorthand expression [N] = {1, 2, . . . , N}, where N ∈ N. IN ∈ RN×N

denotes an N ×N identity matrix, 1N denotes the vector (1, . . . , 1)⊤ ∈ RN , and 0N denotes the
vector (0, . . . , 0)⊤ ∈ RN . G(V,E) represents an undirected graph, where V is the set of nodes with
cardinality |V | = N , and E ⊆ V ×V denotes the set of edges. For a graph G(V,E), Aij denotes the
adjacency matrix, where Aij = 0 if an edge (i, j) does not exist and Aij > 0 if the edge is present.

2 Background

Combinatorial optimization The goal of this study is to solve the following CO problem.

min
x∈{0,1}N

f(x;C) s.t. x ∈ X (C), (1)

where C ∈ C denotes instance-specific parameters, such as a graph G = (V,E), and C represents
the set of all possible instances. f : X × C → R denotes the cost function. Additionally, x =

2

(xi)1≤i≤N ∈ {0, 1}N is a binary vector to be optimized, and X (C) ⊆ {0, 1}N denotes the feasible
solution space, typically defined by the following equality and inequality constraints.

X (C) = {x ∈ {0, 1}N | ∀i ∈ [I], gi(x;C) ≤ 0, ∀j ∈ [J], hj(x;C) = 0}, I, J ∈ N,

Here, for i ∈ [I], gi : {0, 1}N × C → R denotes the inequality constraint, and for j ∈ [J],
hj : {0, 1}N × C → R denotes the equality constraint. Following UL-based solvers [Wang et al.,
2022, Schuetz et al., 2022a, Karalias and Loukas, 2020], we reformulate the constrained problem
into an equivalent unconstrained form using the penalty method [Smith et al., 1997]:

min
x

l(x;C,λ), l(x;C,λ) =∆ f(x;C) +

I+J∑
i=1

λivi(x;C). (2)

Here, for all i ∈ [I + J], v : {0, 1}N × C → R is the penalty term, which increases when the
constraints are violated. For example, the penalty term is defined as follows:

∀i ∈ [I], j ∈ [J], vi(x;C) = max(0, gi(x;C)), ∀j ∈ [J], vj(x;C) = (hj(x;C))2

and λ = (λi)1≤i≤I+J ∈ RI+J denotes the penalty parameters that control the trade-off between
constraint satisfaction and cost optimization. Note that, as λ increases, the penalty for constraint
violations becomes more significant. In the following, we provide an example of this formulation.

Example: MIS problem The MIS problem is a fundamental NP-hard problem [Karp, 2010],
defined as follows. Given an undirected graph G(V,E), an independent set (IS) is a subset of nodes
I ∈ V where any two nodes are not adjacent. The MIS problem aims to find the largest IS, denoted as
I∗. In this study, ρ denotes the IS density, defined as ρ = |I|/|V |. Following Schuetz et al. [2022a],
a binary variable xi is assigned to each node i ∈ V . The MIS problem can be formulated as follows:

f(x;G,λ) = −
∑
i∈V

xi + λ
∑

(i,j)∈E

xixj , (3)

where the first term maximizes the number of nodes assigned a value of 1, and the second term
penalizes adjacent nodes assigned 1 according to the penalty parameter λ.

2.1 Unsupervised learning based solvers

Learning for CO problems involves training an algorithm Aθ(·) : C → {0, 1}N parameterized by a
neural network (NN), where θ denotes the parameters. For a given instance C ∈ C, this algorithm
generates a valid solution x̂ = Aθ(C) ∈ X (C) and aims to minimize f(x̂;C). Several approaches
have been proposed to train Aθ. This study focuses on UL-based solvers, which do not use a labeled
solution x∗ ∈ argminx∈X (C)f(x;C) during training [Wang et al., 2022, Schuetz et al., 2022a,
Karalias and Loukas, 2020, Amizadeh et al., 2018]. In the following, we outline the details of the
UL-based solvers.

The UL-based solvers employ a continuous relaxation strategy to train NN. This continuous relaxation
strategy reformulates a CO problem into a continuous optimization problem by converting discrete
variables into continuous ones. A typical example of continuous relaxation is expressed as follows:

min
p

l̂(p;C,λ), l̂(p;C,λ) =∆ f̂(p;C) +

m+p∑
i=1

λiv̂i(p;C),

where p = (pi)1≤i≤N ∈ [0, 1]N represents a set of relaxed continuous variables, where each binary
variable xi ∈ {0, 1} is relaxed to a continuous counterpart pi ∈ [0, 1], and f̂ : [0, 1]N × C → R
denotes the relaxed form of f such that f̂(x;C) = f(x;C) for x ∈ {0, 1}N . The relation between
each constraint vi and its relaxation v̂i is similar for i ∈ [I+J], meaning that ∀i ∈ [I+J], v̂i(x;C) =
vi(x;C) for x ∈ {0, 1}N . Wang et al. [2022] and Schuetz et al. [2022a] formulated Aθ(C) as the
relaxed continuous variables, defined as Aθ(·) : C → [0, 1]n. In the following discussions, we denote
Aθ as pθ to make the parametrization of the relaxed variables explicit. Then, pθ is optimized by
directly minimizing the following label-independent function:

l̂(θ;C,λ) =∆ f̂(pθ(C);C) +

I+J∑
i=1

λiv̂i(pθ(C);C). (4)

3

After training, the relaxed solution pθ is converted into discrete variables using artificial rounding pθ ,
where ∀i ∈ [N], xi = int(pθ,i(C)) based on a threshold [Schuetz et al., 2022a], or alternatively, a
greedy method [Wang et al., 2022]. Two types of schemes for UL-based solvers have been developed
based on this formulation.

(Type I) Learning generalized heuristics from history/data One approach, proposed by Karalias
and Loukas [2020], aims to automatically learn effective heuristics from historical dataset instances
D = {Cµ}Pµ=1 and then apply these learned heuristics to a new instance C∗, through inference.
Note that this method assumes that either the training dataset is easily obtainable or that meaningful
data augmentation is feasible. Specifically, given a set of training instances D = (Cµ), sampled
independently and identically from a distribution P (C), the goal is to minimize the average loss
function minθ

∑P
µ=1 l(θ;Cµ,λ). However, this method does not guarantee quality for a test instance,

C∗. Even if the training instances D are extensive and the test instance C follows P (C), low average
performance EC∼P (C)[l̂(θ;C)] may not guarantee a low l(θ;C) for on a specific C. To address this
issue, Wang and Li [2023] introduced a meta-learning approach where NNs aim to provide good
initialization for future instances rather than direct solutions.

(Type II) Learning effective heuristics on a specific single instance Another approach, known as
the PI-GNN solver [Schuetz et al., 2022a,b], automatically learns instance-specific heuristics for a
single instance using the instance parameter C by directly applying Eq. (4). This approach addresses
CO problems on graphs, where C = G(V,E), and employs GNNs for the relaxed variables pθ(G).
Here, an L-layered GNN is trained to directly minimize l̂(θ;C,λ), taking as input a graph G and
the embedding vectors on its nodes, and outputting the relaxed solution pθ(G) ∈ [0, 1]N . A detailed
description of GNNs is provided in Appendix E.2. Note that this setting is applicable even when the
training dataset D is difficult to obtain. The overparameterization of relaxed variables is expected
to smooth the objective function by introducing additional parameters to the optimization problem,
similar to the kernel method. However, minimizing Eq. 4 for a single instance can be time-consuming
compared to the inference process. Nonetheless, for large-scale CO problems, this approach has
been reported to outperform other solvers in terms of both computational time and solution quality
[Schuetz et al., 2022a,b].

Note that, while both UL-based solvers for multiple instances (Type I) and individual instances (Type
II) are valuable, this study focuses on advancing the latter: a UL-based solver for a single instance.
Both types of solvers are applicable to cost functions that meet a particular requirement due to their
reliance on a gradient-based algorithm to minimize Eq (4).

Assumption 2.1 (Differentiable cost function). The relaxed loss function l̂(θ;C,λ) and its partial
derivative ∂l̂(θ;C,λ)/∂θ are accessible during the optimization process.

These requirements encompass a nonlinear cost function and interactions involving many-body
interactions, extending beyond simple two-body interactions.

3 Continuous relaxation annealing for UL-based solvers

In this section, we discuss the practical issues associated with UL-based solvers and then introduce
continuous relaxation annealing (CRA) as a proposed solution.

3.1 Motivation: practical issues of UL-based solvers

UL-based solvers (Type II) [Schuetz et al., 2022a,b] are effective in addressing large-scale CO
problems. However, these solvers present following two practical issues, highlighted in several recent
studies [Wang and Li, 2023, Angelini and Ricci-Tersenghi, 2023]. Additionally, we numerically
validate these issues; see Appendix F.1 for detailed results.

(I) Ambiguity in rounding method after learning UL-based solvers employ a continuous relax-
ation strategy to train NNs and then convert the relaxed continuous variables into discrete binary
values through artificial rounding as discussed in Section 2.1. This inherent ambiguity in continuous
relaxation strategy often results in potential discrepancies between the optimal solutions of the

4

original discrete CO problem and those of the relaxed continuous one. Continuous relaxation expands
the solution space, often producing continuous values that lower the cost compared to an optimal
binary value. Indeed, while linear relaxation can provide an optimal solution for discrete problems on
bipartite graphs [Hoffman and Kruskal, 2010], it typically results in solutions with 1/2 values, which
is known to half-integrality [Nemhauser and Trotter Jr, 1974]. Existing rounding methods [Schuetz
et al., 2022b, Wang et al., 2022] often lose robustness in these scenarios. In practice, PI-GNN
solver often outputs values near 1/2, underscoring the limitations of current rounding techniques for
UL-based solvers.

(II) Difficulty in optimizing NNs Recently, Angelini and Ricci-Tersenghi [2023] demonstrated
that PI-GNN solver falls short of achieving results comparable to those of the degree-based greedy
algorithm (DGA) [Angelini and Ricci-Tersenghi, 2019] when solving the MIS problems on RRGs.
Angelini and Ricci-Tersenghi [2023] further emphasized the importance of evaluating UL-based
solvers on complex CO problems, where greedy algorithms typically perform worse. A representative
example is the MIS problems on RRGs with a constant degree d > 16, where a clustering transition
in the solution space creates barriers that impede optimization. Moreover, Wang and Li [2023]
emphasized the importance of using training/historical datasets, D = {Cµ}1≤µ≤P , which contain
various graphs and initialization using outputs from greedy solvers, such as DGA and RGA for
MIS problems. Their numerical analysis indicated that PI-GNN solver tends to get trapped in local
optima when directly optimized directly for a single instance without leveraging a training dataset
D. However, in a practical setting, systematic methods for generating or collecting training datasets
D to effectively avoid local optima remains unclear. Additionally, training on instances that do
not contribute to escaping local optima is time-consuming. Therefore, it is crucial to develop an
effective UL-based solver that can operate on a single instance without relying on training data,
D. Our numerical experiments, detailed in Appendix F.1, also confirmed this optimization issue.
They demonstrated that as problem complexity increases, the PI-GNN solver is often drawn into
trivial local optima, pθ = 0N , in certain problems. This entrapment results in prolonged plateaus
that significantly slow down the learning process and, in especially challenging cases, can render
learning entirely infeasible. Our numerical experiments, detailed in Appendix F.1, also validated this
optimization issue, demonstrating that as the problem complexity increases, PI-GNN solver tends to
be absorbed into the trivial local optima pθ = 0N in some problems, resulting in prolonged plateaus
which significantly decelerates the learning process and, in particularly challenging cases, can render
learning entirely infeasible.

3.2 Continuous relaxation annealing

Penalty term to control discreteness and continuity To address these issues, we propose a penalty
term to control the balance between discreteness and continuity in the relaxed variables, formulated
as follows:

r̂(p;C,λ, γ) = l̂(p;C,λ) + γΦ(p), Φ(p) =∆
N∑
i=1

(1− (2pi − 1)α), α ∈ {2n | n ∈ N+}, (5)

where γ ∈ R is a penalty parameter, and the even number α denote a curve rate. When γ is negative,
i.e., γ < 0, the relaxed variables tend to favor the continuous space, smoothing the non-convexity of
the objective function l̂(p;C,λ) due to the convexity of the penalty term Φ(p). In contrast, when γ is
positive, i.e., γ > 0, the relaxed variables tend to favor discrete space, smoothing out the continuous
solution into discrete solution. Formally, the following theorem holds as λ approaches ±∞.

Theorem 3.1. Assuming the objective function l̂(p;C) is bounded within the domain [0, 1]N , as
γ → +∞, the relaxed solutions p∗ ∈ argminpr̂(p;C,λ, γ) converge to the original solutions
x∗ ∈ argminxl(x;C,λ). Moreover, as γ → −∞, the loss function r̂(p;C,λ, γ) becomes convex,
and the relaxed solution 1N/2 = argminpr̂(p, C,λ, γ) is unique.

For the detailed proof, refer to Appendix B.1. Theorem 3.1 can be generalized for any convex function
Φ(p;C) that has a unique maximum at 1N/2 and achieves a global minimum for all p ∈ {0, 1}N ; an
example is binary cross entropy ΦCE(p) =

∑N
i=1(pi log pi+(1−pi) log(1−pi)), introduced by Sun

et al. [2022], Sanokowski et al. [2024] for the UL-based solvers (Type I). Additionally, the penalty
term eliminates the stationary point p∗ = 0N described in Section 3.1, preventing convergence to a

5

plateau. For UL-based solvers, the penalty term is expressed as follows:

r̂(θ;C,λ, γ) = l̂(θ;C,λ) + γΦ(θ;C), (6)

where Φ(θ;C) =∆ Φ(pθ(C)). According to Theorem 3.1, setting a sufficiently large γ value cases
the relaxed variables to approach nearly discrete values. We can also generalize this penalty term
Φ(θ;C), to Potts variables optimization, including coloring problems [Schuetz et al., 2022b], and
mixed-integer optimization; refer to Appendix C.1.

𝛾 = 0

𝛾 > 0

𝛾 < 0

Optimal
Value

GNN

(𝟏, 𝟏)

(𝟏, 𝟎)

(𝟎, 𝟏)

(𝟎, 𝟎)
Smoothing

Smoothing
&

Automatic
Rounding

Figure 1: Annealing strategy. When γ < 0,
it facilitates exploration by reducing the
non-convexity of the objective function.
As γ increases, it promotes optimal dis-
crete solutions by smoothing away subop-
timal continuous ones.

Annealing penalty term We propose an annealing
strategy that gradually anneals the penalty parameter
γ in Eq. (6). Initially, a negative gamma value, i.e.,
γ < 0, is chosen to leverage the properties, facilitating
broad exploration by smoothing the non-convexity of
l̂(θ;C,λ) and eliminating the stationary point p∗ = 0N

to avoid the plateau, as discussed in Section 3.1. Subse-
quently, the penalty parameter γ is gradually increased
to a positive value, γ > 0, with each update of the
trainable parameters (one epoch), until the penalty term
approaches zero, i.e., Φ(θ, C) ≈ 0, to automatically
round the relaxed variables by smoothing out subopti-
mal continuous solutions oscillating between 1 or 0. A
conceptual diagram of this annealing process is shown
in Fig. 1.

Note that employing the binary cross-entropy ΦCE(p)
is infeasible for UL-based solvers when γ > 0, as the
gradient ∂ΦCE(p)/∂pi diverges to ±∞ at 0 or 1. In deed,
when γ = 0, most relaxed variables typically approach
binary values, with a relatively small number of variables
oscillating between 0 and 1. This gradient divergence
issue in ΦCE(p) makes the learning infeasible without
additional techniques, such as gradient clipping. In con-
trast, the gradient of the penalty term in Eq. 5, ∂Φ(p)/∂pi,
is bounded within [−2α, 2α] for any γ, preventing the gradient divergence issue seen in ΦCE(p).
Additionally, by increasing α, the absolute value of the gradient near 1/2 becomes smaller, allowing
for control over the smoothing strength toward a discrete solution near 1/2.

We also propose an early stopping strategy that monitors both the loss function and the penalty
term, halting the annealing and learning processes when the penalty term approaches zero, i.e.,
Φ(θ;C) ≈ 0. Various annealing schedules can be considered; in this study, we employ the following
scheduling: γ(τ + 1) ← γ(τ) + ε, where the scheduling rate ε ∈ R+ is a small constant, and τ
denotes the update iterations of the trainable parameters. We refer to the PI-GNN solver with this
continuous relaxation annealing as CRA-PI-GNN solver. Here, two additional hyperparameters
are introduced: the initial scheduling value γ(0) and the scheduling rate ε. Numerical experiments
suggest that better solutions are obtained when γ(0) is set to a small negative value and ε is kept low.
The ablation study are presented in Appendix F.5.

4 Related Work

Previous works on UL-based solvers have addressed various problems, such as MaxCut problems [Yao
et al., 2019] and traveling salesman problems [Hudson et al., 2021], using carefully tailored problem-
specific objectives. Some studies have also explored constraint satisfaction problems [Amizadeh et al.,
2018, Toenshoff et al., 2019], but applying these approaches to broader CO problems often requires
problem-specific reductions. Karalias and Loukas [2020] proposed Erdős Goes Neural (EGN) solver,
an UL-based solver for general CO problems based on Erdős’ probabilistic method. This solver
generate solutions through an inference process using training instances. Subsequently, Wang et al.
[2022] proposed an entry-wise concave continuous relaxation, broadening the EGN solver to a wide
range of CO problems. In contrast, Schuetz et al. [2022a,b] proposed PI-GNN solver, an UL-based
solver for a single CO problems that automatically learns problem-specific heuristics during the

6

training process. However, Angelini and Ricci-Tersenghi [2023], Boettcher [2023] pointed out the
optimization difficulties where PI-GNN solver failed to achieve results comparable to those of greedy
algorithms. Wang and Li [2023] also claimed optimization issues with PI-GNN solver, emphasizing
the importance of learning from training data and history to overcome local optima. They then
proposed Meta-EGN solvers, a meta-learning approach that updates NN network parameters for
individual CO problem instances. Furthermore, to address these optimization issue, Lin et al. [2023],
Sun et al. [2022], Sanokowski et al. [2024] proposed annealing strategy similar to simulated annealing
[Kirkpatrick et al., 1983].

5 Experiments

We begin by evaluating the performance of CRA-PI-GNN solver on the MIS and the MaxCut
benchmark problems across multiple graphs of varying sizes, demonstrating that CRA effectively
overcomes optimization challenges without relying on data/history D. We then extend the evaluation
to the DBM problems, showing the applicability to more practical CO problems. For the objective
functions and the detailed explanations, refer to Appendix E.1.

5.1 Experimental settings

Baseline methods In all experiments, the baseline methods include the PI-GNN solver [Schuetz
et al., 2022a] as the direct baseline of a UL-based solver for a single instance. For the MIS problems,
we also consider the random greedy algorithm (RGA) and DGA [Angelini and Ricci-Tersenghi,
2019] as heuristic baselines. For the MaxCut problems, RUN-CSP solver [Toenshoff et al., 2019] is
considered as an additional baseline, and a standard greedy algorithm and SDP based approximation
algorithm [Goemans and Williamson, 1995] are considered as an additional classical baseline. The
parameters for the Goemans-Williamson (GW) approximation are all set according to the settings
in Schuetz et al. [2022b]. The implementation used the open-source CVXOPT solver with CVXPY
[Mehta, 2019] as the modeling interface. Note that we do not consider UL-based solvers for learning
generalized heuristics [Karalias and Loukas, 2020, Wang et al., 2022, Wang and Li, 2023], which
rely on training instances D = {Cµ}Pµ=1. The primary objective of this study is to evaluate whether
CRA-PI-GNN solver can surpass the performance of both PI-GNN solver and greedy algorithms.
However, for the MIS problem, EGN solver [Karalias and Loukas, 2020] and Meta-EGN solver
[Wang and Li, 2023] are considered to confirm that CRA can overcome the optimization issues
without training instances.

Implementation The objective of the numerical experiments is to compare the CRA-PI-GNN
solver with the PI-GNN solver. Thus, we follow the same experimental configuration described as the
experiments in Schuetz et al. [2022a], employing a simple two-layer GCV and GraphSAGE [Hamilton
et al., 2017] implemented by the Deep Graph Library [Wang et al., 2019]; Refer to Appendix D.1
for the detailed architectures. We use the AdamW [Kingma and Ba, 2014] optimizer with a learning
rate of η = 10−4 and weight decay of 10−2. The GNNs are trained for up to 5× 104 epochs with
early stopping, which monitors the summarized loss function

∑S
s=1 l̂(P:,s) and the entropy term

Φ(P ; γ, α) with tolerance 10−5 and patience 103 epochs; Further details are provided in Appendix
D.2. We set the initial scheduling value to γ(0) = −20 for the MIS and matching problems, and we
set γ(0) = −6 for the MaxCut problems with the scheduling rate ε = 10−3 and curve rate α = 2 in
Eq. (6). These values are not necessarily optimal, and refining these parameters can lead to better
solutions; Refer to Appendix F.5 and Appendix F.6 for an ablation study of these parameters. Once
the training process is complete, we apply projection heuristics to map the obtained soft solutions
back to discrete solutions using simple projection, where for all i ∈ [N], we map pθ,i into 0 if
pθ,i ≤ 0.5 and pθ,i into 1 if pθ,i > 0.5. However, due to the early stopping in Section 3.2, the
CRA-PI-GNN solver ensures that for all benchmark CO problems, the soft solution at the end of
the training process became 0 or 1 within the 32-bit Floating Point range in Pytorch GPU; thus, it is
robust against a given threshold, which we set to 0.5 in our experiments. Additionally, no violations
of the constraints were observed in our numerical experiments. Thus, following results presented in
are feasible solutions.

Evaluation metrics Following Karalias and Loukas [2020], We use the approximation ratio (ApR),
formulated as ApR = f(x;C)/f(x∗;C), where x∗ is optimal solution. For the MIS problems, we

7

10 20 30 40 50
Degree of the RRGs (d) with 10,000 nodes

0.0

0.1

0.2

0.3

In
de

pe
nd

en
t s

et
 d

en
si

ty
 (

d) PI-GNN
CRA-PI-GNN
Theory

10 20 30 40 50
Degree of the RRGs (d) with 20,000 nodes

0.0

0.1

0.2

0.3

In
de

pe
nd

en
t s

et
 d

en
si

ty
 (

d) PI-GNN
CRA-PI-GNN
Theory

Figure 2: Independent set density of the MIS
problem on d-RRG. Results for graphs with N =
10,000 nodes (Left) and N = 20,000 nodes
(Right). the dashed lines represent the theoret-
ical results [Barbier et al., 2013].

10 20 30 40 50
Degree of the RRGs (d) with 10,000 nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

C
ut

 r
at

io
 (

d)

PI-GNN
CRA-PI-GNN
Upper Bound

10 20 30 40 50
Degree of the RRGs (d) with 20,000 nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

C
ut

 r
at

io
 (

d)

PI-GNN
CRA-PI-GNN
Upper Bound

Figure 3: Cut ratio of the MaxCut problem on
d-RRG as a function of the degree d Results for
N = 10,000 (Left) and N = 20,000 (Right).
The dashed lines represents the theoretical upper
bounds [Parisi, 1980].

Table 1: ApR in MIS problems on RRGs with 10,000
nodes and node degree d = 20, 100. “CRA” represents
the CRA-PI-GNN solver.

Instance Method ApR

20-RRG

RGA 0.776± 0.001
DGA 0.891± 0.001
EGN 0.775 (2023)
META-EGN 0.887 (2023)
PI-GNN (GCV) 0.000± 0.000
PI-GNN (SAGE) 0.745± 0.003
CRA (GCV) 0.937± 0.002
CRA (SAGE) 0.963± 0.001

100-RRG

RGA 0.663± 0.001
DGA 0.848± 0.002
PI-GNN (GCV) 0.000± 0.000
PI-GNN (SAGE) 0.000± 0.000
CRA (GCV) 0.855± 0.004
CRA (SAGE) 0.924± 0.001

A
A

Figure 4: (Right) computational runtime (in
seconds) of the CRA-PI-GNN solvers with
the GraphSage and Conv architectures on 100-
RRG with varying numbers of nodes N .Error
bars represent the standard deviations of the
results.

evaluate the ApRs using the theoretical optimal cost [Barbier et al., 2013] and the independent set
density ρ relative to the theoretical results. For the MaxCut problems on RRGs, we adopt the cut
ratio ν against the theoretical upper bound [Parisi, 1980, Dembo et al., 2017]; see Appendix E.1 for
the details. All the results for the MIS and MaxCut problems are summarized based on 5 RRGs with
different random seeds. In the case of the MaxCut Gset problem, the ApR is calculated compared
to the known best cost functions. Regarding the DBM problems, we calculate the ApR against the
global optimal, identified using Gurobi 10.0.1 solver with default settings.

5.2 MIS problems

Degree dependency of solutions using CRA First, we compare the performance of the PI-GNN
and CRA-PI-GNN solvers using GCV, as in Schuetz et al. [2022a]. Fig. 2 shows the independent set
density ρd as a function of degree d obtained by the PI-GNN and CRA-PI-GNN solvers compared
with the theoretical results [Barbier et al., 2013]. Across all degrees d, the CRA-PI-GNN solver
outperformed the PI-GNN solver and approached the theoretical results, whereas the PI-GNN solver
fail to find valid solutions, especially for d ≥ 15, as pointed by the previous studies [Angelini and
Ricci-Tersenghi, 2023, Wang and Li, 2023].

Response to Angelini and Ricci-Tersenghi [2023] and Wang and Li [2023] MIS problems
on RRGs with a degree d larger than 16 is known to be hard problems [Barbier et al., 2013]. As
discussed in Section 3.1, Angelini and Ricci-Tersenghi [2023], Wang and Li [2023] have posted
the optimization concerns on UL-based solvers. However, we call these claim into question by
substantially outperforming heuristics DGA and RGA for the MIS on graphs with d = 20, 100,
without training/historical instances D = {Gµ}nµ=1, as shown in Table 1. See Appendix 6 for the
results of solving all other Gsets, where consistently, CRA-PI-GNN provides better results as well.

8

A comparison of the sampling-based solvers, RL-based solvers, SL-based solvers, Gurobi, and
MIS-specific solvers is presented in Appendix F.2.

Acceleration of learning speed We also compared the learning curve between PI-GNN and CRA-
PI-GNN solver to confirmed that the CRA-PI-GNN solver does not become trapped in the plateau,
pN = 0N , as discussed in Section 3.1. Fig. 5 shows the dynamics of the cost functions for the
MIS problems with N = 10,000 across d = 3, 5, 20, 100. Across all degrees, CRA-PI-GNN solver
achieves a better solution with fewer epochs than PI-GNN solver. Specifically, PI-GNN solver
becomes significantly slower due to getting trapped in the plateau even for graphs with low degrees,
such as d = 3, 5. In contrast, CRA-PI-GNN solver can effectively escape from plateaus through the
smoothing and automatic rounding of the penalty term when the negative parameter γ > 0.

Figure 5: The dynamics of cost function for MIS
problems on RRGs with N = 10,000 nodes vary-
ing degrees d as a function of the number of pa-
rameters updates NEPOCH.

Computational scaling We next evaluate the
computational scaling of the CRA-PI-GNN
solver for MIS problems with large-scale RRGs
with a node degree of 100 in Fig. 4, following
previous studies [Schuetz et al., 2022a, Wang
and Li, 2023]. Fig. 4 demonstrated a moder-
ate super-linear scaling of the total computa-
tional time, approximately ∼ N1.4 for GCN
and ∼ N1.7 for GraphSage. This performance
is nearly identical to that of the PI-GNN solver
[Schuetz et al., 2022a] for problems on RRGs
with lower degrees. It is important note that
the runtimes of CRA-PI-GNN solver heavily
depend on the optimizer for GNNs and anneal-
ing rate ε; thus this scaling remains largely un-
changed for problems other than the MIS on 100
RRG. Additionally, CRA demonstrate that the
runtime remains nearly constant as graph order and density increase, indicating effective scalability
with denser graphs which is presented in Appendix F.2.

5.3 MaxCut problem

Degree dependency of solutions We first compare the performances of PI-GNN and CRA-PI-GNN
solvers with GCV, following Schuetz et al. [2022a]. Fig. 3 shows the cut ratio νd as a function of
the degree d compared to the theoretical upper bound [Parisi, 1980, Dembo et al., 2017]. Across all
degrees d, CRA-PI-GNN solver also outperforms PI-GNN solver, approaching the theoretical upper
bound. In contrast, PI-GNN solver fails to find valid solutions for d > 20 as with the case of the MIS
problems in Section 5.2.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
Instance ID

0.90

0.95

1.00

Ap
R

PI-GNN
CRA-PI-GNN

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
Instance ID

0.94

0.96

0.98

1.00

Ap
R

PI-GNN
CRA-PI-GNN

Figure 6: ApR on DBM problems.

Standard MaxCut benchmark test Following
Schuetz et al. [2022a], we next conducted additional
experiments on standard MaxCut benchmark instances
based on the publicly available Gset dataset [Ye, 2003],
which is commonly used to evaluate MaxCut algorithms.
Here, we provide benchmark results for seven distinct
graphs with thousands of nodes, including Erdös-Renyi
graphs with uniform edge probability, graphs in which
the connectivity decays gradually from node 1 to N ,
4-regular toroidal graphs, and a very large Gset instance
with N = 10,000 nodes. Table 2 shows, across all
problems, CRA-PI-GNN solver outperforms both the
PI-GNN, RUN-CSP solvers and other greedy algorithm.
See Appendix 6 for the results of solving all other Gsets,
where consistently, CRA-PI-GNN provides better results
as well.

9

Table 2: ApR for MaxCut on Gset

GRAPH (NODES, EDGES) GREEDY SDP RUN-CSP PI-GNN CRA
G14 (800, 4,694) 0.946 0.970 0.960 0.988 0.994
G15 (800, 4,661) 0.939 0.958 0.960 0.980 0.992
G22 (2,000, 19,990) 0.923 0.77 0.975 0.987 0.998
G49 (3,000, 6,000) 1.000 1,00 1.000 0.986 1.000
G50 (3,000, 6,000) 1.000 1.000 1.000 0.990 1.000
G55 (5,000, 12,468) 0.892 − 0.982 0.983 0.991
G70 (10,000, 9,999) 0.886 − 0.970 0.982 0.992

5.4 Diverse bipartite matching

To evaluate the applicability of the CRA-PI-GNN solver to more practical problems not on graphs,
we conducted experiments on DBM problems [Ferber et al., 2020, Mulamba et al., 2020, Mandi et al.,
2022]; refer to Appendix E.1 for details. This problems consists of 27 distinct instances with varying
properties, and each instance comprises 100 nodes representing scientific publications, divided into
two groups of 50 nodes N1 and N2. The optimization is formulated as follows:

l(x;C,M,λ) = −
∑

ij Cijxij + λ1

∑
i ReLU

(∑
j xij − 1

)
+ λ2

∑
j ReLU

(∑
i xij − 1

)
+ λ3ReLU

(
p
∑

ij xij −
∑

ij Mijxij

)
+ λ4ReLU

(
q
∑

ij xij −
∑

ij(1−Mij)xij

)
,

where C ∈ RN1×N2 represents the likelihood of a link between each pair of nodes, an indicator Mij

is set to 0 if article i and j share the same subject field (1 otherwise) ∀i ∈ N1, and j ∈ N2. The
parameters p, q ∈ [0, 1] represent the probability of pairs sharing their field and of unrelated pairs,
respectively. As in Mandi et al. [2022], we explore two variations of this problem, with p = q =
being 25% and 5%, respectively, and these variations are referred to as Matching-1 and Matching-2,
respectively. In this experiment, we set λ1 = λ2 = 10 and λ3 = λ4 = 25. Fig 6 shows that the
CRA-PI-GNN solver can find better solutions across all instances.

6 Conclusion

This study proposes CRA strategy to address the both optimization and rounding issue in UL-based
solvers. CRA strategy introduces a penalty term that dynamically shifts from prioritizing continuous
solutions, where the non-convexity of the objective function is effectively smoothed, to enforcing
discreteness, thereby eliminating artificial rounding. Experimental results demonstrate that CRA-
PI-GNN solver significantly outperforms both PI-GNN solver and greedy algorithms across various
complex CO problems, including MIS, MaxCut, and DBM problems. CRA approach not only
enhances solution quality but also accelerates the learning process.

Limitation In this numerical experiments, most hyperparameters were fixed to their default values,
as outlined in Section 5.1, with minimal tuning. However, tuning may be necessary for certain
problems or to further enhance performance.

References
Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

10

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L Dill.
Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s what we
cannot teach. In International conference on machine learning, pages 10831–10841. PMLR, 2020.

Weichi Yao, Afonso S Bandeira, and Soledad Villar. Experimental performance of graph neural
networks on random instances of max-cut. In Wavelets and Sparsity XVIII, volume 11138, pages
242–251. SPIE, 2019.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Advances
in Neural Information Processing Systems, 32, 2019.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning, pages
1407–1416. PMLR, 2018.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022a.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse
than classical greedy algorithms in solving combinatorial optimization problems like maximum
independent set. Nature Machine Intelligence, 5(1):29–31, 2023.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Monte carlo algorithms are very effective in
finding the largest independent set in sparse random graphs. Physical Review E, 100(1):013302,
2019.

Haoyu Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta-learning.
arXiv preprint arXiv:2301.03116, 2023.

11

Alan J Hoffman and Joseph B Kruskal. Integral boundary points of convex polyhedra. 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pages 49–76, 2010.

George L Nemhauser and Leslie E Trotter Jr. Properties of vertex packing and independence system
polyhedra. Mathematical programming, 6(1):48–61, 1974.

Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber. Graph coloring with
physics-inspired graph neural networks. Physical Review Research, 4(4):043131, 2022b.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory, 25(1):
1–7, 1979.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Alice E Smith, David W Coit, Thomas Baeck, David Fogel, and Zbigniew Michalewicz. Penalty
functions. Handbook of evolutionary computation, 97(1):C5, 1997.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on
graphs. arXiv preprint arXiv:2207.11542, 2022.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Run-csp: unsupervised learning of
message passing networks for binary constraint satisfaction problems. CoRR, abs/1909.08387,
2019.

Stefan Boettcher. Inability of a graph neural network heuristic to outperform greedy algorithms in
solving combinatorial optimization problems. Nature Machine Intelligence, 5(1):24–25, 2023.

Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, and Qingfu Zhang. Continuation path learning for homotopy
optimization. In International Conference on Machine Learning, pages 21288–21311. PMLR,
2023.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Hermish Mehta. Cvx graph algorithms. https://github.com/hermish/
cvx-graph-algorithms, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jean Barbier, Florent Krzakala, Lenka Zdeborová, and Pan Zhang. The hard-core model on random
graphs revisited. In Journal of Physics: Conference Series, volume 473, page 012021. IOP
Publishing, 2013.

12

https://github.com/hermish/cvx-graph-algorithms
https://github.com/hermish/cvx-graph-algorithms

Giorgio Parisi. A sequence of approximated solutions to the sk model for spin glasses. Journal of
Physics A: Mathematical and General, 13(4):L115, 1980.

Amir Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse random graphs. 2017.

Y. Ye. The gset dataset. https://web.stanford.edu/~yyye/yyye/Gset/, 2003.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
1504–1511, 2020.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. arXiv preprint
arXiv:2011.05354, 2020.

Jayanta Mandi, Vıctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused
learning: through the lens of learning to rank. In International Conference on Machine Learning,
pages 14935–14947. PMLR, 2022.

Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation
method and scaling limits in sparse random graphs. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 105–114, 2010.

Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Structures & Algorithms, 47(3):436–486, 2015.

Bahram Alidaee, Gary A Kochenberger, and Ahmad Ahmadian. 0-1 quadratic programming approach
for optimum solutions of two scheduling problems. International Journal of Systems Science, 25
(2):401–408, 1994.

Hartmut Neven, Geordie Rose, and William G Macready. Image recognition with an adiabatic
quantum computer i. mapping to quadratic unconstrained binary optimization. arXiv preprint
arXiv:0804.4457, 2008.

Michel Deza and Monique Laurent. Applications of cut polyhedra—ii. Journal of Computational
and Applied Mathematics, 55(2):217–247, 1994.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263–1272. PMLR, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In International Conference on Machine Learning, pages
32859–32874. PMLR, 2023.

Katayoon Goshvadi, Haoran Sun, Xingchao Liu, Azade Nova, Ruqi Zhang, Will Grathwohl,
Dale Schuurmans, and Hanjun Dai. Discs: A benchmark for discrete sampling. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 79035–79066. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
f9ad87c1ebbae8a3555adb31dbcacf44-Paper-Datasets_and_Benchmarks.pdf.

Holger H Hoos and Thomas Stützle. Satlib: An online resource for research on sat. Sat, 2000:
283–292, 2000.

13

https://web.stanford.edu/~yyye/yyye/Gset/
https://proceedings.neurips.cc/paper_files/paper/2023/file/f9ad87c1ebbae8a3555adb31dbcacf44-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f9ad87c1ebbae8a3555adb31dbcacf44-Paper-Datasets_and_Benchmarks.pdf

A Overview

This supplementary material provides extended explanations, implementation details, and additional
results.

B Derivation

B.1 Proof of Theorem 3.1

First, we present three lemmas, and then we demonstrate Theorem 3.1 based on these lemmas.

Lemma B.1. For any even natural number α ∈ {2n | n ∈ N+}, the function ϕ(p) = 1− (2p− 1)α

defined on [0, 1] achieves its maximum value of 1 when p = 1/2 and its minimum value of 0 when
p = 0 or p = 1.

Proof. The derivative of ϕ(p) relative to p is dϕ(p)/dp = −2α(2p− 1), which is zero when p = 1/2.
This is a point where the function is maximized because the second derivative d2ϕ(p)/dp2 = −4α ≤ 0.
In addition, this function is concave and symmetric relative to p = 1/2 because α is an even natural
number, i.e., ϕ(p) = ϕ(1− p), thereby achieving its minimum value of 0 when p = 0 or p = 1.

Lemma B.2. For any even natural number α ∈ {2n | n ∈ N+}, if γ → +∞, minimizing the penalty
term γΦ(p) = γ

∑N
i=1(1 − (2pi − 1)α) = γ

∑N
i=1 ϕ(pi) enforces that the for all i ∈ [N], pi is

either 0 or 1 and, if γ → −∞, the penalty term enforces p = 1N/2.

Proof. From Lemma B.1, as γ → +∞, ϕ(p) is minimal value when, for any i ∈ [N], pi = 0 or
pi = 1. As γ → −∞, ϕ(p;α, γ) is minimal value when, for any i ∈ [N], pi = 1/2.

Lemma B.3. For any even number α ∈ {2n | n ∈ N+}, γΦ(p) is concave when λ > 0 and is a
convex function when λ < 0.

Proof. Note that γΦ(p) = γ
∑N

i=1 ϕ(pi) = γ
∑N

i=1(1 − (2pi − 1)α) is separable across its com-
ponents pi. Thus, it is sufficient to prove that each γϕi(pi;α) is concave or convex in pi because
the sum of the concave or convex functions is also concave (and vice versa). Thus, we consider the
second derivative of γϕi(pi) with respect to pi:

γ
d2ϕi(pi)

dp2i
= −4γα.

If γ > 0, the second derivative is negative for all pi ∈ [0, 1], and this completes the proof that γΦ(p)
is a concave function when γ is positive (and vice versa).

Combining Lemma B.1, Lemma B.2 and Lemma B.3, one can show the following theorem.

Theorem B.4. Under the assumption that the objective function l̂(p;C) is bounded within the domain
[0, 1]N , as γ → +∞, the soft solutions p∗ ∈ argminpr̂(p;C,λ, γ) converge to the original solutions
x∗ ∈ argminxl(x;C,λ). In addition, as γ → −∞, the loss function r̂(p;C,λ, γ) becomes convex,
and the soft solution 1N/2 = argminpr̂(p, C,λ, γ) is unique.

Proof. As λ→ +∞, the penalty term Φ(p) dominates the loss function r̂(p;C,λ, γ). According to
Lemma B.2, this penalty term forces the optimal solution p∗ to a binary vector whose components,
for all i ∈ [N] p∗i that are either 0 or 1 because any non-binary value results in an infinitely large
penalty. This effectively restricts the feasible region to the vertices of the unit hypercube, which
correspond to the binary vector in {0, 1}N . Thus, as λ→∞, the solutions to the relaxed problem
converge to those of the original problem. As λ → −∞, the penalty term Φ(p) also dominates
the loss function r̂(p;C,λ, γ) and the r̂(p;C,λ) convex function from Lemma B.3. According to
Lemma B.2, this penalty term forces the optimal solution p∗ = 1N/2.

14

The theorem holds for the cross entropy penalty given by

Φ(p) =

N∑
i=1

(pi log(pi) + (1− pi) log(1− pi)) (7)

in the UL-based solver using data or history [Sun et al., 2022, Sanokowski et al., 2024] because Φ(p)
can similarly satisfy Lemma B.1, Lemma B.2 and Lemma B.3.
Corollary B.5. Theorem B.4 holds for the following penalty term:

Φ(p) =

N∑
i=1

(pi log(pi) + (1− pi) log(1− pi)) . (8)

C Generalization of CRA

C.1 Generalization for to Potts variable optimization

This section generalize the penalty term Φ(θ;C) introduced for binary variables to K-Potts variables.
K-Potts variable is the Kronecker delta δ(xi, xj) which equas one whenever xi = xj and zero
otherwise and a decision variable takes on K different values, ∀i ∈ [N], xi = 1, . . . ,K. For
example, graph K-coloring problems can be expressed as

f(x;G(V,E)) = −
∑

(i,j)∈E

δ(xi, xj) (9)

For Potts variables, the output of the GNN is hL
θ = P (θ;C) ∈ RN×K and the penalty term can be

generalized as follows.

Φ(θ;C) =

N∑
i=1

(
1−

K∑
k=1

(KPi,k(θ;C)− 1)
α

)
. (10)

D Additional implementation details

D.1 Architecture of GNNs

We describe the details of the GNN architectures used in all numerical experiments. The first
convolutional layer takes H0-dimensional node embedding vectors, h0

θ for each node, as input,
yielding H1-dimensional feature vectors h1

θ. Then, the ReLU function is applied as a component-
wise nonlinear transformation. The second convolutional layer takes the H1-dimensional feature
vectors, h1

θ , as input, producing a H(2)-dimensional vector h2
θ . Finally, a sigmoid function is applied

to the H(2)-dimensional vector h2
θ, and the output is the soft solution pθ ∈ [0, 1]N . As in [Schuetz

et al., 2022a], we set H0 = int(N0.8) or , H1 = int(N0.8/2) and H2 = 1 for both GCN and
GraphSAGE .

D.2 Training settings

For all numerical experiments, we use the AdamW [Kingma and Ba, 2014] optimizer with a learning
rate of η = 10−4 and weight decay of 10−2, and we train the GNNs for up to 105 epochs with early
stopping set to the absolute tolerance 10−5 and patience 103. As discussed in Schuetz et al. [2022a],
the GNNs are initialized with five different random seeds for a single instance because the results are
dependent on the initial values of the trainable parameters; thus selecting the best solution.

E Experiment details

E.1 Benchmark problems

MIS problems There are some theoretical results for MIS problems on RRGs with the node
degree set to d, where each node is connected to exactly d other nodes. The MIS problem is a

15

fundamental NP-hard problem [Karp, 2010] defined as follows. Given an undirected graph G(V,E),
an independent set (IS) is a subset of nodes I ∈ V where any two nodes in the set are not adjacent.
The MIS problem attempts to find the largest IS, which is denoted I∗. In this study, ρ denotes the IS
density, where ρ = |I|/|V |. To formulate the problem, a binary variable xi is assigned to each node
i ∈ V . Then the MIS problem is formulated as follows:

f(x;G,λ) = −
∑
i∈V

xi + λ
∑

(i,j)∈E

xixj , (11)

where the first term attempts to maximize the number of nodes assigned 1, and the second term
penalizes the adjacent nodes marked 1 according to the penalty parameter λ. In our numerical
experiments, we set λ = 2, following Schuetz et al. [2022a], no violation is observed as in [Schuetz
et al., 2022a]. First, for every d, a specific value ρ∗d, which is dependent on only the degree d,
exists such that the independent set density |I∗|/|V | converges to ρ∗d with a high probability as N
approaches infinity [Bayati et al., 2010]. Second, a statistical mechanical analysis provides the typical
MIS density ρTheory

d , as shown in Fig. 2, and we clarify that for d > 16, the solution space of I
undergoes a clustering transition, which is associated with hardness in sampling [Barbier et al., 2013]
because the clustering is likely to create relevant barriers that affect any algorithm searching for the
MIS I∗. Finally, the hardness is supported by analytical results in a large d limit, which indicates
that, while the maximum independent set density is known to have density ρ∗d→∞ = 2 log(d)/d,
to the best of our knowledge, there is no known algorithm that can find an independent set density
exceeding ρalgd→∞ = log(d)/d [Coja-Oghlan and Efthymiou, 2015].

MaxCut problems The MaxCut problem is also a fundamental NP-hard problem [Karp, 2010] with
practical application in machine scheduling [Alidaee et al., 1994], image recognition [Neven et al.,
2008] and electronic circuit layout design [Deza and Laurent, 1994]. The MaxCut problem is also a
fundamental NP-hard problem [Karp, 2010] Given an graph G = (V,E), a cut set C ∈ E is defined
as a subset of the edge set between the node sets dividing (V1, V2 | V1 ∪ V2 = V, V1 ∩ V2 = ∅).
The MaxCut problems aim to find the maximum cut set, denoted C∗. Here, the cut ratio is defined
as ν = |C|/|V|, where |C| is the cardinality of the cut set. To formulate this problem, each node is
assigned a binary variable, where xi = 1 indicates that node i belongs to V1, and xi = 0 indicates
that the node belongs to V2. Here, xi + xj − 2xixj = 1 holds if the edge (i, j) ∈ C. As a result, we
obtain the following:

f(x;G) =
∑
i<j

Aij(2xixj − xi − xj). (12)

This study has also focused on the MaxCut problems on d-RRGs, for which several theoretical
results have been established. Specifically, for each d, the maximum cut ratio is given by ν∗d ≈
d/4 + P∗

√
d/4 +O(

√
d), where P∗ = 0.7632 . . . with a high probability as N approaches infinity

[Parisi, 1980, Dembo et al., 2017]. Thus, we take νUB
d = d/4 + P∗

√
d/4 as an upper bound for the

maximum cut ratio in the large n limit.

DBM problems Here, the topologies are taken from the Cora citation network [Sen et al., 2008],
where each node has 1,433 bag-of-words features, and each edge represents likelihood, as predicted
by a machine learning model. Mandi et al. [2022] focused on disjoint topologies within the given
topology, and they created 27 distinct instances with varying properties. Each instance comprises
100 nodes representing scientific publications, divided into two groups of 50 nodes N1 and N2. The
optimization task is to find the maximum matching, where diversity constraints ensure connections
among papers in the same field and between papers of different fields. This is formulated using a
penalty method as follows.

l(x;C,M,λ) = −
∑

ij Cijxij + λ1

∑
i ReLU

(∑
j xij − 1

)
+ λ2

∑
j ReLU

(∑
i xij − 1

)
+ λ3ReLU

(
p
∑

ij xij −
∑

ij Mijxij

)
+ λ4ReLU

(
q
∑

ij xij −
∑

ij(1−Mij)xij

)
, (13)

where C ∈ RN1×N2 represents the likelihood of a link between each pair of nodes, an indicator Mij

is set to 0 if article i and j share the same subject field (1 otherwise) ∀i ∈ N1, and j ∈ N2. The
parameters p, q ∈ [0, 1] represent the probability of pairs sharing their field and of unrelated pairs,
respectively. As in Mandi et al. [2022], we explore two variations of this problem, with p = q =
being 25% and 5%, respectively, and these variations are referred to as Matching-1 and Matching-2,
respectively. In this experiment, we set λ1 = λ2 = 10 and λ3 = λ4 = 25.

16

E.2 GNNs

A GNN [Gilmer et al., 2017, Scarselli et al., 2008] is a specialized neural network for representation
learning of graph-structured data. GNNs learn a vectorial representation of each node in two steps,
i.e., the aggregate and combine steps. The aggregate step employs a permutation-invariant function to
generate an aggregated node feature, and in the combine step, the aggregated node feature is passed
through a trainable layer to generate a node embedding, known as "message passing" or the "readout
phase." Formally, for a given graph G = (V,E), where each node feature h0

v ∈ RH0 is attached to
each node v ∈ V , the GNN updates the following two steps iteratively. First, the aggregate step at
each l-th layer is defined as follows:

al
v = Aggregatelθ

(
{hl−1

u ,∀u ∈ Nv}
)
, (14)

where the neighborhood of v ∈ V is denoted Nv = {u ∈ V | (v, u) ∈ E}, hl−1
u is the node feature

of the neighborhood, and al
v is the aggregated node feature of the neighborhood. Then, the combined

step at each l-th layer is defined as follows:

hl
v = Combinelθ(h

l−1
v ,al

v), (15)

where hl
v ∈ RHl denotes the node representation at the l-th layer. Here, the hyperparameters for

the total number of layers L and the intermediate vector dimension N l are determined empirically.
Although numerous implementations of GNN architectures have been proposed to date, the most
basic and widely used architecture is the GCN [Scarselli et al., 2008], which is given as follows:

hl
v = σ

W l
∑

u∈N (v)

hl−1
u

|N (v)|
+Blhl−1

v

 , (16)

where W l and Bl are trainable parameters, |N (v)| serves as a normalization factor, and σ : RHl →
RHl is some component-wise nonlinear activation function, e.g., the sigmoid or ReLU function.

F Additional experiments

F.1 Numerical validation of practical issues presented in Section 3.1

In this sectioin, we will examine the issue (I) with continuous relaxations and the issue (II), the
difficulties of optimization, as pointed out by previous studies [Wang and Li, 2023, Angelini and
Ricci-Tersenghi, 2023], in the NP-hard problems of MIS and the MaxCut problem. Therefere, we
conducted numerical experiments using the PI-GNN solver for MIS and MaxCut problems on RRGs
with higher degrees. To ensure the experimental impartiality, we adhered to the original settings of
the PI-GNN solver [Schuetz et al., 2022b]. Refer to Section E for the detailed experimental settings.
Fig. 7 (top) shows the solutions obtained by the PI-GNN solver as a function of the degree d for
the MIS and MaxCut problems with varying system sizes N . These results indicate that finding
independent and cut sets becomes unfeasible as the RRG becomes denser. In addition, to clarify
the reasons for these failures, we analyzed the dynamics of the cost function for MIS problems
with N = 10,000, with a specific focus on a graph with degrees d = 5 and d = 20, as depicted
in Fig. 7 (bottom). For the d = 5 case, the cost function goes over the plateau of l̂(θ;G,λ) = 0
with pθ(G) = 0N , as investigated in the histogram, eventually yielding a solution comparable to
those presented by Schuetz et al. [2022a]. Conversely, in the d = 20 case, the cost function remains
stagnant on the plateau of l̂(θ;G,λ) = 0 with pθ(G) = 0N , thereby failing to find any independent
nodes. Interpreting this phenomenon, we hypothesize that the representation capacity of the GNN
is sufficiently large, leading us to consider the optimization of L̂MIS(θ;G,λ) and L̂MaxCut(θ;G)
as a variational optimization problem relative to pθ. In this case, p∗

θ = 0N satisfies the first-order
variational optimality conditions δl̂MIS/δpθ|pθ=p∗ = δl̂MaxCut/δpθ|pθ=p∗ = 0N , which implies a
potential reason for absorption into the plateau. However, this does not reveal the conditions for the
convergence to the fixed point p∗ during the early learning stage or the condition to escape from
the fixed point p∗. Thus, an extensive theoretical evaluation through stability analysis remains an
important topic for future work.

In summary, UL-based solver, minimizing θ can be challenging and unstable. In particular, the
PI-GNN solver, which is one of the UL-based solvers employing GNNs, fails to optimize θ due to a

17

5 10 15 20 25 30
Degree of each node (d)

0

1

2

3

4

5

6

In
de

pe
nd

en
t S

et
 S

iz
e

(|
|)

×103

N = 2500
N = 5000
N = 7500
N = 10000
N = 12500
N = 15000
N = 17500
N = 20000

10 15 20 25 30 35 40
Degree of each node (d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ut

 S
et

 S
iz

e
(|

|)

×105

N = 2500
N = 5000
N = 7500
N = 10000
N = 12500
N = 15000
N = 17500
N = 20000

0.0 0.5 1.0 1.5
NEPOCH ×104

0.5

0.0

0.5

1.0

1.5

l(
;G

,
)

×104

d = 5
d = 20

0.0 0.5 1.00

2

4

100 Epoch

0.0 0.5 1.00

10

2500 Epoch

0.0 0.5 1.00

10

7000 Epoch

0.0 0.5 1.00

10

15000 Epoch

0.0 0.5 1.00

5

10

100 Epoch

0.0 0.5 1.00

10

20
2500 Epoch

0.0 0.5 1.00

10

20

7000 Epoch

0.0 0.5 1.00

10

20

15000 Epoch

Figure 7: The top graph shows the independent set density for MIS problems (left) and the cut ratio
for MaxCut problems (right) as a function of degree d using the PI-GNN solver with varying system
size N . Each data point represents the average result of five different graph instances, with the error
bars indicating the standard deviation of those results. The bottom graph shows the cost as a function
of the number of parameter updates NEPOCH, for N = 10000 MIS problems on 5-RRG and 20-RRG.
The histogram represents the relaxed vector distribution with varying numbers of parameter updates
NEPOCH. Each point in the bottom-left plot is linked to the corresponding bottom-right histogram.

local solution in complex CO problems on relatively dense graphs where the performance of greedy
algorithms worsens. This issues can be potential bottleneck for more practical and relatively dense
problems, making it challenging to employ the PI-GNN solver confidently.

F.2 Additional results of MIS

We evaluate our method using the MIS benchmark dataset from recent studies [Goshvadi et al., 2023,
Qiu et al., 2022], which includes graphs from SATLIB [Hoos and Stützle, 2000] and Erdős–Rényi
graphs (ERGs) of varying sizes. Following Sun et al. [2023], our test set consists of 500 SATLIB
graphs, each containing between 403 and 449 clauses with up to 1,347 nodes and 5,978 edges, 128
ERGs with 700 to 800 nodes each, and 16 ERGs with 9,000 to 11,000 nodes each. We conducted
numerical experiments on PQQA using four different configurations: parallel runs with S = 100 or
S = 1000 and shorter steps (3000 steps) or longer steps (30000 steps), similar to the approach in
iSCO [Sun et al., 2023]. Table F.2 presents the solution quality and runtime results. The results show
that CRA, which optimizes the relaxed variables as an optimization of GNN parameters, takes extra
time for smaller ER-[700-800] instances due to the smaller number of decision variables. However,
for larger instances, CRA achieves results comparable to iSCO. Although limited space makes it
difficult to present other benchmark results employed by iSCO, such as MaxCut and MaxClique,
numerical experiments on these benchmarks also show that CRA is less effective for small problems.
However, for larger problems, the results are comparable to or slightly inferior to those of iSCO.

We also investigated the relationship between the order of the graph and the solving time of the solver,
and the results are shown in Table F.2 and F.2. The results demonstrate that the runtime remains nearly
constant as graph order and density increase, indicating effective scalability with denser graphs.

F.3 Additional results of Gset

We conducted experiments across the additional GSET collection to further validate that including
CRA enhances PI-GNN results beyond previously achievable in Table 6.

18

Table 3: ApR and runtime are evaluated on three benchmarks provided by DIMES [Qiu et al., 2022].
The ApR is assessed relative to the results obtained by KaMIS. Runtime is reported as the total clock
time, denoted in seconds (s), minutes (m), or hours (h). The runtime and solution quality are sourced
from iSCO [Sun et al., 2023]. The baselines include solvers from the Operations Research (OR)
community, as well as data-driven approaches utilizing Reinforcement Learning (RL), Supervised
Learning (SL) combined with Tree Search (TS), Greedy decoding (G), or sampling (S). Methods that
fail to produce results within 10 times the time limit of DIMES are marked as N/A.

Method Type ER-[700-800] ER-[9000-11000]
ApR Time ApR Time

KaMIS OR 1.000 52.13m 1.000 7.6h
Gurobi OR 0.922 50.00m N/A N/A

Intel SL+TS 0.865 20.00m N/A N/A
SL+G 0.777 6.06m 0.746 5.02m

DGL SL+TS 0.830 22.71m N/A N/A
LwD RL+S 0.918 6.33m 0.907 7.56m

DIMES RL+G 0.852 6.12m 0.841 5.21m
RL+S 0.937 12.01m 0.873 12.51m

iSCO fewer steps 0.998 1.38m 0.990 9.38m
more steps 1.006 5.56m 1.008 1.25h

CRA UL-based 0.928 47.30m 0.963 1.03h

Table 4: ApR of the MIS problem on RRG(N, d). All the results are averaged based on 5 RRGs
with different random seeds.

Problem ApR (CRA) ApR (PI) Time (CRA) Time (PI)

RRG(1,000, 10) 0.95 0.78 108 (s) 98 (s)
RRG(1,000, 20) 0.95 0.56 103 (s) 92 (s)
RRG(1,000, 30) 0.94 0.00 102 (s) 88 (s)
RRG(1,000, 40) 0.93 0.00 101 (s) 82 (s)
RRG(1,000, 50) 0.92 0.00 102 (s) 82 (s)
RRG(1,000, 60) 0.91 0.00 101 (s) 91 (s)
RRG(1,000, 70) 0.91 0.00 101 (s) 86 (s)
RRG(1,000, 80) 0.91 0.00 102 (s) 93 (s)
RRG(5,000, 10) 0.93 0.77 436 (s) 287 (s)
RRG(5,000, 20) 0.95 0.74 413 (s) 280 (s)
RRG(5,000, 30) 0.95 0.00 419 (s) 283 (s)
RRG(5,000, 40) 0.94 0.00 429 (s) 293 (s)
RRG(5,000, 50) 0.94 0.00 418 (s) 324 (s)
RRG(5,000, 60) 0.93 0.00 321 (s) 302 (s)
RRG(5,000, 70) 0.92 0.00 321 (s) 325 (s)
RRG(5,000, 80) 0.92 0.00 330 (s) 305 (s)

F.4 Additional results of TSP

We conducted additional experiments on several TSP problems from the TSPLIB dataset1, presenting
results that illustrate the α-dependency.

Experiments calculated the ApR as the ratio of the optimal value to the CRA result, with the ApR
representing the average and standard deviation over 3 seeds. The “–” symbol in PI-GNN denotes
cases where most variables are continuous values and where no solution satisfying the constraint was
found within the maximum number of epochs. The same GNN and optimizer settings were used as in
the main text experiments in Section 5.1.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

19

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Table 5: The ApR of the MIS problem on ERG(N, d) is evaluated against the results of KaMIS.
Due to time limitations, the maximum running time for KaMIS was constrained. The results below
present the average ApRs and runtimes across five different random seeds.

Problem CRA (ApR) PI (ApR) Time (CRA) Time (PI) Time (KaMIS)

ERG(1,000, 0.05) 0.97 0.01 103 (s) 98 (s) 100 (s)
ERG(1,000, 0.10) 0.95 0.00 100 (s) 98 (s) 210 (s)
ERG(1,000, 0.15) 0.94 0.00 100 (s) 92 (s) 315 (s)
ERG(1,000, 0.20) 0.91 0.00 99 (s) 88 (s) 557 (s)
ERG(1,000, 0.25) 0.93 0.00 98 (s) 82 (s) 733 (s)
ERG(1,000, 0.30) 0.90 0.00 98 (s) 82 (s) 1000 (s)
ERG(1,000, 0.35) 0.92 0.00 99 (s) 91 (s) 1000 (s)
ERG(1,000, 0.40) 0.91 0.00 97 (s) 86 (s) 1000 (s)

1 × 10 3 5 × 10 3 1 × 10 2

Scheduling Rate ()
30

25

20

15

10

5

0

In
iti

al
 V

al
ue

 (
(0

))

SAGE

1 × 10 3 5 × 10 3 1 × 10 2

Scheduling Rate ()
30

25

20

15

10

5

0

In
iti

al
 V

al
ue

 (
(0

))

GCV

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

In
de

pe
nd

en
t S

et
 D

en
si

ty
 (

d)

Figure 8: (Top) IS density of N = 10,000 MIS problems on 100-RRG as a function of initial
scheduling γ(0) and scheduling rate ε values obtained by the CRA-PI-GNN solver using GraphSage
(Left) and GCV (Right). The color of the heat map represents the average IS over five different
instances.

Table F.4 shows that the CRA approach yielded solutions with an ApR exceeding 0.9 across various
instances. Notably, for the burma14 problem, our method identified the global optimal solution
(3,323) multiple times. However, the optimal value can vary based on the specific GNN architecture
and problem structure, indicating that a more comprehensive ablation study could provide valuable
insights in future work.

F.5 Ablation over initial scheduling value and scheduling rate

We conducted an ablation study focusing on the initial scheduling value γ(0) and scheduling rate
ε. This numerical experiment was conducted under the configuration described in Section 5 and E.
Fig. 8 shows the IS density of N = 10000 MIS problems on a 100-RRG as a function of the initial
scheduling value γ(0) and the scheduling rate ε using the CRA-PI-GNN with both GraphSage and
GCV. As can be seen, smaller initial scheduling γ(0) and scheduling rate ε values typically yield
better solutions. However, the convergence time increases progressively as the initial scheduling
γ(0) and scheduling rate ε values become smaller. In addition, GraphSage consistently produces
better solutions even with relatively larger initial scheduling γ(0) and scheduling rate ε values, which
implies that the GNN architecture influences both the solution quality and the effective regions of the
initial scheduling γ(0) and scheduling rate ε values for the annealing process.

F.6 Ablation over curve rate

Next, we investigated the effect of varying the curvature α in Eq. 5. Numerical experiments were
performed on MIS problems with 10,000 nodes and the degrees of 5 and 20, as well as MaxCut
problems with 10,000 nodes and the degrees of 5 and 35. The GraphSAGE architecture was employed,

20

Table 6: ApR for MaxCut on Gset

GRAPH (NODES, EDGES) GREEDY SDP RUN-CSP PI-GNN CRA

G1 (800, 19,176) 0.942 0.970 0.979 0.978 1.000
G2 (800, 19,176) 0.951 0.970 0.981 0.976 0.998
G3 (800, 19,176) 0.945 0.972 0.982 0.972 1.000
G4 (800, 19,176) 0.949 0.971 0.980 0.978 0.999
G5 (800, 19,176) 0.949 0.970 0.980 0.978 1.000
G14 (800, 4,694) 0.946 0.952 0.956 0.988 0.994
G15 (800, 4,661) 0.939 0.958 0.952 0.980 0.992
G16 (800, 4,672) 0.948 0.958 0.953 0.965 0.990
G17 (800, 4,667) 0.946 − 0.956 0.967 0.990
G22 (2,000, 19,990) 0.923 − 0.972 0.987 0.998
G23 (2,000, 19,990) 0.927 − 0.973 0.968 0.997
G24 (2,000, 19,990) 0.927 − 0.973 0.959 0.998
G25 (2,000, 19,990) 0.929 − 0.974 0.974 0.998
G26 (2,000, 19,990) 0.924 − 0.974 0.965 0.998
G35 (2,000, 11,778) 0.942 − 0.953 0.968 0.990
G36 (2,000, 11,766) 0.942 − 0.953 0.966 0.991
G37 (2,000, 11,785) 0.946 − 0.950 0.966 0.997
G38 (2,000, 11,779) 0.943 − 0.949 0.966 0.991
G43 (1,000, 9,990) 0.928 0.968 0.976 0.966 0.995
G44 (1,000, 9,990) 0.920 0.955 0.978 0.968 0.998
G45 (1,000, 9,990) 0.930 0.950 0.979 0.961 0.998
G46 (1,000, 9,990) 0.930 0.960 0.976 0.974 0.998
G47 (1,000, 9,990) 0.931 0.956 0.976 0.972 0.997
G48 (3,000, 6,000) 1.000 1.000 1.000 0.912 1.000
G49 (3,000, 6,000) 1.000 1.000 1.000 0.986 1.000
G50 (3,000, 6,000) 1.000 1.000 0.999 0.990 1.000
G51 (1,000, 5,909) 0.949 0.960 0.954 0.964 0.991
G52 (1,000, 5,916) 0.944 0.957 0.955 0.961 0.990
G53 (1,000, 5,914) 0.945 0.956 0.950 0.966 0.992
G54 (1,000, 5,916) 0.900 0.956 0.952 0.970 0.988
G55 (5,000, 12,498) 0.892 − 0.978 0.983 0.991
G58 (5,000, 29,570) 0.945 − 0.980 0.966 0.989
G60 (7,000, 17,148) 0.889 − 0.980 0.945 0.991
G63 (7,000, 41,459) 0.948 − 0.947 0.968 0.989
G70 (10,000, 9,999) 0.886 − 0.970 0.982 0.992

Table 7: Comparison of ApR performance across different values of p for various TSPLIB instances.

burma14 ulysses22 st70 gr96

ApR (p = 2) 0.91± 0.08 0.89± 0.03 0.96± 0.01 0.81± 0.05
ApR (p = 4) 0.98± 0.10 0.92± 0.02 0.85± 0.03 0.82± 0.03
ApR (p = 6) 0.97± 0.14 0.88± 0.07 0.88± 0.04 0.90± 0.05
ApR (p = 8) 0.99± 0.06 0.89± 0.05 0.80± 0.02 0.86± 0.05
ApR (PI) 0.736± 1.21 – – –
Optimum 3,323 7,013 675 5,5209

with other parameters set as Section 5 adn E. As shown in Fig. 9, we observed that α = 2 consistently
yielded the best scores across these problems.

21

2 4 6 8 10 12
Curve rate ()

0.0

0.1

0.2

0.3

0.4

In
de

pe
nd

en
t s

et
 d

en
si

ty
 (

d)

MIS (d = 5)
MIS (d = 20)

2 4 6 8 10 12
Curve rate ()

2

4

6

8

10

C
ut

 R
at

io
 (

d)

MAXCUT (d = 5)
MAXCUT (d = 35)

Figure 9: (Left) Independent set density as a function of curveture rate α in Eq. (5). (Right) Cut ratio
as a function of curveture rate α in Eq. (5). Error bars represent the standard deviations of the results

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims of the paper,
including the advantages of the proposed CRA strategy over greedy algorithm without
training dataset and the experimental results demonstrating its effectiveness.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the existing UL-based solvers, including
optimization and rounding issues. It also mentions the limitations of the proposed CRA
strategy, such as the need for parameter tuning and the reliance on specific graph structures
for testing.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

22

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides a full set of assumptions and complete proofs for the
theoretical results presented, particularly for Theorem 3.1 and its supporting lemmas in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes detailed descriptions of the experimental setups, including
the types of graphs used, the parameters for the algorithms, and the performance metrics.
This information is sufficient for reproducing the main experimental results (Section 5 and
Appendix E).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same

23

dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper is accompanied by the code, along with detailed instructions to
reproduce the experimental results. This will ensure that other researchers can faithfully
reproduce the findings reported in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The paper specifies all the necessary details about the experimental settings,
including data splits, hyperparameters, optimizer types, and training procedures (Section 5
and Appendix E).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars and provides information about the statistical sig-
nificance of the experimental results, including confidence intervals and standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information on the computational resources used, including
the type of compute workers (e.g., GPU) in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

25

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics, ensuring responsible
conduct and consideration of ethical implications.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive impacts of the proposed CRA
strategy, such as improving the efficiency of solving CO problems, as well as the potential
negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of high-risk data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.

26

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper does not use any existing assets, so this question is not applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

27

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Background
	Unsupervised learning based solvers

	Continuous relaxation annealing for UL-based solvers
	Motivation: practical issues of UL-based solvers
	Continuous relaxation annealing

	Related Work
	Experiments
	Experimental settings
	MIS problems
	MaxCut problem
	Diverse bipartite matching

	Conclusion
	Overview
	Derivation
	Proof of Theorem 3.1

	Generalization of CRA
	Generalization for to Potts variable optimization

	Additional implementation details
	Architecture of GNNs
	Training settings

	Experiment details
	Benchmark problems
	GNNs

	Additional experiments
	Numerical validation of practical issues presented in Section 3.1
	Additional results of MIS
	Additional results of Gset
	Additional results of TSP
	Ablation over initial scheduling value and scheduling rate
	Ablation over curve rate

