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Abstract1

Attention Deficit/Hyperactivity Disorder2
(ADHD) is a common mental disorder that3
exhibits a high incidence rate in children4
and adolescents, and it is also observed in5
adults. Currently, there is a lack of6
objective diagnostic methods for ADHD.7
Therefore, a three-dimensional residual8
network (3D-ResNet) deep learning9
method based on feature extraction from10
rs-fMRI images for assisting in the11
diagnosis of ADHD based on resting-state12
functional magnetic resonance imaging13
(rs-fMRI) and deep learning models was14
proposed in this paper. Taking into15
consideration the temporal characteristics16
of rs-fMRI, we constructed a 3D-ResNet17
model based on four-dimensional image.18
The model utilized TimeDistributed to19
encapsulate residual blocks which allowed20
the model to extract spatial features from21
rs-fMRI while preserving its temporal22
sequence information. We constructed four23
different hierarchical structures of 3D-24
ResNet which are subsequently combined25
with two different bidirectional recurrent26
neural networks (BRNNs) to extract27
sequence features. And BRNNs includes28
bidirectional long short-term memory (Bi-29
LSTM) and bidirectional gated recurrent30
unit (Bi-GRU). The proposed method31
utilized the ADHD-200 Consortium's32
public dataset for training and was33
validated by 5-fold cross-validation. The34
experimental results indicated that the35
proposed method in this study36
demonstrated superior performance on the37
dataset compared to traditional methods38
(Accuracy: 76.56%, Sensitivity: 80.16%,39
Specificity: 90.22%). Therefore, adopting40
this method can further enhance the41
accuracy of assisting in the diagnosis of42
ADHD.43

1 Introduction44

Attention Deficit/Hyperactivity Disorder (ADHD)45
is a highly prevalent neurodevelopmental46
disorder1, the onset of the condition typically47
occurs before the age of 122, and it is48
characterized by persistent hyperactivity,49
excessive impulsivity, or inability to concentrate3.50
ADHD can be classified into three subtypes,51
namely Attention Deficit/Hyperactivity Disorder-52
Combined Type (ADHD-C), Hyperactive-53
Impulsive Type (ADHD-HI), and Inattentive Type54
(ADHD-I).55
To mitigate the challenges associated with image56
fusion, this study constructed a deep learning57
model based on rs-fMRI image data. The paper58
introduced a network architecture named 3D-59
ResNet, which is employed to extract spatial60
features from rs-fMRI. Subsequently, it combines61
Bidirectional Recurrent Neural Networks62
(BRNNs) to extract temporal features. Traditional63
Recurrent Neural Networks (RNNs) face64
challenges such as gradient vanishing and65
exploding when dealing with sequential data17,66
these problems make it difficult to capture long-67
range dependencies. BRNNs capture dependency68
relationships in sequential data by combining69
information from both the forward and backward70
directions. Unlike RNNs, which only consider71
past information, BRNNs simultaneously take72
into account both past and future information3.73
This ability helps the model to comprehensively74
understand the context within the sequence and75
consequently improve its classification accuracy.76
The paper combines two different types of77
BRNN—Bidirectional Long Short-Term Memory78
(Bi-LSTM) and Bidirectional Gated Recurrent79
Unit (Bi-GRU)—to find the optimal network80
composition, Bi-LSTM is an extended form of81
Long Short-Term Memory (LSTM)4, and Bi-GRU82
is a bidirectional recurrent neural network based83
on Gated Recurrent Unit (GRU)5. Unlike LSTM84
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and GRU, Bi-LSTM and Bi-GRU can85
simultaneously consider past and future86
information at each time step, and that enables87
better capture of long-term dependencies in time88
series. Compared to traditional methods, the main89
contributions of our method are as follows:90
Using scaled rs-fMRI image data as input avoids91
the cumbersome preprocessing steps associated92
with multimodal image fusion, and it reduces the93
need for extensive feature engineering.94
A deep learning model based on four-dimensional95
image data was innovatively constructed. This96
model focuses on extracting spatial features while97
preserving fMRI time series, and that enhances98
the correlation of features in both spatial and99
temporal dimensions.100
Four different structures of 3D-ResNet were101
designed, and they were combined with two types102
of BRNNs. Through ablation experiments, the103
optimal model combination was identified.104

2 Methods105

The model proposed in this paper takes rs-fMRI106
image with a temporal dimension as input. It107
extracts spatial and temporal features through108
different modules. The model consists of three109
modules: spatial feature extraction network,110
temporal feature extraction network, and classifier.111
Due to rs-fMRI being a four-dimensional image112
with a temporal dimension, to preserve its113
inherent temporal characteristics when extracting114
the spatial features of rs-fMRI images, this paper115
innovatively builds a three-dimensional residual116
network (3D-ResNet) based on three-dimensional117
convolutional neural networks (3D-CNNs). This118
is a sequential combination network that119
simultaneously considers spatial and temporal120
features. The 3D-ResNet network is utilized to121
extract spatial features while preserving the122
temporal features of the images. Subsequently, the123
extracted feature sequence is used as input for the124
second module, where a temporal feature125
extraction network processes the sequence. Finally,126
the obtained features are fed into a classifier. The127
following three sections will provide detailed128
compositions of each module.129

3 Experiment130

3.1 Dataset and preprocessing131

This paper trains on rs-fMRI data that has been132
preprocessed using the Athena pipeline. The133

samples are sourced from the ADHD-200 Global134
Competition dataset. The Athena pipeline135
provides information on 973 preprocessed136
subjects, including rs-fMRI scans, T1-weighted137
structural scans, and preprocessed script files. The138
preprocessing steps primarily include operations139
such as slice timing correction, head motion140
correction, smoothing, and filtering. To mitigate141
the impact of age differences and the imbalanced142
distribution of positive and negative samples on143
model training, after stage exclusion, the144
remaining rs-fMRI data from 430 subjects is used145
as input. ADHD subtypes are ignored, and all146
subclasses are labeled as 1. The average age of147
participants is 12.62, with an equal proportion of148
ADHD to Typically Developing Control (TDC)149
subjects at a ratio of 1:1. For a detailed150
composition of the dataset, refer to Table 1.151
Table 1: The detailed composition of multi-site152
samples.153

Pittsburgh Peking Total
ADHD 0 78 215
TDC 49 88 215
Total 49 166 430

After preprocessing, the spatial dimensions of the154

rs-fMRI data are 49x58x47. However, due to155

variations across different sites, the length of the156

time series is not uniform. For example, the fMRI157

data from the NYU site has a scan time of 172,158

while the image time series length from the159

NeuroIMAGE site is 257. To mitigate the160

potential impact of differences in scanners and161

parameters across different sites on experimental162

results, the original images are cropped and163

resized to 20x34x34x34x1 before training. This164

size is then used as the input dimension for the165

model, where 20 represents the length of the rs-166

fMRI time series, and 34 represents the spatial167

dimensions in terms of length (h), width (w), and168

depth (d). This approach not only standardizes the169

image sizes across different sites but also170

substantially reduces the model's parameter count,171

simultaneously it can avoid overfitting risks and172

reduce memory overhead6-8.173

174

3.2 Model training175

In this study, all models are trained using binary176

cross-entropy loss function with theAdam177

optimizer. The learning rate is set to 1x10-4.178

Given that fMRI images are four-dimensional179
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with relatively large dimensions, the images are180

scaled proportionally before training. The181

standardized size after scaling is 20x34x34x34x1.182

Subsequently, the samples are fed into the model183

for training. The batch size is set to 32, and the184

number of epochs is set to 100. The model's185

training progress is evaluated using the accuracy186

metric.After multiple parameter adjustments, the187

training proceeds successfully.188

To avoid overfitting during the training process,189
this study employs the early stop technique with a190
tolerance set to 5. In other words, if the loss does191
not show a decreasing trend for five consecutive192
iterations, the training is terminated, and the193
model parameters from five iterations ago are194
saved. Since this paper proposes multiple195
networks with different structures, to196
comprehensively evaluate the model performance,197
multiple metrics are incorporated in the model198
evaluation. Additionally, a five-fold cross-199
validation is used to obtain more accurate200
classification performance.201

4 Results202

This section primarily presents the experimental203

results of training four different residual networks204

combined with two types of BRNNs, and205

compares them with existing models. In certain206

research reports focusing on classification tasks,207

the majority often rely solely on the accuracy208

metric to assess their methods. However, this209

alone is inadequate to substantiate the feasibility210

of their approaches, that's because high211

classification accuracy may be a result of212

imbalanced sample distribution, and it will lead213

the model to exhibit bias towards predicting a214

specific class in extreme cases. For instance, in a215

binary classification task where positive samples216

constitute only 10% of the entire dataset, if the217

model predicts all samples as negative, the218

accuracy can reach 90%. However, for the 10%219

positive samples, the model's ability to accurately220

predict is uncertain. In this case, the high accuracy221

is superficial and lacks practical significance.222

Therefore, to accurately assess the model223

performance, this paper introduces specificity and224

sensitivity. Specificity represents the false positive225

rate, and a high specificity indicates a low number226

of misdiagnosed samples. In simple terms, it227

reflects the model's ability to correctly identify228

TDC. It can be calculated as follows:229

FPTN
TNcificitys


pe
230

Sensitivity means the proportion of samples231

not missed in the model's prediction results232

relative to the total number of samples. It233

represents the model's ability to correctly identify234

ADHD cases. The calculation for sensitivity is as235

follows:236

FNTP
TPsitivitys


en
237

Where True Negative (TN) represents the number238

of samples that are negative and predicted as239

negative, True Positive (TP) represents the240

number of samples that are positive and predicted241

as positive, False Negative (FN) represents the242

number of samples that are positive but predicted243

as negative, and False Positive (FP) represents the244

number of samples that are negative but predicted245

as positive9.246

4.1 Results of combining Residual247
Networks with Bi-LSTM248

249

Figure 1: The experimental results of the combination250
of 3D-ResNet and Bidirectional LSTM model251

In Figure 1, the experimental results of training252

with the combination of four Residual Networks253

and Bi-LSTM are presented. The data in the table254

represents the average results as the paper utilized255

five-fold cross-entropy validation. From the256

experimental results, it can be observed that the257

performance of these four combined models is258

quite close, with the main differences manifesting259

in terms of accuracy and sensitivity.260

In the case of combining with Bi-LSTM, the261

accuracy of Residual Networks A and B is inferior262

to that of Residual Networks C and D. The263

combined model of Residual Network C achieved264

the highest sensitivity of 80.16% and the highest265

accuracy of 76.56%. During the training process,266
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the models of Residual Networks C and D exhibit267

a faster convergence rate compared to those of268

Residual Networks A and B. Figure 5 illustrates269

the performance of this model using 5-fold cross-270

entropy validation. As shown in the figure, except271

for validation set 4, the accuracy of other272

validation sets is greater than 75%. The273

comprehensive performance of sensitivity and274

specificity indicates that this combination has275

good adaptability and can fit the model's276

classification curve well.277

278

Figure 2: The performance of the combination of279
Residual Network C and Bi-LSTM using 5-fold cross-280
entropy validation281

4.2 Results of combining Residual282
Networks with Bi-GRU283

Following the same method as the previous284

section, four Residual Networks were individually285

combined with Bi-GRU for training and286

validation. Figure 3 illustrates the performance of287

the models after 5-fold cross-entropy validation.288

The main difference in the current combination289

method is reflected in sensitivity, while the four290

Residual Networks show similar performance in291

accuracy and specificity. From the figure, it can be292

observed that the combined model of Residual293

Network C has the best overall performance294

across these three metrics, and its accuracy,295

sensitivity, and specificity are 71.25%, 70.97%,296

and 89.13%. When the model's accuracy and297

specificity exhibit similar performance, sensitivity298

becomes a key indicator representing the299

performance differences among the four models.300

The performance of the model on the validation301

set at this time is shown in Figure 4.302

The data in the figure indicates that except for303

validation set 2, the accuracy of the model304

combining Residual Network C with Bi-GRU is305

less than 75%. The accuracy on validation sets 4306

and 5 is even less than 70%. Compared to the307

model combined with Bi-LSTM, the combination308

of Residual Network C and Bi-GRU is not stable309

enough, especially in terms of sensitivity. It can't310

fit the classification curve well and only performs311

well in certain specific intervals, and the results312

lack generality. Therefore, by comparing the data,313

it can be concluded that the model combining314

Residual Network C with Bi-LSTM exhibits the315

best performance in the task of ADHD316

classification recognition.317

318

Figure 3: The experimental results of the combination319
of 3D-ResNet and Bidirectional GRU model320

321

Figure 4: The performance of the combination of322
Residual Network C and Bi-GRU using 5-fold cross-323
entropy validation324

4.3 Compare with existing models325
Table 2 compares various existing methods with326

the approach proposed in this paper. Firstly, all of327

them are based on the ADHD-200 dataset, it can328

be observed that the proposed method in this329

paper shows a significant improvement compared330

to existing methods, both in terms of accuracy,331

sensitivity, and specificity. However, due to332

variations in data partitioning across different333

studies, and the fact that some studies do not334

report specificity and sensitivity, so making direct335

comparisons is challenging.336
Table 2:Comparison of performance metrics across models.337
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Methods Validation Accuracy Sensitivity Specificity

Dai et al.7 MKL 10-fold cross 67.79% 38.29% 84.08%

Zou et al.11 3D-CNN hold-out set1 69.15% - -

Mao et al.13 4D-CNN hold-out set1 71.30% 73.20% 69.70%

Zhang et al.14 SC-CNN-Attention loocv2 68.60% - -

Niu et al.16 3D-CNN+GRU 5-fold cross 71.65% 68.00% 73.80%

Proposed 3D-ResNet+Bi-LSTM 5-fold cross 76.56% 80.16% 90.22%

5 Discussion339

In existing research, the majority of studies adopt340

dimensionality reduction to extract low-order341

features from fMRI images. This machine342

learning approach, by employing straightforward343

feature selection to discard irrelevant features13,344

and it often overlooks the temporal and spatial345

correlations in fMRI data. Consequently, the346

features extracted lack representational capacity.347

Recent studies tend to lean towards employing348

deep learning methods for feature extraction, for349

example, Niu et al.10 utilized 3D-CNN to process350

the three-dimensional spatial information of rs-351

fMRI. Through one-dimensional filters of352

different scales, significant features were353

extracted. Subsequently, an independent GRU354

was employed to handle the one-dimensional355

temporal information. Finally, feature fusion was356

performed. Hong et al.11 employed357

TimeDistributed to encapsulate 3D-CNN for358

processing the spatiotemporal information of rs-359

fMRI. Through this network, a feature sequence360

was obtained. Then, it was combined with LSTM361

to extract sequence features, this method achieved362

a classification accuracy of 68% for ADHD. The363

method of using 3D-CNN and GRU to separately364

process the spatiotemporal information of rs-365

fMRI takes into account the correlation between366

spatial and temporal dimensions. However, in367

reality, fMRI images exhibit dynamic spatial368

characteristics with temporal features. The369

approach of using two independent networks to370

extract features separately may contradict the371

realistic nature of the data12. This results in lower372

spatiotemporal correlation of features. The373

concatenated network of 3D-CNN combined with374

LSTM which is the inspiration behind this paper375

avoided this issue. Due to the use of376

TimeDistributed encapsulation for 3D-CNN with377

four-dimensional input data, the model generated378

a large number of parameters. Setting a high379

number of convolutional layers may lead to380

overfitting during the training process. On the381

other hand, a shallower 3D-CNN may not382

effectively extract meaningful information, and it383

will lead to a lack of expressive power in the384

model and consequently lower accuracy.385

In this study, a 3D-ResNet encapsulated by386

TimeDistributed was constructed to process the387

spatial information of rs-fMRI. It is combined388

with BRNNs to form a concatenated network, and389

that effectively addressed the issues of390

insufficient spatiotemporal correlation of features391

and overfitting. By analyzing the experimental392

results in the fourth section, it can be concluded393

that the overall performance of the model394

combining 3D-ResNet with Bi-LSTM is better395

than that with Bi-GRU. Among them, the model396

combining Residual Network C with Bi-LSTM397

exhibits the best performance. However, it is398

essential to note that this model requires a certain399

amount of memory as a basis. The experimental400

model was trained on an NVIDIA A100 GPU401

with 40GB of memory. Despite the increased402

memory overhead, the noticeable improvement in403

accuracy justifies the additional memory usage.404

6 Conclusion405

A three-dimensional residual network named 3D-406

ResNet which was combined with BRNNs was407

introduced in this study. Compared to techniques408

that involve fusing fMRI with MRI, the method409

proposed in this paper eliminated the need for410

complex image preprocessing; And compared to411

methods that extract low-level features from412

fMRI, this model retained spatial correlations413

while extracting features. This paper constructed414

four different structures of residual networks, and415

through ablation experiment, it demonstrated that416

the model combining Residual Network C with417

Bi-LSTM has the best performance. Under the 5-418
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fold cross-entropy validation method, the average419

accuracy, sensitivity, and specificity are 76.56%,420

80.16%, and 90.22%. Compared to existing421

methods, there is a significant improvement in422

accuracy when performing classification tasks on423

the multi-site ADHD-200 dataset. This result424

indicated that combining 3D-ResNet with425

BRNNs for assisting in the diagnosis of ADHD is426

feasible. What is even more promising is that this427

technology can be applied to the classification428

and diagnosis of other neurological disorders. It429

holds considerable prospects in studies based on430

rs-fMRI.431
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