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ABSTRACT

Deep learning models often require extensive efforts in optimizing hyperparameters
and architectures. Standard hyperparameter optimization methods are expensive
because of their multi-trial nature: different configurations are tried separately
to find the best. In this paper, we propose AutoHAS, an efficient framework for
both hyperparameter and architecture search. AutoHAS generalizes the concept
of efficient architecture search, ENAS and DARTS, to hyperparameter search and
hence can jointly optimize both in a single training. A key challenge in such gener-
alization is that ENAS and DARTS are designed to optimize discrete architecture
choices, whereas hyperparameter choices are often continuous. To tackle this
challenge, we discretize the continuous space into a linear combination of multiple
categorical basis. Furthermore, we extend the idea of weight sharing and augment
it with REINFORCE to reduce its memory cost. In order to decouple the shared
network weights and controller optimization, we also propose to create temporary
weights for evaluating the sampled hyperparameters and updating the controller.
Experimental results show AutoHAS can improve the ImageNet accuracy by up to
0.8% for highly-optimized state-of-the-art ResNet/EfficientNet models, and up to
11% for less-optimized models. Compared to random search and Bayesian search,
AutoHAS consistently achieves better accuracy with 10x less computation cost.

1 INTRODUCTION

Deep learning models require intensive efforts in optimizing architectures and hyperparameters.
Standard hyperparameter optimization methods, such as grid search, random search (e.g., Bergstra &
Bengio| (2012))) or Bayesian optimization (e.g.,|Snoek et al.[(2012))), are inefficient because they are
multi-trial: different configurations are tried in parallel to find the best configuration. As these methods
are expensive, there is a trend towards more efficient, single-trial methods for specific hyperparameters.
For example, the learning rate can be optimized with the hypergradient method (Baydin et al., 2018).
Similarly, many architecture search methods started out multi-trial (Zoph & Le},2017; Baker et al.,
2017; |Real et al., 2019), but more recent proposals are single-trial (Pham et al., 2018; |Liu et al.,|2019).
These efficient methods, however, sacrifice generality: each method only works for one aspect or a
subset of the hyperparameters or architectures.

In this paper, we generalize those efficient, single-trial methods to include both hyperparameters and
architecture One important benefit of the generalization is that we can have a general, efficient
method for hyperparameter optimization as a special case. Another benefit is that we can now jointly
search for both hyperparameters and architectures in a single model. Practically, this means that our
method is an improvement over neural architecture search (NAS) because each model can potentially
be coupled with its own best hyperparameters, thus achieving comparable or even better performance
than existing NAS with fixed hyperparameters.

To this end, we propose AutoHAS, an efficient hyperparameter and architecture search framework.
It is, to the best of our knowledge, the first method that can efficiently handle architecture space,
hyperparameter space, or the joint search space. A challenge here is that architecture choices (e.g.
kernel size) are often categorical values whereas hyperparameter choices (e.g. learning rate) are

'In this paper, hyperparameters refer all design choices that will affect the training procedure of a model,
such as learning rate, weight decay, optimizer, dropout, augmentation policy, etc.
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Figure 1: The overview of AutoHAS method. LEFT: Each candidate architecture’s weights are
shared with a super model, where each candidate is a sub model within this super model. RIGHT:
During the search, AutoHAS alternates between optimizing the shared weights of super model VV and
updating the controller. It also creates temporary weights W* by optimizing the sampled candidate
architecture using the sampled candidate hyperparameter (HP). This YW* will be used to compute the
validation accuracy as a reward so as to update the AutoHAS controller to select better candidates.
Finally, W* is discarded after updating the controller so as not to affect the original W.

often continuous values. To address the mixture of categorical and continuous search spaces, we first
discretize the continuous hyperparameters into a linear combination of multiple categorical basis. The
discretization allows us to unify architecture and hyperparameter choices during search. As explained
below, we will use a reinforcement learning (RL) method to search over these discretized choices in
Fig.|l} The probability distribution over all candidates is naturally learnt by the RL controller, and it
is used as the coefficient in the linear combination to find the best architecture and hyperparameters.

AutoHAS uses the weight sharing technique proposed by (Pham et al.| [2018; [Liu et al., |2019). The
main idea is to train a super model, where each candidate in the architecture space is its sub-model.
Using a super model can avoid training millions of candidates from scratch (Liu et al.l 2019;|Dong
& Yang,[2019a}; |Cai et al.,|2019; Pham et al., 2018). AutoHAS extends its scope from architecture
search to both architecture and hyperparameter search. We not only share the weights of super model
with each architecture but also share this super model across hyperparameters. At each search step,
AutoHAS optimizes the sampled sub-model by a combination of the sampled hyperparameter choices,
and the shared weights of super model serves as a good initialization for all hyperparameters at the
next step of search (see Fig.[T]and Sec.[2). In order to decouple the shared network weights )V
in Fig. 1) and controller optimization, we also propose to create temporary weights (VW* in Fig.
1) for evaluating the sampled hyperparameters and updating the controller. With weight sharing,
AutoHAS reduces the search cost by an order of magnitude than random search and Bayesian search.
In experiments, AutoHAS shows non-trivial improvements on seven datasets, such as 0.8% accuracy
gain on highly-optimized EfficientNet and 11% accuracy gain on less-optimized models.

2 AUTOHAS

In this section, we elaborate the design philosophy of AutoHAS. We introduce the background of
AutoHAS in Sec.[2.T] how to represent architectures and hyperparameters in a unified way in Sec.[2.2]
how to search in Sec. and how to derive the final architectures and hyperparameters in Sec.

2.1 PRELIMINARIES

AutoHAS should be able to handle the general case of NAS and HPO — jointly find architecture «
and hyperparameters h that achieve high performance on the validation set. This objective can be
formulated as a bi-level optimization problem:

mi}nﬁ(a,h,wg,]D)wl) st wh = fala,wd, Dirain), (1)
where L is the objective function (e.g., cross-entropy loss) and w? is the initial weights of the
architecture o. D44, and D, denote the training data and the validation data, respectively. f
represents the algorithm with hyperparameters / to obtain the optimal weights w?, such as using SGD
to minimize the training loss. In that case, w’ = fi (v, w3, Dirain) = argming, L(a, b, wd, Dirain).
We can also use HyperNetwork (Ha et al.,2017) to generate weights w?,.
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AutoHAS generalizes both NAS and HPO by introducing a broader search space. On one-hand, NAS
is a special case of HAS, where the inner optimization f, (v, w9, Dy, qin) uses fixed o and h to opti-
mize min,, £(a, b, w, Dirqin ). On the other, HPO is a special case of HAS, where « is fixed in Eq. ().

2.2  UNIFIED REPRESENTATION OF THE SEARCH SPACE IN AUTOHAS

The search space in AutoHAS is a Cartesian product of the architecture and hyperparameter candidates.
To search over this mixed search space, we need a unified representation of different searchable
components, i.e., architectures, learning rates, optimizers, etc.

Architectures Search Space. We use the simplest case as an example. First of all, let the set of
predefined candidate operations (e.g., 3x3 convolution, pooling, etc.) be O = {01,004, ...,0,},
where the cardinality of O is n for each layer in the architecture. Suppose an architecture is
constructed by stacking multiple layers, each layer takes a tensor F' as input and output 7(F),
which serves as the next layer’s input. 7 € O denotes the operation at a layer and might be different
at different layers. Then a candidate architecture « is essentially the sequence for all layers {r}.
Further, a layer can be represented as a linear combination of the operations in O as follows:

n(F)=3_ _ Cf Oi(F) sty OF=1,07 €{0,1} @
where Cf* (the i-th element of the vector C'*) is the coefficient of operation O; for a layer.

Hyperparameter Search Space. Now we can define the hyperparameter search space in a similar
way. The major difference is that we have to consider both categorical and continuous cases:

m m 0,1], if continuous
h = ct B . ct=1,cp 0. 1], 3
i=1 " s Zi:l ! » &5 € {0,1}, if categorical ©)

where B is a predefined set of hyperparameter basis with the cardinality of m and B; is the i-th
basis in B. C!' (the i-th element of the vector C") is the coefficient of hyperparameter basis B;. If
we have a continuous hyperparameter, we have to discretize it into a linear combination of basis
and unify both categorical and continuous. For example, for weight decay, B could be {le-1, le-2,
le-3}, and therefore, all possible weight decay values can be represented as a linear combination over
B. For categorical hyperparameters, taking the optimizer as an example, 3 could be { Adam, SGD,
RMSProp}. In this case, a constraint on C!* is applied: C!* € {0, 1} as in Eq. (3).

2.3 AUTOHAS: EFFICIENT HYPERPARAMETER AND ARCHITECTURE SEARCH

Given the discretizing strategy in Sec.[2.2] each candidate Algorithm 1 AutoHAS Training
in the search space can be represented by the value of C =

{C* for all layers, C" for all types of hyperparameter}, Input: Randomly initialize YW and P
which represents the coefficients for all architecture and nPut: Split Fh]g) avallablg ]%)ata into two dis-
hyperparameter choices. As a result, AutoHAS converts Jont sets: Derain aNd Dyal

. .. . 1: while not converged do
the searching problem to obtaining the coefficients C. . Sample (a,h € B) from the con-

AutoHAS applies reinforcement learning together with troller )
weight sharing to search over the discretized space. Dur- 3 ESUm;‘te thedquahty Ql(lm Z) lst;IIl\?
ing search, we learn a controller to sample the candidate reward to update controller by )

architecture and hyperparameters from the discretized . E\C})REE (@t Wa, Derain)
space. In AutoHAS, this controller is parameterized by 5. ond while e e
a collection of independent multinomial variables P = 6. Derive the final architecture o and hy-

{P* for all layers, P" for all types of hyperparameter}ﬂ, perparameters h by PP (Sec.
which draws the probability distribution of the discretized
space. AutoHAS also leverages a super model to share
weights YV among all candidate architectures, where each candidate is a sub-model in this super
model (Pham et al., 2018 |Liu et al., 2019). Furthermore, AutoHAS extends the scope of weight
sharing from architecture to hyperparameters, where WV also serves as the initialization for the
algorithm fp,.

We describe AutoHAS in Algorithm [I] It alternates between learning the shared weights JV and
learning the controller using REINFORCE (Williams| [1992). Specifically, at each iteration, the

2P and P" are n- and m-dimensional vectors, respectively. Each vector sums up to 1.
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controller samples a candidate — an architecture « and basis hyperparameter h € 3. We estimate its
quality Q(«, h) by utilizing the temporary weights to maintain the value of f;, (@, Wy, D¢rain ). Using
temporary weights, we can measure the validation accuracy of « and h as Q(«, h), and in the same
time, avoid the side effect of f1, (a, W, Dirain) W.r.t. W,,. In our experiment, fj,(c, Wea, Dirain) is
approximately calculated as one-step gradient descent using the algorithm determined by h. This
estimated quality is used as a reward to update the controller’s parameters [P via REINFORCE. Then,
we optimize the shared weights W, where the weights corresponding to the sampled architecture W,
is updated as fr,(a, W, Dirain)-

2.4 DERIVING HYPERPARAMETERS AND ARCHITECTURE

After AutoHAS optimizes P = {P*, P} via Algorithm we can derive the coefficient C as follows:

C® = one_hot(arg max; P“), 4)
ch — pr X %f continu.ous ’ )
one_hot(arg max, P") if categorical

Together with Eq. and Eq. (3), we can derive the final architecture o and hyperparameters h.
Intuitively speaking, the selected operation in the final architecture has the highest probability over
other candidates, and so does the categorical hyperparameter. For the continuous hyperparameter, the
final one is the weighted sum of the learnt probability P" with its basis B.

To evaluate whether the AutoHAS-discovered « and h is good or not, we will use A to re-train o on
the whole training set and report its performance on the test sets.

2.5 DISCUSSION

Generalizability. AutoHAS can be applied to searching for architecture only, hyperparameter only,
or both. Moreover, unlike previous HPO methods that require the hyperparamter optimization
formulation f, to be differentiable for computing gradient w.r.t. the hyperparameters, AutoHAS
treats the inner optimization f, as a block-box, and thus is applicable for both differentiable and
non-differentiable hyperparmaters.

Phase-wise AutoHAS. It is challenging to search over the large joint HAS space. Since the sampled
architecture and hyperparameters change at every iteration, the gradients w.r.t. the shared weights in
super model might dramatically change. Consequently, the shared weights can not be trained well
and insufficiently indicative of the RL reward. To alleviate this problem, we propose an alternative,
i.e., Phase-wise AutoHAS, which split the whole search procedure into two (or multiple) phases.
In the first phase, it will use Algorithm[I]to search for the choices of some components and keep
other components fixed as the default value. In the second phase, it will re-use the discovered
components in the first phase and search for others. We found this Phase-wise AutoHAS works better
than (single-phase) AutoHAS in most cases, at the cost of doubling computational resources. More
empirical analysis can be found in Sec.[3.3]

Why do we need temporary weights? There is an interaction between architecture optimization
and hyperparameter optimization in AutoHAS. If we implement f}, in a straightforward solution, it
will overwrite the original weights VW when we compute f;,. Consequently, the updating of W in
the red branch in Fig. [I|becomes unsafe. Here, we utilize the temporary weights YW* to maintain the
value of f,. This strategy allows us to decouple the training of shared weights and the update of the
AutoHAS controller, and thus effectively optimize over the hyperparameter space.

3 EXPERIMENTS

We evaluate AutoHAS on seven datasets, including two large-scale datasets, ImageNet (Deng et al.,
2009) and Places365 (Zhou et al., 2017). We will briefly introduce the experimental settings in
Sec.[3.1] We compare AutoHAS with other SOTA methods/models in Sec.[3.2] Lastly, we ablatively
study AutoHAS in Sec.
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3.1 EXPERIMENTAL SETTINGS

Datasets. We leverage seven datasets to comprehensively evaluate our AutoHAS. Their details (Deng
et al., [2009; [Zhou et al.| 2017} Xiao et al., |2016; Krizhevsky & Hinton, |2009; [Krause et al., [2013};
Nilsback & Zisserman, 2010) are described in Table ([T}

Table 1: Benchmark datasets — ImageNet and Places365 are two commonly used large-scale datasets
for image classification, while the other five are small-scaled datasets.

Name #Classes #Train Data #Eval Data Hold-out D¢yqinn  Hold-out Dyq;
ImageNet 1000 1.28M 50K 1.23M 50K
Places365 365 1.8M 50K 1.69M 112K
CIFAR-10 10 50K 10K 45K 5K
CIFAR-100 100 50K 10K 45K 5K

Stanford Cars 196 8144 8041 6494 1650

Oxford Flower 102 2040 6149 1020 1020
SUN-397 397 19850 19850 15880 3970

Searching settings. We call the hyperparameters that control the behavior of AutoHAS as meta
hyperparameters — the optimizer and learning rate for RL controller, the momentum ratio for RL
baseline, and the warm-up ratio. Warm-upping the REINFORCE algorithm indicates that we do not
update the parameters of the controller at the beginning. In addition, when the search space includes
architecture choices, we also uses the warm-up technique described in [Bender et al.[(2020). For
these meta hyperparameters, we use Adam, momentum as 0.95, warm-up ratio as 0.3. The meta
learning rate is selected from {0.01, 0.02, 0.05, 0.1} according to the validation performance. When
the architecture choices are in the search space, we will use the absolute reward function (Bender
et al., |2020) to constrain the FLOPs of the searched model to be the same as the baseline model.
For experiments on ImageNet and Places365, we use the batch size of 4096, search for 100 epochs,
and use 4 x4 Cloud TPU V3 chips. For experiments on other datasets, we use the batch size of 512,
search for 15K steps, and use 2x2 Cloud TPU V3 chips.

Training settings. Once we complete the searching procedure, we re-train the model using the
AutoHAS-discovered hyperparameter and architecture. For the components that are not searched for,
we keep it the same as the baseline models. For each experiment, we run three times and report the
mean (and variance) of the accuracy.

3.2 COMPARISON WITH HPO AND NAS

AutoHAS shows better performance than
other HPO methods. We choose MobileNet-

. ~74
V2 as the baseline model. We search for the AUtoHAS
mixup ratio from [0, 0.2] and drop-path ratio ;73 = *|FT _ o
from [0, 0.5] for each MBConv layer. We use ® , Bayesian Optimization
L. . 5 MobileNetV2
the training schedule in (Bender et al.| 2020). S72 no
Results compared with four representative HPO < —n Vl \‘,,'\' S
methods are shown in Fig. @} Multi-trial search 271 A ,\r‘; Y
methods, Random Search (Bergstra & Bengio, & . :'“‘. MO Random Search
2012) or Bayesian optimization (Golovin et al. g 70 ’:'\‘,’ =\
2017), must train and evaluate many candidates, ~  |#'V
d thus are inefficient. Even using 10x more 69 HGD
an ) : g 1 3 5 7 9 1113 15 17 19 21 23
time, they still cannot match the accuracy of Search Time Cost (Hours)

AutoHAS. HGD (Baydin et al., 2018) can only  pjgure 2: Comparison between AutoHAS and
search for the learning rate and the searched  previous HPO methods on ImageNet. AutoHAS

learning rate is much worse than the baseline. ,chjeves better accuracy than HGD, and uses much
IFT (Lorraine et al) [2020) is an efficient |egq search time cost than others.

gradient-based HPO method. With the same
search space, AutoHAS gets higher accuracy than IFT.

AutoHAS is feasible for jointly searching hyperparameter and architecture. As a proof of
concept for the joint search, we follow MNasNet (Tan et al., [2019) and ProxylessNAS (Cai et al.,
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2019) to design a architecture search space (i.e., kernel size {3x3, 5x5} and expansion ratio {3, 6} on
top of MobileNetV2), and a joint search space with additional hyperparmater search options (i.e.,
mixup and dropout ratio). We then compare AutoHAS performance on these two search spaces. With
architecture-only search, AutoHAS achieves comparable results (e.g., 74% accuracy @ 300M flops)
as MnasNet/ProxylessNAS, but with the joint search, AutoHAS can further improve accuracy by
0.2% with the same FLOPs, suggesting the potential benefit of jointly optimizing architectures and
hyperparameters. Notebly, NAS methods are infeasible to optimze the hyperparameters.

Table 2: AutoHAS improves ResNet-50 and EfficientNet-B0O on ImageNet — For each training, we
repeat the training three times and the variance is less than 0.16.

Model Method #Params #FLOPs Top-1 Accuracy

Human 256 M 4110M  77.20
AutoHAS 25.6M  4110M  77.83 (+0.63)

NAS 53 M 398 M 77.15
AutoHAS 52M 418 M 77.92 (+0.77)

ResNet-50 (He et al., 2016)

EfficientNet-BO (Tan & Le, 2019)

AutoHAS improves SoTA ImageNet models. To investigate the effect of AutoHAS over the state-
of-the-art models. We apply AutoHAS to two strong baselines. Firstly, we choose ResNet-50.
The baseline strategy is to train it by 200 epochs, start the learning rate at 1.6 and decay it by 0.1
for every % of the whole training procedure, use EMA with the decay rate of 0.9999, and apply
SGD with the momentum of 0.9. This can provide higher accuracy than the original paper. For
reference, the reported top-1 accuracy is 76.15% for ResNet-50 in TorchVision, whereas our baseline
is 77.2% accuracy. Since previous methods usually do not tune the architecture of ResNet-50, we
only use AutoHAS to search for its hyperparameters including learning rate and mixup ratio for data
augmentation. From Table 2] AutoHAS improves this strong baseline by 0.63%.

Secondly, we choose a NAS-searched model, EfficientNet-B0O. The baseline strategy is to train it
by 600 epochs and use the same learning rate schedule as in the original paper. As EfficientNet-BO
already tunes the kernel size and expansion ratio, we choose a different architecture space. Specifically,
in each MBConv layer, we search for the number of groups for all the 1-by-1 convolution layer, the
number of depth-wise convolution layer, whether to use a residual branch or not. In terms of the
hyperparameter space, we search for the per-layer drop-connect ratio, mixup ratio, and the learning
rate. We use phase-wise AutoHAS to first search for the architecture and then for the hyperparameters.
From Table |2} we improves the strong EfficientNet-B0 baseline by 0.77% ImageNet top-1 accuracy.

AutoHAS improves SoTA Places36 models. Be- 58

side ImageNet, we have also evaluated Auto- 5 B0+ AutoHAS

HAS on another popular dataset: Places365 (Zhou 9;57 #DPN-92 (32x3d)

et al| 2017). Similarly, we apply AutoHAS g [B° / CRU-Net-116

to EfficientNet-BO to search for better architec- g °° j Restexeaod VeG.16
tures and hyperparameters on this dataset. Fig. g s F S
shows the results: Although EfficientNet-BO is a 5 / TResNet-152

strong baseline with significantly better parameter- $ 54 J/ ;

accuracy trade-offs than other models, AutoHAS = {GoogleLeNet |

can still further improve its accuracy 1% and ob- 53 ‘AlexNet

: 100 200 300 400 500 600
tain a new state-of-the-art accuracy on Places365. Parameters (MB)

Note that BO anq BO + AUtoHAS only uses sin- Figure 3: AutoHAS improves accuracy by 1%
gle crop evaluation, while other models use 10 ¢,; EfficientNet-BO on Places365.
crops.

3.3 ABLATION STUDIES

Why choose RL instead of a differentiable strategy? Differentiable search methods have been
extensively studied for its simplicity in many previous literature (Liu et al.,2019; Dong & Yang,2019a;
Wan et al.} 2020; Xie et al.,|2019), but these methods usually require much higher memory cost in
order to train the entire super model. In our AutoHAS framework, we employ a simple reinforcement
learning algorithm — REINFORCE Williams| (1992)) — to optimize the controller: instead of training
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the whole super model, we only train a subset of the super model and therefore significantly reduce the
training memory cost. Notably, the REINFORCE could also be simply replaced by a differentiable-
based algorithm with the supervision of validation loss. We investigate the difference between
differentiable and REINFORCE search in Table[3] We use a small variant of MobileNetV2 with depth
multiplier 0.3 as our baseline model (in order to fit our device memory constraint for the differentiable
approach), and then apply them to the same search space. Not surprisingly, differentiable search
requires much higher memory cost (6.1x more than baseline) as it needs to maintain the feature or
gradient tensors for all the super model, whereas our REINFORMCE-based AutoHAS is much more
memory efficient: reducing the memory cost by 70% than the differentiable approach. Empirically,
we observe they achieve similar accuracy gains in this case, but AutoHAS enables us to search for
much larger models such as EfficientNet-B0O and ResNet-50 as shown in Table

Table 3: Differentiable Search vs. AutoHAS REINFORCE Search — Both are applied to the same
baseline model with the same hyperparamter and architecture search space. Baseline model has no
search cost, but we list its standalone training cost as a reference. Compared to the differentiable
search, our AutoHAS achieves slightly better accuracy with much less search memory cost.

#Params #FLOPs Accuracy Search Cost
M) M) (%) Memory(GB) Time(Hour)
Baseline model 1.5 35.9 50.96 (1.0) (1.4)
Differentiable 1.5 36.1 52.17 6.1 2.9
AutoHAS(REINFORCE) 1.5 36.3 53.01 1.8 1.7

AutoHAS on different search spaces and datasets. To evaluate the generalization ability, we have
evaluated AutoHAS in different hyperparameter and architecture spaces for five more datasets. For
simplicity, we choose the standard MobileNetV2 as our baseline model. Table ] shows the results. We
observe: (1) The accuracy gains for many of these datasets are much larger than ImageNet/Places365,
possible because the hyperparameter and architecture of the baseline are not heavily optimized on
these scenarios, leaving us a larger headroom for performance optimization. In particular, AutoHAS
achieves up to 11% accuracy gain on Flower dataset, suggesting that AutoHAS could be more useful
for less optimized or new model/dataset scenarios. (2) Joint search and phase-wise search have
similar performance, possibly due to the difficulty of navigating through a large and complex search
space and the interactions between different hyperparamters. Suppose phase-wise search has two
phases with search space size O(m) and O(n), then its total search space size is O(m + n), but its
corresponding joint search space size would be much larger O(m * n), making the joint search
problem much more difficult. While this paper mainly focuses on unifying the architecture and
hyperparameter search, it is still an open challenge how to navigate through the very large joint search
space while still obtaining the optimal solution, which would be our future work.

Table 4: AutoHAS Accuracy for Different Search Space on five Datasets — Weight decay and MixUp
are for hyperparameters, and Arch is for architectures. joint indicates the joint search; phase
indicates the phase-wise search. Each experiment is repeated three times and the average accuracy is
reported (standard deviation is about 0.2%).

Image Classification Top-1 Accuracy (%)
CIFAR-10 CIFAR-100 Stanford Cars Oxford Flower SUN-397

Baseline 94.1 76.3 83.8 74.0 46.3
WeightDecay 95.0 77.8 89.0 84.4 49.1
MixUp 94.1 77.0 85.2 79.6 474
Arch 94.5 76.8 84.1 76.4 46.3
MixUp + Arch (joint) 94.4 77.4 84.8 78.2 473
MixUp + Arch (phase) 94.4 77.6 85.5 79.6 48.3
WeightDecay + MixUp (joint) 95.0 (+0.9) 78.4 (+2.1) 89.9 84.4 50.5
WeightDecay + MixUp (phase) 94.9 78.2 90.5 (+6.8) 854 (+11.4) 50.8 (+4.5)
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4 RELATED WORKS

Neural Architecture Search (NAS). Since the seminal works (Baker et al.,[2017; [Zoph & Lel[2017)
show promising improvements over manually designed architectures, more efforts have been devoted
to NAS. The accuracy of NAS models has been improved by carefully designed search space (Zoph
et al.,|2018)), better search method (Real et al., 2019)), or compound scaling (Tan & Le, [2019). The
model size and latency have been reduced by Pareto optimization (Tan et al.,2019;|Wu et al., 2019
Cai et al., 2019; 2020) and enlarged search space of neural size (Cai et al., [2020; Dong & Yang,
2019b). The efficiency of NAS algorithms has been improved by weight sharing (Pham et al., 2018)),
differentiable optimization (Liu et al.,2019)), or stochastic sampling (Dong & Yang| 20192} Xie et al.|
2019). As these NAS methods use fixed hyperparamters during search, we have empirically observed
that they often lead to sub-optimal results, because different architectures tend to favor their own
hyperparameters. In addition, even if the manual optimization of architecture design is avoided by
NAS, they still need to tune the hyperparameters after a good architecture is discovered.

Hyperparameter optimization (HPO). Black-box and multi-fidelity HPO methods have a long
standing history (Bergstra & Bengio|, 2012; Hutter], 2009} |Hutter et al., [2011; 2019; Kohavi & John,
1995} [Hutter et al.l 2019). Black-box methods, e.g., grid search and random search (Bergstra &
Bengio, |2012), regard the evaluation function as a black-box. They sample some hyperparameters
and evaluate them one by one to find the best. Bayesian methods can make the sampling procedure
in random search more efficient (Jones et al., |1998; |Shahriar1 et al.l 2015; |Snoek et al.l [2015)).
They employ a surrogate model and an acquisition function to decide which candidate to evaluate
next (Thornton et al) 2013). Multi-fidelity optimization methods accelerate the above methods
by evaluating on a proxy task, e.g., using less training epochs or a subset of data (Domhan et al.,
2015 Jaderberg et al., 2017} |[Kohavi & John, [1995; |Li et al., 2017). These HPO methods are
computationally expensive to search for deep learning models (Krizhevsky et al.,2012).

Recently, gradient-based HPO methods have shown better efficiency (Baydin et al., 2018; [Lorraine
et al.,|2020), by computing the gradient with respect to the hyperparameters. For example, Maclaurin
et al.| (2015) calculate the extract gradients w.r.t. hyperparameters. |Pedregosal (2016)) leverages
the implicit function theorem to calculate approximate hypergradient. Following that, different
approximation methods have been proposed (Lorraine et al.| 2020} |Pedregosal, 2016; |Shaban et al.,
2019)). Despite of their efficiency, they can only be applied to differentiable hyperparameters such
as weight decay, but not non-differentiable hyperparameters, such as learning rate (Lorraine et al.,
2020) or optimizer (Shaban et al.,[2019). Our AutoHAS is not only as efficient as gradient-based
HPO methods but also applicable to both differentiable and non-differentiable hyperparameters.
Moreover, we show significant improvements on state-of-the-art models with large-scale datasets,
which supplements the lack of strong empirical evidence in previous HPO methods.

Hyperparameter and Architecture Search. Few approaches have been developed for the joint
searching of hyperparameter and architecture (Klein & Hutter,2019; |[Zela et al., 2018). However, they
focus on small datasets and small search spaces. These methods are more computationally expensive
than AutoHAS. Concurrent to our AutoHAS, FBNet-V3 (Dai et al., 2020) learns an acquisition
function to predict the performance for the pair of hyperparameter and architecture. They require
to evaluate thousands of pairs to optimize this function and thus costs much more computational
resources than ours.

5 CONCLUSION

In this paper, we proposed an automated and unified framework AutoHAS, which can efficiently
search for both hyperparameters and architectures. AutoHAS provides a novel perspective of AutoML
algorithms by generalizing the weight sharing technique from architectures to hyperparameters.
Specifically, AutoHAS first unifies the representation of both continuous and categorical choices by
the discretizing strategy. Then AutoHAS leverages the weight sharing technique to train a single super
model for different hyperparameter and architecture candidates. In parallel, AutoHAS introduces
REINFORCE to learn a controller that can sample good hyperparameter and architecture candidates.
Experimentally, AutoHAS significantly improves the baseline models on seven datasets. For the
highly-optimized ResNet/EfficientNet, AutoHAS improves ImageNet top-1 accuracy by 0.8%; for
other less-optimized scenarios (e.g., Oxford Flower), it improves the accuracy by 11.4%.
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