
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE INBETWEENING: ADAPTING IMAGE-TO-
VIDEO DIFFUSION MODELS FOR KEYFRAME INTERPO-
LATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a method for generating video sequences with coherent motion be-
tween a pair of input keyframes. We adapt a pretrained large-scale image-to-video
diffusion model (originally trained to generate videos moving forward in time
from a single input image) for keyframe interpolation, i.e., to produce a video be-
tween two input frames. We accomplish this adaptation through a lightweight fine-
tuning technique that produces a version of the model that instead predicts videos
moving backwards in time from a single input image. This model (along with the
original forward-moving model) is subsequently used in a dual-directional dif-
fusion sampling process that combines the overlapping model estimates starting
from each of the two keyframes. Our experiments shows that our method outper-
forms both existing diffusion-based methods and traditional frame interpolation
techniques.

1 INTRODUCTION

Recent advances of large-scale text-to-video and image-to-video models (Blattmann et al., 2023b;a;
Wu et al., 2023; Xing et al., 2023; Bar-Tal et al., 2024; Zeng et al., 2024) have shown the ability
to generate high resolution videos with dynamic motion. While these models can accept a vari-
ety of input conditioning signals, such as text captions or single images, most available models
remain unsuitable for an obvious application: keyframe interpolation. Interpolating between a pair
of keyframes—that is, producing a video that simulates coherent motion between two input frames,
one defining the starting frame of the video, and one defining the ending frame—is certainly possi-
ble if a large-scale model has been trained to accept these particular two conditioning signals, but
most open-source models have not. Despite the task’s similarity to existing conditioning signals,
creating an interpolation model requires further training, and therefore both large amounts of data
and substantial computational resources beyond what most researchers have access to.

Given the similarity between the input signals needed for keyframe interpolation (i.e., two-frame
conditioning) and the input signals to existing models (e.g., one-frame conditioning), an interesting
alternative solution is to instead adapt an existing pre-trained image-to-video model, without train-
ing a specialized model from scratch. In this paper, we propose an approach for enabling keyframe
interpolation by doing precisely this. Our approach is founded upon the observation that a keyframe
interpolation model needs to know how to accomplish three objectives: (1) given a starting frame, it
needs to predict coherent motion starting from that frame and advancing into the future, (2) given an
ending frame, it needs to predict coherent motion starting from that frame and advancing backwards
into the past, and (3) given these two predictions, produce a video that has a coherent combination
of the two. Since existing image-to-video models can already accomplish the first of these three ob-
jectives, we focus our efforts on the the latter two, i.e., producing a single-frame conditioned model
that can generate motion backwards in time, and a mechanism for combining forward and backward
motion predictions into coherent videos.

One may imagine that producing such a single-image conditioned model that produces backwards
motion should be trivial: simply pass an image into a regular image-to-video model, and reverse
the output. Unfortunately, real-world motion is inherently asymmetric, and reversed motion into the
future is notably different from motion into the past. As such, we first propose a novel, lightweight

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

fine-tuning mechanism that reverses the arrow of time by rotating the temporal self-attention maps
(i.e., reversing the temporal interactions) within the diffusion U-Net. This enables the reuse of the
existing learned motion statistics in the pretrained model, and enables generalization while only
requiring a small number of training videos.

Given both the original image-to-video model and this adapted reverse model, we also propose a
sampling mechanism that merges the scores of both to produce a single consistent sample. These
two sampling paths are synchronized through shared rotated temporal self-attention maps, ensur-
ing they generate exactly opposite motions, an effect which we term “forward-backward motion
consistency”. At each sampling step, their intermediate noise predictions are fused, resulting in a
generated video with coherent motion that starts and ends with the provided frames. We compare
our work qualitatively and quantitatively to related methods on two curated difficult datasets targeted
for generative inbetweening: Davis (Pont-Tuset et al., 2017) and Pexels1, and our method produces
notably higher quality videos with more coherent dynamics given distant keyframes.

2 RELATED WORKS

Frame interpolation Frame interpolation (Dong et al., 2023) synthesizes intermediate images be-
tween two frames by taking a pair of input frames or multiple adjacent frames in the context of
video frame interpolation, and has been a long-standing research area in computer vision. Example
applications include temporal up-sampling to increase refresh rate, create slow-motion videos, or
interpolating between near-duplicate photos. Much of the research in this field (Jiang et al., 2018;
Niklaus & Liu, 2020; Huang et al., 2020; Park et al., 2020; Lee et al., 2020; Park et al., 2021)
employs flow-based methods, which estimate optical flow between the frames and then synthesize
the middle images guided by the flow via either warping or splatting techniques. There are also
works (Kalluri et al., 2023; Shi et al., 2022) that use CNNs or transformers to learn to extract fea-
tures and directly output the middle frames. Traditionally, this task assumes unambiguous motion
and the input frames are usually closely spaced (≤ 1/30s) samples in the video. Recent studies
have begun to address large motions (Sim et al., 2021; Reda et al., 2022), or quadratic motion (Xu
et al., 2019; Liu et al., 2020), though these still involve a single motion interpolation and cannot ad-
dress distant input frames. In contrast, we aim to generate in-between frames that capture dynamic
motions across distant input keyframes (≥ 1s apart) with a generative model, a challenge that goes
beyond the capability of current frame interpolation techniques.

Diffusion models for in-between video generation Diffusion models have shown remarkable ca-
pabilities for generative modeling of images (Ho et al., 2020; Dhariwal & Nichol, 2021; Song &
Ermon, 2019; Song et al., 2020a;b; Sohl-Dickstein et al., 2015) and videos (Ho et al., 2022b;a; Wu
et al., 2023; Blattmann et al., 2023b). Early work MCVD (Voleti et al., 2022) devises a general-
purpose diffusion model for a range of video generative modeling tasks including in-between video
generation. More recent works (Guo et al., 2023; Jain et al., 2024; Xing et al., 2023) explicitly train
diffusion models to accept two end frames with conditioning to generate 7 or 16 intermediate frames
at maximum resolution of 320 × 512 at once, and achieved superior results in generating dynamic
motions. In this work, we focus on adapting a pre-trained large-scale image-to-video model to do
keyframe inbetweening without having to train or fine-tune from scratch. Exposed to millions of
videos, these models have demonstrated remarkable capabilities in generating high-resolution (up
to 1080p) and long (up to 4s) videos with rich motion priors.

Diffusion sampling for consistent generation In diffusion-based image generation tasks, novel
joint diffusion sampling techniques (Bar-Tal et al., 2023; Zhang et al., 2023; Tang et al., 2023; Lee
et al., 2023) for consistent generation are usually employed in generating arbitrary-sized images
or panoramas from smaller pieces. These methods involve concurrently generating these multiple
pieces and merging their intermediate results in the overlapping areas within the sampling process.
For example, MultiDiffusion (Bar-Tal et al., 2023) averages the diffusion model predictions to rec-
oncile the different denoising processes. Recent work, TRF (Feng et al., 2024) extends this joint
generation approach to the bounded video generation taking two end frames as input. By running
two parallel image-to-video generations guided by the start and end frames, it merge their outputs
by averaging in each denoising step. However, a significant drawback of this method is that it can-

1https://www.pexels.com/

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

not generate coherent motion in-between: simply fusing a forward video generation from the first
end frame and the reversed forward video starting from the second end frame using a single image-
to-video model designed for forward motion only causes the generated videos to oscillate between
moving forward and then reversing, rather than continuously progress forward as our method does.

3 BACKGROUND

We introduce some background on Stable Video Diffusion (Blattmann et al., 2023a), the base image-
to-video diffusion model used in our work, and then specifically explain the temporal self-attention
layers within its architecture, which are key to modeling motion within the generated video.

3.1 STABLE VIDEO DIFFUSION

Diffusion models are trained to convert random noise into high-resolution images/videos via an
iterative sampling process (Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Song et al., 2020a;b; Liu et al., 2022). This sampling process aims to reverse a fixed, time-
dependent destructive process (forward process) that gradually corrupts data by adding Gaussian
noise. In particular, Stable Video Diffusion (SVD) is a latent diffusion model where the diffusion
process operates in the latent space of a pre-trained autoencoder with encoder E(·) and decoder D(·).
In the forward process, a video sample x = {I0, I1, ..., IN−1} composed of N frames, is first
encoded in the latent space z = E(x), then the intermediate noisy video at time step t is created as
zt = αtz+ σtϵ, where ϵ ∼ N (0, I) is Gaussian noise, and αt and σt define a fixed noise schedule.
The denoising network fθ receives this noisy video latent zt and the conditioning c computed from
the input image, i.e., the first frame I0 in the video, and is trained by minimizing the loss:

L(θ) = Et∼U [1,T],ϵ∼N (0,I)[∥fθ(zt; t, c)− y∥22]

where the target vector y here is v = αtϵ− σtzt, referred to as v-prediction.

Once the denoising network is trained, starting from pure noise zT ∼ N (0, I), the sampling process
iteratively denoises the noisy latent by predicting the noise in the input and then applying an update
step to remove a portion of the estimated noise from the noisy latent

zt−1 = update(zt, fθ(zt; t, c); t)

until we get clean latent z0, followed by decoding D(z0) to get the generated video. The exact
implementation of the update(·, ·) function depends on the specifics of the sampling method; SVD
uses EDM sampler (Karras et al., 2022).

3.2 TEMPORAL SELF-ATTENTION

The denoising network fθ in SVD is a 3D U-Net, composed of “down”, “mid”, and “up” blocks.
Each block contains spatial layers interleaved with temporal layers, with the temporal self-attention
layers responsible for modeling motion in the generated video. This layer takes a spatio-temporal
tensor X ∈ R1×N×H×W×C as input, where N is the number of frames, and C is the number of
channels. Here we use batch size of 1 for simplicity. The tensor is reshaped by moving the spatial
dimensions (H,W) into the batch dimension. This creates X ′ ∈ RHW×N×C , where self-attention
operates solely on the temporal axis. More specifically, X ′ is projected through three separate
matrices Wq , Wk,Wv ∈ Rd×C (d is the dimensionality of the projected space.), resulting in the
corresponding query (Q = WqX

′), key (K = WkX
′) and value (V = WvX

′) features. Then the
scale-dot product attention is applied:

Attention(Q,K, V) = softmax(QKT /
√
d)V

The attention output is fed through another linear layer Wo to get the final output. We refer to A =
QKT ∈ RHW×N×N as the temporal self-attention map, which models the inter-frame correlations
per spatial location. This temporal attention mechanism allows each frame’s updated feature to
gather information from other frames.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

IN−1

Fuse & Update

Iterative denoising

Train

Inference

I0

<latexit sha1_base64="b7s+qZYXuv+YmzOrL+hsBSKKJE0=">AAAB83icbVBNS8NAFHzRqjV+VT0IelksgiCUxEP1WCiCxwr2A5pQNttNu3SzCbsboYb+DS8eFPHqn/Hmr9FN24O2DiwMM+/xZidIOFPacb6sldXC2vpGcdPe2t7Z3SvtH7RUnEpCmyTmsewEWFHOBG1qpjntJJLiKOC0HYzqud9+oFKxWNzrcUL9CA8ECxnB2kieF2E9DMLscdLTvVLZqThToGXizkm5dmxfHBW+641e6dPrxySNqNCEY6W6rpNoP8NSM8LpxPZSRRNMRnhAu4YKHFHlZ9PME3RmlD4KY2me0Giq/t7IcKTUOArMZJ5RLXq5+J/XTXV47WdMJKmmgswOhSlHOkZ5AajPJCWajw3BRDKTFZEhlphoU5NtSnAXv7xMWpcVt1qp3pk2bmCGIpzAKZyDC1dQg1toQBMIJPAEL/Bqpdaz9Wa9z0ZXrPnOIfyB9fEDKkKT+w==</latexit>zt

<latexit sha1_base64="wn2592E6U1mAvJPXfgbC4Sx49eM=">AAAB9HicbVDLSgMxFL1TX7W+ql26CZaiINQZF9VlQQSXFewD2qFk0kwbmsmMSaZQh/obblwo4sKNH+POvzHTdqGtBwKHc+7lnhwv4kxp2/62Miura+sb2c3c1vbO7l5+/6ChwlgSWichD2XLw4pyJmhdM81pK5IUBx6nTW94lfrNEZWKheJOjyPqBrgvmM8I1kZyOwHWA89PHibHXd3NF+2yPQVaJs6cFKuls4/Hwmmj1s1/dXohiQMqNOFYqbZjR9pNsNSMcDrJdWJFI0yGuE/bhgocUOUm09ATVDJKD/mhNE9oNFV/byQ4UGoceGYyDakWvVT8z2vH2r90EyaiWFNBZof8mCMdorQB1GOSEs3HhmAimcmKyABLTLTpKWdKcBa/vEwa52WnUq7cmjauYYYsHMIRnIADF1CFG6hBHQjcwxO8wKs1sp6tN+t9Npqx5jsF+APr8wcWRpSP</latexit>

z0t

<latexit sha1_base64="2hKaQxy48Ypg7/ecQP1/uNK78+g=">AAAB83icbVBNS8NAFHypVWv8qnoQ9LJYBEEoiYfqsVAEjxXsBzShbLabdulmE3Y3Qgn9G148KOLVP+PNX6ObtgdtHVgYZt7jzU6QcKa043xZhbXi+sZmacve3tnd2y8fHLZVnEpCWyTmsewGWFHOBG1ppjntJpLiKOC0E4wbud95pFKxWDzoSUL9CA8FCxnB2kieF2E9CsKMTPtOv1xxqs4MaJW4C1Kpn9iXx8XvRrNf/vQGMUkjKjThWKme6yTaz7DUjHA6tb1U0QSTMR7SnqECR1T52SzzFJ0bZYDCWJonNJqpvzcyHCk1iQIzmWdUy14u/uf1Uh3e+BkTSaqpIPNDYcqRjlFeABowSYnmE0MwkcxkRWSEJSba1GSbEtzlL6+S9lXVrVVr96aNW5ijBKdwBhfgwjXU4Q6a0AICCTzBC7xaqfVsvVnv89GCtdg5gj+wPn4AoAKToA==</latexit>c0

<latexit sha1_base64="Mc5sYBghatk1xNU20keN7KYcn6I=">AAACAHicbVA9SwNBEN2LGmM0emphYbMYhBQS7iyiZUAEywjmA5Lj2NvsJUv2PtidC4bjGv+KjYUitlb+Bjt/jODmo9DEBwOP92aYmefFgiuwrC8jt7a+kd8sbBW3d0q7e+b+QUtFiaSsSSMRyY5HFBM8ZE3gIFgnlowEnmBtb3Q19dtjJhWPwjuYxMwJyCDkPqcEtOSaR70hgbQXEBh6fjrOMjeFM2xlrlm2qtYMeJXYC1KuV9R3KX//0XDNz14/oknAQqCCKNW1rRiclEjgVLCs2EsUiwkdkQHrahqSgCknnT2Q4VOt9LEfSV0h4Jn6eyIlgVKTwNOd00vVsjcV//O6CfiXTsrDOAEW0vkiPxEYIjxNA/e5ZBTERBNCJde3YjokklDQmRV1CPbyy6ukdV61a9XarU7jGs1RQMfoBFWQjS5QHd2gBmoiijL0iJ7Ri/FgPBmvxtu8NWcsZg7RHxjvPzyTmdI=</latexit>

v̂t,0

<latexit sha1_base64="xy3I/R+lXLRMbgheKoyXccELIlU=">AAACAHicbVA9SwNBEN2LGmM0emphYbMYhBQS7iyiZUAEywjmA5Lj2NvsJUv2PtidC4bjGv+KjYUitlb+Bjt/jODmo9DEBwOP92aYmefFgiuwrC8jt7a+kd8sbBW3d0q7e+b+QUtFiaSsSSMRyY5HFBM8ZE3gIFgnlowEnmBtb3Q19dtjJhWPwjuYxMwJyCDkPqcEtOSaR70hgbQXEBh6fjrOMjeFM2xnrlm2qtYMeJXYC1KuV9R3KX//0XDNz14/oknAQqCCKNW1rRiclEjgVLCs2EsUiwkdkQHrahqSgCknnT2Q4VOt9LEfSV0h4Jn6eyIlgVKTwNOd00vVsjcV//O6CfiXTsrDOAEW0vkiPxEYIjxNA/e5ZBTERBNCJde3YjokklDQmRV1CPbyy6ukdV61a9XarU7jGs1RQMfoBFWQjS5QHd2gBmoiijL0iJ7Ri/FgPBmvxtu8NWcsZg7RHxjvPz4YmdM=</latexit>

v̂t,1

…
<latexit sha1_base64="IaMLwkXTu4hlK6ZTfbdJU71zg1k=">AAAB7nicbVDLSsNAFL2pr1pfVZduBkvBVUlctC4rIrisYB/QhDKZTtohk0mYmQglFME/cONCEXXn3wju/Bunj4W2HrhwOOde7r3HTzhT2ra/rdzK6tr6Rn6zsLW9s7tX3D9oqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsPLyZ++5ZKxWJxo0cJ9SI8ECxgBGsjtd3svMfcca9Ysiv2FGiZOHNSqpfD+7v3t89Gr/jl9mOSRlRowrFSXcdOtJdhqRnhdFxwU0UTTEI8oF1DBY6o8rLpuWNUNkofBbE0JTSaqr8nMhwpNYp80xlhPVSL3kT8z+umOjjzMiaSVFNBZouClCMdo8nvqM8kJZqPDMFEMnMrIkMsMdEmoYIJwVl8eZm0TitOtVK9Nmlcwgx5OIJjOAEHalCHK2hAEwiE8ABP8Gwl1qP1Yr3OWnPWfOYQ/sD6+AFusZNk</latexit>{Ai}

<latexit sha1_base64="/IDwRimY/jqjUpVWhqblXzTGd8k=">AAAB+XicbVDLSgMxFL1Trdb6GnUlboKt4MYy46K6LIjgQqSCfUA7lEyaaUMzD5JMoQ7zAf6DGxeKuPVP3Pk3ZtoutPVA4HDOvdyT40acSWVZ30ZuZTW/tl7YKG5ube/smnv7TRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR1eZ3xpTIVkYPKhJRB0fDwLmMYKVlnqm2fWxGrpeQtJecndmpz2zZFWsKdAyseekVCvnDx/LT7f1nvnV7Yck9mmgCMdSdmwrUk6ChWKE07TYjSWNMBnhAe1oGmCfSieZJk/RiVb6yAuFfoFCU/X3RoJ9KSe+qyeznHLRy8T/vE6svEsnYUEUKxqQ2SEv5kiFKKsB9ZmgRPGJJpgIprMiMsQCE6XLKuoS7MUvL5PmecWuVqr3uo1rmKEAR3AMp2DDBdTgBurQAAJjeIZXeDMS48V4Nz5mozljvnMAf2B8/gACIpV2</latexit>cN�1

Reverse Reverse

180° rotation

Figure 1: Method overview. In the lightweight backward motion fine-tuning stage, an input video
x = {I0, I1, ..., IN−1} is encoded into the latent space by E(x), and noise is added to create noisy
latent zt; during inference, zt is created by iterative denoising starting from zT ∼ N (0, I). (1)
Forward motion prediction: we first take the conditioning c0 of the first input image (inference
stage) or the first frame in the video (training stage) I0, along with the noisy latent zt to feed into
the pre-trained 3D U-Net fθ to get the noise predictions v̂t,0, as well as the temporal self attention
maps {Ai}. (2) Backward motion prediction: We reverse the noisy latent zt along temporal axis
to get z′t. Then we take the conditioning cN−1 of the second input image, or the last frame in the
video IN−1, along with the 180-degree rotated temporal self-attention maps {A′

i}, and feed them
through the fine-tuned 3D U-Net fθ′ for backward motion prediction v̂t,1. (3) Fuse and update:
The predicted backward motion noise is reversed again to fuse with the forward motion noise to
create consistent motion path. Note that only the value and output projection matrices W{v,o} in the
temporal self-attention layers (green) are fine-tuned; see Fig. 2 for more details.

4 METHOD

Given a pair of keyframes I0 and IN−1, our goal is to generate a video {I0, I1, I2,, IN−1} that
begins with frame I0 and ends with frame IN−1, leveraging the pre-trained image-to-video Stable
Video Diffusion (SVD) model. The generated video should exhibit a natural and consistent motion
path, such as a car traveling or a person walking in a steady direction.

Image-to-video models typically generate video with motions that run forward in time. It is primarily
the temporal self-attention layers that learn this motion-time association. In Sec 4.1, we discuss how
this forward motion can be reversed by rotating the temporal self-attention maps by 180 degrees.
Then we introduce an efficient lightweight fine-tuning technique to reverse this association and
enable SVD to generate backward motion videos from the input image in Sec. 4.2. Finally we
present our dual-directional sampling approach that fuses the forward motion generation starting
with frame I0 and backward motion video generation starting with frame IN−1 in a consistent
manner in Sec. 4.3. An overview of our method is shown in Fig. 1.

4.1 REVERSE MOTION-TIME ASSOCIATION BY SELF-ATTENTION MAP ROTATION

The temporal self-attention maps {Ai} in the network fθ feature the forward motion trajectory in
video {I0, I1, ..., IN−1}. By rotating these attention maps by 180 degrees, we obtain a new set {A′

i}
that depicts the opposite backward motion, corresponding to the reversed one {IN−1, IN−2, ..., I0}
starting from the last frame IN−1.

Specifically, rotating the temporal self-attention maps by 180 degrees—flipping them vertically and
horizontally—yields a backward motion opposite to the original forward motion. For example,
consider attention map A; the rotated map A′

N−j,N−k = Aj,k, where Aj,k indicates the attention

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

score between the j-th and k-th frames (Ij and Ik). In the corresponding reversed video, the reverse
frame indices N − j and N − k maintain the same relative response.

4.2 LIGHTWEIGHT BACKWARD MOTION FINE-TUNING

We introduce a lightweight fine-tuning framework that specifically fine-tunes the value and output
projection matrix Wv,Wo in the temporal self-attention layers, using the 180-degree rotated atten-
tion map from the forward video as additional input (see Fig. 2). We use fθ′(zt; t, c, {A′

i}) to denote
the backward motion generation network. This fine-tuning approach offers two key advantages:

Linear Wv180° rotation

Linear Wo

Figure 2: Temporal self-attention
module in the backward motion gen-
eration. Given input tensor X , our
attention mechanism additionally takes
the respective attention map A from the
pre-trained SVD featuring forward mo-
tion, rotating it by 180 degrees to create
a reverse motion-time association A′.
Note that W{v,o} are the only trainable
parameters in this module.

First, by utilizing existing forward motion statistics from
the pre-trained SVD model, fine-tuning W{v,o} simplifies
the model’s task to focus on learning how to synthesize
reasonable content when operating in reverse. This strat-
egy requires significantly less data and fewer parameters
compared to full model fine-tuning. Second, it enables
the control for the model to generate a backward motion
trajectory corresponding to the opposite of the forward
trajectory described by the attention map. This feature is
particularly beneficial when planning to merge forward
and backward motions converging towards each other,
and thus achieving forward-backward consistency.

The detailed training process is shown in Alg. 1. For la-
tent video z ∈ R1×N×C×H×W , we denote flip(z) specif-
ically by the second dimension, i.e., reversing the latent
video along the time axis. In every training iteration, we
sample an input video of N frames, and random time step
t, then the noisy video latent zt is created by adding the
noise in that time step. The noisy video latent along with
the input conditioning c0 (computed from I0) is fed into
the pre-trained 3D U-Net fθ to extract the self attention
maps {Ai} from the temporal attention layers. Then we
reverse the noisy video latent, along with the last frame
conditioning cN−1, feed them into the backward motion
3D-U-Net fθ′ . The loss function is computed by taking
the predictions of the network and the ground truth re-
verse video.

ALGORITHM 1: Light-weight backward motion fine-tuning
Input: fθ, pdata(x), E(·)
while not converged do

Sample x ∼ pdata(x),x = {In}N−1
n=0 , z = E(x);

Compute conditioning c0 from I0;
t ∼ Uniform({1, ..., T}), ϵ ∼ N (0, I);
zt = αtz+ σtϵ;
{Ai} = extract attention map(fθ(zt; t, c0)) ;
z′t = flip(zt);
Compute conditioning cN−1 from IN−1;
Take gradient descent step on∇W{v,o}∥fθ′(z

′
t; t, cN−1, {A′

i})− y∥22,y = αtflip(ϵ)− σtz
′
t;

end
Return: W{v,o}

4.3 DUAL-DIRECTIONAL SAMPLING
WITH FORWARD-BACKWARD MOTION CONSISTENCY

Our complete dual-directional sampling process is detailed in Alg. 2. Given a pair of keyframes I0
and IN−1, their corresponding conditioning c0 and cN−1 are pre-computed. Then each sampling
step (illustrated in Figure 1) works as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(1) Forward motion denoising with I0 as input: The noisy video latent zt along with the conditioning
c0 is fed into the pre-trained 3D U-Net fθ in SVD to predict the noise volume v̂t,0. Additionally,
the temporal self-attention maps {Ai} in the 3D U-Net are extracted.

(2) Backward motion denoising with IN−1 as input: The noisy video zt is flipped along the tem-
poral dimension to create the reverse video latent z′t corresponding to the backward motion. This
backward video, along with the conditioning cN−1, as well as the 180-degree rotated attention maps
{A′

i}, are fed into our fine-tuned 3D U-Net fθ′ . This step predict the noise volume v̂t,1 representing
a reverse motion from IN−1.

(3) Finally, the predicted noise volumes from both forward and reverse motion paths are fused and
then denoised using the update(·, ·) function to create less noisy video zt−1. In this way, we ensure
forward-backward consistency and thus a consistent moving direction in the generated video. The
fuse(·, ·) function performs a simple average. In practice, we also adopt per-step recurrence to
enhance the fusion as seen in (Bansal et al., 2023; Feng et al., 2024), by re-injecting Gaussian noise
into the update zt−1 and repeating the denoising 5 times before continuing the sampling for the next
step.

ALGORITHM 2: Dual-directional diffusion sampling
Input: I0, IN−1, fθ, fθ′ ,D(·)
Compute condition c0, cN−1 from I0, IN−1;
Set zT ∼ N (0, I);
for t← T to 1 do

v̂t,0 = fθ(zt; t, c0);
{Ai} = extract attention map(fθ(zt; t, c0));
z′t = flip(zt);
v̂t,1 = fθ′(z

′
t; t, cN−1, {A′

i}) ;
v̂′
t,1 = flip(v̂t,1) ;

v̂t = fuse(v̂t,0, v̂
′
t,1);

zt−1 = update(zt, v̂t; t)
end
Return: D(z0)

4.4 IMPLEMENTATION DETAILS

Our lightweight fine-tuning technique fine-tunes less than 2% of the U-Net parameters, and does
not rely on large collection of training videos. So we collected 100 high quality videos which are
originally generated from SVD from a community website2 as our training data. Our experimental
results show that our method generalizes well to the real image data. We select the ones with large
object motion such as animal running, vehicle moving, people walking, and so on. We use the
Adam optimizer with learning rate of 1e − 4, β1 = 0.9, β2 = 0.999, and weight decay of 1e − 2.
The training takes around 15K iterations with batch size of 4. We trained on 4 A100 GPUs. For
sampling, we apply 50 sampling steps. For other parameters in SVD, we use the default values:
motion bucket id = 127, noise aug strength = 0.02.

5 EXPERIMENTS

In Figs. 3, 4, 5, we demonstrate that our approach successfully generates high quality videos
with consistent motion given distant keyframes. We highly recommend viewing the videos in the
supplementary to see the results more clearly. Sec. 5.1 describes the data we used to evaluate our
method and the baselines. Sec. 5.2 demonstrates how our method outperforms traditional frame
interpolation method FILM, and the recent work TRF (Feng et al., 2024) that also leverages SVD for
video generation. Sec. 5.3 justifies our design decisions with an ablation study. Sec. 5.4 discusses the
optimal scenarios where our method excels and sub-optimal ones where it outperforms the baselines
but remains limited by SVD itself. Sec. 5.5 discusses our failure cases.

2https://www.stablevideo.com/

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

G
T

FI
L

M
T

R
F

O
ur

s

i = 0 i = 6 i = 12 i = 18 i = 24

G
T

FI
L

M
T

R
F

O
ur

s

i = 0 i = 21 i = 22 i = 23 i = 24

G
T

FI
L

M
T

R
F

O
ur

s

i = 0 i = 14 i = 18 i = 22 i = 24

Figure 3: Qualitative baseline comparisons. Leftmost (i = 0) and rightmost columns (i = 24):
start and end frames. TRF generates back-and-forth motions, such as vehicles moving forward
and then reversing. FILM struggles to find correspondences when the input frames are distant and
morphs from the first frame to the last. The red arrow indicates the direction of motion. We recom-
mend viewing the supplementary videos.

5.1 EVALUATION DATASET

We use two high-resolution (1080p) datasets for evaluations: (1) The Davis dataset (Pont-Tuset et al.,
2017), where we create a total of 117 input pairs from all of the videos. This dataset mostly features
subject articulated motions, such as animal or human motions. (2) The Pexels dataset, where we
collect a total of 106 input keyframe pairs from a compiled collection of high resolution videos on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Pexels3, featuring directional dynamic scene motions such as vehicles moving, animals, or people
running, surfing, wave movements, and time-lapse videos. All input pairs are at least 25 frames
apart and have the corresponding ground truth video clips.

5.2 BASELINE COMPARISONS

We mainly compare our approach to FILM (Reda et al., 2022), the current state-of-the-art frame
interpolation method for large motion, and TRF (Feng et al., 2024) which also adapts SVD for
bounded generation. We show representative qualitative results in Figs. 3, 5. In addition, we also
include results for the keyframe interpolation feature from the recent work DynamiCrafter (Xing
et al., 2023)—a large-scale image-to-video model. The keyframing feature is modified from it and
specially trained to accept two end frames as conditions, while we focus on how to adapt a pretrained
image-to-video model in a lightweight way with small collection of training videos and much less
computational resources. This feature generates videos at resolution 512×320, while ours generates
at resolution 1024× 576. Nonetheless, we present its results for reference.

Quantitative evaluation For each dataset, we evaluate the generated in-between videos using
FID (Heusel et al., 2017) and FVD (Ge et al., 2024), widely used metrics for evaluating gen-
erative models. These two metrics measure the distance between the distributions of generated
frames/videos and actual ones. The results are shown in Tab. 1, and our method outperforms all of
the baselines by a significant margin.

Pexels Davis
FID ↓ FVD ↓ FID ↓ FVD↓

FILM (Reda et al., 2019) 25.16 371.83 41.85 1048.65
TRF (Feng et al., 2024) 31.43 563.16 36.79 563.07

DynamiCrafter (Xing et al., 2023) 32.06 393.12 38.32 439.74

Ours w/o RA 26.42 458.76 36.70 549.98
Ours w/o FT 37.68 555.10 47.23 604.76

Ours 22.99 306.84 32.68 424.69

Table 1: Comparisons with baselines and our ablation variants. Ours w/o RA: full pipeline with fine-
tuning all parameters W{q,k,v,o} without using the 180-degree rotated temporal attention map. Ours
w/o FT: full pipeline using rotated attention map only in the “up” blocks and without fine-tuning
W{v,o} for backward motion.

Comparison to FILM The flow-based frame interpolation method FILM suffers from two prob-
lems. First, it struggles to find correspondences in scenes with large motions. For example, in the
second row of Fig. 3, in a highway where vehicles moving in both directions, FILM fails to find
the correspondence between the moving cars across the input keyframes, resulting in implausible
intermediate motions. For example, some cars in the first frame disappear in the middle and reap-
pear at the end. Second, it generates undesirable unambiguous motion which takes the shortest path
between the end frames. In the example in Fig. 5, given two similar-looking frames that captures
different states of a person running, FILM produces a motion that merely translates the person across
the frames, losing the natural kinematic motions of the legs.

Comparison to TRF TRF fuses the forward video generation starting from the first frame and the
reversed forward video starting from the second frame, both using the original SVD. The reversed
forward video from the second frame creates a backward motion video that ends at the second
frame. Fusing these generation paths results in a back-and-forth motion in the generated videos.
One notable effect we observe with TRF is that the generated videos exhibit a pattern of progressing
forward first and then reversing to the end frame. For example, in the third row of Fig. 3, we can see
the red truck moving backward over time; in the seventh row, the dog’s legs are moving backwards,
leading to unnatural motions. In contrast, our approach fine-tunes SVD to generate a backward
video starting from the second frame in the opposite direction to the forward video from the first
frame.This forward-backward motion consistency leads to the generation of a motion-consistent
video.

3https://www.pexels.com/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 ABLATIONS

w
/o

R
A

w
/o

FT
O

ur
s

i = 0 i = 2 i = 9 i = 24

Figure 4: Ablation study. We evaluate other options for generating in-between motion consistency.
(1) Ours w/o RA: full pipeline with fine-tuning all parameters W{q,k,v,o} in the temporal attention
layers but without using 180-degree rotated temporal self-attention maps as extra input (top row).
(2) Ours w/o FT: full pipeline without fine-tuning W{v,o} for backward motion (second row). The
differences are highlighted in the red rectangle.

In Fig. 4 and Tab. 1, we show visual and quantitative comparisons to simpler versions of our method
to evaluate the effect of the key components in our method.

Fine-tuning without rotated attention map (Ours w/o RA) We compare with a variant that fine-
tunes all parameters in the temporal self-attention layers, namely, W{q,k,v,o}, but without using
the 180-degree rotated temporal self-attention map from the forward video as extra input. Though
fine-tuning all parameters can generate backward motion from the second input image, there is
no guarantee that the backward motion will mirror the forward motion from the first input image.
This discrepancy makes it hard for the model to reconcile the two motion paths, often resulting in
blending artifacts, as shown in the top row of Fig. 4. In contrast, fine-tuning W{v,o} with the rotated
attention maps generates coherent and high-fidelity in-between videos.

Fine-tuning W{v,o} vs. no fine-tuning (Ours w/o FT) In Sec. 4.1, we show that rotating the
temporal attention maps by 180 degrees reverses the motion-time association, creating a backward
motion trajectory. Here we show that fine-tuning the value and output projection matrices Wv,o

is necessary for the model to synthesize high-fidelity content given the input backward motion-
time association. We run our full pipeline without any fine-tuning, and our attention map rotation
operation is only applied to the “up” blocks in this variant. As shown in the second row of Fig. 4 and
Tab. 1, without fine-tuning these parameters, the model can create consistent motion but suffers from
poor frame quality due to the low frame quality of the backward video generation. For example, the
person is disfigured in the generated video. Note that applying the attention map rotation operation
to the “down” and “mid” blocks in this variant worsens visual fidelity even further; thus, we show
the best-case scenario without fine-tuning (i.e., applying rotated attention maps to the “up” blocks
only).

5.4 OPTIMAL AND SUB-OPTIMAL SCENARIOS

Our method is limited by the motion quality and priors learned by SVD. Firstly, our empirical ex-
periments indicate that SVD works well with generating rigid motions, but struggles with non-rigid,
articulated movements. It has difficulty accurately rendering the limb movements of animal/people.
In Fig. 5, though our method significantly improves upon FILM and TRF, it still appears unnatural
compared to the ground truth movements. The bottom row, showing the sequence generated by
SVD using only the first input frame, confirms that SVD itself struggles to generate natural running
movements in between.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

G
T

FI
L

M
T

R
F

O
ur

s
SV

D

i = 0 i = 6 i = 12 i = 18 i = 24

Figure 5: Our method outperforms FILM and TRF in generating articulated movements inbetween,
but still struggles to create natural kinematic motions because of the limitation of SVD itself failing
to generated complex kinematics (bottom row). Note that the input image serve as conditioning to
SVD, so generated first frame might differ from the input image if SVD struggles to create plausible
videos from that input.

5.5 FAILURES

When the input pairs are captured at such distant intervals that they have sparse correspondences, as
shown in Fig. 6, where only a small portion of cars appear in both input frames, it becomes difficult
for our method to fuse the forward and backward motions. This situation, where the overlapping
areas are minimal, leads to artifacts in the intermediate frames.

input frame 1 input frame 2 mid frame

Figure 6: Failure case. Our method fails to work well in the cases where input pairs have sparse
correspondences.

6 DISCUSSIONS & LIMITATIONS

Our method is limited by the motion quality of the underlying base model, Stable Video Diffusion
(SVD), as discussed in Sec. 5.4. Another limitation is that SVD has strong motion priors derived
from the input image, tending to generate only specific motions for a given input. As a result,
the actual motion required to connect the input key frames may not be represented within SVD’s
motion space, making it challenging to synthesize plausible intermediate videos. However, with
advancements in large scale image-to-video models like SoRA4, we are optimistic that these limita-
tions can be addressed in the future. Including better motion datasets and incorporating articulated
motion/physical movement priors may also help. Another potential improvement involves using
motion heuristics between the input key frames to prompt the image-to-video model to generate
more accurate in-between motions.

4https://openai.com/index/sora/

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852, 2023.

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for controlled
image generation. arXiv preprint arXiv:2302.08113, 2023.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa Hur,
Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for video generation. arXiv
preprint arXiv:2401.12945, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam
Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion
models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten
Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563–22575, 2023b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Jiong Dong, Kaoru Ota, and Mianxiong Dong. Video frame interpolation: A comprehensive survey. ACM
Transactions on Multimedia Computing, Communications and Applications, 19(2s):1–31, 2023.

Haiwen Feng, Zheng Ding, Zhihao Xia, Simon Niklaus, Victoria Abrevaya, Michael J Black, and Xuaner
Zhang. Explorative inbetweening of time and space. arXiv preprint arXiv:2403.14611, 2024.

Songwei Ge, Aniruddha Mahapatra, Gaurav Parmar, Jun-Yan Zhu, and Jia-Bin Huang. On the content bias
in fréchet video distance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7277–7288, 2024.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl: Adding sparse
controls to text-to-video diffusion models. arXiv preprint arXiv:2311.16933, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing
systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma,
Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video generation with
diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video
diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646, 2022b.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Rife: Real-time intermediate
flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294, 2020.

Siddhant Jain, Daniel Watson, Eric Tabellion, Aleksander Hołyński, Ben Poole, and Janne Kontkanen. Video
interpolation with diffusion models. arXiv preprint arXiv:2404.01203, 2024.

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super
slomo: High quality estimation of multiple intermediate frames for video interpolation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 9000–9008, 2018.

Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and Du Tran. Flavr: Flow-agnostic video represen-
tations for fast frame interpolation. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 2071–2082, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. Adacof:
Adaptive collaboration of flows for video frame interpolation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5316–5325, 2020.

Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. Syncdiffusion: Coherent montage via synchro-
nized joint diffusions. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds.
arXiv preprint arXiv:2202.09778, 2022.

Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong. Enhanced quadratic video interpo-
lation. In Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part
IV 16, pp. 41–56. Springer, 2020.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5437–5446, 2020.

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. Bmbc: Bilateral motion estimation with bilateral
cost volume for video interpolation. In European Conference on Computer Vision, pp. 109–125. Springer,
2020.

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video frame inter-
polation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14539–14548,
2021.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool.
The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017.

Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, and Brian Curless. Film:
Frame interpolation for large motion. In European Conference on Computer Vision, pp. 250–266. Springer,
2022.

Fitsum A Reda, Deqing Sun, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J Shih, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. Unsupervised video interpolation using cycle consistency. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 892–900, 2019.

Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, and Ming-Hsuan Yang. Video frame interpolation trans-
former. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17482–17491, 2022.

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: extreme video frame interpolation. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 14489–14498, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265.
PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Advances
in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Shitao Tang, Fuyang Zhang, Jiacheng Chen, Peng Wang, and Yasutaka Furukawa. Mvdiffusion: Enabling holis-
tic multi-view image generation with correspondence-aware diffusion. arXiv preprint arXiv:2307.01097,
2023.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion for pre-
diction, generation, and interpolation. Advances in neural information processing systems, 35:23371–23385,
2022.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan,
Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for text-
to-video generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
7623–7633, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Xintao Wang, Tien-Tsin Wong, and Ying Shan. Dy-
namicrafter: Animating open-domain images with video diffusion priors. arXiv preprint arXiv:2310.12190,
2023.

Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. Quadratic video interpolation. Advances
in Neural Information Processing Systems, 32, 2019.

Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, and Hang Li. Make pixels
dance: High-dynamic video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8850–8860, 2024.

Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu. Diffcollage: Parallel generation
of large content with diffusion models. arXiv preprint arXiv:2303.17076, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SENSITIVITY TO THE SCALE OF TRAINING SET

As stated in Sec. 4.4, our method fine-tunes fewer than 2% parameters of the original model by using
the attention map from the pretrained model, and thus we reduce the need for extensive training data.
We use 100 synthetic training videos in our experiments. Here we we conduct an ablation by varying
the training dataset size to be 50 and 150 videos, and evaluate the performance as done in Tab. 1. Our
method still outperforms the baselines even with a training size of 50, and its performance increases
slowly as more data is added (see Fig. 7).

60 80 100 120 140
Training Data Size

22

24

26

28

30

32

34

FI
D

FID score

60 80 100 120 140
Training Data Size

300

325

350

375

400

425

450

FV
D

FVD score

Training data size vs. keyframe interpolation performance Pexels
Davis

Figure 7: Ablation on how the scales of the training dataset affect our model’s performance.

Pexels Davis
FID ↓ FVD ↓ FID ↓ FVD↓

FILM 25.16 371.83 41.85 1048.65
TRF 31.43 563.16 36.79 563.07

Ours (motion bucket id = 255) 22.18 306.61 34.06 426.53
Ours (motion bucket id = 65) 23.33 270.27 32.75 491.85

Ours (motion bucket id = 127) 22.99 306.84 32.68 424.69

Table 2: Ablation on how the conditioning parameters motion bucket id in Stable Video Diffusion
affect our model’s performance. Our method uses 127 as default in the paper.

A.2 THE INFLUENCE OF MOTION BUCKET ID IN STABLE VIDEO DIFFUSION

Stable Video Diffusion5 (Blattmann et al., 2023a) takes motion bucket id as micro conditioning
parameter in the video generation process, which is expected to affect the motion magnitude the
generated video: higher values result in more dynamic video and vice versa. However, keyframe
interpolation is a more constrained task where the second end frame provides additional guidance
for the generation (Feng et al., 2024). Here we experiment with different motion bucket id values in
Tab. 2, and our method still outperforms TRF and FILM. On the Pexels dataset, motion bucket id
of 65 results in better FVD score (generated motion closer to the ground truth videos), However,
the same value results in worse FVD score on the Davis dataset. This discrepancy is likely due to
motion difference between the two datasets.

A.3 PSEUDO CODE FOR LIGHTWEIGHT BACKWARD MOTION FINE-TUNING AND DUAL
DIRECTIONAL SAMPLING

5We use the public available model weights https://huggingface.co/stabilityai/
stable-video-diffusion-img2vid-xt

14

https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt
https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

def get_trainable_params(rev_UNet):
Only finetune Wv and Wv in temporal self attention layers
rev_unet_train_params = []
for name, param in rev_UNet.named_parameters():

if 'temporal_transformer_blocks.0.attn1.to_v.weight' in name
or 'temporal_transformer_blocks.0.attn1.to_out.0.weight' in name:

rev_unet_train_params.append(param)
param.requires_grad = True

return rev_unet_train_params

Backward motion fine-tuning
rev_UNet = copy.deepcopy(ori_UNet)
ori_UNet.requires_grad(False) # pretrained 3DUNet in SVD
rev_UNet.requires_grad(False) # backward motion UNet to be fine-tuned
optimizer = optim.AdamW(get_trainable_params(rev_UNet)
for epoch in range(0, num_train_epochs):

rev_UNet.train()
loss = 0.
for batch_video in train_dataloader:

I_0 = batch_video[:, 0] # get the first frame from the video
I_N = batch_video[:, -1] # get the last frame from the video
c_0 = compute_image_conditioning(I_0)
c_N = compute_image_conditioning(I_N)

batch_video = rearrange(batch_video, "b f c h w -> (b f) c h w")
z = vae.encode(batch_video)
z = rearrange(z_0, "(b f) c h w -> b f c h w", f=num_frames)
z_rev = torch.flip(z, dims=(1,)) # GT reverse latent video

noise = torch.rand_like(z)
t = torch.randint(0, num_train_timesteps)
z_t = noise_scheduler.add_noise(z, noise, t)
z_t_rev = torch.flip(z_t, dims=(1,))

pred_noise_1, attention_maps = ori_UNet(z_t, t, c_0)

rotate attention maps by 180 degree
rotated_attention_maps = [torch.flip(attention_map, dims=(-2, -1))

for attention_map in attention_maps]

pred_noise_2 = rev_UNet(z_t_rev, t, c_N, rotated_attention_maps)
pred_z_rev = noise_scheduler.predict_denoised_sample(pred_noise_2)
loss += mse_loss(pred_z_rev, z_rev)

loss.backward()
optimizer.step()
optimizer.zero_grad()

return rev_UNet

Figure 8: Pytorch pseudocode for lightweight backward motion fine-tuning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dual directional diffusion sampling for generating in-between video
ori_UNet: pretrained 3DUNet in SVD
rev_UNet: fine-tuned backward motion UNet

c_0 = compute_image_conditioning(I_0)
c_N = compute_image_conditioning(I_N)
z_t = torch.randn(latent_shape) # initialize video latent variable
timesteps = scheduler.set_timesteps(num_steps)
for i, t in enumerate(timesteps):

predicted noise in forward motion start from I_0
pred_noise_1, attention_maps = ori_UNet(z_t, t, c_0)
if do_classifier_free_guidance:

pred_noise_uncond_1 = ori_UNet(z_t, t, null_conditioning)
pred_noise_1 = pred_noise_uncond_1 +
guidance_scale * (pred_noise_1 - pred_noise_uncond_1)

rotated_attention_maps = [torch.flip(attention_map, dims=(-2, -1))
for attention_map in attention_maps]

predicted noise in backward motion start from I_N
z_t_rev = torch.flip(z_t, dims=(1,))
pred_noise_2 = rev_UNet(z_t_rev, t, c_N, rotated_attention_maps)
if do_classifier_free_guidance:

pred_noise_uncond_2 = rev_UNet(z_t_rev, t, null_conditioning,
rotated_attention_maps)

pred_noise_2 = pred_noise_uncond_2
+ guidance_scale * (pred_noise_2 - pred_noise_uncond_2)

pred_noise_2 = torch.flip(pred_noise_2, dims=(1,))

pred_noise = (pred_noise_1 + pred_noise)/2. # fuse
z_t = scheduler.update(z_t, pred_noise, t) # denoise

output_video = vae.decode(z_t)
return output_video

Figure 9: Pytorch pseudocode for dual directional diffusion sampling.

16

	Introduction
	Related Works
	Background
	Stable Video Diffusion
	Temporal self-attention

	Method
	Reverse motion-time association by self-attention map rotation
	Lightweight backward motion fine-tuning
	Dual-directional sampling with forward-backward motion consistency
	Implementation Details

	Experiments
	Evaluation Dataset
	Baseline Comparisons
	Ablations
	Optimal and sub-optimal scenarios
	Failures

	Discussions & Limitations
	Appendix
	Sensitivity to the scale of training set
	The influence of motion bucket id in Stable Video Diffusion
	Pseudo code for lightweight backward motion fine-tuning and dual directional sampling

