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ABSTRACT

We present a method for generating video sequences with coherent motion be-
tween a pair of input keyframes. We adapt a pretrained large-scale image-to-video
diffusion model (originally trained to generate videos moving forward in time
from a single input image) for keyframe interpolation, i.e., to produce a video be-
tween two input frames. We accomplish this adaptation through a lightweight fine-
tuning technique that produces a version of the model that instead predicts videos
moving backwards in time from a single input image. This model (along with the
original forward-moving model) is subsequently used in a dual-directional dif-
fusion sampling process that combines the overlapping model estimates starting
from each of the two keyframes. Our experiments shows that our method outper-
forms both existing diffusion-based methods and traditional frame interpolation
techniques.

1 INTRODUCTION

Recent advances of large-scale text-to-video and image-to-video models (Blattmann et al., 2023b;a;
Wu et al., 2023; Xing et al., 2023; Bar-Tal et al., 2024; Zeng et al., 2024) have shown the ability
to generate high resolution videos with dynamic motion. While these models can accept a vari-
ety of input conditioning signals, such as text captions or single images, most available models
remain unsuitable for an obvious application: keyframe interpolation. Interpolating between a pair
of keyframes—that is, producing a video that simulates coherent motion between two input frames,
one defining the starting frame of the video, and one defining the ending frame—is certainly possi-
ble if a large-scale model has been trained to accept these particular two conditioning signals, but
most open-source models have not. Despite the task’s similarity to existing conditioning signals,
creating an interpolation model requires further training, and therefore both large amounts of data
and substantial computational resources beyond what most researchers have access to.

Given the similarity between the input signals needed for keyframe interpolation (i.e., two-frame
conditioning) and the input signals to existing models (e.g., one-frame conditioning), an interesting
alternative solution is to instead adapt an existing pre-trained image-to-video model, without train-
ing a specialized model from scratch. In this paper, we propose an approach for enabling keyframe
interpolation by doing precisely this. Our approach is founded upon the observation that a keyframe
interpolation model needs to know how to accomplish three objectives: (1) given a starting frame, it
needs to predict coherent motion starting from that frame and advancing into the future, (2) given an
ending frame, it needs to predict coherent motion starting from that frame and advancing backwards
into the past, and (3) given these two predictions, produce a video that has a coherent combination
of the two. Since existing image-to-video models can already accomplish the first of these three ob-
jectives, we focus our efforts on the the latter two, i.e., producing a single-frame conditioned model
that can generate motion backwards in time, and a mechanism for combining forward and backward
motion predictions into coherent videos.

One may imagine that producing such a single-image conditioned model that produces backwards
motion should be trivial: simply pass an image into a regular image-to-video model, and reverse
the output. Unfortunately, real-world motion is inherently asymmetric, and reversed motion into the
future is notably different from motion into the past. As such, we first propose a novel, lightweight
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fine-tuning mechanism that reverses the arrow of time by rotating the temporal self-attention maps
(i.e., reversing the temporal interactions) within the diffusion U-Net. This enables the reuse of the
existing learned motion statistics in the pretrained model, and enables generalization while only
requiring a small number of training videos.

Given both the original image-to-video model and this adapted reverse model, we also propose a
sampling mechanism that merges the scores of both to produce a single consistent sample. These
two sampling paths are synchronized through shared rotated temporal self-attention maps, ensur-
ing they generate exactly opposite motions, an effect which we term “forward-backward motion
consistency”. At each sampling step, their intermediate noise predictions are fused, resulting in a
generated video with coherent motion that starts and ends with the provided frames. We compare
our work qualitatively and quantitatively to related methods on two curated difficult datasets targeted
for generative inbetweening: Davis (Pont-Tuset et al., 2017) and Pexels1, and our method produces
notably higher quality videos with more coherent dynamics given distant keyframes.

2 RELATED WORKS

Frame interpolation Frame interpolation (Dong et al., 2023) synthesizes intermediate images be-
tween two frames by taking a pair of input frames or multiple adjacent frames in the context of
video frame interpolation, and has been a long-standing research area in computer vision. Example
applications include temporal up-sampling to increase refresh rate, create slow-motion videos, or
interpolating between near-duplicate photos. Much of the research in this field (Jiang et al., 2018;
Niklaus & Liu, 2020; Huang et al., 2020; Park et al., 2020; Lee et al., 2020; Park et al., 2021)
employs flow-based methods, which estimate optical flow between the frames and then synthesize
the middle images guided by the flow via either warping or splatting techniques. There are also
works (Kalluri et al., 2023; Shi et al., 2022) that use CNNs or transformers to learn to extract fea-
tures and directly output the middle frames. Traditionally, this task assumes unambiguous motion
and the input frames are usually closely spaced (≤ 1/30s) samples in the video. Recent studies
have begun to address large motions (Sim et al., 2021; Reda et al., 2022), or quadratic motion (Xu
et al., 2019; Liu et al., 2020), though these still involve a single motion interpolation and cannot ad-
dress distant input frames. In contrast, we aim to generate in-between frames that capture dynamic
motions across distant input keyframes (≥ 1s apart) with a generative model, a challenge that goes
beyond the capability of current frame interpolation techniques.

Diffusion models for in-between video generation Diffusion models have shown remarkable ca-
pabilities for generative modeling of images (Ho et al., 2020; Dhariwal & Nichol, 2021; Song &
Ermon, 2019; Song et al., 2020a;b; Sohl-Dickstein et al., 2015) and videos (Ho et al., 2022b;a; Wu
et al., 2023; Blattmann et al., 2023b). Early work MCVD (Voleti et al., 2022) devises a general-
purpose diffusion model for a range of video generative modeling tasks including in-between video
generation. More recent works (Guo et al., 2023; Jain et al., 2024; Xing et al., 2023) explicitly train
diffusion models to accept two end frames with conditioning to generate 7 or 16 intermediate frames
at maximum resolution of 320 × 512 at once, and achieved superior results in generating dynamic
motions. In this work, we focus on adapting a pre-trained large-scale image-to-video model to do
keyframe inbetweening without having to train or fine-tune from scratch. Exposed to millions of
videos, these models have demonstrated remarkable capabilities in generating high-resolution (up
to 1080p) and long (up to 4s) videos with rich motion priors.

Diffusion sampling for consistent generation In diffusion-based image generation tasks, novel
joint diffusion sampling techniques (Bar-Tal et al., 2023; Zhang et al., 2023; Tang et al., 2023; Lee
et al., 2023) for consistent generation are usually employed in generating arbitrary-sized images
or panoramas from smaller pieces. These methods involve concurrently generating these multiple
pieces and merging their intermediate results in the overlapping areas within the sampling process.
For example, MultiDiffusion (Bar-Tal et al., 2023) averages the diffusion model predictions to rec-
oncile the different denoising processes. Recent work, TRF (Feng et al., 2024) extends this joint
generation approach to the bounded video generation taking two end frames as input. By running
two parallel image-to-video generations guided by the start and end frames, it merge their outputs
by averaging in each denoising step. However, a significant drawback of this method is that it can-

1https://www.pexels.com/
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not generate coherent motion in-between: simply fusing a forward video generation from the first
end frame and the reversed forward video starting from the second end frame using a single image-
to-video model designed for forward motion only causes the generated videos to oscillate between
moving forward and then reversing, rather than continuously progress forward as our method does.

3 BACKGROUND

We introduce some background on Stable Video Diffusion (Blattmann et al., 2023a), the base image-
to-video diffusion model used in our work, and then specifically explain the temporal self-attention
layers within its architecture, which are key to modeling motion within the generated video.

3.1 STABLE VIDEO DIFFUSION

Diffusion models are trained to convert random noise into high-resolution images/videos via an
iterative sampling process (Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Song et al., 2020a;b; Liu et al., 2022). This sampling process aims to reverse a fixed, time-
dependent destructive process (forward process) that gradually corrupts data by adding Gaussian
noise. In particular, Stable Video Diffusion (SVD) is a latent diffusion model where the diffusion
process operates in the latent space of a pre-trained autoencoder with encoder E(·) and decoder D(·).
In the forward process, a video sample x = {I0, I1, ..., IN−1} composed of N frames, is first
encoded in the latent space z = E(x), then the intermediate noisy video at time step t is created as
zt = αtz+ σtϵ, where ϵ ∼ N (0, I) is Gaussian noise, and αt and σt define a fixed noise schedule.
The denoising network fθ receives this noisy video latent zt and the conditioning c computed from
the input image, i.e., the first frame I0 in the video, and is trained by minimizing the loss:

L(θ) = Et∼U [1,T ],ϵ∼N (0,I)[∥fθ(zt; t, c)− y∥22]

where the target vector y here is v = αtϵ− σtzt, referred to as v-prediction.

Once the denoising network is trained, starting from pure noise zT ∼ N (0, I), the sampling process
iteratively denoises the noisy latent by predicting the noise in the input and then applying an update
step to remove a portion of the estimated noise from the noisy latent

zt−1 = update(zt, fθ(zt; t, c); t)

until we get clean latent z0, followed by decoding D(z0) to get the generated video. The exact
implementation of the update(·, ·) function depends on the specifics of the sampling method; SVD
uses EDM sampler (Karras et al., 2022).

3.2 TEMPORAL SELF-ATTENTION

The denoising network fθ in SVD is a 3D U-Net, composed of “down”, “mid”, and “up” blocks.
Each block contains spatial layers interleaved with temporal layers, with the temporal self-attention
layers responsible for modeling motion in the generated video. This layer takes a spatio-temporal
tensor X ∈ R1×N×H×W×C as input, where N is the number of frames, and C is the number of
channels. Here we use batch size of 1 for simplicity. The tensor is reshaped by moving the spatial
dimensions (H,W ) into the batch dimension. This creates X ′ ∈ RHW×N×C , where self-attention
operates solely on the temporal axis. More specifically, X ′ is projected through three separate
matrices Wq , Wk,Wv ∈ Rd×C (d is the dimensionality of the projected space.), resulting in the
corresponding query (Q = WqX

′), key (K = WkX
′) and value (V = WvX

′) features. Then the
scale-dot product attention is applied:

Attention(Q,K, V ) = softmax(QKT /
√
d)V

The attention output is fed through another linear layer Wo to get the final output. We refer to A =
QKT ∈ RHW×N×N as the temporal self-attention map, which models the inter-frame correlations
per spatial location. This temporal attention mechanism allows each frame’s updated feature to
gather information from other frames.
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Reverse Reverse
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Figure 1: Method overview. In the lightweight backward motion fine-tuning stage, an input video
x = {I0, I1, ..., IN−1} is encoded into the latent space by E(x), and noise is added to create noisy
latent zt; during inference, zt is created by iterative denoising starting from zT ∼ N (0, I). (1)
Forward motion prediction: we first take the conditioning c0 of the first input image (inference
stage) or the first frame in the video (training stage) I0, along with the noisy latent zt to feed into
the pre-trained 3D U-Net fθ to get the noise predictions v̂t,0, as well as the temporal self attention
maps {Ai}. (2) Backward motion prediction: We reverse the noisy latent zt along temporal axis
to get z′t. Then we take the conditioning cN−1 of the second input image, or the last frame in the
video IN−1, along with the 180-degree rotated temporal self-attention maps {A′

i}, and feed them
through the fine-tuned 3D U-Net fθ′ for backward motion prediction v̂t,1. (3) Fuse and update:
The predicted backward motion noise is reversed again to fuse with the forward motion noise to
create consistent motion path. Note that only the value and output projection matrices W{v,o} in the
temporal self-attention layers (green) are fine-tuned; see Fig. 2 for more details.

4 METHOD

Given a pair of keyframes I0 and IN−1, our goal is to generate a video {I0, I1, I2, ...., IN−1} that
begins with frame I0 and ends with frame IN−1, leveraging the pre-trained image-to-video Stable
Video Diffusion (SVD) model. The generated video should exhibit a natural and consistent motion
path, such as a car traveling or a person walking in a steady direction.

Image-to-video models typically generate video with motions that run forward in time. It is primarily
the temporal self-attention layers that learn this motion-time association. In Sec 4.1, we discuss how
this forward motion can be reversed by rotating the temporal self-attention maps by 180 degrees.
Then we introduce an efficient lightweight fine-tuning technique to reverse this association and
enable SVD to generate backward motion videos from the input image in Sec. 4.2. Finally we
present our dual-directional sampling approach that fuses the forward motion generation starting
with frame I0 and backward motion video generation starting with frame IN−1 in a consistent
manner in Sec. 4.3. An overview of our method is shown in Fig. 1.

4.1 REVERSE MOTION-TIME ASSOCIATION BY SELF-ATTENTION MAP ROTATION

The temporal self-attention maps {Ai} in the network fθ feature the forward motion trajectory in
video {I0, I1, ..., IN−1}. By rotating these attention maps by 180 degrees, we obtain a new set {A′

i}
that depicts the opposite backward motion, corresponding to the reversed one {IN−1, IN−2, ..., I0}
starting from the last frame IN−1.

Specifically, rotating the temporal self-attention maps by 180 degrees—flipping them vertically and
horizontally—yields a backward motion opposite to the original forward motion. For example,
consider attention map A; the rotated map A′

N−j,N−k = Aj,k, where Aj,k indicates the attention

4
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score between the j-th and k-th frames (Ij and Ik). In the corresponding reversed video, the reverse
frame indices N − j and N − k maintain the same relative response.

4.2 LIGHTWEIGHT BACKWARD MOTION FINE-TUNING

We introduce a lightweight fine-tuning framework that specifically fine-tunes the value and output
projection matrix Wv,Wo in the temporal self-attention layers, using the 180-degree rotated atten-
tion map from the forward video as additional input (see Fig. 2). We use fθ′(zt; t, c, {A′

i}) to denote
the backward motion generation network. This fine-tuning approach offers two key advantages:

Linear Wv180° rotation

Linear Wo

Figure 2: Temporal self-attention
module in the backward motion gen-
eration. Given input tensor X , our
attention mechanism additionally takes
the respective attention map A from the
pre-trained SVD featuring forward mo-
tion, rotating it by 180 degrees to create
a reverse motion-time association A′.
Note that W{v,o} are the only trainable
parameters in this module.

First, by utilizing existing forward motion statistics from
the pre-trained SVD model, fine-tuning W{v,o} simplifies
the model’s task to focus on learning how to synthesize
reasonable content when operating in reverse. This strat-
egy requires significantly less data and fewer parameters
compared to full model fine-tuning. Second, it enables
the control for the model to generate a backward motion
trajectory corresponding to the opposite of the forward
trajectory described by the attention map. This feature is
particularly beneficial when planning to merge forward
and backward motions converging towards each other,
and thus achieving forward-backward consistency.

The detailed training process is shown in Alg. 1. For la-
tent video z ∈ R1×N×C×H×W , we denote flip(z) specif-
ically by the second dimension, i.e., reversing the latent
video along the time axis. In every training iteration, we
sample an input video of N frames, and random time step
t, then the noisy video latent zt is created by adding the
noise in that time step. The noisy video latent along with
the input conditioning c0 (computed from I0) is fed into
the pre-trained 3D U-Net fθ to extract the self attention
maps {Ai} from the temporal attention layers. Then we
reverse the noisy video latent, along with the last frame
conditioning cN−1, feed them into the backward motion
3D-U-Net fθ′ . The loss function is computed by taking
the predictions of the network and the ground truth re-
verse video.

ALGORITHM 1: Light-weight backward motion fine-tuning
Input: fθ, pdata(x), E(·)
while not converged do

Sample x ∼ pdata(x),x = {In}N−1
n=0 , z = E(x);

Compute conditioning c0 from I0;
t ∼ Uniform({1, ..., T}), ϵ ∼ N (0, I);
zt = αtz+ σtϵ;
{Ai} = extract attention map(fθ(zt; t, c0)) ;
z′t = flip(zt);
Compute conditioning cN−1 from IN−1;
Take gradient descent step on∇W{v,o}∥fθ′(z

′
t; t, cN−1, {A′

i})− y∥22,y = αtflip(ϵ)− σtz
′
t;

end
Return: W{v,o}

4.3 DUAL-DIRECTIONAL SAMPLING
WITH FORWARD-BACKWARD MOTION CONSISTENCY

Our complete dual-directional sampling process is detailed in Alg. 2. Given a pair of keyframes I0
and IN−1, their corresponding conditioning c0 and cN−1 are pre-computed. Then each sampling
step (illustrated in Figure 1) works as follows:
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(1) Forward motion denoising with I0 as input: The noisy video latent zt along with the conditioning
c0 is fed into the pre-trained 3D U-Net fθ in SVD to predict the noise volume v̂t,0. Additionally,
the temporal self-attention maps {Ai} in the 3D U-Net are extracted.

(2) Backward motion denoising with IN−1 as input: The noisy video zt is flipped along the tem-
poral dimension to create the reverse video latent z′t corresponding to the backward motion. This
backward video, along with the conditioning cN−1, as well as the 180-degree rotated attention maps
{A′

i}, are fed into our fine-tuned 3D U-Net fθ′ . This step predict the noise volume v̂t,1 representing
a reverse motion from IN−1.

(3) Finally, the predicted noise volumes from both forward and reverse motion paths are fused and
then denoised using the update(·, ·) function to create less noisy video zt−1. In this way, we ensure
forward-backward consistency and thus a consistent moving direction in the generated video. The
fuse(·, ·) function performs a simple average. In practice, we also adopt per-step recurrence to
enhance the fusion as seen in (Bansal et al., 2023; Feng et al., 2024), by re-injecting Gaussian noise
into the update zt−1 and repeating the denoising 5 times before continuing the sampling for the next
step.

ALGORITHM 2: Dual-directional diffusion sampling
Input: I0, IN−1, fθ, fθ′ ,D(·)
Compute condition c0, cN−1 from I0, IN−1;
Set zT ∼ N (0, I);
for t← T to 1 do

v̂t,0 = fθ(zt; t, c0);
{Ai} = extract attention map(fθ(zt; t, c0));
z′t = flip(zt);
v̂t,1 = fθ′(z

′
t; t, cN−1, {A′

i}) ;
v̂′
t,1 = flip(v̂t,1) ;

v̂t = fuse(v̂t,0, v̂
′
t,1);

zt−1 = update(zt, v̂t; t)
end
Return: D(z0)

4.4 IMPLEMENTATION DETAILS

Our lightweight fine-tuning technique fine-tunes less than 2% of the U-Net parameters, and does
not rely on large collection of training videos. So we collected 100 high quality videos which are
originally generated from SVD from a community website2 as our training data. Our experimental
results show that our method generalizes well to the real image data. We select the ones with large
object motion such as animal running, vehicle moving, people walking, and so on. We use the
Adam optimizer with learning rate of 1e − 4, β1 = 0.9, β2 = 0.999, and weight decay of 1e − 2.
The training takes around 15K iterations with batch size of 4. We trained on 4 A100 GPUs. For
sampling, we apply 50 sampling steps. For other parameters in SVD, we use the default values:
motion bucket id = 127, noise aug strength = 0.02.

5 EXPERIMENTS

In Figs. 3, 4, 5, we demonstrate that our approach successfully generates high quality videos
with consistent motion given distant keyframes. We highly recommend viewing the videos in the
supplementary to see the results more clearly. Sec. 5.1 describes the data we used to evaluate our
method and the baselines. Sec. 5.2 demonstrates how our method outperforms traditional frame
interpolation method FILM, and the recent work TRF (Feng et al., 2024) that also leverages SVD for
video generation. Sec. 5.3 justifies our design decisions with an ablation study. Sec. 5.4 discusses the
optimal scenarios where our method excels and sub-optimal ones where it outperforms the baselines
but remains limited by SVD itself. Sec. 5.5 discusses our failure cases.

2https://www.stablevideo.com/
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Figure 3: Qualitative baseline comparisons. Leftmost (i = 0) and rightmost columns (i = 24):
start and end frames. TRF generates back-and-forth motions, such as vehicles moving forward
and then reversing. FILM struggles to find correspondences when the input frames are distant and
morphs from the first frame to the last. The red arrow indicates the direction of motion. We recom-
mend viewing the supplementary videos.

5.1 EVALUATION DATASET

We use two high-resolution (1080p) datasets for evaluations: (1) The Davis dataset (Pont-Tuset et al.,
2017), where we create a total of 117 input pairs from all of the videos. This dataset mostly features
subject articulated motions, such as animal or human motions. (2) The Pexels dataset, where we
collect a total of 106 input keyframe pairs from a compiled collection of high resolution videos on
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Pexels3, featuring directional dynamic scene motions such as vehicles moving, animals, or people
running, surfing, wave movements, and time-lapse videos. All input pairs are at least 25 frames
apart and have the corresponding ground truth video clips.

5.2 BASELINE COMPARISONS

We mainly compare our approach to FILM (Reda et al., 2022), the current state-of-the-art frame
interpolation method for large motion, and TRF (Feng et al., 2024) which also adapts SVD for
bounded generation. We show representative qualitative results in Figs. 3, 5. In addition, we also
include results for the keyframe interpolation feature from the recent work DynamiCrafter (Xing
et al., 2023)—a large-scale image-to-video model. The keyframing feature is modified from it and
specially trained to accept two end frames as conditions, while we focus on how to adapt a pretrained
image-to-video model in a lightweight way with small collection of training videos and much less
computational resources. This feature generates videos at resolution 512×320, while ours generates
at resolution 1024× 576. Nonetheless, we present its results for reference.

Quantitative evaluation For each dataset, we evaluate the generated in-between videos using
FID (Heusel et al., 2017) and FVD (Ge et al., 2024), widely used metrics for evaluating gen-
erative models. These two metrics measure the distance between the distributions of generated
frames/videos and actual ones. The results are shown in Tab. 1, and our method outperforms all of
the baselines by a significant margin.

Pexels Davis
FID ↓ FVD ↓ FID ↓ FVD↓

FILM (Reda et al., 2019) 25.16 371.83 41.85 1048.65
TRF (Feng et al., 2024) 31.43 563.16 36.79 563.07

DynamiCrafter (Xing et al., 2023) 32.06 393.12 38.32 439.74

Ours w/o RA 26.42 458.76 36.70 549.98
Ours w/o FT 37.68 555.10 47.23 604.76

Ours 22.99 306.84 32.68 424.69

Table 1: Comparisons with baselines and our ablation variants. Ours w/o RA: full pipeline with fine-
tuning all parameters W{q,k,v,o} without using the 180-degree rotated temporal attention map. Ours
w/o FT: full pipeline using rotated attention map only in the “up” blocks and without fine-tuning
W{v,o} for backward motion.

Comparison to FILM The flow-based frame interpolation method FILM suffers from two prob-
lems. First, it struggles to find correspondences in scenes with large motions. For example, in the
second row of Fig. 3, in a highway where vehicles moving in both directions, FILM fails to find
the correspondence between the moving cars across the input keyframes, resulting in implausible
intermediate motions. For example, some cars in the first frame disappear in the middle and reap-
pear at the end. Second, it generates undesirable unambiguous motion which takes the shortest path
between the end frames. In the example in Fig. 5, given two similar-looking frames that captures
different states of a person running, FILM produces a motion that merely translates the person across
the frames, losing the natural kinematic motions of the legs.

Comparison to TRF TRF fuses the forward video generation starting from the first frame and the
reversed forward video starting from the second frame, both using the original SVD. The reversed
forward video from the second frame creates a backward motion video that ends at the second
frame. Fusing these generation paths results in a back-and-forth motion in the generated videos.
One notable effect we observe with TRF is that the generated videos exhibit a pattern of progressing
forward first and then reversing to the end frame. For example, in the third row of Fig. 3, we can see
the red truck moving backward over time; in the seventh row, the dog’s legs are moving backwards,
leading to unnatural motions. In contrast, our approach fine-tunes SVD to generate a backward
video starting from the second frame in the opposite direction to the forward video from the first
frame.This forward-backward motion consistency leads to the generation of a motion-consistent
video.

3https://www.pexels.com/
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5.3 ABLATIONS
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Figure 4: Ablation study. We evaluate other options for generating in-between motion consistency.
(1) Ours w/o RA: full pipeline with fine-tuning all parameters W{q,k,v,o} in the temporal attention
layers but without using 180-degree rotated temporal self-attention maps as extra input (top row).
(2) Ours w/o FT: full pipeline without fine-tuning W{v,o} for backward motion (second row). The
differences are highlighted in the red rectangle.

In Fig. 4 and Tab. 1, we show visual and quantitative comparisons to simpler versions of our method
to evaluate the effect of the key components in our method.

Fine-tuning without rotated attention map (Ours w/o RA) We compare with a variant that fine-
tunes all parameters in the temporal self-attention layers, namely, W{q,k,v,o}, but without using
the 180-degree rotated temporal self-attention map from the forward video as extra input. Though
fine-tuning all parameters can generate backward motion from the second input image, there is
no guarantee that the backward motion will mirror the forward motion from the first input image.
This discrepancy makes it hard for the model to reconcile the two motion paths, often resulting in
blending artifacts, as shown in the top row of Fig. 4. In contrast, fine-tuning W{v,o} with the rotated
attention maps generates coherent and high-fidelity in-between videos.

Fine-tuning W{v,o} vs. no fine-tuning (Ours w/o FT) In Sec. 4.1, we show that rotating the
temporal attention maps by 180 degrees reverses the motion-time association, creating a backward
motion trajectory. Here we show that fine-tuning the value and output projection matrices Wv,o

is necessary for the model to synthesize high-fidelity content given the input backward motion-
time association. We run our full pipeline without any fine-tuning, and our attention map rotation
operation is only applied to the “up” blocks in this variant. As shown in the second row of Fig. 4 and
Tab. 1, without fine-tuning these parameters, the model can create consistent motion but suffers from
poor frame quality due to the low frame quality of the backward video generation. For example, the
person is disfigured in the generated video. Note that applying the attention map rotation operation
to the “down” and “mid” blocks in this variant worsens visual fidelity even further; thus, we show
the best-case scenario without fine-tuning (i.e., applying rotated attention maps to the “up” blocks
only).

5.4 OPTIMAL AND SUB-OPTIMAL SCENARIOS

Our method is limited by the motion quality and priors learned by SVD. Firstly, our empirical ex-
periments indicate that SVD works well with generating rigid motions, but struggles with non-rigid,
articulated movements. It has difficulty accurately rendering the limb movements of animal/people.
In Fig. 5, though our method significantly improves upon FILM and TRF, it still appears unnatural
compared to the ground truth movements. The bottom row, showing the sequence generated by
SVD using only the first input frame, confirms that SVD itself struggles to generate natural running
movements in between.
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Figure 5: Our method outperforms FILM and TRF in generating articulated movements inbetween,
but still struggles to create natural kinematic motions because of the limitation of SVD itself failing
to generated complex kinematics (bottom row). Note that the input image serve as conditioning to
SVD, so generated first frame might differ from the input image if SVD struggles to create plausible
videos from that input.

5.5 FAILURES

When the input pairs are captured at such distant intervals that they have sparse correspondences, as
shown in Fig. 6, where only a small portion of cars appear in both input frames, it becomes difficult
for our method to fuse the forward and backward motions. This situation, where the overlapping
areas are minimal, leads to artifacts in the intermediate frames.

input frame 1 input frame 2 mid frame

Figure 6: Failure case. Our method fails to work well in the cases where input pairs have sparse
correspondences.

6 DISCUSSIONS & LIMITATIONS

Our method is limited by the motion quality of the underlying base model, Stable Video Diffusion
(SVD), as discussed in Sec. 5.4. Another limitation is that SVD has strong motion priors derived
from the input image, tending to generate only specific motions for a given input. As a result,
the actual motion required to connect the input key frames may not be represented within SVD’s
motion space, making it challenging to synthesize plausible intermediate videos. However, with
advancements in large scale image-to-video models like SoRA4, we are optimistic that these limita-
tions can be addressed in the future. Including better motion datasets and incorporating articulated
motion/physical movement priors may also help. Another potential improvement involves using
motion heuristics between the input key frames to prompt the image-to-video model to generate
more accurate in-between motions.

4https://openai.com/index/sora/
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A APPENDIX

A.1 SENSITIVITY TO THE SCALE OF TRAINING SET

As stated in Sec. 4.4, our method fine-tunes fewer than 2% parameters of the original model by using
the attention map from the pretrained model, and thus we reduce the need for extensive training data.
We use 100 synthetic training videos in our experiments. Here we we conduct an ablation by varying
the training dataset size to be 50 and 150 videos, and evaluate the performance as done in Tab. 1. Our
method still outperforms the baselines even with a training size of 50, and its performance increases
slowly as more data is added (see Fig. 7).
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Figure 7: Ablation on how the scales of the training dataset affect our model’s performance.

Pexels Davis
FID ↓ FVD ↓ FID ↓ FVD↓

FILM 25.16 371.83 41.85 1048.65
TRF 31.43 563.16 36.79 563.07

Ours (motion bucket id = 255) 22.18 306.61 34.06 426.53
Ours (motion bucket id = 65) 23.33 270.27 32.75 491.85

Ours (motion bucket id = 127) 22.99 306.84 32.68 424.69

Table 2: Ablation on how the conditioning parameters motion bucket id in Stable Video Diffusion
affect our model’s performance. Our method uses 127 as default in the paper.

A.2 THE INFLUENCE OF MOTION BUCKET ID IN STABLE VIDEO DIFFUSION

Stable Video Diffusion5 (Blattmann et al., 2023a) takes motion bucket id as micro conditioning
parameter in the video generation process, which is expected to affect the motion magnitude the
generated video: higher values result in more dynamic video and vice versa. However, keyframe
interpolation is a more constrained task where the second end frame provides additional guidance
for the generation (Feng et al., 2024). Here we experiment with different motion bucket id values in
Tab. 2, and our method still outperforms TRF and FILM. On the Pexels dataset, motion bucket id
of 65 results in better FVD score (generated motion closer to the ground truth videos), However,
the same value results in worse FVD score on the Davis dataset. This discrepancy is likely due to
motion difference between the two datasets.

A.3 PSEUDO CODE FOR LIGHTWEIGHT BACKWARD MOTION FINE-TUNING AND DUAL
DIRECTIONAL SAMPLING

5We use the public available model weights https://huggingface.co/stabilityai/
stable-video-diffusion-img2vid-xt
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def get_trainable_params(rev_UNet):
# Only finetune Wv and Wv in temporal self attention layers
rev_unet_train_params = []
for name, param in rev_UNet.named_parameters():

if 'temporal_transformer_blocks.0.attn1.to_v.weight' in name
or 'temporal_transformer_blocks.0.attn1.to_out.0.weight' in name:

rev_unet_train_params.append(param)
param.requires_grad = True

return rev_unet_train_params

# Backward motion fine-tuning
rev_UNet = copy.deepcopy(ori_UNet)
ori_UNet.requires_grad(False) # pretrained 3DUNet in SVD
rev_UNet.requires_grad(False) # backward motion UNet to be fine-tuned
optimizer = optim.AdamW(get_trainable_params(rev_UNet)
for epoch in range(0, num_train_epochs):

rev_UNet.train()
loss = 0.
for batch_video in train_dataloader:

I_0 = batch_video[:, 0] # get the first frame from the video
I_N = batch_video[:, -1] # get the last frame from the video
c_0 = compute_image_conditioning(I_0)
c_N = compute_image_conditioning(I_N)

batch_video = rearrange(batch_video, "b f c h w -> (b f) c h w")
z = vae.encode(batch_video)
z = rearrange(z_0, "(b f) c h w -> b f c h w", f=num_frames)
z_rev = torch.flip(z, dims=(1,)) # GT reverse latent video

noise = torch.rand_like(z)
t = torch.randint(0, num_train_timesteps)
z_t = noise_scheduler.add_noise(z, noise, t)
z_t_rev = torch.flip(z_t, dims=(1,))

pred_noise_1, attention_maps = ori_UNet(z_t, t, c_0)

# rotate attention maps by 180 degree
rotated_attention_maps = [torch.flip(attention_map, dims=(-2, -1))

for attention_map in attention_maps]

pred_noise_2 = rev_UNet(z_t_rev, t, c_N, rotated_attention_maps)
pred_z_rev = noise_scheduler.predict_denoised_sample(pred_noise_2)
loss += mse_loss(pred_z_rev, z_rev)

loss.backward()
optimizer.step()
optimizer.zero_grad()

return rev_UNet

Figure 8: Pytorch pseudocode for lightweight backward motion fine-tuning.
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# Dual directional diffusion sampling for generating in-between video
# ori_UNet: pretrained 3DUNet in SVD
# rev_UNet: fine-tuned backward motion UNet

c_0 = compute_image_conditioning(I_0)
c_N = compute_image_conditioning(I_N)
z_t = torch.randn(latent_shape) # initialize video latent variable
timesteps = scheduler.set_timesteps(num_steps)
for i, t in enumerate(timesteps):

# predicted noise in forward motion start from I_0
pred_noise_1, attention_maps = ori_UNet(z_t, t, c_0)
if do_classifier_free_guidance:

pred_noise_uncond_1 = ori_UNet(z_t, t, null_conditioning)
pred_noise_1 = pred_noise_uncond_1 +
guidance_scale * (pred_noise_1 - pred_noise_uncond_1)

rotated_attention_maps = [torch.flip(attention_map, dims=(-2, -1))
for attention_map in attention_maps]

# predicted noise in backward motion start from I_N
z_t_rev = torch.flip(z_t, dims=(1,))
pred_noise_2 = rev_UNet(z_t_rev, t, c_N, rotated_attention_maps)
if do_classifier_free_guidance:

pred_noise_uncond_2 = rev_UNet(z_t_rev, t, null_conditioning,
rotated_attention_maps)

pred_noise_2 = pred_noise_uncond_2
+ guidance_scale * (pred_noise_2 - pred_noise_uncond_2)

pred_noise_2 = torch.flip(pred_noise_2, dims=(1,))

pred_noise = (pred_noise_1 + pred_noise)/2. # fuse
z_t = scheduler.update(z_t, pred_noise, t) # denoise

output_video = vae.decode(z_t)
return output_video

Figure 9: Pytorch pseudocode for dual directional diffusion sampling.
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