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ABSTRACT

Dynamic behavior modeling has become an essential task in personalized recom-
mender systems for learning the time-evolving user preference in online platforms.
However, most next-item recommendation methods follow the single type behavior
learning manner, which notably limits their user representation performance in re-
ality, since the user-item relationships are often multi-typed in real-life applications
(e.g., click, tag-as-favorite, review and purchase). To offer better recommenda-
tions, this work proposes Evolving Graph Contrastive Memory Network (EGCM)
to model dynamic interaction heterogeneity for multi-behavior sequential recom-
mendation. Specifically, we first develop a multi-behavior graph encoder to capture
the short-term preference heterogeneity, and preserve the dedicated relation seman-
tics for different types of user-item interactions. In addition, we design a dynamic
cross-relational memory network, empowering EGCM to distill the long-term
multi-behavior preference of users and the underlying evolving cross-type behavior
dependencies over time. To obtain robust and informative user representation with
multi-behavior commonality and diversity, we design a multi-behavior contrastive
learning paradigm with heterogeneous short- and long-term interest modeling,
and provides theoretical analyses to support the modeling of commonality and
diversity. Experiments on several real-world datasets show the superiority of our
recommender system over various state-of-the-art baselines.

1 INTRODUCTION

Learning user’s dynamic preference plays a vital role in recommender systems to predict the next
items that users may be interested in Wang et al. (2019). For example, a family may buy chicken
and bread on an online platform for a long time because of their daily needs, and also buy turkeys
close to Christmas. The recent advances of neural network architectures has inspired many efforts to
model the transitions between temporally-ordered items, due to the strong representation capability
of deep learning techniques, e.g., recurrent neural encoder Hidasi et al. (2016), convolution-based
model Tang & Wang (2018) and attention mechanism Kang & McAuley (2018). More recent
sequential recommender systems are built upon the Transformer Sun et al. (2019); Liu et al. (2021b)
or Graph Neural Networks (GNNs) Wu et al. (2019); Ma et al. (2020); Wang et al. (2020c) to provide
state-of-the-art recommendation performance. Despite their effectiveness, most of existing next-item
recommendation approaches rely on only single type of user-item interaction (e.g., click or purchase
data), and thus are limited to capture the item-level multi-behavior interaction patterns.

In real-life recommendation scenarios, users often interact with items in various ways, based on
their interests which are intrinsically time-evolving and diverse. For instance, different types of user
behaviors (e.g., page view, add-to-favorite, purchase) in online retailers may reflect diverse user
intentions and heterogeneous user-item relationships Guo et al. (2019); Jin et al. (2020b). Leaving this
fact untouched, single type of behavior modeling in previous chronological user embedding functions
is insufficient to comprehensively capture diverse user intents with behavior heterogeneity Xia et al.
(2021a). Hence, time-evolving multi-behavior representations can characterize the various latent
factors behind user-item interactions, and maintain dedicated embedding space for different types of
dynamic user behaviors in recommender systems.

While having realized the importance of modeling behavior-aware time-evolving user-item relation-
ships in recommendation, some key challenges remain to be carefully tackled. Specifically, (1) How
to explicitly preserve the dynamic behavior-specific semantics pertinent to each type of user-item
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interactions over time then delivering and retaining user preferences, is not trivial multi-behavior
sequential recommendation. It is critical in for the recommender to distill such heterogeneous item-
level dependencies with the jointly modeling of short-term and long-term user interests. (2) Learning
informative and robust representations of multiplex user-item interactions requires a tailored modeling
with a performant recommendation paradigm, which towards the encoding of users’ multi-behavior
commonality and diversity. While we can embed behavior-specific semantics into individual latent
vectors, the understanding of multi-behavior commonality underlying global view of user-specific
dynamic preference is critical to multi-behavior modeling.

Contributions. In light of these challenges, we propose an Evolving Graph Contrastive Memory
(EGCM) framework that can effectively distill the heterogeneous user intentions over time from
multi-behavior data in recommendation. Specifically, we first introduce a multi-behavior graph
encoder equipped with temporal context embedding for modeling the behavior-aware short-term
interests of users. Furthermore, a dynamic cross-relational memory network based on self-attention
is proposed to incorporate heterogeneous cross-behavior dependencies into learning user dynamic
preferences with cross-behavior relational transitions. In a nutshell, this dynamic multi-behavior
modeling allows us to characterize diverse user intents from the long-term perspective behind the
interacted item sequence. To enhance the generalizability and robustness of our recommender, we
design our multi-behavior contrastive learning paradigm to endow EGCM with the capability of
encoding multi-behavior commonality and differentiating the behavior-aware preference of various
users. We also provide theoretical analysis of our EGCM model in Supplementary Section.

To summarize, the key contributions of this work are presented as follows:
• Emphasizing the importance of jointly learning of dynamic preference heterogeneity with multi-

behavior data and diverse user behavior-aware interests for recommendation.
• Proposing a new model EGCM, which integrates the dynamic cross-relational dependency model-

ing with the multi-behavior contrastive learning paradigm, so as to distill the evolving user-item
relationships at the fine-grained level of user preferences. In addition, we perform the theoretical
analysis of our proposed EGCM model as presented in the Supplementary Section.

• Conducting experiments on three real-world datasets to demonstrate the superiority of EGCM.
Further ablation studies and in-depth model analysis justify the rationality of our model design. To
support the reproducibility of our experimental results, the model implementations can be found at
the anonymous link: https://anonymous.4open.science/r/EGCM.

2 RELATED WORK

Next-item/Sequential Recommendation. Early studies (e.g., FPMC Rendle et al. (2010)) rely
on the Markov chain to tackle the sequential recommendation problem. Many recent efforts have
been devoted to learning users’ dynamic interests with various neural network encodes, such as
the RNN-based method GRU4Rec Hidasi et al. (2016) and CNN-based approach Caser Tang &
Wang (2018). In addition, several self-attention relational learning models are introduced to estimate
the item correlations, e.g., SASRec Kang & McAuley (2018), BERT4Rec Sun et al. (2019) and
TiSASRec Li et al. (2020). Inspired by the strength of graph neural networks, some recent sequential
recommender systems are built over the graph-based message passing scheme to encode the multi-
order dependencies among items, including MA-GNN Ma et al. (2020), SURGE Chang et al. (2021),
and GCE-GNN Wang et al. (2020c). Furthermore, self-supervised learning has been used in recent
sequential recommendation methods for data augmentation, like COTREC Xia et al. (2021c) and
DHCN Xia et al. (2021c). However, most of existing methods are built on single type of interactions
and ignore the heterogeneous behavior-aware user preferences.
Multi-Behavior Recommender System. Recently, multi-behavior recommendation has gained
considerable attention due to the effectiveness of considering multi-typed user behaviors in boosting
the recommendation performance Chen et al. (2021). For example, NMTR Gao et al. (2019)
and DIPN Guo et al. (2019) differentiating behavior semantics with multi-task learning schemes.
To encode diverse relationships between users and items, some recent studies (e.g., MBGCN Jin
et al. (2020b), KHGT Xia et al. (2021a) and MBGMN Xia et al. (2021b)) attempt to leverage
graph neural networks for encoding the multi-behavior patterns, based on their constructed relation-
aware heterogeneous user-item interaction graph. One major drawback of existing multi-behavior
recommender systems is that they mostly focus on the stationary scenarios, while neglect the time-
evolving multi-behavior dependencies from diverse user interest representation.

2



Under review as a conference paper at ICLR 2023

�� − �

Short-Term Multi-Behavior Graph Encoder
� = 1

� = �
…

Temporal Context

[ ]
1

�
…

Message Passing

Dynamic Cross-
Relational Memory

……

……

ℎ = 1

×
��

� � �
�

�

Cross-Type Relation Attention Fusion

Multi-Behavior Contrastive Learning

Figure 1: The model flow of EGCM framework. The multi-behavior contrastive learning module
(right side) augments the graph-enhanced dynamic memory network (left & middle side) with the
auxiliary behavior-aware self-supervision signals from both short-term and long-term user interests.

Contrastive Representation Learning. As a prevalent technique, contrastive learning has shown
potential of auxiliary self-supervised signals Liu et al. (2021a); Ho & Nvasconcelos (2020) generation.
For image analysis, many contrastive methods have been proposed to advance the modeling image data
with different augmentation techniques Aberdam et al. (2021); Verma et al. (2021); Tian et al. (2020b),
such as cropping, horizontal translations and rotations. In addition, cross-view contrastive learning has
provided the state-of-the-art graph representation performance with various augmentation operators,
e.g., node shuffles in DGI Velickovic et al. (2019), centrality-aware edge dropout in GCA Zhu et al.
(2021) and subgraph sampling in MVGLR Hassani & Khasahmadi (2020). Our work is inspired by
the above work and designs a new multi-behavior contrastive learning paradigm to simultaneously
capture the user-specific behavior commonalities and cross-user behavior diversity.

3 METHODOLOGY

We present the technical details of our EGCM model which consists of three key components: i)
Short-term multi-behavior graph encoder that captures the user’s short-term interests with multi-
relational graph neural networks; ii) Long-term user interest modeling which learns time-evolving
multi-behavior preferences across different time slots; iii) Multi-behavior self-supervised learning
which enhances the user representation with the cross-behavior preference commonality and instance
self-discrimination.

3.1 SHORT-TERM MULTI-BEHAVIOR GRAPH ENCODER

To capture the dedicated behavior semantics for underlying user’s short-term interests, we propose a
multi-relational graph encoder to handle the heterogeneous item dependencies within each time slot.

3.1.1 SHORT-TERM MULTI-BEHAVIOR GRAPH

We define the short-term behavior-specific graph Gbt = (Vb
t , Ebt ,Mb

t) to represent the behavior-aware
user-item interactions within the t-th time slot (e.g., day, week, or month) under behavior b. And
Gbt is divided from the total interaction graph G by time-slot and behavior. In graph Gbt , nodes
Vb
t = Vb

t,u ∪ Vb
t,i, and edges Ebt represent the interactions for specific times and behaviors between

user nodes Vb
t,u and item nodes Vb

t,i. Given the set of edges Ebt , we define the user-item interaction
matrix Mb

t , where each entry M b
t,(u,i) = 1 if user u has adopted item i under the behavior type of b

within the t-th time slot. b ∈ B denotes the specific user behavior(e.g., click, tag-as-favorite, review
and purchase). t ∈ Λ denotes the current time slot.

3.1.2 BEHAVIOR-AWARE MESSAGE PASSING

Inspired by recent efforts of utilizing graph neural network to model relational user data He et al.
(2020); You et al. (2020), we design a behavior-aware message passing schema to capture the high-
order dependencies among items through the recursively embedding propagation across graph layers.
Formally, our behavior-aware message passing function from the (l-1)-th layer to the (l)-th layer is
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defined with the following form:

Eb,(l)
t,i = σ

(
Γ(Mb

t ·M
b
t
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t,i

)
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t ·M
b
t
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t)
− 1

2 ·Mb
t · (B

b
t)

−1 ·Mb
t

T · (Db
t)

− 1
2

(1)

where Eb,(l)
t,i is the embedding of item i at the l-th graph propagation layer at the t-th time slot under

behavior b. σ(·) is the PReLU He et al. (2015) activation function to inject non-linearities. Γ(·) is
the normalization function to alleviate the large value effects of embeddings during the recursive
propagation Wang et al. (2020b). It is dedicated for the message passing on user-item heterogeneous
bipartite graph, which is different from the symmetrical graph Laplacian of eigenvectors Kipf &
Welling (2016). And the two diagonal degree matrices Db

t ∈ RN×M and Bb
t ∈ RM×N are based on

the interaction matrix Mb
t . By stacking multiple embedding propagation layers, the behavior-specific

high-order item dependencies can be preserved in the generated representations Eb,(L)
t,i , where L

denotes the number of propagation layers. And we conduct the concatenation to aggregate the
embeddings encoded from each graph layer, the concatenated representation is then sent into a linear
layer with normalization Eb

t,i = Eb
t,i/||E

b
t,i|| to be reshaped to obtain output item representation Eb

t,i
of out short term behavior-aware graph neural network.

After encoding the item embeddings by exploring the high-order dependencies among items, we
generate the user representations which maintain the behavior-specific short-term interests:

Eb
t,u = σ(Γ(Mb

t

T
) · Eb

t,i ·W
b
t,u); Γ(Mb

t

T
) = (Bb

t)
− 1

2 ·Mb
t

T · (Db
t)

− 1
2 (2)

where Eb
t,u is corresponding to users’ short-term interests at the t-th time slot under the behavior type

of b after normalization Eb
t,u = Eb

t,u/∥E
b
t,u∥2. And the message passing from item to user is also

over adjacency matrix Mb
t,(u,i) = 1/(

√
|Nu|

√
|Ni|) with applying Γ(·).

3.1.3 PRIORI-AWARE INITIALIZATION & TEMPORAL CONTEXT INJECTION

In our short-term multi-behavior graph encoder, we rely on the time slot-specific user-item interaction
data, which may lead to overfitting issue. In light of this limitation, we develop a priori-aware
embedding initialization strategy which injects the representations of previous time slot (t− 1) into
the embedding initialization of current time slot t, in order to reduce the training difficulty and
deterioration Glorot & Bengio (2010). Formally, the priori-aware embedding initialization is defined
as follows:

Eb
t,i = Υ(Eb

t,i,init) =
(
ζ ∗ Eb

t,i,init + (1− ζ) ∗ Eb
t−1,i

)
·Wb

ζ (3)

where Υ(·) is the initial function for preprocessing the Xavier initialied embedding Eb
t,i,init for current

behavior-specific short-term graph neural network which is apply before Eq. 1, Eq. ??It’s output
Eb
t,i denotes the input embeddings for the short-term behavior-specific graph Gbt at the t-th time slot.

Eb
t−1,i represents the representations encoded from the previous (t− 1) time slot. Here, ζ and Wb

ζ
are learnable aggregation weight and projection matrix, respectively.

After representation learning, to inject temporal context signals into representation, our temporal
context encoder is built over the positional encoding technique Vaswani et al. (2017). Specifically,
the sinusoid functions was introduced to generate the relative time embedding for each user-item
interaction edge. By doing so, we enhance our short-term multi-behavior graph encoder with the
capability of capturing behavior-aware interaction dynamics of users with the temporal context
injection.

3.2 DYNAMIC CROSS-RELATIONAL MEMORY NETWORK

In the multi-behavior recommender system, long-term multi-behavior dynamics reflect a holistic
view of diverse preferences of users across different time slots. And different types of user behaviors
are inter-dependent among time slots in a long-term perspective. For example, customers may first
view some products in online retail sites, and make their purchase decisions one day after. To capture
and convey such evolving cross-type behavior dependencies across time slots, we propose a dynamic
cross-relational memory network to learn the evolving cross-type behavior dependencies over time in
a long-term manner.
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In order to form a memory network, we first learn the information to be remembered, i.e., learn
time-evolving cross-type behavior dependencies. Technically, it can be implemented by explicitly
learning the influence weights between behavior-aware representations during specific time slot.
Following the scaled dot-product self-attention function Vaswani et al. (2017), we take multi-behavior
information at t and t− 1 as query(Q) and key(K), respectively. And value(V) is calculated from the
embedding at t− 1 to ultimately pass the information from t− 1. Formally, our designed dynamic
cross-relational memory encoder over adjacent time slot-specific behavior representations as follows:

Zt,t−1 = δ

(
Qt ·KT

t−1√
d/h

)
· Vt−1;


Qt = Ht ·WQ

t

Kt−1 = Ht−1 ·WK
t

Vt−1 = Ht−1

; Φ = Qt ·KT
t−1 (4)

where Zt,t−1 aggregates multi-behavior information of current time slot t with the incorporation of
cross-type behavior dependencies from the previous (t − 1)-th time slot. Ht,u and Ht,i are three-
way tensors to represent the multi-behavior short-term interest for each individual user prepare for
self-attention module by stacking type-specific user(Eb

t,u) and item(Eb
t,i) embeddings. WQ

t ∈ Rd×d,
WK

t ∈ Rd×d represent the linear transformation matrices corresponding to the query and key
dimension, respectively. The scale

√
d/h is introduced to produce a softer attention distribution for

avoiding gradient vanishing Vaswani et al. (2017), and h represents the number of head representations.
Φ is the learned self-attention weight matrix. Thus, each entry ϕb,b′ ∈ R|B|×|B| in Φ indicates the
estimated interrelationship between the behaviors of adjacent time slot of a specific user. In our
model implementation, we utilize the Broadcast Mechanism Van Der Walt et al. (2011) to improve
the computational efficiency of tensor multiplication. Then, with the learned evolving cross-type
behavior dependencies, we refine the time slot-specific user and item representations as:

Ẽt,u = µ(Et,u ⊕ Zt,t−1,u); Ẽt,i = µ(Et,i ⊕ Zt,t−1,i) (5)

where Ẽt,u, Ẽt,i are the embedding incorporate cross time information in terms of how various
behaviors are related to one another. And µ(·) indicates the adopted mean pooling operation. With
the design of our dynamic cross-relational memory network, our EGCM can preserve the dedicated
time-evolving behavior dependencies across different types of user interactions.

3.3 MULTI-BEHAVIOR CONTRASTIVE LEARNING

Having encoding the heterogeneous user interest representations corresponding to the short-term
(Et,u,Et,i) and long-term (Ẽt,u, Ẽt,i) perspectives, we propose to jointly capture the diverse multi-
behavior dependencies and commonality in the multi-behavior recommendation scenario.

3.3.1 HETEROGENEOUS BEHAVIOR AGGREGATION

We first generate the multi-behavior representation (Eu, Ei) and (Ẽt,u, Ẽt,i) by aggregating type-
specific behavior representations with the attention mechanism for short term and long term, respec-
tively. Take long-term representations as an example, it can be formally presented as follow:

ωb
u =

exp(Ẽ
b

u Wf )∑|B|
b=1 exp(Ẽ

b

uWf )
; Ẽu =

|B|∑
b=1

ωb
uẼ

b

u (6)

where ωb
u represents the learned dependency weight of b-th type of user behaviors. And Wf ∈ Rd

is the transformation matrix before softmax. With the behavior aggregation attention mechanism,
both short-term and long-term multi-behavior preferences of users can be preserved by the fused
representations.

3.3.2 CROSS-BEHAVIOR CONTRASTIVE SELF-SUPERVISION

In our EGCM model, we aim to simultaneously capture the multi-behavior commonality of individual
user, and the multi-behavior distinction of different users. To this end, we design the cross-behavior
contrastive learning module to enhance the multi-behavior dependency modeling with the aug-
mented self-supervision signals. Specifically, we propose to generate our contrasting views with
the type-specific behavior semantics and the fused multi-behaviour pattern. Our EGCM performs
the behavior-level augmentation by pulling the type-specific behavior embedding (ebi ∈ Rd×1) and
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Table 1: Statistics of experimented datasets
Dataset User # Item # Interaction # Sparsity Interaction Behavior Types
Taobao 31882 31232 167862 99.98% {View, Favorite, Cart, Purchase}
IJCAI 22438 35573 199654 99.98% {View, Favorite, Cart, Purchase}

E-commerce 31021 1827 370386 99.35% {Browse, Review, Purchase}

multi-behavior representation (ei ∈ Rd×1) of the same user u closer as positive pairs, pushing
the behavior embeddings of different users away as negative pairs. Formally, the cross-behavior
contrastive objective is defined as:

Lb
cl = log

exp(s(ebu, eu)/τ)
exp(s(ebu, eu)/τ) +

∑
u̸=u′

(
exp(s(ebu, eu′)/τ) + exp(s(ebu, ebu′)/τ)

) (7)

where τ represents temperature parameter to control the effect of mutual information estimation Chen
et al. (2020b). Here, we define the InfoNCE-based similarity function s(ebu, eu) = ebu · eu/∥ebu∥∥eu∥
which is measured by the doc product between ℓ2 normalized ebu and eu. With incorporating the
cross-behavior contrastive self-supervision signals into our recommendation framework as auxiliary
regularization, EGCMcan jointly capture the commonality of individual user intent and the diversity
of different users with respect to their multi-behavior preferences. And, we talk about the details of
commonality and diversity modeling in the supplementary material.

3.4 MODEL INFERENCE PHASE

For the main recommended task, we define our optimized objective with the Bayesian Personalized
Ranking (BPR) loss as follows:

LBPR =
∑

(u,i+)∈E+,(u,i−)∈E−

− log(sigmoid(eu · ei+ − eu · ei−)) + λ||Θ||2 (8)

where {(u, i+, i−)|(u, i+) ∈ E+, (u, i−) ∈ E−} represents the pairwise training samples. Here, E+
and E− denotes the corresponding observed and unobserved interaction of user u. To alleviate the
overfitting issue, we apply the L2 regularization in our BPR loss, and thus, Θ denotes the learnable
hyperparameters. Finally, our joint optimization objective is given below by integrating BPR loss

(LBPR) with short-term (
|Λ|∑
t

|B|∑
b

Lshort
cl ) and long-term (

|B|∑
b

Llong
cl ) contrastive objectives:

L =

|B|∑
b

LBPR + α ∗
|B|∑
b

Llong
cl + β ∗

|Λ|∑
t

|B|∑
b

Lshort
cl (9)

where |Λ| represents the number of time slots. α and β are regularization strengths of contrastive
objectives. We further provide the in-depth analysis of our EGCM model with respect to the time
complexity analysis and theoretical discussion in the submitted Supplementary material.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We perform the model evaluation on three real-world datasets with the statistics shown in
Table 1. i) Taobao is a benchmark dataset which collects four types of user behaviors from Taobao’s
recommender system. ii) IJCAI is a released online retailing dataset by IJCAI competition with four
types of user online activities. iii) E-commerce contains browse, review and purchase behaviors of
users in a real-life online retailer. Following the same settings in Jin et al. (2020a); Xia et al. (2021b),
our multi-behavior sequential recommender system regard the purchase as the target behaviors and
other types of user behaviors as auxiliary behaviors.

Evaluation Protocols. In our evaluation, two representative metrics, i.e., Hit Ratio (HR@N) and
Normalized Discounted Cumulative Gain (NDCG@N) (N = 10 by default), are adopted to measure
the recommendation accuracy. To be consistent with the settings in existing sequential recommender
systems Sun et al. (2019), the leave-one-out evaluation strategy is used for evaluation. Additionally,
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for each user, the last interacted item under the target behavior type is considered as the positive
samples in the test set and 99 non-interacted items are randomly sampled as negative instances.

Baselines. We compare our EGCM with various types of state-of-the-art recommendation methods.

• (i) CNN/Attention-based Sequential Recommendation Approaches: Caser Tang & Wang (2018)
uses the convolutional filters to encode local item dependencies of user sequences. SASRec Kang &
McAuley (2018), TiSASRec Li et al. (2020), AttRec Zhang et al. (2018) are built on self-attention
mechanism to capture correlations between temporally-ordered items. Bert4Rec Sun et al. (2019)
trains the bidirectional Transformer model with the cloze task.

• (ii) Hybrid Sequential Recommender Systems: HGN Ma et al. (2019) is a hierarchical gating
network to learn the item feature relevance. Chorus Wang et al. (2020a) considers both knowledge-
aware item relations and temporal context in sequential recommendation.

• (iii) GNN-based Sequential Recommendation Models: SR-GNN Wu et al. (2019) first introduces
the graph neural networks to model the sequential behavior patterns over short item sequences. MA-
GNN Ma et al. (2020) leverages GNNs to encode both short-term and long-term item dependencies.
Furthermore, HyperRec Wang et al. (2020b) proposes to capture dynamic triadic item relationships
using the hypergraph structures. COTREC Xia et al. (2021c) and DHCN Xia et al. (2021d) are
two state-of-the-art sequential recommender systems based on self-supervised learning paradigms.

• (iv) Multi-Behavior Recommender Systems: NMTR Gao et al. (2019) and DIPN Guo et al.
(2019) formalize the multi-behavior recommendation task with multi-task learning frameworks.
MBGCN Jin et al. (2020b), KHGT Xia et al. (2021a) and MBGMN Xia et al. (2021b) design
multi-behavior graph message passing schemes to model heterogeneous user-item interactions.
EHCF Chen et al. (2020a) and CML Wei et al. (2022) generate additional supervision signals
from auxiliary behaviors to boost the recommendation performance.

Table 2: Performance comparison of all methods on different datasets in terms of HR & NDCG.

Caser
Att
Rec

SAS
Rec

TiSAS
Rec

BERT
4Rec HGN Chorus

SR-
GNN

MA-
GNN

Hyper
Rec DHCN

Tmall
H@10 0.321 0.328 0.319 0.322 0.329 0.283 0.335 0.318 0.331 0.333 0.321
N@10 0.195 0.197 0.184 0.185 0.197 0.172 0.201 0.189 0.202 0.204 0.193

IJCAI
H@10 0.257 0.261 0.263 0.262 0.281 0.251 0.270 0.280 0.259 0.265 0.271
N@10 0.146 0.147 0.148 0.148 0.155 0.136 0.149 0.151 0.149 0.151 0.148

E-commerce
H@10 0.627 0.628 0.599 0.599 0.641 0.586 0.639 0.620 0.644 0.648 0.638
N@10 0.381 0.387 0.368 0.368 0.392 0.359 0.402 0.373 0.411 0.413 0.391

COTREC NMTR DIPN MBGCN KHGT MBGMN EHCF CML EGCM Imprv. p-value
Tmall

H@10 0.330 0.362 0.325 0.381 0.391 0.419 0.433 0.543 0.597 9.94% 5.2e−5

N@10 0.201 0.215 0.193 0.213 0.232 0.246 0.260 0.327 0.363 11.01% 4.9e−6

IJCAI
H@10 0.278 0.269 0.276 0.270 0.278 0.329 0.362 0.410 0.510 24.39% 9.6e−6

N@10 0.153 0.156 0.151 0.138 0.145 0.176 0.207 0.235 0.312 32.77% 2.3e−5

E-commerce
H@10 0.647 0.651 0.655 0.679 0.689 0.690 0.611 0.719 0.763 6.12% 8.7e−3

N@10 0.405 0.408 0.397 0.414 0.434 0.432 0.413 0.427 0.470 10.07% 3.4e−4

* To save space, we folded the table into two parts. Where the bolded columns are our results, followed by the improvment and p-value for
the best results.

Hyperparameter Settings and Implementation Details. We implement our model in Pytorch and
adopt Xavier initializer Glorot & Bengio (2010) for parameter initialization. The Cyclical Learning
Rate strategy Smith (2017) is used during the model training phase with the AdamW Loshchilov &
Hutter (2017) optimizer. For fair comparison, the number of graph layers in all GNN-based models
are selected from the range {1,2,3,4} to achieve the best performance. The temperature coefficient τ
is tuned from {0.02, 0.035, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7} in our multi-behavior contrastive learning
component. We further study the influence of key hyperparameters in our model.
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4.2 RECOMMENDATION PERFORMANCE

We report the performance comparison results in Table 2 and summarize the findings: (1) EGCM
outperforms various baselines in all cases by achieving significant performance improvements. The
“imprv” indicates the relative performance improvement between EGCM and the best performed
baseline CML. Through the encoding of the evolving dependencies across different types of be-
haviors, EGCM is able to simultaneously capture the dynamics of users’ short-term and long-term
interests, by distilling the underlying heterogeneous interaction patterns. (2) EGCM outperforms the
compared sequential recommender systems by a large margin, which indicates that the incorpora-
tion of multi-behavior context is beneficial for disentangling behavior heterogeneity of users. (3)
Conducting dynamic contrastive learning with cross-behavior dependencies, EGCM learns better
multi-behavior representations compared with state-of-the-art multi-behavior recommendation ap-
proaches, by preserving both the behavior commonality and diversity of users. (4) The consistent
performance improvements of our method on datasets with different sparsity degrees, benefits from
the incorporation of effective self-supervision signals generated by our contrastive learning paradigm.

4.3 ABLATION STUDY

We evaluate the efficacy of key components in EGCM with different variants: (1) w/o-JBL: Instead of
performing jointly learning with multi-typed behavior supervision labels, we directly incorporate
auxiliary behavior data as contextual features for user representation. (2) w/o-CL: We further disable
our multi-behavior contrastive learning component to capture the behavior commonality and diversity.
(3) r/w-GRU: We replace our dynamic cross-relational memory network with gated recurrent unit
(GRU) to encode behavior-specific embedding sequences. (4) w/o-MBG: On the basis of w/o-CL,
we remove the behavior-aware graph neural encoder, to model the high-order connectivity over the
multi-behavior user-item interaction graph within a specific time slot.

From evaluation results shown in Table 3, we can observe that our multi-behavior learning with
augmented short- and long-term contrastive objectives improves the generalization of multi-behavior
recommender system. In addition, our cross-relational memory network is more effective than GRU
to encode long-term multi-behavior user interests. Furthermore, the multi-behavior graph encoder
brings positive effects to learn short-term heterogeneous user preferences, compared with directly
information aggregation over id-corresponding embeddings for collaborative effect modeling.

4.4 IN-DEPTH ANALYSIS OF EGCM MODEL

Commonality and diversity. For cross-behavior user preference commonality, to observe the effect of
mutual information maximization, in Figure 2 (a)-(d), we visualize the encoded behavior-specific user
embeddings of our EGCM and the variant w/o-CL (without the multi-behavior contrastive learning) on
Tmall and IJCAI, respectively. Theoretically, limiting contrastive loss is maximizing the lower bound
for mutual information and the rationality of multi-view contrastive learning(Supplementary materials
A.1.1), which support this operation. The visualization suggest that our cross-behavior multi-view
contrastive paradigm is effective to preserve user’s multi-behavior commonality by bringing the
multiple behaviors semantics close to each other, rather than keep behavioral representations in their
own space. For user representation diversity, as detailed in the Supplementary Material.A.1.2, the
gradient of the negative sample sample of the anchor(each user u) is proportional related as follow
equation:

c(x) ∝
√

1− (x)2 · exp (x/τ) (10)

where c(x) is the relationship function of the gradient from the negative samples, x represents the
similarity between the anchor node and the paired sample(e.g., x = ebu, eu ∈ [−1, 1]). And we
plot c(x) in right part of Figure 2 (e) when temperature coefficient τ = {0.02, 0.03, 0.2}. It can be
observed that the gradient appears to grow exponentially, when τ decrease while similarity x increase
gradually. Explained from the perspective of the recommendation task, anchor node indicates specific
user, and negative samples represent other |Vu| − 1 users. If other users are close to the anchor
user, i.e., the over-smoothing may have occurred and result in indistinguishable user representations.
In this case, the contrastive loss will give a larger gradient to those users to pushed them away.
Therefore, with cross-behavior contrastive self-supervision, EGCM can better differentiate diverse
user preference and enhance the user representations with multi-behavior diversity. Therefore, it
can be seen from left part of Figure 2 (e) that as the temperature τ decreases which, the more
distinguishable the user representation is, which brings the better effect. However, when the gradient
is quite large, the ’NaN’ value which due to gradient explosion will be observed. as shown in Figure 2
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Table 3: Ablation study on the effectiveness of components in EGCM.
Data Tmall IJCAI E-commerce

Metrics HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
w/o-MBG 0.338 0.219 0.261 0.139 0.630 0.372
r/w-GRU 0.361 0.210 0.276 0.148 0.675 0.417
w/o-CL 0.391 0.231 0.300 0.166 0.734 0.461
w/o-JBL 0.473 0.291 0.367 0.205 0.747 0.469
EGCM 0.597 0.363 0.510 0.312 0.763 0.470

(a) w/o-CL on Taobao

(c) w/o-CL on IJCAI

(b) EGCM on Taobao

(d) EGCM on IJCAI

(e) Impact of Multi-Behavior Contrastive Learning

(f) The Learned Dynamic Cross-Behavior Dependencies

Figure 2: (a)-(b): Visualized behavior-aware user representations which preserve multi-behavior
commonality and cross-user behavior diversity. (e): Impact study of contrastive learning in terms of
temperature parameter τ (see Sec. A.1.2 for details). (f): Learned cross-behavior dependency weights
across time slots.

(e), we can notice that a smaller value of temperature value τ may bring larger gradients for better
identifying hard negatives, so as to enhance the model discrimination ability in learning personalized
user interests.

Case study of memory network. iii) In Figure 2 (f), we visualize the learned cross-behavior
dependencies between time slots with 4 × 4 weight matrices ϕ ∈ R|B|×|B| for 400 sampled users
on Taobao dataset(with Page View, Favorite, Cart, Purchase four kinds behaviors). Then, we select
six cases from the sampled data and combine the real statistics of multi-behavior data to analyze
the significance of the learned weight matrices. It can be observed in Figure 2 (f) that the weight of
each behavior is related to the number of interactions of the behavior. For example, for user 22186 in
Figure 2[3] with 111 interactions in page view behavior, the number of interactions in other behaviors
are {1, 5, 4} which are too small relatively. Thus it is difficult to learn differentiated values in the
other three rows relative to the first row of the weight matrix. In addition, it can be seen from the
thumbnail, most matrices have the darkest diagonal color, which is the characteristic of self-attention.

5 CONCLUSION
This work studies the problem of multi-behavior sequential recommendation and propose our model
that captures the interaction heterogeneity of each user at both the short-term and long-term level
interests. In addition, a multi-behavior contrastive learning paradigm is presented to not only model
the multi-behavior commonalities of individual user, but also enhances the distinction of behavior-
aware preference of different users. Experiments on three real-world datasets demonstrate that EGCM
significantly advances the recommendation performance compared with many strong baselines. In
the future, we plan to extend EGCM to adapt to the cross-domain recommendation to tackle the
cold-start problem in multi-behavior recommender systems.
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