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Figure 1. PressureVision++ leverages contact labels to estimate fingertip pressure during interaction with diverse surfaces. Our method
enables mixed reality devices to use everyday surfaces as touch-sensitive interfaces, as demonstrated with a surface drawing application.

Abstract

Touch plays a fundamental role in manipulation for hu-
mans; however, machine perception of contact and pres-
sure typically requires invasive sensors. Recent research
has shown that deep models can estimate hand pressure
based on a single RGB image. However, evaluations have
been limited to controlled settings since collecting diverse
data with ground-truth pressure measurements is difficult.
We present a novel approach that enables diverse data to be
captured with only an RGB camera and a cooperative par-
ticipant. Our key insight is that people can be prompted
to apply pressure in a certain way, and this prompt can
serve as a weak label to supervise models to perform well
under varied conditions. We collect a novel dataset with
51 participants making fingertip contact with diverse ob-
jects. Our network, PressureVision++, outperforms human
annotators and prior work. We also demonstrate an ap-
plication of PressureVision++ to mixed reality where pres-
sure estimation allows everyday surfaces to be used as ar-
bitrary touch-sensitive interfaces. Code, data, and models
are available online.1

1. Introduction
People frequently interact with their surroundings by ap-

plying pressure with their hands. Machine perception of
1https://pressurevision.github.io/

hand contact pressure has been used for activity recogni-
tion [59], ergonomics [52], user interfaces [54], and other
applications. Most approaches use physical pressure sens-
ing arrays. These sensors, however, may be expensive or
impractical to mount to hands or natural objects.

Recently, PressureVision [19] showed that computer vi-
sion can be used to estimate hand pressure from a single
RGB image. As opposed to physical pressure sensors, cam-
eras provide a scalable, low-cost method to sense contact
and pressure, opening the door to broad application. While
their model performs well with diverse hands, performance
was only explored in an idealized, controlled environment.
Their capture environment used artificial lighting, high-end
machine vision cameras, and was trained and tested on sim-
ple, flat, rigid surfaces. Based on their results, it is not evi-
dent that vision-based pressure estimation is possible in less
constrained settings.

Collecting training data for diverse surfaces might en-
able PressureVision [19] to generalize more broadly, but
data collection is challenging (Figure 2). Each RGB image
in the training data requires ground truth pressure from a
high-resolution pressure sensor. This requirement severely
limits data collection for diverse surfaces, since mounting
pressure sensors alters the appearance and properties of the
surface. Additionally, human labelers have difficulty iden-
tifying contact and pressure from images.

We present a novel approach that enables training data
for visual hand pressure estimation to be captured for unal-
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tered surfaces found in the wild. Instead of instrumenting
the surface, our approach relies on people’s manual dex-
terity and highly sensitive perception of touch [33]. We
prompt participants to make contact with a surface in a spe-
cific way or move their hands close to a surface without
making contact. The prompts serve as contact labels, which
are a form of weak label [48]. A contact label consists of
the regions of the hand that are in contact with a surface and
the level of applied force.

We collect a dataset, ContactLabelDB, which captures
51 participants applying pressure to surfaces with their
hands. The dataset contains fully labeled data, which cap-
tures participants interacting with a pressure sensor. How-
ever, the sensor reduces the diversity of data that can be
collected. We also capture weakly labeled data, which is
captured without a pressure sensor but contains greater di-
versity.

Training our network, PressureVision++, on RGB im-
ages paired with contact labels results in higher perfor-
mance on diverse surfaces, outperforming prior work and
generalizing to surfaces that are not represented in the fully
labeled training data.

Finally, we demonstrate an application of PressureVi-
sion++ to mixed reality. Visual pressure estimation al-
lows using everyday surfaces as touch-sensitive user inter-
faces. We demonstrate a variety of interfaces, including a
touch-sensitive keyboard that allows users to quickly type
by touching a table surface. Participants type faster and
prefer our keyboard when compared to a commercially re-
leased pose-based keyboard included with the Meta Quest
2 headset.

In summary, we make the following contributions:

• We present PressureVision++, a deep model for pres-
sure estimation that leverages contact labels to learn
from data with and without ground truth pressure la-
bels.

• We collect ContactLabelDB, a dataset of RGB images
with 51 participants interacting with 100+ surfaces.

• We demonstrate the utility of PressureVision++ with
applications to mixed reality.

• We release our models, data, and code.

2. Related Work

Physical Sensors for Pressure Sensing: Sensors to mea-
sure pressure may be mounted to human hands. Glove-
based sensors have been developed by researchers [7, 59]
and are commercially available [51, 61]. However, sensors
mounted to the hand are expensive, interfere with tactile
perception, and impact manual dexterity. Further, gloves

Figure 2. Instrumenting surfaces with pressure sensors without
altering their properties is challenging. For example, pressure sen-
sors must be transparent in order to instrument glass, and must be
stretchable in order to instrument a deformable mat.

occlude the surface of the hand, which interferes with data
collection for visual models intended for bare hands.

Various types of pressure sensors have been developed
which can be mounted on objects, including capacitive sen-
sors [2, 12, 21], force-sensitive resistors [6, 46, 50], flexible
sensors [4, 35, 61], and fabric-based sensors [41]. However,
even flexible pressure sensors have difficulty in conforming
to the complex geometry of everyday objects. Mounting
pressure sensors to objects also fundamentally alters their
visual appearance and mechanical properties, reducing the
diversity of data that can be captured.

Visual Hand Pressure Estimation: The net forces ap-
plied by a hand to a known object can be estimated by
observing the object’s pose over time and calculating the
forces that would result in this trajectory [14,38,49,50,53].
These methods can infer contact that is occluded or out-of-
view, but they fail for static objects like tabletops. Contact
estimates based on mesh geometry are also sensitive to pre-
cision since contact depends on millimeter scale displace-
ments [20].

A number of approaches have demonstrated that vi-
sual cues can be used to estimate hand pressure, includ-
ing fingertip color changes [10, 42, 43], soft tissue defor-
mation [32], and cast shadows [28, 29, 31]. In contrast to
this prior work, our method uses an external camera to view
the whole hand from a distance and deep learning to take
advantage of multiple types of cues. Our method builds on
PressureVision [19].

Deep Learning with Weak Labels: In cases where full
labels are not available, approaches have been developed to
still use partially or weakly labeled data. Prior work has
used semantic segmentation as a motivating task, where
generating per-pixel labels requires significant time from
human annotators [13]. Techniques have been developed
to leverage faster annotations, including image-level labels
[1, 8, 37] and point labels [3]. Most similar to our paper
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Partici- Objects / Whole- Natural
Dataset Modality Frames pants Surfaces Contact Pressure Pose Hand Objects

OakInk [65] RGBD 230k 12 100 Inferred from pose × ✓ ✓ ✓
DexYCB [9] RGBD 582k 10 20 Inferred from pose × ✓ ✓ ✓
HO-3D [23] RGBD 78k 10 10 Inferred from pose × ✓ ✓ ✓
GRAB [60] Pose 1.6M 10 51 Inferred from pose × ✓ ✓ ×

ContactPose [5] RGBD 3.0M 50 25 Thermal imprint × ✓ ✓ ×
PressureVisionDB [19] RGB 3.0M 36 2 Pressure sensor ✓ × ✓ ×
ContactLabelDB (ours) RGB 2.9M 51 106 Pressure sensor ✓ × × ✓

Table 1. Several hand/object datasets infer contact from pose. However, this requires accurate pose tracking and hand/object models,
limiting the quality of the inferred contact. ContactPose [5] captures the heat left by hands grasping objects. ContactLabelDB features
ground truth pressure measurements, a large number of participants, and interaction with natural objects, but only captures fingertip contact.

is work that leverages image-level labels and an adversarial
loss to transfer segmentation models to new domains [48].
In contrast to weak labels applied by human annotators after
data collection, our method prompts human behavior while
data is being collected.

Hands in Mixed Reality: Modern mixed reality devices
increasingly rely on hand tracking as an input modality.
Commercially available devices use monochrome cameras
[24, 25] and depth sensors [22] to estimate 3D hand pose.

In order to sense contact with the environment, a variety
of hand-mounted physical sensors have been proposed, in-
cluding IMUs [45, 57], electrical current injection [34, 66],
and acoustic sensing [17]. Most similar to our work is re-
search in sensing contact between fingers and flat surfaces
from depth cameras [18, 56, 62]. However, depth cameras
add cost, draw high power, and may not work on reflec-
tive surfaces or in brightly illuminated scenes. Time-of-
flight cameras may have error on materials such as human
skin [27]. In comparison, our work senses pressure from
only RGB cameras, which are non-invasive and low-cost.

3. Data Collection

This section describes the capture of ContactLabelDB, a
dataset of 51 participants making contact with diverse sur-
faces and objects.

3.1. Contact Labels

During all data capture sequences, the participant is
prompted to make contact with a surface using a specific
combination of fingertips and to achieve a target force level,
for example: “press ring finger at a low force”. The partic-
ipant performs the requested action while data is collected.
This prompt has a one-to-one correspondence with a contact
label (Figure 3).

As shown in Figure 3, a contact label W is represented
as a vector with 6 elements. The first 5 elements indicate
the presence or lack of contact at each of the 5 fingertips.
The sixth element indicates if the participant was prompted

to exert a low, high, or unspecified force with the fingers in
contact.

We represent a contact label W ∈ Z6 as follows:

wi|0≤i≤4 ∈ {0, 1} ≡ {no contact, contact}
wi|i=5 ∈ {−1, 0, 1} ≡ {unspecified, low, high force}

For all data collection procedures, we prompted partici-
pants to press one of eight combinations of fingertips onto a
surface. For each combination, we prompted the participant
to apply a low force, a high force, or to slide with unspeci-
fied force. Additionally, we prompted participants to make
“no contact” by hovering the specified fingertips just above
the surface.

While PressureVisionDB [19] captured contact with the
entire hand including the palm, in this work, we only
capture fingertip contact. This decision was made since
prompting contact with other parts of the hand is complex,
and fingertips are sufficient for many downstream tasks.
During pilot studies, we also found that participants ap-
ply similar pressures between fingertips unless explicitly
prompted not to.

3.2. Collection Method

We collect two types of data: fully labeled data and
weakly labeled data. For both types of sequences, we col-
lect contact labels by prompting the subject with a specific
instruction. For the fully labeled sequences, we additionally
collect ground truth pressure labels using a high-resolution
pressure sensing array [46] (Figure 3).

When data is collected with a ground truth pressure sen-
sor, participants press and release their hand multiple times
on the surface to capture the onset and termination of con-
tact. Frames with no pressure detected are assigned a “no-
contact” label. When data is collected without a pressure
sensor, the participant maintains contact throughout the du-
ration of the recording.

3.3. Data Splits

Our training data comes from 37 participants, while our
testing data comes from 14 participants who are not present
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W = {thumb, index, low force}
= [1 1 0 0 0 0]

W = {all fingers, high force}
= [1 1 1 1 1 1]

W = {fingers, force level}
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W = {index, middle, low force}
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Weakly Labeled Data
Only Contact Labels
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Pressure and Contact Labels
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Female Dark

Medium Light

Gender Skin Tone

ContactLabelDB Demographics

Figure 3. We represent the contact labels as a six-dimensional vector. The first five elements are binary values indicating which fingers are
prompted to be in contact, and the last element indicates the prompted force level. Fully labeled data has both pressure and contact labels,
while weakly labeled data has only contact labels. Participants with a range of genders and skin tones were recruited for our study.

in the training data. Since weakly labeled data collection
does not require the pressure sensor, a much greater diver-
sity of data can be collected. We collect a total of 2.9M
frames: 0.5M fully labeled frames and 2.4M weakly labeled
frames.

Our training data consists of a fully labeled training set
where participants interacted with solid-colored overlays on
a pressure sensor. We also collect a weakly labeled train-
ing set where participants interacted with diverse surfaces
and natural objects instead of a pressure sensor.

We desire to evaluate our approach on interactions with
the natural world. However, we face the same problem
as during training data collection: it is difficult to collect
ground truth pressure in diverse environments. We collect
a fully labeled testing set where participants interact with
textured overlays not seen in the training set on a pressure
sensor. We also collect a weakly labeled testing set where
participants interact with diverse surfaces and natural ob-
jects, many of which were not present in the training set.

Images were captured with multiple consumer-grade we-
bcams at 30 FPS and 1080p resolution. We conducted data
collection in 20 environments with different lighting condi-
tions. We used a Sensel Morph [46] pressure sensing array.

3.4. Ethics

Approval to conduct this study was obtained from an In-
stitutional Review Board (IRB). We recruited a diverse set
of 51 participants (Figure 3). All participants gave informed
consent and were compensated for their time. We measured
skin tone with a Pantone X-Rite RM200 spectrocolorimeter,
and participants self-reported gender.

4. Network Architecture
We create a network, PressureVision++, (Figure 4) to

take a single RGB image, I , as input and output a pressure
image, P̂ = f(I). For fully labeled data, each RGB im-
age is paired with a ground-truth pressure image obtained

by projecting the output of a pressure-sensing array into the
image using a homography transform. The output pressure
P̂ is in image space, such that the input and output images
are the same shape and can be superimposed (Figure 5).

4.1. Pressure Estimation

To estimate pressure, PressureVision++ uses a binned
representation and performs classification across bins. The
pressure range is split into NB = 9 logarithmically spaced
bins divided across the pressure range, including one zero
bin. Pressure estimation uses a structure-aware cross-
entropy loss Lp [44, 58]. Unlike regular cross-entropy, the
structure-aware loss penalizes large errors more than small
errors. For each pressure pixel over the image x, y, the loss
is computed over all bin indices b ∈ B using the ground
truth index kb and the estimated probability for each bin
ρx,y(b).

Lp = −
∑
x,y

∑
b

e−|b−kb|log(ρx,y(b)) (1)

Lp is only computed when fully labeled data is available.

4.2. Contact Label Estimation

In addition to estimating a pressure image, PressureVi-
sion++ performs the auxiliary task of estimating the contact
label Ŵ . The contact label classifier predicts Ŵ given the
features F at the network bottleneck (Figure 4). The addi-
tion of the contact label classifier ensures that the features
generated by the encoder are discriminative to the set of
fingers in contact and the force level. The classifier pools
features and uses a 2-layer MLP to estimate the contact la-
bel collected in Section 3.2. This classifier is trained with a
binary cross-entropy loss Lw. When the amount of force is
not specified in the ground truth contact label, this portion
of the loss is masked out.

4
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Figure 4. PressureVision++ architecture. First, hand crops are generated using the bounding boxes estimated by an off-the-shelf hand
detector. The crops are passed into an encoder-decoder network to estimate pressure for each pixel in the input image. Two classification
heads are attached to the bottleneck of the network; one is trained to estimate the contact label, and the other uses an adversarial loss to
reduce the shift between fully labeled and weakly labeled domains.

4.3. Adversarial Domain Adaptation

Following prior work in domain adaptation [15], we ap-
ply an additional feature alignment loss using a domain dis-
criminator D. This loss is unsupervised, as it does not lever-
age contact label information. This loss attempts to mini-
mize the distance between the distributions of features gen-
erated from two domains. The discriminator estimates if the
image is from the fully labeled or weakly labeled domain,
and when backpropagating, gradients are reversed upstream
of the domain discriminator [15]. For image features from
the fully labeled domain Ff and weakly labeled domain Fw,
the domain loss function Ld is:

Ld = −log(D(Ff ))− log(1−D(Fw)) (2)

4.4. Training Details

As hands often only take up a small part of the image,
PressureVision++ operates on crops of the hand. We use
MediaPipe [40] to produce bounding boxes which are used
to generate hand crops. Hand crops are resized to 448x448
pixels before being sent to PressureVision++.

PressureVision++ uses an SE-ResNeXt-50 encoder [26,
30, 63] and an FPN decoder [39, 64], and is trained end-to-
end using the following loss function:

L = Lp + λ1Lw + λ2Ld (3)

5. Evaluation
We consider two types of evaluations: contact and pres-

sure evaluations, following prior work [19]. Contact is a bi-
nary quantity indicating if the hand and object are touching,
while pressure is a scalar indicating the magnitude of force.
A binary contact image Ĉ is generated by thresholding each
pressure pixel in P̂ at Pth = 1 kPa.

• Contact Accuracy: The estimated contact image Ĉ is
used to determine if any contact is estimated. Accu-
racy is calculated by counting the percentage of video
frames for which Ĉ corresponds with the contact label.

• Contact IoU: Intersection-over-union (IoU) is com-
puted between the ground truth contact image C and
estimated contact image Ĉ.

• Volumetric IoU: An extension of Contact IoU that
considers the magnitude of pressure. 2D pressure im-
ages are viewed as 3D pressure volumes, where the
height of the volume is equal to the magnitude of pres-
sure at that pixel. Intersection-over-union is computed
using these volumes.

For the same reasons that collecting fully labeled training
data on diverse surfaces is difficult, collecting fully labeled
testing data also presents challenges. We evaluate both the
fully labeled and weakly labeled test sets. However, due
to the lack of pressure measurements in the weakly labeled
test set, only contact accuracy is computed. For more details
and evaluations, refer to the supplementary material.

5.1. Performance Compared to Baselines

We compare our method against three baselines as
shown in Table 2.

• Zero Guesser: The zero guesser outputs a zero-
pressure image and provides a reference for Contact
Accuracy due to the large number of frames with no
contact.

• Human Annotator: Annotators from Amazon Me-
chanical Turk perform a binary classification on
10,000 images to determine if any part of the hand is
touching the surface.

5



Input RGB Image Baseline PressureVision++ Ground Truth PressurePrompt

All fingers
High force

All fingers
Force unspecified

All fingers
High force

Index, thumb
High force

Figure 5. Results on the fully labeled test set. The baseline column is PressureVision++ trained without either the domain loss or contact
label loss. The bottom row shows a common failure mode where pressure is not estimated for occluded parts of the hand.

Fully Labeled Test Set Weakly Labeled Test Set
Method Contact Acc. Contact IoU Volumetric IoU Contact Acc.

Zero Guesser 53.4% 0.0% 0.0% 24.9%
Human Annotator 78.4% - - 80.5%

PressureVision [19] 72.7% 15.2% 11.3% 53.5%
PressureVision++ (ours) 89.3% 41.9% 27.5% 80.5%

Table 2. Performance compared to a PressureVision baseline [19] and human annotators.

• PressureVision: The network from [19] is retrained
on our fully labeled data. This method does not use
contact labels.

PressureVision++ significantly outperforms prior work,
improving on all metrics. Examples from the fully la-
beled test set are shown in Figure 5, and examples from
the weakly labeled test set are shown in Figure 6. Pressure-
Vision++ estimates fingertip pressure on diverse surfaces,
including textured, deformable, and curved surfaces. Our
method adapts to unseen surfaces in the test set by leverag-
ing diverse weakly labeled data. We observe one common
failure mode where pressure is not estimated for occluded
fingertips (Figure 5).

Human-Annotated Contact: We investigated the possi-
bility of using non-expert human labelers recruited from
Amazon Mechanical Turk to identify contact from images.

In this evaluation, workers performed a binary classification
on 10,000 frames to identify whether the hand is in contact
or not. This is an easier task than generating contact labels
or estimating pressure.

We observe that non-expert annotators had difficulty dis-
tinguishing near-contact from contact (Table 2). When
contact accuracy is computed, we observe that PressureVi-
sion++ outperforms the human annotators on the fully la-
beled test set, and performs similarly on the weakly labeled
test set. This result suggests that our approach may exceed
human performance under ideal conditions, but is not as ro-
bust when tested on more diverse data.

5.2. Ablating Weakly Labeled Data

Table 3 illustrates the impact of weakly labeled data on
PressureVision++’s performance. With neither the domain
loss nor contact label loss, the weakly labeled dataset is un-
used. With only the domain loss Ld, the weakly labeled

6



Image PressureVision++PromptImage PressureVision++Prompt

Index, thumb
High force

All fingers
High force

All fingers
High force

Index, thumb
Low force

Index, middle
Force unspecified

No contact

All fingers
High force

Index, middle
High force

All fingers
High force

Index
Low force

Figure 6. Results on the surfaces in the weakly labeled test set, none of which are included in the fully labeled training set. PressureVision++
produces qualitatively accurate results on highly textured, curved, and compliant surfaces. All images except the top row are zoomed in to
show detail. The bottom right shows a failure case where pressure is underestimated on an object.

Ld Lw Volumetric IoU
14.9%

✓ 17.5%
✓ 25.5%

✓ ✓ 27.5%

Table 3. The domain loss Ld and contact label loss Lw enable
training on weakly labeled data which improves performance sig-
nificantly.

dataset is used in an unsupervised way. Finally, the con-
tact label loss Lw leverages the contact labels collected. We
find that both losses significantly contribute to performance.
However, the contact label loss has the largest effect, with
this alone improving volumetric IoU by +71%.

This large performance improvement demonstrates the
value of contact labels for hand pressure estimation. Weakly
labeled data is easy to collect, yet significantly increases
performance on diverse surfaces.

6. Applications in Mixed Reality
Modern mixed reality devices increasingly rely on hand

tracking as a primary input modality. The Meta Quest and
Microsoft HoloLens product lines use 3D pose estimation
to allow hands to interact with mid-air interfaces. However,
mid-air interfaces are fatiguing, and virtual objects do not

provide tactile feedback. A study by Cheng et al. [11] com-
pared mid-air interfaces to tabletop interfaces. Participants
interacting on the tabletop were more accurate and reported
less exertion and improved comfort.

PressureVision++ presents a natural way to extend hand
tracking to detect interactions with surfaces. Our system
only requires a low-cost, externally mounted RGB camera
and may enable more accurate, lower-exertion input.

6.1. Hardware Setup

We use a Meta Quest 2 headset for our demos. The Quest
operates in passthrough mode which allows users to “see
through” the headset by using the device’s onboard cameras
to provide a mixed reality experience. However, we do not
use these onboard cameras for pressure estimation.

We mount a single RGB camera to a table (Figure 1)
and run PressureVision++ on a desktop computer. The pres-
sure estimation system runs at approximately 50 FPS with
an RTX 3090 GPU, which includes first running the hand
detector [40] and then running PressureVision++ once for
each detected hand. Pressure information is sent over WiFi
to the headset. See the supplementary materials for more
details.

6.2. Touch-Sensitive Interfaces

PressureVision++ enables the creation of touch-sensitive
user interfaces which can be attached to tabletops, walls,

7



PressureVision++ Keyboard Direct Touch KeyboardSurface Drawing Demo Game Demo

Figure 7. PressureVision++ allows touch-sensitive interfaces to be placed on objects. We show drawing on the back of a notebook and
playing a game on a vertical wooden surface. The PressureVision++ Keyboard allows users to type by touching keys on a tabletop. This is
compared to the Direct Touch Keyboard which uses 3D hand poses to allow users to press keys of a mid-air keyboard.

or objects in the environment (Figure 7). We developed a
pressure-sensitive drawing application that allows users to
paint on a surface simply by dragging their finger. The
amount of pressure they apply controls the width of the
brush stroke. Sample drawings are shown in Figures 1 and
7. We also design a game similar to Pong where the user
controls the paddle position by dragging their finger and
show a user interacting with this game on a vertical wooden
surface.

6.3. Touch Typing

To demonstrate the accuracy and responsiveness of our
approach, we evaluate PressureVision++ on a typing task.
We develop a touch-sensitive keyboard using our system
which allows users to tap on a tabletop to enter text.

PressureVision++ Keyboard: The headset projects a
keyboard layout onto a tabletop. When the system detects
contact, a red marker is drawn (Figure 7) to aid the user. We
implement a debouncing filter that requires 2 subsequent
frames to trigger the onset or termination of a keypress, re-
ducing spurious keystrokes.

Baseline Keyboard: The Quest 2 headset performs 3D
hand pose estimation using its four monochrome cameras
[25]. The Meta Direct Touch Keyboard is a text entry
method that places a floating keyboard in front of the user
and allows users to press keys using their index fingers (Fig-
ure 7). As this keyboard is built-in to the Quest 2 operating
system, we use it as a baseline.

User Study: To evaluate the typing methods, we re-
cruited 10 participants, none of whom participated in the
collection of ContactLabelDB. The two typing methods
were presented in random order. Participants attempted
to quickly and accurately type a prompt sentence. Typing
speed was calculated in net words per minute [55]. Af-
ter completing the typing test, participants gave open-ended
responses comparing the two systems. They also selected
which keyboard they preferred.

Results: We found that participants typed 78% faster
and 9 of 10 participants favored the PressureVision++ Key-

Typing Method Net WPM Preferred
Direct Touch 14.4 1/10

PressureVision++ (ours) 25.8 9/10

Table 4. Participants type faster with the PressureVision++ Key-
board as compared to the Direct Touch Keyboard. After trying
both, 9 of 10 participants preferred our method.

board over the Direct Touch Keyboard (Table 4). In their
open-ended responses, 7 participants mentioned that they
found the tactile feedback of interacting with a real surface
helpful, and 5 mentioned that they found the PressureVi-
sion++ keyboard less tiring to use.

Overall, these results suggest that surface interactions
enabled by PressureVision++ have advantages over the mid-
air interfaces enabled by pose estimators.

Limitations: We observe that during 5-finger typing,
fingertips are often occluded and users make hand poses
that are not represented in our dataset. As a result, we in-
structed participants to only type with their index fingers,
which are more reliably detected. Additionally, compared
to the Direct Touch Keyboard, our approach is not limited to
the monochrome egocentric cameras and the mobile proces-
sor that the headset uses for hand pose estimation. However,
these limitations may be overcome in future work.

7. Conclusion

Training deep models to visually estimate the pressure
applied by fingertips relies on ground-truth pressure mea-
surements that are difficult to obtain. We presented Pres-
sureVision++ which uses more easily obtained contact la-
bels collected by prompting participants to achieve specific
types of contact. Leveraging this weakly supervised data
improves pressure estimation on diverse surfaces and out-
performs prior methods. PressureVision++ additionally en-
ables interactions with natural surfaces in mixed reality.
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8. Introduction to Supplementary
This supplementary document provides additional de-

tails and results that were not included in the main paper.
Section 9 provides additional details surrounding the data
collection, Section 10 provides additional details surround-
ing the network architecture and training, Section 11 pro-
vides additional details about the mixed reality applications.
Additional results are shown in Figures 10, 11, 12, and 13.

9. Data Collection Details
9.1. Actions

Participants were prompted with actions from a list of
prompts, shown in Table 9. Most of the actions were re-
peated across four force levels: low force, high force, slide
(force unspecified), and no contact. Due to the highly vary-
ing frictional properties of each surface, we did not prompt
a force level during the slide prompt. Not all participants
completed all actions.

9.2. Data Collection Hardware

To record pressure, a Sensel Morph [46] pressure sen-
sor was used. This sensor records a 105 × 185 pressure
image. To vary the sensor’s appearance, various commer-
cially available adhesive vinyl coverings were applied to the
sensor’s active area. The location and lighting were also
changed to vary exposure (and thus the amount of motion
blur), hue, and saturation of the images.

Data was captured from seven consumer-grade web-
cams, including four Logitech Brio 4K webcams, one Dell
Ultrasharp 4k webcam, one Elgato Facecam 1080p we-
bcam, and one Lumina 4k webcam. All streams were
recorded at 1080p and 30 FPS, and later down-sampled to
15 FPS due to the large size of the dataset.

Most of the data was captured under unaltered room
lighting, however some was collected in a room illuminated
with smart LED bulbs which randomly changed brightness,
providing a greater diversity of lighting. The data collection
took place in twenty different environments.

For recordings with the ground truth pressure sensor, the

Participants 51
Cameras 7
Objects 106

Locations 20
Resolution 1920x1080
Framerate 15 FPS

Total Frames 2.9M
Full Train Frames 182k

Weak Train Frames 1805k
Full Val Frames 21k

Weak Val Frames 72k
Full Test Frames 305k

Weak Test Frames 509k
Mean force, high force prompt 19.6N
Mean force, low force prompt 3.6N

Table 5. ContactLabelDB Statistics.

cameras were spatially calibrated with an ArUco board [16].
The cameras were temporally aligned with pressure sen-
sor readings with a specialized tool. When pressed against
the pressure sensor, the tool would illuminate, allowing the
pressure readings and camera frames to be aligned.

9.3. Dataset Statistics

We show additional information about the dataset in Ta-
ble 5.

During data collection, participants were prompted to
apply high and low forces. Figure 8 shows the distribu-
tion of total applied forces as measured in the fully labeled
dataset. Pressure data is integrated over the sensor area
to calculate total force. This plot includes data from all
sequences, meaning that the data is representative of one-
finger contact as well as five-finger contact. Generally, we
find a consistent difference between the two classes, and
participants apply higher forces when prompted in the “high
force” case.
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Figure 8. Cumulative distribution of total applied force versus
prompt. During data collection, participants apply higher forces
when prompted to apply “high force” as opposed to “low force”.

10. Network and Evaluation Details
10.1. Training Details

PressureVision++ takes cropped images of the hand as
input. An off-the-shelf hand detector, MediaPipe [40], gen-
erates hand bounding boxes on all images. The bounding
box is used to generate a crop of the hand for PressureVi-
sion++. We discarded frames where the hand detector did
not find a hand. When the participant interacted with re-
flective surfaces, the hand detector frequently detected both
the hand and its reflection. In cases when two hands were
detected, the hand towards the top of the image was chosen.

PressureVision++ was implemented in PyTorch [47]
and used network implementations from the segmentation-
models-pytorch project [64]. PressureVision++ was trained
with batches of 28 images: 14 fully-labeled images and 14
weakly-labeled images. Batch size was set to fully utilize
the memory of an RTX 3090 GPU. The network was op-
timized with the Adam optimizer [36] for 300k iterations.
The learning rate was 0.001 for the first 100k iterations, and
0.0001 thereafter. Training data is augmented with horizon-
tal flips, color jitter, random rotations, scaling, and transla-
tions.

The complete loss function is:

L = Lp + λ1Lw + λ2Ld (4)

We choose λ1 = 0.01 and λ2 = 0.001.

10.2. Cross-Dataset Generalization

In table 6, we show cross-dataset generalization results
when PressureVision++ is tested and trained on Pressure-
VisionDB [19] and ContactLabelDB. Although ContactLa-
belDB contains more diversity in terms of objects, it appears
that the model trained on ContactLabelDB and tested on
PressureVisionDB performs worse than the model trained
on PressureVisionDB and tested on ContactLabelDB.

Train
Test PV-DB CL-DB

PV-DB [19] 41.3% 9.2%
CL-DB (ours) 2.3% 27.5%

Table 6. Cross-dataset results comparing PressureVisionDB (PV-
DB) to ContactLabelDB (CL-DB).

We hypothesize that this is because PressureVisionDB
was captured in very harsh, artificial lighting conditions.
These extreme lighting conditions are not captured in Con-
tactLabelDB, which instead captures normal indoor light-
ing environments. We believe that models trained on Con-
tactLabelDB generalize poorly to the extreme lighting cap-
tured in PressureVisionDB. During real-world testing, we
find models trained on ContactLabelDB generalize much
better to real-world scenarios.

10.3. Accuracy of Estimated Contact Labels

PressureVision++ produces two outputs for every input
image: a pressure image and a contact label. The main pa-
per analyzes the accuracy of the estimated pressure image,
and this section evaluates the accuracy of the estimated con-
tact label.

We compare the performance of the pressure estimate to
the contact label estimate. We report the following metrics,
which are computed over both the fully labeled and weakly
labeled test sets:

• Contact Accuracy (pressure image) uses the estimated
pressure image to determine if any contact is present
across the entire image. This is compared to the
ground truth contact. This is the same metric reported
in Section 5 of the main paper.

• Contact Accuracy (contact label) uses the estimated
contact label to determine if any contact is present
across 5 fingers. This is compared to the ground truth
contact.

Contact Accuracy (pressure image) 83.7%
Contact Accuracy (contact label) 86.1%

Table 7. Contact Accuracy compared between pressure estimates
and contact label estimates.

We find that the pressure-based contact accuracy and
contact-label-based contact accuracy perform similarly,
with the contact-labeled-based estimate performing slightly
better.

We report per-finger contact label accuracy in Table 8.
Force accuracy uses the estimated contact label to determine
if the hand applies a high or low force. This is compared
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Contact Label Segment Accuracy
Thumb 89.6%
Index 87.8%

Middle 90.8%
Ring 92.4%
Pinky 92.5%
Force 77.5%

Table 8. Per-finger and force accuracy.

to the ground truth force level as prompted to the partici-
pant. The force accuracy is generally lower than the other
segments of the contact label, suggesting that estimating the
quantity of force is a more difficult task than the binary pres-
ence of contact.

11. Applications in Mixed Reality
11.1. Surface Interactions

In order to align coordinate frames between the RGB
camera and the Meta Quest 2 headset, we designed a cus-
tom calibration tool (Figure 9). The calibration tool features
an ArUco board [16] to estimate the pose of the RGB cam-
era used for pressure estimation. The pose of the headset is
calibrated by attaching a controller to the calibration tool. A
calibration procedure is performed at the beginning of each
session.

In order to calculate precise touch locations, the peaks of
the pressure blobs are found with a local maxima detector.
A custom application is developed for the Quest headset
using Unity and the Oculus Integration Toolkit.

11.2. Net WPM Metric

For typing speed evaluations, words per minute (WPM)
[55] is calculated by dividing the number of characters
typed (including letters, spaces, and punctuation), c, by 5
to arrive at the number of words typed. Time t is measured
in seconds between the first keystroke and pressing “Enter”
to complete the sentence.

WPM =
c/5

t/60
(5)

However, the WPM metric does not consider errors in
typing. In our evaluations, we report net words per minute
(Net WPM) [55], which modifies the standard WPM metric
to factor in errors. A single character error (insertion, dele-
tion, or substitution) results in the subtraction of 5 charac-
ters, or one word. Where e is the number of single-character
errors, Net WPM can be calculated as:

NetWPM =
c/5− e

t/60
(6)

Figure 9. Calibration tool used to align coordinate frames between
the RGB camera and the Meta Quest 2 headset. The controller is
rigidly connected to the ArUco board.

11.3. Typing User Study

For the typing user study, 10 participants were recruited
who did not participate in the collection of ContactLabelDB
and who were not familiar with the research. The order of
presentation of the two keyboards was randomized. Before
collecting data, participants were allowed to practice typing
with that keyboard for as long as they wanted.

After the study, participants were given a free-form text
box to explain their perceived advantages and disadvan-
tages of each typing method. They also rated which key-
board they preferred on a scale of 1 “strongly prefer Direct
Touch Keyboard” to 5 “strongly prefer PressureVision++
Keyboard”. The average score was 4.4, with only one par-
ticipant not preferring the PressureVision++ keyboard.

We hypothesize as to the reasons why participants pre-
ferred the PressureVision++ Keyboard. For the Direct
Touch Keyboard, due to the noise in pose estimation, to
prevent false keystrokes, participants must press each key
very deeply. Additionally, users generally must look at their
hands to find the correct key since it is difficult to memorize
the location of mid-air keys. For the PressureVision++ Key-
board, users only have to hover their fingers a few millime-
ters above the surface, and since the surface allows them to
rest their hands and provides a reference point, they can type
without looking at their hands. The most common error
that participants made with the PressureVision++ keyboard
was pressing a key adjacent to the desired key, resulting in
single-character errors. We hypothesize that a simple auto-
correct system would be able to correct these errors easily
and improve typing speed.
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Action Force Level
Index, fingers {Low, high, slide, no contact}
Thumb {Low, high, slide, no contact}
Index and thumb {Low, high, slide, no contact}
Index and middle {Low, high, slide, no contact}
Middle {Low, high, slide, no contact}
Ring {Low, high, slide, no contact}
Pinky {Low, high, slide, no contact}
All fingers {Low, high, slide, no contact}
Press fingers sequentially {Low, high}

Table 9. Participants were prompted according to this list of actions, e.g., press thumb, low force. Not all participants completed the entire
list of actions.

All fingers
Force unspecified

No contact

All fingers
High force

All fingers
Force unspecified

Index, middle
Low force

All fingers
High force

Index, thumb
High force

Image PressureVision++ Ground Truth

Figure 10. Results from the fully labeled test set where ground truth pressure is measured by a pressure sensor. Testing participants are
held out from the training sets.
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Index, middle
Low force

Index
High force

Index, thumb
High force

No contact

All fingers
Low force

All fingers
High force

Index, thumb
Low force

Image PressureVision++ Ground Truth

Figure 11. Results from the fully labeled test set where ground truth pressure is measured by a pressure sensor. Testing participants are
held out from the training sets.
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Index
High force

Image PressureVision++

Index
Low force

No contact

All fingers
Force unspecified

Index, thumb
High force

All fingers
High force

All fingers
High force

Figure 12. Results from the weakly labeled test set where no ground truth pressure is available. Testing participants are held out from the
training sets.
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Index
Low force

Image PressureVision++

Pinky
Low force

Index, middle
High force

Ring
Force unspecified

Index, middle
High force

No contact

Index, thumb
High force

Figure 13. Results from the weakly labeled test set where no ground truth pressure is available. Testing participants are held out from the
training sets.
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