
Under review as a conference paper at ICLR 2024

ACHIEVING MARGIN MAXIMIZATION EXPONENTIALLY
FAST VIA PROGRESSIVE NORM RESCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we investigate the margin-maximization bias exhibited by gradient-
based algorithms in classifying linearly separable data. We present an in-depth
analysis of the specific properties of the velocity field associated with (normalized)
gradients, focusing on their role in margin maximization. Inspired by this analysis,
we propose a novel algorithm called Progressive Rescaling Gradient Descent
(PRGD) and show that PRGD can maximize the margin at an exponential rate. This
stands in stark contrast to all existing algorithms, which maximize the margin at a
slow polynomial rate. Notably, we identify mild conditions under which we show
that existing algorithms such as gradient descent (GD) and normalized gradient
descent (NGD) provably fail in maximizing the margin efficiently. To validate
our theoretical findings, we present both synthetic and real-world experiments.
Notably, PRGD also shows promise in enhancing the generalization performance
when applied to linearly non-separable datasets and deep neural networks.

1 INTRODUCTION

In modern machine learning, models are often over-parameterized in the sense that they can easily
interpolate training data, giving rise to a loss landscape with many global minima. Although all
these minima yield zero training loss, their generalization ability can vary significantly. Intriguingly,
it is often observed that Stochastic Gradient Descent (SGD) and its variants consistently converge
to solutions with favorable generalization properties even without needing any explicit regulariza-
tion (Neyshabur et al., 2014; Zhang et al., 2021). This phenomenon implies that the “implicit bias”
inherent in SGD plays a crucial role in ensuring the efficacy of deep learning; therefore, revealing the
underlying mechanism is of paramount importance.

Soudry et al. (2018) investigated this issue in the context of classifying linearly separable data with
linear models. The study showed that gradient descent (GD) trained with exponentially-tailed loss
functions can implicitly maximize the ℓ2-margin during its convergence process, ultimately locating
a maximum-margin solution. This discovery offers valuable insights into the superior generalization
performance often observed with GD, as larger margins are generally associated with improved
generalization (Boser et al., 1992; Bartlett et al., 2017). However, the margin maximization rate of
GD has been proven to be extremely slow, at a rate of O(1/ log t).
Since then, many researchers have dedicated themselves to designing algorithms aimed at accelerating
the margin maximization in this problem. Notably, Nacson et al. (2019b); Ji & Telgarsky (2021)
employ GD with an aggressive step size to improve this margin maximization rate, and Ji & Telgarsky
(2021) demonstrated that GD with an aggressive step size can achieve polynomially fast margin
maximization at aO(1/t) rate. More recently, Ji et al. (2021) introduced a momentum-based gradient
method by applying Nesterov acceleration to the dual formulation of this problem. Their approach
attains a remarkable margin maximization rate of Õ(1/t2), currently standing as the state-of-the-art
algorithm for this problem.

In this work, we present a systematic analysis of the unique properties of the velocity field related
to (normalized) gradients, highlighting that the centripetal velocity is a key factor in determining
the rate of margin maximization. Notably, we identify mild conditions, under which the above
margin-maximization rates: O(1/t) for NGD and O(1/ log t) for GD are tight, explaining why GD
and NGD are inefficient in maximizing the margin. This is due to the fact that the gradients tend to
align closely with the direction of the regularization path, causing the centripetal velocity to diminish

1

Under review as a conference paper at ICLR 2024

during convergence. These insights inform a strategy to speed up the margin maximization via
maintaining a non-degenerate centripetal velocity:

• We first show that there exists a favorable semi-cylindrical surface that is away from the
regularization path and as such, the centripetal velocity is uniformly lower-bounded there.
Leveraging this property, we introduce a novel algorithm called PRGD, which cyclically
rescales parameters to semi-cylindrical surfaces with progressive radius. In order to keep
the iterations on the semi-cylindrical surfaces, we perform projection in each step. Notably,
we prove that PRGD can maximize the margin at an exponential rate O(e−Ω(t)).

• We then validate our theoretical findings through both synthetic and real-world experiments.
In particular, when applying PRGD to non-separable datasets and homogenized deep neural
networks—beyond the scope of our theory—we still observe consistent test performance
improvements. This suggests that our theory can be potentially extended to nonlinear
homogenized networks.

We summarize our theoretical results and the comparison with existing ones in Table 1.

Table 1: Comparison of the directional convergence rates of different algorithms under Assumption 3.1, 5.4,
and w⋆ ̸= 1

|I|
∑

i∈I xiyi.

Algorithm Directional Convergence Rate e(t) =
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥
GD e(t) = O(1/ log t) (Soudry et al., 2018), e(tk) = Θ (1/ log tk) (Thm 6.4)

NGD e(t) = O(1/t) (Ji & Telgarsky, 2021), e(tk) = Θ(1/tk) (Thm 6.4)
Dual Acceleration e(t) = O(1/t2) (Ji et al., 2021)

PRGD e(t) = e−Ω(t) (Thm 6.2)

2 RELATED WORK

Understanding the implicit bias of optimization algorithms is one of the most important problems in
deep learning theory. This topic has been extensively studied recently, and in this section, we only
review those that are closely related to the current work.
Margin maximization of GD. The margin-maximization bias of GD trained with exponentially-
tailed loss functions was originally studied in Soudry et al. (2018). Except for works mentioned
above, Ji & Telgarsky (2018b) investigated the margin-maximization bias of GD for classifying
datasets that are not linearly separable. Nacson et al. (2019c) proved margin maximization for SGD.
Furthermore, Gunasekar et al. (2018a); Wang et al. (2022); Sun et al. (2022) characterized the implicit
bias of many other optimization algorithms. Recently. Wu et al. (2023) analyzed the impact of edge
of stability (Cohen et al., 2021; Wu et al., 2018) for achieving margin maximization. In a related
study, Ji et al. (2020) examined other types of loss functions and regularization path.

In a similar setup, researchers also explored the implicit bias of GD on nonlinear models, such as deep
neural networks (DNNs). Specifically, Ji & Telgarsky (2018a); Gunasekar et al. (2018b) investigated
the implicit bias on deep linear fully-connected and convolutional networks. Nacson et al. (2019a);
Lyu & Li (2019); Ji & Telgarsky (2020) proved that GD on homogeneous DNNs converges to the
KKT direction of an ℓ2 max-margin problem. Recently, Kunin et al. (2023) extended this result to
quasi-homogeneous networks.

Other Implicit biases. It is widely believed that flatter minima lead to better generalization (Hochre-
iter & Schmidhuber, 1997; Keskar et al., 2016). Recent studies (Wu et al., 2018; Ma & Ying, 2021;
Wu et al., 2022) provided explanations for why SGD tends to select flat minima on DNNs, using
dynamical stability analysis. Additionally, Woodworth et al. (2020); Nacson et al. (2022) investigated
how initialization scale and step size affect the selection bias of GD between the “kernel” and “rich”
regime on linear diagonal neural networks.

3 PRELIMINARIES

Notation. We use bold letters for vectors and lowercase letters for scalars, e.g. x = (x1, · · · , xd)
⊤ ∈

Rd. For any vector v, we use v̂ = v/∥v∥ the normalized vector. We use ⟨·, ·⟩ for the standard

2

Under review as a conference paper at ICLR 2024

Euclidean inner product between two vectors, and ∥·∥ for the ℓ2 norm of a vector or the spectral norm
of a matrix. We use standard big-O notations O,Ω,Θ to hide absolute positive constants, and use
Õ, Ω̃, Θ̃ to further hide logarithmic constants. For any positive integer n, let [n] = {1, · · · , n}.
Classification Problem. In this paper, we consider the binary classification problem. Given a dataset
S = {(x1, y1), · · · , (xn, yn)}ni=1 ⊂ Rd × {±1}, we need to find some model f(·;θ) : Rd → R to
classify all data correctly, .i.e., yif(xi;θ) > 0. Without loss of generality, we assume ∥xi∥ ≤ 1
for all i ∈ [n]. Moreover, we consider the following linearly separable data, which is a standard
assumption in analyzing the implicit bias of GD (Soudry et al., 2018; Nacson et al., 2019b; Ji &
Telgarsky, 2021)
Assumption 3.1 (linear separability). There exists w ∈ Sd−1 such that min

i∈[n]
yi ⟨w,xi⟩ > 0.

A classical method to solve the binary classification problem is the ℓ2 Support Vector Machine
(ℓ2-SVM), which need to solve the optimization problem: max

∥w∥≤1
min
i∈[n]

yi ⟨w,xi⟩. Since ℓ2-SVM is

equivalent to a strongly convex quadratic programming problem with linear constraints, we have the
following classical result: under Assumption 3.1, the ℓ2 SVM problem has a unique optimal solution
w⋆ ∈ Sd−1.

Margin and Max-margin. Consequently, under Assumption 3.1, we can define the margin of
w ∈ Rd as γ(w) := min

i∈[n]
yi

〈
w

∥w∥ ,xi

〉
. Moreover, we denote the max-margin and max-margin

direction as γ⋆ := max
∥w∥≤1

min
i∈[n]

yi ⟨w,xi⟩ and w⋆ := argmax
∥w∥≤1

min
i∈[n]

yi ⟨w,xi⟩, respectively.

Logistic Regression. Another classical machine learning algorithm to solve the binary classification
problem is the following logistic regression:

min
w∈Rd

L(w) =
1

n

n∑
i=1

ℓ (−yi ⟨w,xi⟩) . (1)

where ℓ(·) : R→ R is an exponential-type loss function (Soudry et al., 2018; Nacson et al., 2019b).
This includes widely-used classification loss functions such as the exponential loss and logistic loss.
For the sake of simplicity, our analysis will focus on the exponential loss ℓ(z) = e−z , although it can
be easily extended to the logistic loss ℓ(z) = log(1 + e−z).

As a baseline algorithm, GD can be implied to solve Problem (1).

GD: w(t+ 1) = w(t)− η∇L(w(t)), (2)

Soudry et al. (2018) showed under Assumption 3.1, GD (2) with η ≤ 1 converges to the ℓ2 max-
margin solution while minimizing the loss. However, this occurs at a slow rate γ⋆ − γ(w(t)) =
O(1/ log t). To enhance this implicit bias, one can adopt the following Normalized Gradient Descent
(NGD) with η ≤ 1 (GD with an aggressive step size) to achieve margin maximization at a polynomial
rate γ⋆ − γ(w(t)) = O(1/t) (Ji & Telgarsky, 2021). The update rule of NGD is:

NGD: w(t+ 1) = w(t)− η
∇L(w(t))

L(w(t))
. (3)

Regularization Path. Our subsequent analysis will leverage the properties of regularization
path (Hastie et al., 2004; Ji et al., 2020). Consider the regularized solution defined by w⋆

reg(B) :=
argmin∥w∥2≤B L(w). Then, the regularization path refers to the curve traced by w⋆

reg(·) as B varies,
formally given by {w⋆

reg(B)}B>0.

4 MOTIVATIONS AND THE ALGORITHM

In this section, we introduce our proposed algorithm and explain the motivation behind through two
toy examples. First, we state some of our key observations of the structure of for the problem (1):

• Homogeneity. For the linear model f(x;w) = ⟨w,x⟩, rescaling the parameter w does not
change the margin, i.e., γ(w) = γ(cw) for any c > 0 and w ∈ Rd.

3

Under review as a conference paper at ICLR 2024

• Directional Convergence. Under Assumption 3.1, it holds that γ⋆ − γ(w) ≤ ∥ŵ −w⋆∥
(Lemma A.4). This implies that the margin maximization rate can be controlled by the rate of
directional convergence.

• Convexity. The Hessian is ∇2L(w) = 1
n

∑n
i=1 e

−⟨w,xiyi⟩xix
⊤
i . If all data has been classified

correctly, i.e., mini∈[n] ⟨w,xiyi⟩ > 0, then the convexity of the loss landscape is stronger in
regions with smaller norm.

• Centripetal Velocity. Intuitively, if the descent direction −∇L(w)/L(w) at some w ∈ Rd has
larger “centripetal” component (orthogonal to w⋆), it will make more effective progress on the
directional convergence towards w⋆. Furthermore, notice that for lots of datasets, the centripetal
velocity is greater at the points farther from the regularized path, which we will explain in detail
below using Dataset 4.1 as an example.

Following the above observations, we can conclude

• On the one hand, in order to obtain greater centripetal velocity for faster directional conver-
gence, we should rescale the parameter w → cw (c > 1) sufficiently away from the regularized
path. In Algorithm 1, this point corresponds to the progressive scaling steps.

• On the other hand, the landscape convexity in small-norm region is stronger than that in large-
norm region. Therefore, one should accelerate the local optimization by taking as many steps as
possible by using small w. In Algorithm 1, this point corresponds to the projected GD steps.

By combining the above two intuitions, we propose the Progressive Projected Gradient Descent
(PPGD) in Algorithm 1.

Algorithm 1: Progressive Rescaling Gradient Descent (PRGD)

Input: Dataset S; Initialization w(0); Progressive Time {Tk}Kk=0; Progressive Radius {Rk}Kk=0;
for k = 0, 1, 2, · · · ,K do

w(Tk + 1) = Rk
w(Tk)

∥w(Tk)∥ ;
for Tk + 1 ≤ t ≤ Tk+1 − 1 do

v(t+ 1) = w(t)− η∇L(w(t))
L(w(t)) ;

w(t+ 1) = ProjB(0,Rk)
(v(t+ 1));

Output: w(TK + 1).

Next, we substantiate the above observations and explain the mechanisms by which PRGD works via
the toy problem:

Dataset 1. S = {(x1, y1), (x2, y2), (x3, y3)} where x1 = (
√

1− γ⋆2, γ⋆)⊤, y1 = 1, x2 =

(−
√
1− γ⋆2, γ⋆)⊤, y2 = 1, x3 = (

√
1− γ⋆2,−γ⋆)⊤, y3 = −1, and γ⋆ > 0 is small enough.

For this dataset, we have the following (tight) margin maximization and directional convergence
results for both NGD and PRGD.

Proposition 4.1. Consider Dataset 1. Then NGD (3) can only maximize the margin polynomially
fast, while PRGD (Alg 1) can maximize the margin exponentially fast. Specifically,

(I) Let w(t) be NGD (3) solution at time t with η = 1 starting from w(0) = 0. Then both the margin
maximization and directional convergence are at (tight) polynomial rates:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ = Θ(1/t) , γ⋆ − γ(w(t)) = Θ (1/t) ;

(II) Let w(t) be the PRGD solution (Algorithm 1) with η = 1 starting from w(0) = 0. If we choose
Rk = eΘ(k) and Tk = Θ(k), then both the margin maximization and directional convergence are at
(tight) exponential rate:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ = e−Θ(t), γ⋆ − γ(w(t)) = e−Θ(t).

4

Under review as a conference paper at ICLR 2024

Proposition 4.1 provides a comparative analysis of the efficiency of PRGD and the challenges faced
by NGD. Next, we provide an intuitive explanation and a brief outline of the proof and the complete
proof is available in Appendix A.

For this dataset, the max-margin direction is w⋆ = (0, 1)⊤ and the regularized path satisfies
lim

R→∞
w⋆

reg,1(R) = − log 2

2
√

1−γ⋆2
. And in Figure 1, we plot the asymptotic line of the regulariza-

tion path (the green curve) and the max-margin direction w∗ (the red curve) for this dataset. Notably,
the two lines are parallel with each other.

−1 0
w1

0

2

4

6

8

10

12

14

16

w
2

w1 = 0

w1 = − log 2

2
√

1−γ∗2

NGD

PRGD

initial

Figure 1: The vector field and the trajec-
tories of NGD and PRGD for Dataset 1.
The gray arrows plot the vector field
−∇L(·)/L(·). The red line corresponds to
the max-margin direction, and the green area
is around the regularized path. We run and
visualize the trajectories of PPGD (purple)
and NGD (orange) for 6 steps starting from
the same initial point (black).

Centripetal Velocity. In this example, the centripetal ve-
locity (orthogonal to w⋆) is [−∇L(w)/L(w)]1sgn(w1).
As shown in Figure 1, one can see that the centripetal
velocity is significant for w far away from the regular-
ized path (outside the green zone), while the centripetal
velocity in the green zone is tiny.

Inefficiency of NGD. As shown in Figure 1, the
trajectory of NGD (the orange line) always remains
near the regularized path in which −∇L(w)/L(w) is
nearly parallel to w⋆ and the centripetal component
(along e1) there is very small. Actually, we can
show that NGD always stays in the green zone A :={
w : w1 ∈

[
−3 log 2/4

√
1− γ2,−log 2/4

√
1− γ2

]}
.

Since the norm grows at Θ(t) rate (Lemma C.3), NGD is
cursed to have only Θ(1/t) directional convergence rate.

Efficiency of PRGD. We consider a simple hyperparam-
eter selection situation, Tk+1 − Tk = 2, that is, do one
step of progressive scaling and one step of projected nor-
malized gradient descent in each period. As Fig 1 shown,
PRGD (the purple line) can just solve the hardness that
NGD is trapped in the green zone A with small centripetal
velocity. The stretching step can ensure that PRGD es-
capes from A and arrives in w1 = −1, where the cen-
tripetal velocity is significant; then the projected gradient
step can achieve use this significant centripetal velocity to
make progress on the directional convergence. Moreover,
the centripetal velocity in {w : w1 = −1} has a uniformly
positive lower bound, one can use this to prove that the
directional convergence is exponentially fast via simple geometric calculation.

5 CENTRIPETAL VELOCITY ANALYSIS

Motivated by our analysis for Dataset 1, we formally study the angular velocity in this section.
Moreover, inspired by the proof and visualization, we actually only need to focus on the angular
velocity on an infinitely long semi-cylindrical surface in high-dimensional setting.

First, we give the following definition, which helps us decompose the parameters on Rd into essential
directions.

Definition 5.1 (Orthogonal Projection). we denote the projections of w ∈ Rd along the direction
w⋆ and onto the orthogonal space of w⋆ as P(w) := ⟨w,w⋆⟩w⋆ and P⊥(w) := w− ⟨w,w⋆⟩w⋆,
respectively. It is worth noting that P(w) + P⊥(w) = w holds for any w ∈ Rd.

Using this orthogonal projection, we can establish a formal definition for the “centripetal velocity”.

Definition 5.2 (Centripetal Velocity). The normalized gradient at w ∈ Rd is∇L(w)/L(w), and we
define the centripetal velocity φ(w) (towards w⋆) at w by

φ(w) :=

〈
−∇L(w)

L(w)
,− P⊥(w)

∥P⊥(w)∥

〉
=

〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
.

5

Under review as a conference paper at ICLR 2024

Then we introduce the definition of infinitely long semi-cylindrical surface, which is the crucial
geometry in our subsequent analysis.
Definition 5.3 (Semi-cylindrical Surface). We use

C(D;H) := {w ∈ span{xi : i ∈ [n]} : ∥P⊥(w)∥ = D; ⟨w,w⋆⟩ ≥ H}
to denote the infinitely long semi-cylindrical surface with the central direction w⋆, the radius D > 0,
and starting height H > 0.

Our subsequent analysis will concentrate on the semi-cylindrical surface as PRGD ensures the itera-
tions will be confined in the surface. This surface is defined by its central direction, denoted by w⋆, a
radius D > 0, and extends infinitely in the direction of w⋆ starting from a height H . Additionally, it
is crucial to note that our attention is restricted to the smaller subspace spanxi : i ∈ [n], rather than
the entire space Rd. This is justified by the observation that the trajectories of GD, NGD, and PRGD,
when initialized from 0, will remain confined within this subspace indefinitely.

5.1 THEORETICAL ANALYSIS

In this subsection, we undertake a theoretical examination of the centripetal velocity, as defined in
Definition 5.2, on the semi-cylindrical surface described in Definition 5.3. Our investigation aims to
address the following query:

Does a “favorable” semi-cylindrical surface exist where the centripetal velocity consistently
maintains a positive lower bound?

We demonstrate that such a favorable semi-cylindrical surface indeed exists, provided that the data
are non-degenerate to a modest extent.
Assumption 5.4 (Non-degenerate data (Soudry et al., 2018; Wu et al., 2023)). Let I be the index
set of the support vectors, i.e., there exist αi > 0 (i ∈ I) such that w⋆ =

∑
i∈I αiyixi. We assume

span{xi : i ∈ I} = span{xi : i ∈ [n]}.

We remark Assumption 5.4 is widely used in prior implicit bias analysis, such as Theorem 4.4
in (Soudry et al., 2018) and (Wu et al., 2023).

Now we can state our main results about the centripetal velocity analysis.
Theorem 5.5 (Centripetal Velocity Analysis, Main result). Under Assumption 3.1 and 5.4, there
exists a semi-cylindrical surface C(D;H) and a positive constant µ > 0 such that

inf
w∈C(D;H)

φ(w) ≥ µ.

Theorem 5.5 establishes that for linearly separable and slightly non-degenerate dataset, there indeed
exists a “good” semi-cylindrical surface in which the centripetal velocity has a uniformly positive
lower bound. That is to say, on this semi-cylindrical surface, the negative normalized gradient has a
significance component orthogonal to w⋆ consistently. The proof is deferred to Appendix B.

6 MARGIN MAXIMIZATION AND DIRECTIONAL CONVERGENCE RATE

6.1 EXPONENTIAL FAST MARGIN MAXIMIZATION VIA PRGD

We have identified the condition ensuring the existence of the “good” semi-cylindrical surface, where
the centripetal velocity is uniformly lower-bounded. For simplicity, in this section, we set this result
as an assumption.
Assumption 6.1. There exists a semi-cylindrical surface C(D;H) and a positive constant µ > 0
such that inf

w∈C(D;H)
φ(w) ≥ µ.

The subsequent theorem shows that by leveraging our PRGD (Alg 1) and under the above assumption,
the rate of directional convergence–and consequently, margin maximization–can be boosted to be
exponential.
Theorem 6.2 (PRGD, Main Result). Under Assumption 3.1 and 6.1, let w(t) be solutions generated
by the following two-phase algorithms starting from w(0) = 0:

6

Under review as a conference paper at ICLR 2024

• Warm-up Phase: Run GD (2) with η = 1/2 for Tw = Θ(1) steps starting from w(0);

• Acceleration Phase: Run PRGD (Alg 1) with η = Θ(1), Rk = eΘ(k) and Tk = Θ(k) starting
from w(Tw).

Then, both directional convergence and margin maximization are achieved at exponential rate:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ ≤ e−Ω(t); γ⋆ − γ(w(t)) ≤ e−Ω(t).

The complete proof is deferred to Appendix C and here, we provide a sketch of the proof to illustrate
the intuition behind:

• In the warm-up phase, we employ GD to achieve a preliminary (slow) directional convergence,
satisfying

∥∥∥ w(Tw)
∥w(Tw)∥ −w⋆

∥∥∥ < min{D/2H, 1/2}, which is prepared to rescale w to the good
semi-cylindrical surface C(D;H).

• After the warm up, we can rescale w(Tw) to the good semi-cylindrical surface C(D;H) by
setting R1 = D

∥P⊥(w(Tw))∥ . Then, applying projected gradient descent there can significantly
speed up the directional convergence since the centripetal velocity on C(D;H) is well lower-
bounded (Assumption 6.1). Then, by selecting suitable progressive scaling Rk, we can reposition
the parameter back to C(D;H) again. Repeating this process, we will get effective directional
convergence in each cycle. Finally, by simple geometric calculation, it can be proven that such
directional convergence is exponentially fast.

Notice that in Proposition 4.1, we have provided a tightly exponentially fast rate on Dataset 1, which
satisfies Assumption 3.1 and 6.1, hence, the tightness of Theorem 6.2 can be ensured.
Corollary 6.3 (PRGD, non-degenerate dataset). Under Assumption 3.1 and 5.4, let w(t) be solutions
generated by the following two-phase algorithms starting from w(0) = 0:

• Warm-up Phase: Run GD (2) or NGD (3) with η ≤ 1 for Tw steps starting from w(0);;

• Acceleration Phase: Run PRGD (Alg 1) with η = Θ(1), Rk = eΘ(k) and Tk = Θ(k) starting
from w(Tw).

Then, both directional convergence and margin maximization are achieved at exponential rate:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ ≤ e−Ω(t); γ⋆ − γ(w(t)) ≤ e−Ω(t).

It is worth noting that Assumption 5.4 can imply Assumption 6.1. Therefore, Theorem 6.2 implies
Theorem 6.3 with GD (Phase I) + PRGD (Phase II) directly. Additionally, a slight difference is that
in Theorem 6.3, we can use NGD in Phase I (to obtain faster directional warm-up than GD), because
Assumption 5.4 can further guarantee the directional convergence of NGD (Ji & Telgarsky, 2021).

6.2 INEFFICIENCY OF GD AND NGD

Theorem 6.4 (GD and NGD, Main results). Suppose Assumption 3.1 and 5.4 hold. Additionally, we
assume γ⋆w⋆ ̸= 1

|I|
∑

i∈I yixi.

• For NGD (3) with η ≤ η0 starting from w(0) = 0 (where η0 is a constant), we have there exists

a subsequence w(tk) (tk →∞) such that
∥∥∥ w(tk)
∥w(tk)∥ −w⋆

∥∥∥ = Θ(1/tk).

• For GD (2) with η ≤ η0 starting from w(0) = 0 (where η0 is a constant), there exists a

subsequence w(tk) (tk →∞) such that
∥∥∥ w(tk)
∥w(tk)∥ −w⋆

∥∥∥ = Θ(1/ log tk).

As presented in Table 1, under the same conditions–Assumption 3.1, 5.4, and γ⋆w⋆ ̸= 1
|I|
∑

i∈I xiyi,

PRGD can achieve directional convergence exponentially fast with the rate
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = e−Ω(t).

7

Under review as a conference paper at ICLR 2024

In contrast, Theorem 6.4 ensures that NGD maintains a tight bound of polynomial speed, and GD
exhibits a tight bound with exponentially slow rate.

The detailed proof of Theorem 6.4 is provided in Appendix C. Although this proof is more complicate
than Proposition 4.1 due to the more general dataset, their proof insights are highly similar. In this
proof, we still focus on the dynamics of P⊥(w(t)). Actually, we can prove that there exists a subse-
quence P⊥(w(tk)) (tk →∞), which convergences to some v ∈ span{P⊥(xi) : i ∈ I}. Moreover,
our condition γ⋆w⋆ ̸= 1

|I|
∑

i∈I xiyi can ensure that v⋆ ̸= 0. Therefore, ∥P⊥(w(tk))∥ = Θ(1).
Since the norm grows at ∥w(tk)∥ = Θ(tk) (Lemma C.3), NGD must have only Θ(1/t) directional
convergence rate.

7 NUMERICAL EXPERIMENTS

7.1 LINEARLY SEPARABLE DATASETS

Experiments on Synthetic Dataset. We initiate our experimental evaluation with two synthetic
linearly separable datasets, as depicted in Fig. 2. For the two synthetic datasets, the value of γ⋆ is
explicit, and as such, we can explicitly compute the margin gap. To ensure a fair comparison, we
maintain the same step size η = 1 for GD, NGD, and PRGD. Following the guidelines provided
in Theorem 6.2, we employ PRGD(exp) with hyperparameters Tk+1 − Tk ≡ 5, Rk = R0 × 1.2k.
To illustrate the role of the progressive radius, we also examine PRGD(poly) configured with
Tk+1 − Tk ≡ 5, Rk = R0 × k1.2, where the progressive radius increases polynomially. For more
experimental details, refer to Appendix E.

The experimental results are provided in Fig. 2. Consistent with Theorem 6.2, PRGD(exp) indeed
maximizes the margin exponentially fast, and surprisingly, PRGD(poly) also performs equally well for
this task. In contrast, NGD and GD reduce the margin gaps significantly slower, which substantiates
our Theorem 6.4.

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

0 2000 4000
iter t

10−7

10−5

10−3

10−1

m
ar

gi
n

er
ro

r
γ
∗
−
γ

(w
(t

))

GD

NGD

PRGD(exp)

PRGD(poly)

(a) Dataset I

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

0 2000 4000
iter t

10−7

10−5

10−3

10−1
m

ar
gi

n
er

ro
r
γ
∗
−
γ

(w
(t

))

GD

NGD

PRGD(exp)

PRGD(poly)

(b) Dataset II

Figure 2: Comparison of margin Maximization rates of different algorithms on Synthetic datasets.

Experiments on Real-World Datasets. In this case, we extend our experiments to real-world datasets.
Specifically, we employ the digit datasets from Sklearn, which are image classification tasks
with d = 64, n = 300. In this real-world setting, we lack prior knowledge of the exact γ⋆. Instead, we
approximate γ⋆ by employing γ(w(t)) obtained by a sufficiently trained NGD. In real experiments,
we test both PRGD(exp) and PRGD(poly) and consistently observe that the latter performs much
better. Therefore, in this experiment, we employ a modified variant of PRGD with slower progressive
norms: Rk = R0 · kα, Tk+1 − Tk = T0 · kβ where R0, T0, α, β are hyperparameters to be tuned.

The numerical results with well-tuned hyperparameters are presented in Fig. 3. It is evident that, in
this real-world dataset, PRGD consistently beats GD and NGD in terms of margin maximization
rates.

7.2 LINEARLY NON-SEPARABLE DATASETS AND DEEP NEURAL NETWORKS

In this subsection, we further explore the practical performance of PRGD for datasets that are not
linearly separable. In the first experiment, we still consider linear models but for classifying a linearly
non-separable dataset, Cancer in Sklearn, and we employ the same PRGD technique as used in
real-world linearly separable datasets. For the second experiment, we examine the performance of

8

Under review as a conference paper at ICLR 2024

0 2500 5000 7500
epoch

10−6

10−5

10−4

10−3

10−2

m
ar

gi
n

er
ro

r
γ
?
−
γ

(w
(t

))

digit-01

GD

NGD

PRGD

0 2000 4000
epoch

10−6

10−4

10−2

m
ar

gi
n

er
ro

r
γ
?
−
γ

(w
(t

))

digit-04

GD

NGD

PRGD

Figure 3: Comparison of margin Maximization rates of different algorithms on digit (real-word) datasets.
(Left) the results on digit-01 dataset; (Right) the results on digit-04 dataset.

0 2000 4000
epoch

91.0

91.5

92.0

b
es

t
te

st
ac

cu
ra

cy

Linear Model on Cancer

GD (91.21%)

NGD (91.21%)

PRGD (92.27%)

(a) Linear Model on Cancel

0 25 50 75 100
epoch

40

60

80

b
es

t
te

st
ac

cu
ra

cy

VGG on CIFAR-10

GD (86.61%)

NGD (86.35%)

PRGD (89.29%)

(b) VGG on Cifar-10
Figure 4: Comparison of the generalization performance of GD, NGD, and PRGD for non-linearly separable
datasets and deep neural networks.

PRGD for VGG network (Simonyan & Zisserman, 2015) on the full CIFAR-10 dataset (Krizhevsky
& Hinton, 2009), without employing any explicit regularization. Additionally, in this setting, we
employ mini-batch stochastic gradient instead of the full gradient for these algorithms, and we also
fine-tune the learning rate of GD,NGD, and PRGD. Both of these two algorithms share the same
learning rate scheduling strategy as described in Lyu & Li (2019). As for the hyperparameter strategy
of PRGD, we still follow the same strategy as used on the real-world linearly separable datasets.

The numerical results are presented in Fig 4a and Fig 4b, respectively. One can see that that our
PRGD algorithm outperforms GD and NGD for both tasks.

8 CONCLUDING REMARK

In this work, we investigate the mechanisms driving the convergence of gradient-based algorithms
towards max-margin solutions. Specifically, we elucidate why GD and NGD can only achieve
polynomially fast margin maximization by examining the properties of the velocity field linked to
(normalized) gradients. This analysis inspires the design of a novel algorithm called PRGD that
significantly accelerates the process of margin maximization. To substantiate our theoretical claims,
we offer both synthetic and real-world experimental results, thereby underscoring the potential
practical utility of our approach. Looking ahead, an intriguing avenue for future research is the
application of progressive norm rescaling techniques to state-of-the-art real-world models. It would
be worthwhile to explore how PRGD can synergize with other explicit regularization techniques,
such as data augmentation, dropout, and sharpness-aware minimization (Foret et al., 2020).

REFERENCES

Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. arXiv preprint arXiv:1706.08498, 2017.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, 1992.

9

Under review as a conference paper at ICLR 2024

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regularization path for the
support vector machine. Journal of Machine Learning Research, 5(Oct):1391–1415, 2004.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032, 2018a.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018b.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

Ziwei Ji and Matus Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In
Algorithmic Learning Theory, pp. 772–804. PMLR, 2021.

Ziwei Ji, Miroslav Dudík, Robert E Schapire, and Matus Telgarsky. Gradient descent follows the
regularization path for general losses. In Conference on Learning Theory, pp. 2109–2136. PMLR,
2020.

Ziwei Ji, Nathan Srebro, and Matus Telgarsky. Fast margin maximization via dual acceleration. In
International Conference on Machine Learning, pp. 4860–4869. PMLR, 2021.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
URL https://www.cs.toronto.edu/~kriz/cifar.html.

Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum
margin bias of quasi-homogeneous neural networks. International Conference on Learning
Representations, 2023.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Chao Ma and Lexing Ying. The sobolev regularization effect of stochastic gradient descent. Advances
in Neural Information Processing Systems, 2021.

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexicographic
and depth-sensitive margins in homogeneous and non-homogeneous deep models. In International
Conference on Machine Learning, pp. 4683–4692. PMLR, 2019a.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd
International Conference on Artificial Intelligence and Statistics, pp. 3420–3428. PMLR, 2019b.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable
data: Exact convergence with a fixed learning rate. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 3051–3059. PMLR, 2019c.

10

https://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2024

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning, pp.
16270–16295. PMLR, 2022.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, 2015.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maximizes
generalized margin and can be implemented efficiently. Advances in Neural Information Processing
Systems, 2022.

Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, and Zhi-Ming Ma. Momentum
doesn’t change the implicit bias. Advances in Neural Information Processing Systems, 2022.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Jingfeng Wu, Vladimir Braverman, and Jason D Lee. Implicit bias of gradient descent for logistic
regression at the edge of stability. Advances in Neural Information Processing Systems, 2023.

Lei Wu, Chao Ma, and Weinan E. How sgd selects the global minima in over-parameterized learning:
A dynamical stability perspective. Advances in Neural Information Processing Systems, 31:
8279–8288, 2018.

Lei Wu, Mingze Wang, and Weijie J Su. The alignment property of SGD noise and how it helps
select flat minima: A stability analysis. Advances in Neural Information Processing Systems, 35:
4680–4693, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

11

Under review as a conference paper at ICLR 2024

Appendix

A Proofs in Section 4 12

B Proofs in Section 5 17

C Proofs in Section 6 19

C.1 Proof of Theorem 6.2 . 20

C.2 Proof of Theorem 6.4 . 25

D Useful Inequalities 28

E Experimental Setups 29

A PROOFS IN SECTION 4

Dataset 2. The dataset is S = {(x1, y1), (x2, y2)} where x1 = (0, 1)⊤, y1 = 1, x2 = (0,−1)⊤,
and y2 = −1.
Proposition A.1. Consider Dataset 2. Then the max-margin direction is w⋆ = (0, 1)⊤ with margin
γ⋆ = 1. Moreover, the regularization path coincides with the max-margin direction:

w⋆
reg(B)

B
≡ w⋆ = (0, 1)⊤, ∀B > 0.

Theorem A.2. Consider Dataset 2. Then NGD (3) can only maximize the margin polynomially fast,
while PRGD (Alg 1) can maximize the margin exponentially fast. Specifically,

(I) Let w(t) be trained by NGD (3) with η = 1. Then the margin is maximized at polynomial rate:

γ⋆ − γ(w(t)) = Θ
(
1/t2

)
;

(II) Let w(t) be trained by PRGD (Algorithm 1) with η = 1. If we choose Rk ≡ R and Tk = Θ(k),
then the margin is maximized at exponential rate:

γ⋆ − γ(w(t)) = e−Θ(t/R).

Proof of Theorem A.2. Following the Proof of Proposition A.1, we have:

−∇L(w)

L(w)
=

(
0
1

)
.

We assume w1(0) ̸= 0. Without loss of generality, we can assume w1(0) > 0 and w2(0) > 0.

Step I. Proof for NGD. For NGD, it holds that:

w1(t+ 1) = w1(t),

w2(t+ 1) = w2(t) + 1.

It is easy to verify that w1(t) = w1(0) and w2(t) = w2(0) + t hold for any t ≥ 0, which means

w1(t+ 1)

w2(t+ 1)
=

w1(0)

w2(0) + t
.

From the definition of margin, we have:

γ(w(t))− γ∗ =

〈
w(t)

∥w(t)∥ , z1
〉
− 1 =

w2(t)√
w2

1(t) + w2
2(t)
− 1

12

Under review as a conference paper at ICLR 2024

=

(
1 +

w2
1(t)

w2
2(t)

)−1/2

− 1 = −Θ
(
w2

1(t)

w2
2(t)

)
= −Θ

(
1

t2

)
.

Step II. Proof for PRGD. For PRGD with fixed Rk ≡ R > 0, it is exactly PGD: wt+1 =

ProjB(0,R)(w(t)).

Due to w1(0) > 0 and w2(0) > 0, it is easy to verify that ∥w(t)∥ = R holds for any t ≥ R.
Therefore, for any t ≥ R, we have:

w1(t+ 1) =R
w1(t)√

w2
1(t) + (w2(t) + 1)

2
,

w2(t+ 1) =R
w2(t) + 1√

w2
1(t) + (w2(t) + 1)

2
.

These dynamics imply that for any t ≥ R,

w2(t+ 1)

w1(t+ 1)
=

w2(t)

w1(t)
+

1

w1(t)
=

w2(t)

w1(t)
+

√
w2

1(t) + w2
2(t)

Rw1(t)
=

w2(t)

w1(t)
+

1

R

√
1 +

w2
2(t)

w2
1(t)

.

On the one hand, we derive the lower bound for w2(t)/w1(t):

w2(t+ 1)

w1(t+ 1)
≥ w2(t)

w1(t)
+

1

R

w2(t)

w1(t)
=

(
1 +

1

R

)
w2(t)

w1(t)
, ∀t ≥ R.

which means

w2(t)

w1(t)
≥
(
1 +

1

R

)t−⌈R⌉
w2(⌈R⌉)
w1(⌈R⌉)

, ∀t ≥ ⌈R⌉.

On the other hand, we derive the upper bound for w2(t)/w1(t). Notably, w2(t+1)
w1(t+1) ≥

w2(t)
w1(t)

+ 1
R holds

for any t ≥ R. Thus, for any t ≥ 2⌈R⌉,
w2(t)

w1(t)
≥ w2(2⌈R⌉)

w1(2⌈R⌉)
≥ w2(2⌈R⌉ − 1)

w1(2⌈R⌉ − 1)
+

1

R
≥ · · · ≥ w2(⌈R⌉)

w1(⌈R⌉)
+
⌈R⌉
R
≥ 1.

Hence, we have the following upper bound for any t ≥ 2⌈R⌉:

w2(t+ 1)

w1(t+ 1)
≤ w2(t)

w1(t)
+

1

R

√
w2

2(t)

w2
1(t)

+
w2

2(t)

w2
1(t)

=

(
1 +

√
2

R

)
w2(t)

w1(t)
,

which means

w2(t)

w1(t)
≤
(
1 +

√
2

R

)t−2⌈R⌉
w2(2⌈R⌉)
w1(2⌈R⌉)

, ∀t ≥ 2⌈R⌉.

Combining the lower bound and upper bound, we obtain the tight estimate:

w2(t)

w1(t)
= exp

(
Θ(t) log

(
1 +

1

Θ(R)

))
= eΘ(t/R).

From the definition of margin, we have:

γ(w(t))− γ∗ =

〈
w(t)

∥w(t)∥ , z1
〉
− 1 =

w2(t)√
w2

1(t) + w2
2(t)
− 1

=

(
1 +

w2
1(t)

w2
2(t)

)−1/2

− 1 = −Θ
(
w2

1(t)

w2
2(t)

)
= −e−Θ(t/R).

13

Under review as a conference paper at ICLR 2024

Proof of Proposition 4.1.
For simplicity, we denote z1 = x1y1 and z2 = x2y2.

L(w) =
1

3

(
e−w⊤z1 + 2e−w⊤z2

)
=

1

3
e−w2γ

(
e−w1

√
1−γ2

+ 2ew1

√
1−γ2

)
.

∇L(w) =

 1
3e

−w2γ
√
1− γ2

(
−e−w1

√
1−γ2

+ 2ew1

√
1−γ2

)
− 1

3e
−w2γγ

(
e−w1

√
1−γ2

+ 2ew1

√
1−γ2

) .

For any fixed R > 0, we will calculate the regularized solution in the ball ∥w∥2 ≤ R.

From the expression of ∇L(w), we know ∇L(w) ̸= 0 for any w ∈ Rd. Hence, it must holds∥∥w∗
reg(R)

∥∥
2
= R. Moreover, we can determine the signal of w∗

reg,1(R) and w∗
reg,2(R). From

the symmetry of the ℓ2 ball, we know w∗
reg,1(R) < 0 and w∗

reg,2(R) > 0. This is because: if
w∗

reg,1(R) > 0, then L(−w∗
reg,1(R), w∗

reg,2(R)) < L(w∗
reg,1(R), w∗

reg,2(R)), which is contradict to
the optimum of w∗

reg(R).

Then from the optimum and differentiability, we have〈
w∗

reg(R),−∇L
(
w∗

reg(R)
)〉

R
∥∥∇L (w∗

reg(R)
)∥∥

2

= 1,

which means

w∗
reg(R) // ∇L

(
w∗

reg(R)
)
,
〈
w∗

reg(R),∇L
(
w∗

reg(R)
)〉

< 0.

For simplicity, we use the notation w1(R) := w∗
reg,1(R), w2(R) := w∗

reg,2(R) in the proof below.

By a straightforward calculation and taking the square, we have

(1− γ2)
(
e−2w1(B)

√
1−γ2

+ 4e2w1(B)
√

1−γ2 − 4
)

γ2
(
e−2w1(R)

√
1−γ2

+ 4e2w1

√
1−γ2

+ 4
) =

w2
1(B)

w2
2(R)

=
w2

1(R)

R2 − w2
1(R)

,

which is equivalent to

R2

w2
1(R)

=
1

1− γ2
+

8γ2

(1− γ2)
(
e−2w1(R)

√
1−γ2

+ 4e2w1(R)
√

1−γ2 − 4
) . (4)

With the help of Lemma A.3, we know

lim
R→∞

〈
w∗,

w∗
reg(R)

R

〉
= lim

R→∞

w2(R)√
w2

1(R) + w2
2(R)

= 1,

which means lim
R→∞

w2
1(R)
R2 = 0. Then taking R→∞ in (4), we have

lim
R→∞

(
e−2w1(R)

√
1−γ2

+ 4e2w1(R)
√

1−γ2
)
= 4.

A straight-forward calculation gives us

lim
R→∞

w1(R) = − log 2

2
√
1− γ2

.

Following the proof, we have

−∇L(w)

L(w)
=

(√
1− γ2

(
1− 2e2w1

√
1−γ2

)/(
1 + 2e2w1

√
1−γ2

)
γ

)
.

For simplicity, we assume w(0) = 0. For other cases, the proof is similar (Ji & Telgarsky, 2021).

14

Under review as a conference paper at ICLR 2024

Step I. Proof for NGD. For NGD, it holds that:

w1(t+ 1) = w1(t) +
√
1− γ2

(
1− 2e2w1(t)

√
1−γ2

)/(
1 + 2e2w1(t)

√
1−γ2

)
,

w2(t+ 1) = w2(t) + γ.

It is worth noticing that the dynamics of w1(t) and w2(t) are decoupled. For w2(t), it is easy to
verify that w2(t) = γt, ∀t ≥ 1. As for w1(t), we will estimate the uniform upper and lower bounds.

For simplicity, we denote x(t) := 2w1(t)
√

1− γ2 + log 2. From the dynamics of w1(t), the
dynamics of x(t) are

x(t+ 1) = x(t) + 2(1− γ2)
1− ex(t)

1 + ex(t)
= x(t) + 2(1− γ2)

(
2

1 + ex(t)
− 1

)
.

Then we will prove that |x(t)| ≤ 1
2 log 2 holds for t ≥ 1 by induction.

From x(0) = log 2, we have x(1) = log 2− 2(1−γ2)
3 ∈

[
− 1

2 log 2,
1
2 log 2

]
.

Assume that x(t) ∈
[
− 1

2 log 2,
1
2 log 2

]
holds for any t ≤ k, and we denote h(x) := x + 2(1 −

γ2)
(

2
1+ex − 1

)
. Then with the help of Lemma D.2, the following estimate holds for t = k + 1:

x(k + 1) =h (x(k)) ≤ h

(
1

2
log 2

)
=

1

2
log 2 + 2(1− γ2)

1−
√
2

1 +
√
2
<

1

2
log 2;

x(k + 1) =h (x(k)) ≥ h

(
−1

2
log 2

)
= −1

2
log 2 + 2(1− γ2)

√
2− 1√
2 + 1

> −1

2
log 2.

By induction, we have proved that x(t) ∈
[
− 1

2 log 2,
1
2 log 2

]
holds for any t ≥ 1. This implies that

w1(t) ∈
[
− 3 log 2

4
√

1−γ2
,− log 2

4
√

1−γ2

]
holds for any t ≥ 1. Hence,

− 3 log 2

4tγ
√
1− γ2

≤ w1(t)

w2(t)
≤ − log 2

4tγ
√

1− γ2
, ∀t ≥ 1.

From the definition of directional convergence, we have:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =

√
2

(
1−

〈
w(t)

∥w(t)∥ , e2
〉)

=

√√√√2

(
1− w2(t)√

w2
1(t) + w2

2(t)

)

=

√√√√√2

1− 1√
w2

1(t)

w2
2(t)

+ 1

 = Θ

(∣∣∣∣w1(t)

w2(t)

∣∣∣∣) = Θ

(
1

t

)
.

From the definition of margin, we have:

γ(w(t))− γ∗ = min
i∈[2]

〈
w(t)

∥w(t)∥ , zi
〉
− γ =

〈
w(t)

∥w(t)∥ , z1
〉
− γ

=
w1(t)

√
1− γ2 + w2(t)γ√

w2
1(t) + w2

2(t)
− γ =

w1(t)
w2(t)

√
1− γ2 + γ√

w2
1(t)

w2
2(t)

+ 1
− γ

=

w1(t)
w2(t)

√
1− γ2√

w2
1(t)

w2
2(t)

+ 1
+ γ

((
w2

1(t)

w2
2(t)

+ 1

)−1/2

− 1

)
= Θ

(
w1(t)

w2(t)

)
−Θ

(
w2

1(t)

w2
2(t)

)

=Θ

(
w1(t)

w2(t)

)
= −Θ

(
1

t

)
.

Step II. Proof for PRGD. For PRGD, to maximize margin exponentially fast, we only need to select
Rk = eΘ(k) and Tk = Θ(k). Notice that the choices of Rk and Tk are not unique. For simplicity, we
use the following choice to make our proof clear.

15

Under review as a conference paper at ICLR 2024

• Phase I. We run NGD for t < T I = ⌈1/γ⌉. (It is worth noting that this phase is exactly to
run PRGD for 2TI steps, with Rk ≡ T I + 1 and Tk+1 = Tk + 2.)

• Phase II. We run PRGD for t ≥ T I. For a fixed integer D ≥ 10, we select Tk and Rk such
that:

T0 = T I; Tk+1 = Tk +D, ∀k ≥ 0; Rk =
D ∥w(Tk)∥
|w1(Tk)|

, ∀k ≥ 0.

Recalling our proof in Step I, at the end of Phase I, it holds that w1(T
I) ∈

[
− 3 log 2

4
√

1−γ2
,− log 2

4
√

1−γ2

]
and w2(T

I) = T I. Then we analyze Phase II. We will prove the following statements by induction.

• (S1). ∥w(t)∥ = Rk holds for any Tk ≤ t < Tk+1;

• (S2). w1(Tk) = −D holds for any k ≥ 0;

• (S3). ≤ w1(t) ≤ holds for any Tk ≤ t < Tk+1;

• (S4). ≤ w1(Tk)
w2(Tk)

≤ holds for any k ≥ 0;

• (S5). w1(Tk)
w2(Tk)

≤ w1(t)
w2(t)

≤ w1(s)
w2(s)

≤ w1(Tk+1)
w2(Tk+1)

for any Tk ≤ t ≤ s ≤ Tk+1

First, according to PRGD’s update, for k = 0 (T0 = T I), we have

w(T0 + 1) = R0
w(T0)

∥w(T0)∥ = D
|w1(T0)|w(T0)

Assume (S1)∼(S5) hold for any Tk(k ≤ K − 1) and any t < TK . Then we need to prove that
(S1)∼(S5) hold for TK and t ∈ [TK , TK+1).

Hence, we have proved (S1)(S2)(S3). Consequently, these statements imply that:

w1(t)

w2(t)
= −e−Θ(t)

From the definition of directional convergence, we have:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =

√
2

(
1−

〈
w(t)

∥w(t)∥ , e2
〉)

=

√√√√2

(
1− w2(t)√

w2
1(t) + w2

2(t)

)

=

√√√√√2

1− 1√
w2

1(t)

w2
2(t)

+ 1

 = Θ

(∣∣∣∣w1(t)

w2(t)

∣∣∣∣) = e−Θ(t).

From the definition of margin, we have:

γ(w(t))− γ∗ = min
i∈[2]

〈
w(t)

∥w(t)∥ , zi
〉
− γ =

〈
w(t)

∥w(t)∥ , z1
〉
− γ

=
w1(t)

√
1− γ2 + w2(t)γ√

w2
1(t) + w2

2(t)
− γ =

w1(t)
w2(t)

√
1− γ2 + γ√

w2
1(t)

w2
2(t)

+ 1
− γ

=

w1(t)
w2(t)

√
1− γ2√

w2
1(t)

w2
2(t)

+ 1
+ γ

((
w2

1(t)

w2
2(t)

+ 1

)−1/2

− 1

)
= Θ

(
w1(t)

w2(t)

)
−Θ

(
w2

1(t)

w2
2(t)

)

=Θ

(
w1(t)

w2(t)

)
= −e−Θ(t).

16

Under review as a conference paper at ICLR 2024

Lemma A.3 (Integration of (Soudry et al., 2018; Ji et al., 2020)). For problem (1), Gradient Flow
convergences to the ℓ2 max-margin direction w∗, hence the regularization path also convergences to
the ℓ2 max-margin solution: lim

B→∞

w∗
reg(B)

B = w∗.

Lemma A.4 (Margin error and Directional error). Under Assumption 3.1, for any w ∈ Rd, it holds
that γ⋆ − γ(w) ≤

∥∥∥ w
∥w∥ −w⋆

∥∥∥.

Proof of Lemma A.4.
Let w ∈ Rd and denote i0 ∈ argmin

i∈[n]

yi

〈
w

∥w∥ ,xi

〉
. Then we have:

γ⋆ − γ(w) = min
i

yi ⟨w⋆,xi⟩ −min
i

yi

〈
w

∥w∥ ,xi

〉
=min

i
yi ⟨w⋆,xi⟩ − yi0

〈
w

∥w∥ ,xi0

〉
≤yi0 ⟨w⋆,xi0⟩ − yi0

〈
w

∥w∥ ,xi0

〉
= yi0

〈
w⋆ − w

∥w(t)∥ ,xi0

〉
≤
∥∥∥∥ w

∥w∥ −w⋆

∥∥∥∥ .

B PROOFS IN SECTION 5

Lemma B.1. Let H = 1
γ⋆
sub−γ⋆ log

(
n−|I|
|I|

)
. Then for any h ≥ H ,

|I| exp(−hγ⋆) ≤
n∑

i=1

exp(−h ⟨w⋆, yixi⟩) ≤ 2|I| exp(−hγ⋆).

Proof of Lemma B.1.
First, notice that ⟨w⋆, yixi⟩ = γ⋆ for any i ∈ I and ⟨w⋆, yjxj⟩ ≥ γ⋆

sub > γ⋆ any j /∈ I. Therefore,
for any

h ≥ H =
1

γ⋆
sub − γ⋆

log

(
n− |I|
|I|

)
,

any i ∈ I and j /∈ I, we have

exp(−h ⟨w⋆, yixi⟩)
exp(−h ⟨w⋆, yjxj⟩)

≥ exp(−hγ⋆)

exp(−hγ⋆
sub)

= exp(h(γ⋆
sub − γ⋆)) ≥ n− |I|

|I| ,

which implies that
n∑

i=1

exp(−h ⟨w⋆, yixi⟩) =
∑
i∈I

exp(−h ⟨w⋆, yixi⟩) +
∑
j /∈I

exp(−h ⟨w⋆, yjxj⟩)

≤|I| exp(−hγ⋆) +
∑
j /∈I

exp(−hγ⋆
sub)

≤|I| exp(−hγ⋆) +
∑
j /∈I

|I|
n− |I| exp(−hγ

⋆)

=|I| exp(−hγ⋆) + |I| exp(−hγ⋆) = 2|I| exp(−hγ⋆).

As for the left inequality, we only notice
n∑

i=1

exp(−h ⟨w⋆, yixi⟩) ≥
∑
i∈I

exp(−h ⟨w⋆, yixi⟩) = |I| exp(−hγ⋆).

17

Under review as a conference paper at ICLR 2024

Hence, we complete the proof.

Proof of Theorem 5.4.
Without loss of generality, we can assume span{x1, · · · ,xn} = Rd. This is because: GD, NGD,
and PRGD can only evaluate in span{xi : i ∈ [n]}, i.e. w(t) ∈ span{xi : i ∈ [n]}. If
span{x1, · · · ,xn} ≠ Rd, we only need to change the proof in the subspace span{x1, · · · ,xn}.
Therefore, from the definition of C(D;H), it holds that

C(D;H) =
{
hw⋆ +Dv : h ≥ H,v ∈ Sd−1,v ⊥ w⋆

}
.

Step I. Strip out the important ingredients.

First, following Lemma B.1, we select H = 1
γ⋆
sub−γ⋆ log

(
n−|I|
|I|

)
.

Then for any w ∈ C(D;H), we have:〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
=

〈∇L(w)

L(w)
,v

〉
=

〈 1
n

∑n
i=1(−yixi) exp(−⟨w, yixi⟩)
1
n

∑n
i=1 exp(−yi ⟨w,xi⟩)

,v

〉
=

1
n

∑n
i=1 ⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)
1
n

∑n
i=1 exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

≥
∑n

i=1 ⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)∑n
i=1 exp (−h ⟨w⋆, yixi⟩) exp (D)

Lemma B.1
≥

∑n
i=1 ⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

|I| exp (−hγ⋆) exp(D)

≥
∑

i∈I ⟨v,−yixi⟩ exp (−hγ⋆) exp (−D ⟨v, yixi⟩)
|I| exp (−hγ⋆) exp(D)

=
1

|I| exp(D)

∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) .

Thus, we only need to derive the lower bound of
∑

i∈I ⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) for any
{v ∈ Sd−1 : v ⊥ w⋆}.
Step II. Uniform Lower bound of

∑
i∈I ⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩).

First, recalling Assumption 5.4 (ii) and the remark, there exist αi > 0 (i ∈ I) such that w⋆ =∑
i∈I αiyixi, where

∑
i∈I αi = 1. Therefore, we have∑

i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) >

∑
i∈I

αi ⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) .

For simplicity, we denote the function ϕ(z) := zeDz . Then∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) =

∑
i∈I

αiϕ (−⟨v, yixi⟩) .

Now we select D = 1. With the help of Lemma D.3, ϕ(·) is e−1-strongly convex in z ∈ [−1, 1],
which means that

ϕ(z1) ≥ ϕ(z2) + ϕ′(z2)(z1 − z2) +
1

2e
(z1 − z2)

2, ∀z1, z2 ∈ [−1, 1].

Therefore, for each i ∈ I, we have

ϕ (⟨v,−yixi⟩) ≥ϕ (0) + ϕ′(0) ⟨v,−yixi⟩+
1

2e
⟨v,−yixi⟩2

18

Under review as a conference paper at ICLR 2024

= ⟨v,−yixi⟩+
1

2e
⟨v,−yixi⟩2 .

Taking the αi-weighted sum over i ∈ I and noticing ⟨v,w⋆⟩ = 0, we have∑
i∈I

αiϕ (⟨v,−yixi⟩) ≥
∑
i∈I

αi ⟨v,−yixi⟩+
∑
i∈I

αi

2e
⟨v,−yixi⟩2

= ⟨v,w⋆⟩+
∑
i∈I

αi

2e
⟨v,−yixi⟩2 =

∑
i∈I

αi

2e
⟨v,−yixi⟩2

≥ 1

2e

(
min
i∈I

αi

)(
v⊤
∑
i∈I

(
xix

⊤
i

)
v

)
≥

(
min
i∈I

αi

)
λmin

(∑
i∈I

xix
⊤
i

)
2e

.

Recalling Assumption 5.4 (i), it holds rank{xi : i ∈ I} = rank{xi : i ∈ [n]} = d, which implies

λmin

(∑
i∈I

xix
⊤
i

)
> 0. Hence, we obtain the uniform lower bound:

inf
v∈{v∈Sd−1:v⊥w⋆}

∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩) ≥

(
min
i∈I

αi

)
λmin

(∑
i∈I

xix
⊤
i

)
2e

> 0.

Step III. The final bound.

We select D = 1 and H = max
{

1
γ⋆
sub−γ⋆ log

(
n−|I|
|I|

)
, 0
}

. Combing our results in Step I and II,
for any w ∈ C(D;H), it holds that〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
≥ 1

|I|e∑i∈I ⟨v,−yixi⟩ exp (−⟨v, yixi⟩)

≥

(
min
i∈I

αi

)
λmin

(∑
i∈I

xix
⊤
i

)
2e2|I| > 0.

C PROOFS IN SECTION 6

Lemma C.1. Under Assumption 3.1, it holds that

γ⋆ ≤
〈
−∇L(w)

L(w)
,w⋆

〉
≤ 1, γ⋆ ≤

∥∥∥∥∇L(w)

L(w)

∥∥∥∥ ≤ 1, ∀w ∈ Rd.

Proof of Lemma C.1. For any w ∈ Rd, we have:

〈
−∇L(w)

L(w)
,w⋆

〉
=

1
n

n∑
i=1

e−yi⟨w,xi⟩yi ⟨w⋆,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
≥

1
n

n∑
i=1

e−yi⟨w,xi⟩γ⋆

1
n

n∑
i=1

e−yi⟨w,xi⟩
= γ∗,

〈
−∇L(w)

L(w)
,w⋆

〉
=

1
n

n∑
i=1

e−yi⟨w,xi⟩yi ⟨w⋆,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
≤

1
n

n∑
i=1

e−yi⟨w,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
= 1.

19

Under review as a conference paper at ICLR 2024

For the lower bound of ∥∇L(w)/L(w)∥, it holds that∥∥∥∥∇L(w)

L(w)

∥∥∥∥ ≥ 〈−∇L(w)

L(w)
,w⋆

〉
≥ γ⋆.

For the upper bound of ∥∇L(w)/L(w)∥, it holds that

∥∥∥∥∇L(w)

L(w)

∥∥∥∥ =

∥∥∥∥∥∥∥∥−
1
n

n∑
i=1

e−yi⟨w,xi⟩yixi

1
n

n∑
i=1

e−yi⟨w,xi⟩

∥∥∥∥∥∥∥∥ ≤
1
n

n∑
i=1

e−yi⟨w,xi⟩ ∥yixi∥

1
n

n∑
i=1

e−yi⟨w,xi⟩
≤ 1.

Lemma C.2 ((Ji et al., 2020)). Under Assumption 3.1, let w(t) be trained by GD (2) with η ≤ 1/2

starting from w(0) = 0, then GD converges to the max-margin direction: limt→+∞
w(t)

∥w(t)∥ → w⋆.

C.1 PROOF OF THEOREM 6.2

Proof of Theorem 6.2.
Under Assumption 3.1, the ℓ2-max margin direction is unique, and we denote

γ⋆ = max
∥w∥≤1

min
i∈[n]

yi ⟨w,xi⟩ ,

w⋆ = argmax
∥w∥≤1

min
i∈[n]

yi ⟨w,xi⟩ .

According Assumption 6.1, there exist constants H,D, µ > 0 such that〈∇L(w)

L(w)
,
P⊥ (w)

∥P⊥ (w)∥

〉
≥ µ holds for any w ∈ C(D;H),

where

C(D;H) :=
{
w ∈ Rd : ∥P⊥(w)∥ = D; ⟨w,w⋆⟩ ≥ H

}
Analysis of Phase I.

Phase I is a warm-up phase. We will prove that at the end of this phase, trained w can be scaled onto
C(D;H). First, we choose the error

ϵ = min

{
D

2H
,
1

2

}
.

With the help of Lemma C.2, we know that there exists T ϵ such that
∥∥∥ w(T ϵ)
∥w(T ϵ)∥ −w⋆

∥∥∥ < ϵ, which
implies the inner satisfies:〈

w(T ϵ)

∥w(T ϵ)∥ ,w
⋆

〉
=

1

2

(
2−

∥∥∥∥ w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥2
)

> 1− ϵ2

2
.

Therefore, at T ϵ, it holds that:

∥P⊥(w(T ϵ))∥
⟨w(T ϵ),w⋆⟩ =

∥w(T ϵ)− P(w(T ϵ))∥
⟨w(T ϵ),w⋆⟩ =

∥∥∥∥ w(T ϵ)

⟨w(T ϵ),w⋆⟩ −w⋆

∥∥∥∥
=

∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −w⋆

∥∥∥∥ =

∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −
w(T ϵ)

∥w(T ϵ)∥ +
w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥
≤
∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −
w(T ϵ)

∥w(T ϵ)∥

∥∥∥∥+ ∥∥∥∥ w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥ <

∣∣∣∣ ⟨w(T ϵ)),w⋆⟩ − ∥w(T ϵ)∥
⟨w(T ϵ)),w⋆⟩

∣∣∣∣+ ϵ

=

∣∣∣∣∣∣1− 1〈
w(T ϵ)

∥w(T ϵ)∥ ,w
⋆
〉
∣∣∣∣∣∣+ ϵ <

1

1− ϵ2

2

− 1 + ϵ =
ϵ2

2

1− ϵ2

2

+ ϵ <
4ϵ2

7
+ ϵ

20

Under review as a conference paper at ICLR 2024

≤
(
2

7
+ 1

)
ϵ ≤ 2ϵ ≤ min

{
D

H
, 1

}
.

We choose T I = T ϵ = Θ(1), and we obtain w(T I) at the end of Phase I.

Analysis of Phase II.

For simplicity, due to T I is an constant, we replace the time t to t− T I in the proof of Phase II. This
means that Phase II starts from t = 0 with the initialization w(0)← w(T I).

In this proof, we choose

η = µD, Tk = 2k, Rk =
D ∥w(Tk)∥
∥P⊥(w(Tk))∥

, ∀k ≥ 0.

Recalling Algorithm 1, the update rule is:

· · · ;

w(2k + 1) = Rk
w(2k)

∥w(2k)∥ ;

v(2k + 2) = w(2k + 1)− η
∇L(w(2k + 1))

L(w(2k + 1))
;

w(2k + 2) = ProjB(0,∥w(2k+1)∥) (v(2k + 2)) ;

w(2k + 3) = Rk+1
w(2k + 2)

∥w(2k + 2)∥ ;

· · ·

In general, we aim to prove the following statements:

(S1). w(2k + 1) ∈ C(D;H), ∀k ≥ 0.

(S2). ⟨w(2k + 1),w⋆⟩ ≥ 1(√
1− 2µ

)k (⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
, ∀k ≥ 0;

⟨w(2k + 1),w⋆⟩ ≤ 1(√
1− µ2

)k
(
⟨w(1),w⋆⟩+ 1

1−
√
1− µ2

)
− 1

1−
√
1− µ2

, ∀k ≥ 0.

(S3). D
√
1− 2µ ≤ ∥P⊥(v(2k + 2))∥ ≤ D

√
1− µ2, ∀k ≥ 0.

(S4).
⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ =

⟨w(1),w⋆⟩
D

eΘ(k).

(S5). Rk+1 = ⟨w(1),w⋆⟩ eΘ(k).

(S6).
∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =
D

⟨w(1),w⋆⟩e
−Θ(t).

(S7). γ⋆ − γ(w(t)) =
D

⟨w(1),w⋆⟩e
−Θ(t).

Step I. Proof of (S1)(S2).

In this step, we will prove (S1)(S2) by induction.

Step I (i). We prove (S1)(S2) for k = 0. Recalling our analysis of Phase I, it holds that

∥P⊥(w(0))∥
⟨w(0)),w⋆⟩ ≤ min

{
D

H
, 1

}
.

Thus, if we choose R0 = D∥w(0)∥
∥P⊥(w(0))∥ in Algorithm 1, then w(1) = D

∥P⊥(w(0))∥ · w(0) and w(1)

satisfies:

∥P⊥(w(1))∥ =
∥∥∥∥P⊥

(
D

∥P⊥(w(0))∥w(0)

)∥∥∥∥ =

∥∥∥∥DP⊥(w(0))

∥P⊥(w(0))∥

∥∥∥∥ = D;

21

Under review as a conference paper at ICLR 2024

⟨w(1),w⋆⟩ =
〈

D

∥P⊥(w(0))∥w(0),w⋆

〉
= D

〈
w(0)

∥P⊥(w(0))∥ ,w
⋆

〉
=D

⟨w(0),w⋆⟩
∥P⊥(w(0))∥ ≥

D

min
{

D
H , 1

} = max {H,D} .

which means that (S1) w(1) ∈ C(D;H) holds for k = 0. As for (S2), it is trivial for k = 0.

Step I (ii). Assume (S1)(S2) hold for any 0 ≤ k′ ≤ k. Then we will prove for k′ = k + 1.

First, it is easy to bound the difference between ⟨v(2k + 2),w⋆⟩ and ⟨w(2k + 1),w⋆⟩:
⟨v(2k + 2),w⋆⟩ − ⟨w(2k + 1),w⋆⟩

=η

〈
−∇L(w(2k + 1))

L(w(2k + 1))
,w⋆

〉
Lemma C.1∈ [ηγ⋆, η] = [µγ⋆D,µD].

(5)

Secondly, notice the following fact about w(2k + 3):

w(2k + 3) = Rk+1
w(2k + 2)

∥w(2k + 2)∥ =
D ∥w(2k + 2)∥
∥P⊥(w(2k + 2))∥

w(2k + 2)

∥w(2k + 2)∥

=
D

∥P⊥(w(2k + 2))∥w(2k + 2) =
D

∥P⊥(v(2k + 2))∥v(2k + 2).

(6)

With the help of the estimates above and the induction, now we can give the following two-sided
bounds for ⟨w(2k + 3),w⋆⟩.

• Upper bound for ⟨w(2k + 3),w⋆⟩:

⟨w(2k + 3),w⋆⟩ (6)
= D

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(5)
≤D ⟨w(2k + 1),w⋆⟩+ 1√

1− µ2D
=
⟨w(2k + 1),w⋆⟩+ 1√

1− µ2

induction
≤ 1√

1− µ2

 1(√
1− µ2

)k
(
⟨w(1),w⋆⟩+ 1

1−
√
1− µ2

)
− 1

1−
√
1− µ2

+ 1

=

1(√
1− µ2

)k+1

(
⟨w(1),w⋆⟩+ 1

1−
√
1− µ2

)
− 1

1−
√
1− µ2

.

(7)

• Lower bound for ⟨w(2k + 3),w⋆⟩:

⟨w(2k + 3),w⋆⟩ (6)
= D

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(5)
≥D ⟨w(2k + 1),w⋆⟩+ γ⋆

√
1− 2µD

=
⟨w(2k + 1),w⋆⟩+ γ⋆

√
1− 2µ

induction
≥ 1√

1− 2µ

(
1(√

1− 2µ
)k (⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
+ γ⋆

)

=
1(√

1− 2µ
)k+1

(
⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
.

(8)

Hence, from (7)(8), we have proved that (S2) holds for k + 1.

Moreover, we have the following facts:

∥P⊥ (w(2k + 3))∥ (6)
=

∥∥∥∥P⊥

(
D

∥P⊥(v(2k + 2))∥v(2k + 2)

)∥∥∥∥
22

Under review as a conference paper at ICLR 2024

=

∥∥∥∥D P⊥(v(2k + 2))

∥P⊥(v(2k + 2))∥

∥∥∥∥ = D,

⟨w(2k + 3),w⋆⟩
(8)
≥ 1(√

1− 2µ
)k+1

(
⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ

≥ ⟨w(1),w⋆⟩(√
1− 2µ

)k+1
≥ ⟨w(1),w⋆⟩ ≥ H;

which means that (S1) holds for k + 1, i.e., w(2k + 3) ∈ C(D;H).

Now we have proved (S1)(S2) for any k ≥ 0 by induction.

Step II. Proof of (S3).

In this step, we will prove (S3) directly. For any k ≥ 0, we can derive the following two-sides bounds:

• For the upper bound of ∥P⊥(v(2k + 2))∥, we have:

∥P⊥(v(2k + 2))∥2 =

∥∥∥∥P⊥(w(2k + 1))− ηP⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
= ∥P⊥(w(2k + 1))∥2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
− 2η

〈
P⊥(w(2k + 1)),P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)〉
=D2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≤D2 + η2

∥∥∥∥∇L(w(2k + 1))

L(w(2k + 1))

∥∥∥∥2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
Lemma C.1
≤ D2 + η2 − 2ηDµ = D2 + µ2D2 − 2µ2D2 = (1− µ2)D2.

(9)

• For the lower bound of ∥P⊥(v(2k + 2))∥, we have:

∥P⊥(v(2k + 2))∥2 =

∥∥∥∥P⊥(w(2k + 1))− ηP⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
=D2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
− 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≥D2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≥D2 − 2ηD

∥∥∥∥∇L(w(2k + 1))

L(w(2k + 1))

∥∥∥∥
Lemma C.1
≥ D2 − 2ηD = D2 − 2µD2 = (1− 2µ)D2.

(10)

Hence, we have proved (S3).

Step III. Proof of (S4)(S5)(S6).

First, we derive two-sided bounds for ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ . For any k ≥ 0, we have:

23

Under review as a conference paper at ICLR 2024

• Upper bound of ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ .

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(5)
≤⟨w(2k + 1),w⋆⟩+ µD

∥P⊥(v(2k + 2))∥

(S2)(S3)
≤

1(√
1−µ2

)k

(
⟨w(1),w⋆⟩+ 1

1−
√

1−µ2

)
− 1

1−
√

1−µ2
+ µD

D
√
1− 2µ

≤⟨w(1),w⋆⟩
D

eΘ(k).

• Lower bound of ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ .

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(5)
≥⟨w(2k + 1),w⋆⟩+ µγ⋆D

∥P⊥(v(2k + 2))∥

(S2)(S3)
≥

1

(
√
1−2µ)

k

(
⟨w(1),w⋆⟩+ γ⋆

1−
√
1−2µ

)
− γ⋆

1−
√
1−2µ

+ µγ⋆D

(1− µ)D

≥⟨w(1),w⋆⟩
D

eΘ(k).

Additionally, notice

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ ,

we obtain (S4):

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ =

⟨w(1),w⋆⟩
D

eΘ(k).

Furthermore, Combining (S4) and the following fact

Rk+1 =
D ∥w(2k + 2)∥
∥P⊥(w(2k + 2))∥ =

D ∥v(2k + 2)∥
∥P⊥(v(2k + 2))∥

=D

√
⟨v(2k + 2),w⋆⟩2 + ∥P⊥(v(2k + 2))∥2

∥P⊥(v(2k + 2))∥ = D

√
⟨v(2k + 2),w⋆⟩2

∥P⊥(v(2k + 2))∥2
+ 1,

we can obtain (S5):

Rk+1 = ⟨w(1),w⋆⟩ eΘ(k).

In the same way, we can prove∥∥∥∥ w(2k)

∥w(2k)∥ −w⋆

∥∥∥∥ =

∥∥∥∥ w(2k + 1)

∥w(2k + 1)∥ −w⋆

∥∥∥∥ = 2

(
1−

〈
w(2k + 1)

∥w(2k + 1)∥ ,w
⋆

〉)

=2

(
1− ⟨w(2k + 1),w⋆⟩

∥w(2k + 1)∥

)
= 2

1− ⟨w(2k + 1),w⋆⟩√
⟨w(2k + 1),w⋆⟩2 + ∥P⊥(w(2k + 1))∥2

=2

1− 1√
1 + ∥P⊥(w(2k+1))∥2

⟨w(2k+1),w⋆⟩2

 (S4)
= 2

1− 1√
1 + D2

⟨w(1),w⋆⟩2 e
−Θ(k)

24

Under review as a conference paper at ICLR 2024

=
D

⟨w(1),w⋆⟩e
−Θ(k),

which means (S6): ∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =
D

⟨w(1),w⋆⟩e
−Θ(t),

Step III. Proof of (S7). Using Lemma A.4 and (S6), we obtain (S7).

Conclusions.

From our proof of Phase II, we have ⟨w(1),w⋆⟩ ≥ max{H,D}. Taking this fact into (S6)(S7), we
obtain our conclusions: ∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ = e−Ω(t);

γ⋆ − γ(w(t)) = e−Ω(t).

Proof of Theorem 6.3.
Notice that Assumption 5.4 can imply Assumption 6.1. Therefore, for the case of GD (Phase I) +
PRGD (Phase II), this theorem is the direct corollary of Theorem 6.2.

Then we discuss the other case: NGD (Phase I) + PRGD (Phase II).

C.2 PROOF OF THEOREM 6.4

Proof for Theorem 6.4.
As the representative, we first provide the detailed proof for NGD, which is more difficult to analyze.

Without loss of generality, we can assume span{x1, · · · ,xn} = Rd. This is because: GD, NGD,
and PRGD can only evaluate in span{xi : i ∈ [n]}, i.e. w(t) ∈ span{xi : i ∈ [n]}. If
span{x1, · · · ,xn} ≠ Rd, we only need to change the proof in the subspace span{x1, · · · ,xn}.

With the help of Theorem C.3, the upper bounds hold:
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t). So we only need
to prove the lower bounds: ∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ = Ω(1/t).

For simplicity, we denote the optimization problem orthogonal to w⋆ as

min
v

: L⊥(v) =
1

|I|
∑
i∈I

exp (−yi ⟨v,P⊥(xi)⟩) ,v ∈ span{P⊥(xi) : i ∈ I}.

In this proof, we focus on the dynamics of P⊥(w(t)), satisfying:

P⊥(w(t+ 1)) = P⊥(w(t))− ηP⊥

(∇L(w)

L(w)

)
=P⊥(w(t))− ηP⊥

(
1
n

∑n
i=1 e

−⟨w(t),xiyi⟩xiyi
1
n

∑n
i=1 e

−⟨w(t),xiyi⟩

)

=P⊥(w(t))− η

∑n
i=1 e

−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩

Step I. The error of gradient in each step.

25

Under review as a conference paper at ICLR 2024

On the one hand, Theorem C.4 (iii) ensures that there exists an absolute constant C > 0 such that
∥P⊥(w(t))− v⋆∥ ≤ C, ∀t. On the other hand, Theorem C.3 shows that

∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t)
and ∥w(t)∥ = Θ(t). And we notice the decomposition w(t) = ⟨w(t),w⋆⟩w⋆ + P⊥(w(t)).

Therefore, for any ϵ > 0, there exists Tϵ > 0 such that for any t > Tϵ,

(i). (1− ϵ)
∑
i∈I

e−⟨w(t),w⋆⟩γ⋆ ≤
n∑

i=1

e−⟨w(t),xiyi⟩ ≤ (1 + ϵ)
∑
i∈I

e−⟨w(t),w⋆⟩γ⋆

;

(ii).

∥∥∥∥∥
n∑

i=1

e−⟨w(t),xiyi⟩P⊥(xiyi)−
∑
i∈I

e−⟨w(t),xiyi⟩P⊥(xiyi)

∥∥∥∥∥ ≤ ϵ

∥∥∥∥∥
n∑

i=1

e−⟨w(t),xiyi⟩P⊥(xiyi)

∥∥∥∥∥.
Consequently, (i)(ii) ensures that∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(P⊥(w(t)))

∥∥∥∥
=

∥∥∥∥∥
∑n

i=1 e
−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩
− 1

|I|
∑
i∈I

e−⟨P⊥(w(t)),P⊥(xiyi)⟩P⊥(xiyi)

∥∥∥∥∥
=

∥∥∥∥∥
∑n

i=1 e
−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩
− 1

|I|
∑
i∈I

e−⟨P⊥(w(t)),xiyi⟩P⊥(xiyi)

∥∥∥∥∥
=

∥∥∥∥∥
∑n

i=1 e
−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩
−
∑

i∈I e−⟨w(t),xiyi⟩P⊥(xiyi)∑
i∈I e−⟨w(t),w⋆⟩γ⋆

∥∥∥∥∥
≤
∥∥∥∥∥
∑n

i=1 e
−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩
−
∑

i∈I e−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩

∥∥∥∥∥
+

∥∥∥∥∥
∑

i∈I e−⟨w(t),xiyi⟩P⊥(xiyi)∑n
i=1 e

−⟨w(t),xiyi⟩
−
∑

i∈I e−⟨w(t),xiyi⟩P⊥(xiyi)∑
i∈I e−⟨w(t),w⋆⟩γ⋆

∥∥∥∥∥
≤ϵ
∥∥∑n

i=1 e
−⟨w(t),xiyi⟩P⊥(xiyi)

∥∥∑n
i=1 e

−⟨w(t),xiyi⟩
+ ϵ

∥∥∑
i∈I e−⟨w(t),xiyi⟩P⊥(xiyi)

∥∥∑n
i=1 e

−⟨w(t),xiyi⟩
≤ ϵ+ ϵ = 2ϵ.

Step II. P⊥(w(t)) can enter B(v⋆; δ) with any δ > 0.

For any fixed δ > 0, we assume that P⊥(w(t)) can not enter B(v⋆; δ), which means P⊥(w(t)) ∈
B(v⋆;C)− B(v⋆; δ) forever.

Recalling Theorem C.4, it ensures that L⊥(·) is µ-strongly convex in B(v⋆;C)− B(v⋆; δ) for some
µ > 0. Therefore,

∥∇L⊥(w)∥ ≥ µ ∥v − v⋆∥ ≥ µδ, ∀v ∈ B(v⋆;C)− B(v⋆; δ).

If we select ϵ = µδ
100 , the result in Step I ensures that there exists time Tϵ > 0 such that for any t > Tϵ,∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(P⊥(w(t)))

∥∥∥∥ ≤ ϵ =
µδ

100
≤ 1

100
∥∇L⊥(P⊥(w(t)))∥ .

It is easy to verify that L⊥(·) is also L-smooth in B(v⋆;C)− B(v⋆; δ) for some L > 0.

Hence, by setting η = 1/L, the loss descent has the following lower bound: for any t ≥ Tϵ,

L⊥(P⊥(w(t)))− L⋆
⊥ = L⊥

(
P⊥(w(t− 1))− ηP⊥

(∇L(w(t− 1))

L(w(t− 1))

))
− L⋆

⊥

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ − η

〈
∇L⊥(P⊥(w(t− 1))),P⊥

(∇L(w(t− 1))

L(w(t− 1))

)〉
+

L

2
η2
∥∥∥∥P⊥

(∇L(w(t− 1))

L(w(t− 1))

)∥∥∥∥2
26

Under review as a conference paper at ICLR 2024

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ −

1

L

(
∥∇L⊥(P⊥(w(t− 1)))∥2 − 1

100
∥∇L⊥(P⊥(w(t− 1)))∥2

)
+

1

2L

(
101

100

)2

∥∇L⊥(P⊥(w(t− 1)))∥2

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ −

1

2L
· 9
10
∥∇L⊥(P⊥(w(t− 1)))∥2

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ −

1

2L
· 9
10
· 2µ (L⊥ (P⊥(w(t− 1)))− L⋆

⊥)

≤
(
1− 9µ

10L

)
(L⊥ (P⊥(w(t− 1)))− L⋆

⊥)

≤ · · ·

≤
(
1− 9µ

10L

)t−Tϵ

(L⊥ (P⊥(w(Tϵ)))− L⋆
⊥) .

Hence, there exists time tϵ > Tϵ such that L⊥ (P⊥(w(tϵ)))− L⋆
⊥ < µδ

4 .

On the other hand, the strong convexity implies that

L⊥ (P⊥(w(tϵ)))− L⋆
⊥ ≥

µ

2
∥P⊥(w(tϵ))− v⋆∥ ≥ µδ

4
.

Thus, we obtain the contradiction.

Step III. There exits tk →∞ such that P⊥(w(tk))→ v⋆.

With the help of our proof of Step II, for any 1/k > 0, there exists tk > 0 such that P⊥(w(tk)) ∈
B(v⋆; 1/k). And tk →∞ can be ensured simply by setting T 1

k+1
> T 1

k
+ 1 in our proof of Step II.

Step IV. It holds that v⋆ ̸= 0.

If v⋆ = 0, then ∇L⊥(0) = 0, which implies

0 =
1

|I|
∑
i∈I

e0P(xiyi) =
1

|I|
∑
i∈I
P(xiyi).

Therefore,

1

|I|
∑
i∈I

xiyi =
1

|I|
∑
i∈I
⟨xiyi,w

⋆⟩w⋆ +
1

|I|
∑
i∈I
P(xiyi)

=
1

|I|
∑
i∈I

γ⋆w⋆ = γ⋆w⋆,

which is contradict to γ⋆w⋆ ̸= 1
|I|
∑

i∈I xiyi.

Step V. Final Tightness bound.

From P⊥(w(tk))→ v⋆, there exists K such that ∥P⊥(w(tk))− v⋆∥ ≤ ∥v⋆∥ /2, which means

1

2
∥v⋆∥ ≤ ∥P⊥(w(tk))∥ ≤

3

2
∥v⋆∥ .

Recalling Theorem C.3, it holds that ∥w(tk)∥ = Θ(tk).

Then by a direct calculation, we have∥∥∥∥ w(tk)

∥w(tk)∥
−w⋆

∥∥∥∥2 = 2− 2
⟨w(tk),w

⋆⟩
∥w(tk)∥

=2− 2
⟨w(tk),w

⋆⟩√
⟨w(tk),w⋆⟩2 + ∥P⊥(w(tk))∥2

27

Under review as a conference paper at ICLR 2024

=2− 2√
1 + ∥P⊥(w(tk))∥2

⟨w(tk),w⋆⟩2

= Θ

(
∥P⊥(w(tk))∥2

⟨w(tk),w⋆⟩2

)

=Θ

(
∥P⊥(w(tk))∥2

∥w(tk)∥2 − ∥P⊥(w(tk))∥2

)
= Θ

 1
∥w(tk)∥2

∥P⊥(w(tk))∥2 − 1

 = Θ

(
1

t2k

)
,

which implies
∥∥∥ w(tk)
∥w(tk)∥ −w⋆

∥∥∥ = Θ
(

1
tk

)
.

Hence, we have proved Theorem 6.4 for NGD.

As for GD, the step size is more mildly, and we only need to repeat the proof of NGD from Step
I to Step IV. And in Step V, the only difference from NGD is ∥w(tk)∥ = Θ(1/ log tk) rather than
Θ(1/tk) (Theorem C.3), which implies the tightness rate Θ(1/ log tk).

Theorem C.3 (Theorem 4.3, (Ji & Telgarsky, 2021)). Under Assumption 3.1 and 5.4 (ii),

(I) (GD). let w(t) be trained by GD (2) with η ≤ 1 starting from w(0) = 0. Then
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ =

O(1/ log t) and ∥w(t)∥ = Θ(log t).

(II) (NGD) let w(t) be trained by NGD (3) with η ≤ 1 starting from w(0) = 0. Then∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t) and ∥w(t)∥ = Θ(t).

Theorem C.4 (Theorem 4.4, (Ji & Telgarsky, 2021)). Under the same conditions in Theorem C.3, let
w(t) be trained by NGD with η ≤ 1 starting from w = 0. Then (i) L⊥(·) has a unique minimizer v⋆

over span{P⊥(xi) : i ∈ I}; (ii) L⊥(·) is strongly convex in any bounded set; (iii) there exists an
absolute constant C > 0 such that ∥P⊥(w(t))− v⋆∥ ≤ C, ∀t.

D USEFUL INEQUALITIES

Lemma D.1. (i) For any x ≥ 0,
√
1 + x ≤ 1 + x

2 ; (ii) For any 0 ≤ x ≤ 1/3,
√
1 + x ≥ 1 + x

3 .

Lemma D.2. For a fixed γ ∈ (0, 1), consider the function h(x) = x+2(1−γ2)
(

2
1+ex − 1

)
, x ∈ R.

Then h′(x) > 0 holds for any x ∈ R.

Proof of Lemma D.2.

h′(x) = 1− 4(1− γ2)ex

(1 + ex)2
≥ 1− 4(1− γ2)ex

(2ex/2)2
= γ2 > 0, ∀x ∈ R.

Lemma D.3. ϕ(x) = xex is e−1-strongly convex for x ∈ [−1, 1]. Hence, ϕ(z1) ≥ ϕ(z2) +
ϕ′(z2)(z1 − z2) +

1
2e (z1 − z2)

2, ∀z1, z2 ∈ [−1, 1].

Proof of Lemma D.3. ϕ(x) = xex, ϕ′(x) = (x+ 1)ex, ϕ′′(x) = (x+ 2)ex. Therefore,

ϕ′′(x) = (x+ 2)ex ≥ (−1 + 2)e−1 = e−1, ∀x ∈ [−1, 1].
Furthermore, from the mean value theorem, for any z1, z2 ∈ [−1, 1], there exists ξ ∈ [−1, 1] such
that

ϕ(z1) = ϕ(z2) + ϕ′(z2)(z1 − z2) +
ϕ′′(ξ)

2
(z1 − z2)

2.

Thus, ϕ(z1) ≥ ϕ(z2) + ϕ′(z2)(z1 − z2) +
1
2e (z1 − z2)

2.

28

Under review as a conference paper at ICLR 2024

E EXPERIMENTAL SETUPS

In this section, we provide the experiment details in Section 7.

Experiments on synthetic dataset. For synthetic Dataset I, we set γ⋆ = sin(π/100) and
n = 100. Then we generate the dataset by setting x1 = (γ⋆,

√
1− γ⋆2), x2 = (−γ⋆,

√
1− γ⋆2),

and generate xi ∼ Unif
(
S1 ∩ {x : |x1| ≥ γ⋆}

)
randomly for i ≥ 3. As for the label, we

set yi = sgn(x1). For synthetic Dataset II, we set γ⋆ = sin(π/100) and n = 100. Then
we generate the dataset by setting x1 = (γ⋆,

√
1− γ⋆2), x2 = (−γ⋆,

√
1− γ⋆2), and gener-

ate xi ∼ Unif (B(0, 1) ∩ {x : |x1| ≥ γ⋆}) randomly for i ≥ 3. As for the label, we also set
yi = sgn(x1). For PRGD, we use NGD as the warm-up Phase for 1000 iterations, and then turn it to
PRGD.

Experiments for VGG on CIFAR-10. Following (Lyu & Li, 2019), we examine our algorithm
for homogenized VGG-16, i.e., the bias term only exists in the input layer. Additionally, in this
setting, we employ mini-batch gradient descent instead of the full gradient, and we need to fine-tune
the learning rate of NGD and PRGD. Both of these two algorithms share the same learning rate
scheduling strategy as described in (Lyu & Li, 2019).

29

	Introduction
	Related Work
	Preliminaries
	Motivations and the Algorithm
	Centripetal Velocity Analysis
	Theoretical Analysis

	Margin Maximization and Directional Convergence Rate
	Exponential fast margin maximization via PRGD
	Inefficiency of GD and NGD

	Numerical Experiments
	Linearly Separable Datasets
	Linearly Non-separable Datasets and Deep Neural Networks

	Concluding Remark
	Proofs in Section 4
	Proofs in Section 5
	Proofs in Section 6
	Proof of Theorem 6.2
	Proof of Theorem 6.4

	Useful Inequalities
	Experimental Setups

