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Abstract
Complementary-label learning is a weakly super-
vised learning problem in which each training ex-
ample is associated with one or multiple comple-
mentary labels indicating the classes to which it
does not belong. Existing consistent approaches
have relied on the uniform distribution assump-
tion to model the generation of complementary
labels, or on an ordinary-label training set to
estimate the transition matrix in non-uniform
cases. However, either condition may not be
satisfied in real-world scenarios. In this pa-
per, we propose a novel consistent approach that
does not rely on these conditions. Inspired by
the positive-unlabeled (PU) learning literature,
we propose an unbiased risk estimator based
on the Selected-Completely-at-Random assump-
tion for complementary-label learning. We then
introduce a risk-correction approach to address
overfitting problems. Furthermore, we find that
complementary-label learning can be expressed
as a set of negative-unlabeled binary classifi-
cation problems when using the one-versus-rest
strategy. Extensive experimental results on both
synthetic and real-world benchmark datasets val-
idate the superiority of our proposed approach
over state-of-the-art methods.

1. Introduction
Complementary-label learning is a weakly supervised
learning problem that has received a lot of attention re-
cently (Ishida et al., 2017; Feng et al., 2020a; Gao & Zhang,
2021; Liu et al., 2023). In complementary-label learning,
we are given training data associated with complementary
labels that specify the classes to which the examples do
not belong. The task is to learn a multi-class classifier
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that assigns correct labels to test data as in the standard
supervised learning. Collecting training data with comple-
mentary labels is much easier and cheaper than collecting
ordinary-label data. For example, when asking workers
on crowdsourcing platforms to annotate training data, we
only need to randomly select a candidate label and then
ask them whether the example belongs to that class or not.
Such “yes” or “no” questions are much easier to answer
than asking workers to determine the ground-truth label
from a large set of candidate labels. The benefits and effec-
tiveness of complementary-label learning have also been
demonstrated in several machine learning problems and ap-
plications, such as domain adaptation (Zhang et al., 2021;
Han et al., 2023), semi-supervised learning (Chen et al.,
2020b; Ma et al., 2023; Deng et al., 2024), noisy-label
learning (Kim et al., 2019), adversarial robustness (Zhou
et al., 2022), few-shot learning (Wei et al., 2022), and med-
ical image analysis (Rezaei et al., 2020).

Existing research works with consistency guarantees have
attempted to solve complementary-label learning problems
by making assumptions about the distribution of comple-
mentary labels. The remedy started with Ishida et al.
(2017), which proposed the uniform distribution assump-
tion that a label other than the ground-truth label is sam-
pled from the uniform distribution to be the complemen-
tary label. A subsequent work extended it to arbitrary loss
functions and models (Ishida et al., 2019) based on the
same distribution assumption. Then, Feng et al. (2020a)
extended the problem setting to the existence of multiple
complementary labels. Recent works have proposed dis-
criminative methods that work by modeling the posterior
probabilities of complementary labels instead of the gener-
ation process (Chou et al., 2020; Gao & Zhang, 2021; Liu
et al., 2023; Lin & Lin, 2023). However, the uniform distri-
bution assumption is still necessary to ensure the classifier
consistency property (Liu et al., 2023). Yu et al. (2018) pro-
posed the biased distribution assumption, elaborating that
the generation of complementary labels follows a transition
matrix, i.e., the complementary-label distribution is deter-
mined by the true label.

In summary, previous complementary-label learning ap-
proaches all require either the uniform distribution assump-
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Table 1. Comparison between SCARCE and previous risk-consistent or classifier-consistent complementary-label learning methods.

Method Uniform distribution
assumption-free

Ordinary-label
training set-free

Classifier-
consistent

Risk-
consistent

PC (Ishida et al., 2017) ✗ ✓ ✓ ✓
Forward (Yu et al., 2018) ✓ ✗ ✓ ✗
NN (Ishida et al., 2019) ✗ ✓ ✓ ✓
LMCL (Feng et al., 2020a) ✗ ✓ ✓ ✓
OP (Liu et al., 2023) ✗ ✓ ✓ ✗

SCARCE (Ours) ✓ ✓ ✓ ✓

tion or the biased distribution assumption to guarantee the
consistency property, to the best of our knowledge. How-
ever, such assumptions may not be satisfied in real-world
scenarios. On the one hand, the uniform distribution as-
sumption is too strong, since the transition probability for
different complementary labels is undifferentiated, i.e., the
transition probability from the true label to a complemen-
tary label is constant for all labels. Such an assumption is
not realistic since the annotations may be imbalanced and
biased (Wei et al., 2023b; Wang et al., 2023a). On the other
hand, although the biased distribution assumption is more
practical, an ordinary-label training set with deterministic
labels, also known as anchor points (Liu & Tao, 2015), is
essential for estimating transition probabilities during the
training phase (Yu et al., 2018). However, the collection
of ordinary-label data with deterministic labels is often un-
realistic in complementary-label learning problems (Feng
et al., 2020a; Gao & Zhang, 2021).

To this end, we propose a novel risk-consistent approach
named SCARCE, i.e., Selected-Completely-At-Random
ComplEmentary-label learning, without relying on the uni-
form distribution assumption or an additional ordinary-
label training set. Inspired by the PU learning literature,
we propose the Selected-Completely-at-Random (SCAR)
assumption for complementary-label learning and propose
an unbiased risk estimator accordingly. We then intro-
duce a risk-correction approach to mitigate overfitting is-
sues with risk consistency maintained. Furthermore, we
show that complementary-label learning can be expressed
as a set of negative-unlabeled (NU) binary classification
problems when using the one-versus-rest (OVR) strategy.
Table 1 shows the comparison between SCARCE and pre-
vious methods. The main contributions of this work are
summarized as follows:

• Methodologically, we propose the first consistent
complementary-label learning approach without relying
on the uniform distribution assumption or an additional
ordinary-label dataset in non-uniform cases.

• Theoretically, we uncover the relation between
complementary-label learning and NU learning,

which provides a new perspective for understanding
complementary-label learning. We also prove the
convergence rate of the proposed risk estimator by
providing an estimation error bound.

• Empirically, the proposed approach is shown to achieve
superior performance over state-of-the-art methods on
both synthetic and real-world benchmark datasets.

2. Preliminaries
In this section, we review the background of learning with
ordinary labels, complementary labels, and PU learning.
Then, we introduce a new data distribution assumption for
generating complementary labels.

2.1. Learning with Ordinary Labels

Let X = Rd denote the d-dimensional feature space and
Y = {1, 2, . . . , q} denote the label space with q class la-
bels. Let p(x, y) be the joint probability density over the
random variables (x, y) ∈ X × Y , then the classification
risk is

R(f) = Ep(x,y) [L(f(x), y)] , (1)

where f(x) is the model prediction and L can be any
classification-calibrated loss function, such as the cross-
entropy loss (Bartlett et al., 2006). Let p(x) denote the
marginal density of unlabeled data. Besides, let πk =
p(y = k) be the class-prior probability of the k-th class and
p(x|y = k) denote the class-conditional density. Then, the
classification risk in Eq. (1) can be written as

R(f) =

q∑
k=1

(
πkEp(x|y=k) [L(f(x), k)]

)
. (2)

2.2. Learning with Complementary Labels

In complementary-label learning, each training example
is associated with one or multiple complementary labels
specifying the classes to which the example does not be-
long. Let D =

{(
xi, Ȳi

)}n
i=1

denote the complementary-
label training set sampled i.i.d. from an unknown density
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p(x, Ȳ ). Here, x ∈ X is a feature vector, and Ȳ ⊆ Y
is a complementary-label set associated with x. In the lit-
erature, complementary-label learning can be categorized
into single complementary-label learning when we have
|Ȳ | = 1 (Ishida et al., 2017; Gao & Zhang, 2021; Liu
et al., 2023), and multiple complementary-label learning
when we have 1 ≤ |Ȳ | ≤ q − 1 (Feng et al., 2020a).

In this paper, we consider a more general case where Ȳ can
contain any number of complementary labels, ranging from
zero to q−1. This means that our method can cover a wider
range of applications and can handle additional unlabeled
data without complementary labels. For ease of notation,
we use a q-dimensional label vector ȳ = [ȳ1, ȳ2, . . . , ȳq] ∈
{0, 1}q to denote the vector version of Ȳ , where ȳk = 1
when k ∈ Ȳ and ȳk = 0 otherwise. Let π̄k = p (ȳk = 1)
denote the fraction of training data where the k-th class is
considered as a complementary label. Let p (x|ȳk = 1) and
p (x|ȳk = 0) denote the marginal densities where the k-th
class is considered as a complementary label or not. The
task of complementary-label learning is to learn a multi-
class classifier f : X → Y from D.

2.3. Learning from Positive and Unlabeled Data

In PU learning (Elkan & Noto, 2008; du Plessis et al., 2014;
Kiryo et al., 2017), the goal is to learn a binary classifier
only from a positive dataset DP = {(xi,+1)}n

P

i=1 and an
unlabeled dataset DU = {xi}n

U

i=1. There are mainly two
problem settings for PU learning, i.e., the two-sample set-
ting (du Plessis et al., 2014; Niu et al., 2016; Chen et al.,
2020a) and the one-sample setting (Elkan & Noto, 2008;
Coudray et al., 2023). In the two-sample setting, we as-
sume that DP is sampled from the positive-class density
p(x|y = +1) and DU is sampled from the marginal den-
sity p(x). In contrast, in the one-sample setting, we assume
that an unlabeled dataset is first sampled from the marginal
density p(x). Then, if a training example is positive, its
label is observed with a constant probability c, and the ex-
ample remains unlabeled with probability 1−c. If a training
example is negative, its label is never observed and the ex-
ample remains unlabeled with probability 1. In this paper,
we make use of the one-sample setting for complementary-
label learning.

2.4. Generation Process of Complementary Labels

Inspired by the SCAR assumption in PU learning (Elkan &
Noto, 2008; Coudray et al., 2023), we introduce the SCAR
assumption for generating complementary labels, which
can be summarized as follows.

Assumption 1 (Selected-Completely-at-Random (SCAR)
Assumption). The complementary-label data with the k-th
class as a complementary label are sampled completely at

random from the marginal density of the data not belonging
to the k-th class, i.e.,

p
(
k ∈ Ȳ |x, k ∈ Y\{y}

)
= p

(
k ∈ Ȳ |k ∈ Y\{y}

)
= ck,

(3)

where ck = π̄k/(1 − πk) is a constant specifying the frac-
tion of data with the k-th class as a complementary label
and (x, y) is sampled from the density p(x, y).

Our motivation is that complementary labels are often gen-
erated in a class-wise manner. They can be collected by
answering “yes” or “no” questions given a pair of an ex-
ample and a candidate label (Hu et al., 2019; Wang et al.,
2021). During an annotation round, we randomly select a
candidate label and ask the annotators whether the example
belongs to that class or not. The process is repeated itera-
tively, so that each example may be annotated with multiple
complementary labels. The SCAR assumption differs from
the biased distribution assumption, where only one single
complementary label is generated by sampling only once
from a multinomial distribution. Moreover, the SCAR as-
sumption can be generalized to non-uniform cases by set-
ting ck to different values for different labels. Therefore,
our assumption is more practical in real-world scenarios.

We generate the complementary-label training setD as fol-
lows. First, an unlabeled dataset is sampled from p(x).
Then, if the latent ground-truth label of an example is not
the k-th class, we assign it a complementary label k with
probability ck and still consider it to be an unlabeled ex-
ample with probability 1 − ck. We generate complemen-
tary labels for all the examples by following the procedure
w.r.t. each of the q labels. The data generation process is
summarized in Appendix B.2.

3. Methodology
In this section, we first introduce a risk rewrite formula-
tion for complementary-label learning. Then, we propose
an unbiased risk estimator, followed by its theoretical anal-
ysis. Finally, we present a risk-correction approach to im-
prove the generalization performance.

3.1. Risk Rewrite

Under the SCAR assumption, the ordinary multi-class clas-
sification risk in Eq. (1) can be rewritten as follows (the
proof is given in Appendix C).

Theorem 2. Under Assumption 1, the classification risk in
Eq. (1) can be equivalently expressed as

R(f) =

q∑
k=1

(
Ep(x|ȳk=1) [(π̄k + πk − 1)L(f(x), k)]

+Ep(x|ȳk=0) [(1− π̄k)L(f(x), k)]
)
. (4)
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Theorem 2 shows that the ordinary classification risk
in Eq. (1) can be equivalently expressed using densities
p (x|ȳk = 1) and p (x|ȳk = 0). Therefore, we can per-
form empirical risk minimization by minimizing an unbi-
ased estimation of Eq. (4) with training data sampled from
p (x|ȳk = 1) and p (x|ȳk = 0).

Ideally, any multi-class loss function can be used to instan-
tiate L, such as the cross-entropy loss. In addition, any
model and optimizer can be used, which reveals the uni-
versality of our proposed approach. According to our ex-
perimental results, we find that the cross-entropy loss is
not robust and often leads to inferior performance, possi-
bly due to its unboundedness (Ghosh et al., 2017; Zhang
& Sabuncu, 2018; Feng et al., 2020a; Wei et al., 2023a),
which will be discussed in Section 4.3. In Section 3.2, we
provide an instantiation based on the OVR strategy.

3.2. OVR Strategy

The OVR strategy decomposes multi-class classification
into a series of binary classification problems, which is
a common strategy with extensive theoretical guarantees
and sound performance (Rifkin & Klautau, 2004; Zhang,
2004). It instantiates the loss function L in Eq. (1) with the
OVR loss, i.e.

R (f1, f2, . . . , fq) =Ep(x,y) [ℓ (fy (x))

+
∑

k∈Y\{y}

ℓ (−fk (x))]. (5)

Here, fk is a binary classifier w.r.t. the k-th class, E de-
notes the expectation, and ℓ : R → R+ is a non-negative
binary-class loss function. Then, the predicted label for a
test instance x is determined as

f(x) = argmax
k∈Y

fk(x). (6)

The goal is to find optimal classifiers f∗1 , f
∗
2 , . . . , f

∗
q in a

function class F which achieve the minimum classification
risk in Eq. (5), i.e.,(
f∗1 , f

∗
2 , . . . , f

∗
q

)
= argmin
f1,f2,...,fq∈F

R (f1, f2, . . . , fq) . (7)

We show that the OVR risk can be rewritten using densities
p (x|ȳk = 1) and p (x|ȳk = 0) as well.
Theorem 3. When the OVR loss is used, the classifi-
cation risk in Eq. (5) can be equivalently expressed as
R(f1, f2, . . . , fq) =

∑q
k=1Rk(fk), where

Rk(fk) =Ep(x|ȳk=1) [(1− πk)ℓ (−fk(x)) + (π̄k + πk − 1)

ℓ (fk(x))] + Ep(x|ȳk=0) [(1− π̄k) ℓ (fk(x))] .
(8)

The proof is given in Appendix D. Since the true densi-
ties p (x|ȳk = 1) and p (x|ȳk = 0) are not directly acces-
sible, we approximate the risk empirically. Suppose we

have binary-class datasets DN
k and DU

k sampled i.i.d. from
p (x|ȳk = 1) and p (x|ȳk = 0), respectively. Then, an un-
biased risk estimator can be derived from these binary-class
datasets to approximate the classification risk in Theorem 3
as R̂(f1, f2, . . . , fq) =

∑q
k=1 R̂k(fk), where

R̂k(fk) =
1

nNk

nN
k∑

i=1

(
(1− πk) ℓ

(
−fk(xN

k,i)
)
+ (π̄k + πk − 1)

ℓ
(
fk(x

N
k,i)
))

+
(1− π̄k)
nUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)
.

(9)

We may add regularization terms to R̂ (f1, f2, . . . , fq)
when necessary (Loshchilov & Hutter, 2019). This pa-
per considers generating the binary-class datasets DN

k and
DU
k by duplicating instances of D. Specifically, if the k-th

class is a complementary label of a training example, we
regard its duplicated instance as a negative example sam-
pled from p (x|ȳk = 1) and put the duplicated instance in
DN
k . If the k-th class is not a complementary label of a

training example, we regard its duplicated instance as an
unlabeled example sampled from p (x|ȳk = 0) and put the
duplicated instance in DU

k . In this way, we can obtain q
negative binary-class datasets and q unlabeled binary-class
datasets (k ∈ Y):

DN
k =

{
(xN
k,i,−1)

}nN
k

i=1
=
{
(xj ,−1)|(xj , Ȳj) ∈ D, k ∈ Ȳj

}
;

(10)

DU
k =

{
xU
k,i

}nU
k

i=1
=
{
xj |(xj , Ȳj) ∈ D, k /∈ Ȳj

}
. (11)

The details of our algorithm are summarized in Algo-
rithm 1. When the class priors πk are not accessible
to the learning algorithm, they can be estimated by off-
the-shelf mixture proportion estimation approaches (Scott,
2015; Ramaswamy et al., 2016; Zhang et al., 2020; Garg
et al., 2021; Yao et al., 2022) withDN

k andDU
k . Notably, the

irreducibility (Blanchard et al., 2010; Scott et al., 2013) as-
sumption is necessary for class-prior estimation. However,
it is still less demanding than the biased distribution as-
sumption, which requires additional ordinary-label training
data with deterministic labels, a.k.a. anchor points, to esti-
mate the transition matrix (Yu et al., 2018). We present the
details of a class-prior estimation algorithm in Appendix A.

3.3. Relation to Negative-Unlabeled Learning

First, we provide the risk rewrite results of NU learn-
ing (Niu et al., 2016). Consider the binary classification
problem with a class prior π+ = p(y = +1). Suppose
an NU dataset is generated by following the SCAR as-
sumption in PU learning with the positive and negative
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Figure 1. Training curves and test curves of the method that minimizes the URE and test curves of our proposed risk-correction approach
SCARCE. The green dashed lines indicate when the URE becomes negative while the yellow dashed lines indicate when the overfitting
phenomena occur. The complementary labels are generated by following the uniform distribution assumption. ResNet is used as the
model architecture for CIFAR-10 and MLP is used for other datasets.

Algorithm 1 SCARCE
Input: Complementary-label training set D, class priors
πk (k ∈ Y), unseen instance x∗, epoch Tmax, iteration
Imax.

for t = 1, 2, . . . , Tmax do
Shuffle the complementary-label training set D;
for j = 1, . . . , Imax do

Fetch mini-batch Dj from D;
Update the shared representation layers and spe-
cific classification layers f1, f2, . . . , fq by minimiz-
ing the corrected risk estimator R̃ (f1, f2, . . . , fq)
in Eq. (17);

end for
end for
Return y∗ = argmaxk∈Y fk(x∗);

Output: Predicted label y∗.

classes swapped. Our goal is to learn a binary classifier
fNU from the NU dataset. Let π̄− = p(ȳ = −1) denote
the proportion of negative data in the entire NU dataset.
Let p(x|ȳ = −1) and p(x|ȳ = 0) denote the density of
observed negative data and unlabeled data, respectively.

Lemma 4. Based on the assumptions above, the classifi-
cation risk of binary classification can be equivalently ex-
pressed as

Ep(x|ȳ=−1)

[
(1− π+)ℓ

(
−fNU(x)

)
+ (π̄− + π+ − 1)

ℓ
(
fNU(x)

)]
+ Ep(x|ȳ=0)

[
(1− π̄−) ℓ

(
fNU(x)

)]
. (12)

We observe that the multi-class classification risk in Theo-
rem 3 is the sum of Eq. (12) by considering each class as a
positive class in turn. Furthermore, besides minimizing the
NU classification risk Rk(fk), we can adopt any other PU
learning approach (Chen et al., 2020a; Garg et al., 2021; Li
et al., 2022; Wang et al., 2023; Jiang et al., 2023; Dai et al.,
2023) to derive the binary classifier fk by swapping the
positive class and the negative class. Finally, we can pre-
dict the label for a test instance as the class of the minimum

Algorithm 2 SCARCE-Meta
Input: Complementary-label training set D, PU learning
algorithm A, unseen instance x∗, epoch Tmax, iteration
Imax, number of labels q.

for t = 1, 2, . . . , Tmax do
Shuffle the complementary-label training set D;
for j = 1, . . . , Imax do

Fetch a mini-batch Dj from D;
for k = 1, . . . , q do

Construct a negative dataset DN
k and an unla-

beled dataset DU
k according to Eq. (10) and (11);

Train a binary classifier fk ← [ A(DN
k ,DU

k ) by
regarding negative data as positive.

end for
end for

end for
Return y∗ = argmink∈Y fk(x∗);

Output: Predicted label y∗.

model output, since the positive and negative classes are
swapped. Therefore, the proposal can be considered as a
general framework for solving complementary-label learn-
ing problems. Based on this finding, we propose a meta
complementary-label learning algorithm in Algorithm 2,
and the proposed method SCARCE can be considered as
an instantiation. In particular, when employing deep neural
networks as the model architecture for PU learning algo-
rithms, we can share the representation learning layers and
use specific classification layers for different labels, which
may allow training different classifiers simultaneously.

3.4. Theoretical Analysis

Calibration. We show that the proposed risk can be cal-
ibrated to the 0-1 loss (Zhang, 2004). Let R0−1(f) =
Ep(x,y)I(f(x) ̸= y) denote the expected 0-1 loss
where f(x) = argmaxk∈Y fk(x) and R∗

0−1 =
minf R0−1(f) denote the Bayes error. Besides, let R∗ =
minf1,f2,...,fq R(f1, f2, . . . , fq) denote the minimum risk
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of the proposed risk. Then we have the following theo-
rem (its proof is given in Appendix F).

Theorem 5. Suppose the binary-class loss function ℓ is
convex, bounded below, differential, and satisfies ℓ(z) ≤
ℓ(−z) when z > 0. Then we have that for any ϵ1 > 0,
there exists an ϵ2 > 0 such that

R (f1, f2, . . . , fq) ≤ R∗ + ϵ2 ⇒ R0−1(f) ≤ R∗
0−1 + ϵ1.

(13)

Remark 6. The infinite-sample consistency elucidates that
the proposed risk can be calibrated to the 0-1 loss. There-
fore, if we minimize the proposed risk and obtain the opti-
mal classifier, the classifier also achieves the Bayes error.

Estimation error bound. We further elaborate the
convergence property of the empirical risk estimator
R̂(f1, f2, . . . , fq) by providing its estimation error bound.
The optimal classifiers w.r.t. R̂(f1, f2, . . . , fq) are(

f̂1, f̂2, . . . , f̂q

)
= argmin
f1,f2,...,fq∈F

R̂ (f1, f2, . . . , fq) .

(14)

Theorem 7. Based on the above assumptions, for any δ >
0, the following inequality holds with probability at least
1− δ:

R
(
f̂1, f̂2, . . . , f̂q

)
−R

(
f∗1 , f

∗
2 , . . . , f

∗
q

)
≤

q∑
k=1

(
(4− 4π̄k)LℓRnU

k ,p
U
k
(F) + (1− π̄k)Cℓ

√
2 ln (2/δ)

nUk

+ (8− 8πk − 4π̄k)LℓRnN
k ,p

N
k
(F)

+(2− 2πk − π̄k)Cℓ

√
2 ln (2/δ)

nNk

)
, (15)

where RnU
k ,p

U
k
(F) and RnN

k ,p
N
k
(F) denote the Rademacher

complexity of F given nUk unlabeled data sampled
from p (x|ȳk = 0) and nNk negative data sampled from
p (x|ȳk = 1) respectively.

Remark 8. Theorem 7 elucidates an estimation error bound
of our proposed risk estimator. When nUk and nNk →
∞, R

(
f̂1, f̂2, . . . , f̂q

)
→ R

(
f∗1 , f

∗
2 , . . . , f

∗
q

)
because

RnU
k ,p

U
k
(F) → 0 and RnN

k ,p
N
k
(F) → 0 for all para-

metric models with a bounded norm such as deep neu-
ral networks with weight decay (Golowich et al., 2018).
Furthermore, the estimation error bound converges in

Op
(∑q

k=1

(
1/
√
nNk + 1/

√
nUk

))
, where Op denotes the

order in probability.

3.5. Risk-Correction Approach

Although the unbiased risk estimator (URE) has sound the-
oretical properties, we have found that it can encounter

several overfitting problems when using complex models
such as deep neural networks. The training curves and test
curves of the method that works by minimizing the URE
in Eq. (9) are shown in Figure 1. We can observe that the
overfitting phenomena often occur almost simultaneously
when the training loss becomes negative. We conjecture the
overfitting problems are related with the negative terms in
Eq. (9) (Kiryo et al., 2017; Lu et al., 2020; Cao et al., 2021).
Therefore, following Lu et al. (2020); Wang et al. (2023b),
we wrap each potentially negative term with a non-negative
risk-correction function g(z), such as the absolute value
function g(z) = |z|. For ease of notation, we introduce

R̂P
k (fk) =

π̄k + πk − 1

nNk

nN
k∑

i=1

ℓ
(
fk(x

N
k,i)
)

+
1− π̄k
nUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)
. (16)

Then, the corrected risk estimator can be written as
R̃ (f1, f2, . . . , fq) =

∑q
k=1 R̃k(fk), where

R̃k(fk) = g
(
R̂P
k (fk)

)
+

1− πk
nNk

nN
k∑

i=1

ℓ
(
−fk(xN

k,i)
)
.

(17)
It is obvious that Eq. (17) is an upper bound of Eq. (9), so
the bias is always present. Next, we perform a theoretical
analysis to clarify that the corrected risk estimator is biased
but consistent. Since E

[
R̂P
k (fk)

]
= πkEp(x|y=k)ℓ (fk(x))

is non-negative, we assume that there exists a non-negative
constant β such that for ∀k ∈ Y,E

[
R̂P
k (fk)

]
≥ β.

We also assume that the risk-correction function g(z)
is Lipschitz continuous with a Lipschitz constant Lg .
Besides, we assume that there exists some constant
CR such that the Rademacher complexity Rn,p(F)
for unlabeled (with n = nUk , p = pUk ) and negative
data (with n = nNk , p = pNk ) satisfies Rn,p(F) ≤ CR/

√
n.

This assumption holds for many models, such as fully
connected neural networks and linear-in-parameter
models with a bounded norm (Golowich et al., 2018;
Lu et al., 2020). We introduce

(
f̃1, f̃2, . . . , f̃q

)
=

argminf1,f2,...,fq∈F R̃ (f1, f2, . . . , fq) and ∆k =

exp
(
−2β2/

(
(1− πk − π̄k)2C2

ℓ /n
N
k + (1− π̄k)2C2

ℓ /n
U
k

))
.

Then we have the following theorems (the proofs are given
in Appendix H and I respectively).
Theorem 9. Based on the above assumptions, the bias of
the expectation of the corrected risk estimator has the fol-
lowing lower and upper bounds:

0 ≤ E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)

≤
q∑

k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k. (18)

6



Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical

Table 2. Classification accuracy (mean±std) of each method on MNIST. The best performance is shown in bold (pairwise t-test at the
0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 71.11
±0.83

82.69
±1.15

69.29
±0.97

87.82
±0.69

71.59
±0.85

87.66
±0.66

66.97
±1.03

11.00
±0.79

57.67
±0.98

49.17
±35.9

NN 67.75
±0.96

86.16
±0.69

30.59
±2.31

46.27
±2.61

38.50
±3.93

63.67
±3.75

67.39
±0.68

86.58
±0.95

63.95
±0.56

79.94
±0.48

GA 88.00
±0.85

96.02
±0.15

65.97
±7.87

94.55
±0.43

75.77
±1.48

94.87
±0.28

62.62
±2.29

90.23
±0.92

56.91
±2.08

78.66
±0.61

L-UW 73.49
±0.88

77.74
±0.97

39.63
±0.57

32.21
±1.20

42.77
±1.42

34.57
±1.90

35.08
±1.59

33.82
±2.44

30.24
±1.81

24.28
±2.74

L-W 62.24
±0.50

63.04
±1.58

36.90
±0.34

29.25
±0.94

41.55
±0.63

32.98
±2.25

33.53
±2.08

26.02
±1.31

28.99
±2.38

23.69
±2.94

OP 78.87
±0.46

88.76
±1.68

73.46
±0.71

85.96
±1.02

74.16
±0.52

87.23
±1.31

76.29
±0.23

86.94
±1.94

68.12
±0.51

71.67
±2.30

SCARCE 91.27
±0.20

97.00
±0.30

88.14
±0.70

96.14
±0.32

89.51
±0.44

96.62
±0.10

90.98
±0.27

96.72
±0.16

81.85
±0.25

87.05
±0.28

Furthermore, for any δ > 0, the following inequality holds
with probability at least 1− δ:

|R̃(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)|

≤ Op

(
q∑

k=1

(
1/
√
nNk + 1/

√
nUk

))
. (19)

Theorem 10. Based on the above assumptions, for any δ >
0, the following inequality holds with probability at least
1− δ:

R(f̃1, f̃2, . . . , f̃q)−R(f∗1 , f∗2 , . . . , f∗q )

≤ Op

(
q∑

k=1

(
1/
√
nNk + 1/

√
nUk

))
. (20)

Remark 11. Theorem 9 shows that R̃(f1, f2, . . . , fq) →
R(f1, f2, . . . , fq) as nUk and nNk → ∞, indicating that the
corrected risk estimator is biased but consistent. An es-
timation error bound is also shown in Theorem 10. The
convergence rate of the estimation error bound is still the
same after employing the risk-correction function.

4. Experiments
In this section, we validate the effectiveness of SCARCE
through extensive experiments.1

4.1. Experiments on Synthetic Benchmark Datasets

We conducted experiments on synthetic benchmark
datasets, including MNIST (LeCun et al., 1998), Kuzushiji-

1Our implementation of SCARCE is available at https://
github.com/wwangwitsel/SCARCE.

MNIST (Clanuwat et al., 2018), Fashion-MNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009).
We considered various generation processes of comple-
mentary labels by following the uniform, biased, and
SCAR assumptions. We evaluated the classification per-
formance of SCARCE against six single complementary-
label learning methods, including PC (Ishida et al., 2017),
NN (Ishida et al., 2019), GA (Ishida et al., 2019), L-
UW (Gao & Zhang, 2021), L-W (Gao & Zhang, 2021),
and OP (Liu et al., 2023). The logistic loss was adopted
to instantiate the binary-class loss function l, and the ab-
solute value function was used as the risk-correction func-
tion g for SCARCE. All the methods were implemented
in PyTorch (Paszke et al., 2019). We used the Adam op-
timizer (Kingma & Ba, 2015). For a fair comparison, we
use the same hyperparameters for all methods. The learn-
ing rate and batch size were fixed to 1e-3 and 256 for all
the datasets, respectively. The weight decay was 1e-3 for
CIFAR-10 and 1e-5 for the other three datasets. The num-
ber of epochs was set to 200, and we recorded the mean ac-
curacy in the last ten epochs. Details of the datasets, mod-
els, and method descriptions can be found in Appendix J.
We assumed that the class priors were accessible to the
learning algorithm. We randomly generated complemen-
tary labels five times with different seeds and recorded the
mean accuracy and standard deviations. In addition, a pair-
wise t-test at the 0.05 significance level is performed to
show whether the performance advantages are significant.

Tables 2, 3, and 4 show the classification performance of
each method with different models and generation settings
of complementary labels on MNIST, Kuzushiji-MNIST,
and Fashion-MNIST respectively. The experimental re-
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Table 3. Classification accuracy (mean±std) of each method on Kuzushiji-MNIST. The best performance is shown in bold (pairwise
t-test at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 42.93
±0.33

56.79
±1.54

41.60
±0.97

67.39
±1.04

42.53
±0.80

66.81
±1.33

39.58
±1.35

42.59
±29.8

33.95
±1.14

37.67
±25.3

NN 39.42
±0.68

58.57
±1.15

23.97
±2.53

31.10
±2.95

29.93
±1.80

48.72
±2.89

39.31
±1.18

56.84
±2.10

38.68
±0.58

56.70
±1.08

GA 60.83
±1.37

76.17
±0.44

43.22
±3.03

75.04
±0.92

48.03
±2.93

77.05
±1.67

36.56
±2.96

59.16
±3.30

33.02
±2.31

52.92
±2.39

L-UW 43.00
±1.20

49.31
±1.95

27.89
±0.51

25.82
±0.78

31.53
±0.42

30.05
±1.63

21.49
±0.57

19.71
±1.44

18.36
±1.23

16.67
±1.86

L-W 37.21
±0.59

42.69
±2.54

26.75
±0.61

25.86
±0.64

30.10
±0.57

27.94
±1.68

21.22
±0.77

18.28
±2.11

18.41
±1.66

16.25
±1.51

OP 51.78
±0.41

65.94
±1.38

45.66
±0.90

65.59
±1.71

47.47
±1.26

64.65
±1.68

49.95
±0.79

59.93
±1.38

42.72
±0.95

56.36
±2.15

SCARCE 67.95
±1.29

79.81
±1.19

62.43
±1.02

75.99
±0.91

64.98
±0.72

78.53
±0.57

66.72
±0.69

78.27
±1.09

61.78
±0.36

72.03
±0.45

sult on CIFAR-10 is shown in Appendix K. We can ob-
serve that: a) Out of 40 cases of different distributions
and datasets, SCARCE achieves the best performance in
39 cases, which clearly validates its effectiveness. b) Some
consistent approaches based on the uniform distribution as-
sumption can achieve comparable or better performance
for the “uniform” setting. For example, GA outperforms
SCARCE on CIFAR-10. However, its performance drops
significantly on other distribution settings.

4.2. Experiments on Real-World Benchmark Datasets

We also verified the effectiveness of SCARCE on two real-
world complementary-label datasets CLCIFAR-10 and
CLCIFAR-20 (Wang et al., 2023a). The datasets were an-
notated by human annotators from Amazon Mechanical
Turk (MTurk). The distribution of complementary labels
is too complex to be captured by any of the above assump-
tions. Moreover, the complementary labels may be noisy,
which means that the complementary labels may be anno-
tated as ground-truth labels by mistake. There are three
human-annotated complementary labels for each example,
so they can be considered as multiple complementary-
label datasets. We evaluated the classification perfor-
mance of SCARCE against nine multiple complementary-
label learning or partial-label learning methods, includ-
ing CC (Feng et al., 2020b), PRODEN (Lv et al., 2020),
EXP (Feng et al., 2020a), MAE (Feng et al., 2020a),
Phuber-CE (Feng et al., 2020a), LWS (Wen et al., 2021),
CAVL (Zhang et al., 2022), IDGP (Qiao et al., 2023),
and POP (Xu et al., 2023). For a fair comparison, we
set the same hyperparameters for all the methods as those
of CIFAR-10 in Section 4.1. Details of the models and
method descriptions can be found in Appendix J. We found

that the performance of some approaches was unstable with
different network initialization, so we randomly initialized
the network five times with different seeds and recorded the
mean accuracy and standard deviations.

Table 5 shows the experimental results on CLCIFAR-10
and CLCIFAR-20 with different models. We can observe
that: a) SCARCE achieves the best performance in all
cases, further confirming its effectiveness. b) The supe-
riority is even more evident on CLCIFAR-20, a more com-
plex dataset with extremely limited supervision. It demon-
strates the advantages of SCARCE in dealing with real-
world datasets.

4.3. Further Analysis

MNIST Kuzushiji-MNIST Fashion-MNIST
dataset

50

60

70

80

90

100

ac
cu

ra
cy

VPU
CCE
OVR

(a) Comparison between Differ-
ent Instantiations of SCARCE

0.0 0.1 0.2 0.3 0.4 0.5
55

60

65
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75
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95
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cu

ra
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MNIST
Kuzushiji-MNIST
Fashion-MNIST

(b) Sensitivity Analysis

Figure 2. (a) Classification accuracy of different instantiations of
SCARCE on different datasets. (b) Classification accuracy given
inaccurate class priors.

Comparison between different instantiations of
SCARCE. In Theorem 2, any multi-class loss function
can be used to instantiate L. Therefore, we also investi-
gated the classification performance of the cross-entropy
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Table 4. Classification accuracy (mean±std) of each method on Fashion-MNIST. The best performance is shown in bold (pairwise t-test
at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 64.82
±1.27

69.56
±1.82

61.14
±1.09

72.89
±1.26

61.20
±0.79

73.04
±1.38

63.08
±0.88

23.28
±29.7

47.23
±2.38

37.53
±25.2

NN 63.89
±0.92

70.34
±1.09

25.66
±2.12

36.93
±3.86

30.75
±0.96

40.88
±3.71

63.47
±0.70

70.83
±0.87

55.96
±1.55

63.06
±1.38

GA 77.04
±0.95

81.91
±0.43

50.04
±4.30

74.73
±0.96

49.02
±5.76

75.66
±1.10

54.74
±3.04

74.75
±1.17

44.75
±3.04

60.01
±1.47

L-UW 80.29
±0.44

72.43
±2.07

40.26
±2.49

29.46
±1.70

43.55
±1.61

33.53
±1.35

35.71
±1.50

30.73
±1.64

31.43
±2.98

22.03
±3.62

L-W 75.14
±0.40

61.89
±0.88

39.87
±0.95

27.57
±1.70

42.02
±1.41

32.69
±0.68

31.86
±2.16

27.37
±2.30

30.26
±1.68

21.61
±2.12

OP 69.03
±0.71

71.28
±0.94

62.93
±1.25

70.82
±1.15

62.25
±0.36

68.94
±2.78

66.29
±0.60

69.52
±1.18

56.55
±1.39

56.39
±3.03

SCARCE 80.44
±0.19

82.74
±0.39

70.08
±2.53

79.74
±1.10

71.97
±1.09

80.43
±0.69

79.75
±0.60

82.55
±0.30

71.16
±0.66

72.79
±0.62

Table 5. Classification accuracy (mean±std) of each method on CLCIFAR-10 and CLCIFAR-20. The best performance is shown in
bold (pairwise t-test at the 0.05 significance level).

Dataset Model CC PRODEN EXP MAE Phuber-CE LWS CAVL IDGP POP SCARCE

CLCIFAR-10
ResNet 31.56

±2.17
26.37
±0.98

34.84
±4.19

19.48
±2.88

41.13
±0.74

13.05
±4.18

24.12
±3.32

10.00
±0.00

26.75
±1.28

42.04
±0.96

DenseNet 37.03
±1.77

31.31
±1.06

43.27
±1.33

22.77
±0.22

39.92
±0.91

10.00
±0.00

25.31
±4.06

10.00
±0.00

31.45
±1.16

44.41
±0.43

CLCIFAR-20
ResNet 5.00

±0.00
6.69
±0.31

7.21
±0.17

5.00
±0.00

8.10
±0.18

5.20
±0.45

5.00
±0.00

4.96
±0.09

6.40
±0.33

20.08
±0.62

DenseNet 5.00
±0.00

5.00
±0.00

7.51
±0.91

5.67
±1.49

7.22
±0.39

5.00
±0.00

5.09
±0.13

5.00
±0.00

5.00
±0.00

19.91
±0.68

loss (CCE). Furthermore, we adopted the risk-correction
approach to mitigate overfitting problems. We also
included another instantiation of the meta-algorithm in
Section 3.3. We used VPU (Chen et al., 2020a) as the
PU learning approach. For a fair comparison, we did
not use the mixup loss. We compared them with the
default instantiation of SCARCE, i.e. the OVR loss, and
Figure 2 (a) shows the experimental results. We gener-
ated complementary labels with the uniform distribution
assumption and used LeNet as the model architecture. We
can observe that the OVR loss outperforms CCE and VPU.
We conjecture that the inferior performance of CCE may
be related to its unboundedness (Ghosh et al., 2017; Zhang
& Sabuncu, 2018; Wei et al., 2023a).

Sensitivity analysis. We investigated the influence of in-
accurate class priors on the classification performance of
SCARCE. Specifically, let π̄k = ξkπk denote the corrupted
class prior probability for the k-th class where ξk is sam-
pled from a normal distribution N (1, σ2). We further nor-
malized the obtained corrupted class priors to ensure that

they sum up to one. Figure 2 (b) shows the classification
performance given inaccurate class priors using the uni-
form generation process and LeNet as the model architec-
ture. From Figure 2 (b), we can see that the performance
is still satisfactory with small perturbations of the class pri-
ors. However, the performance will degenerate if the class
priors deviate too much from the ground-truth values.

5. Conclusion
In this paper, we proposed the first attempt towards consis-
tent complementary-label learning without relying on the
uniform distribution assumption or an ordinary-label train-
ing set to estimate the transition matrix in non-uniform
cases. Based on a more practical distribution assumption, a
consistent approach was proposed with theoretical guaran-
tees. We also observed that complementary-label learning
could be expressed as a set of NU classification problems
when using the OVR strategy. Extensive experimental re-
sults on benchmark datasets validated the effectiveness of
our proposed approach.
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A. Class-Prior Estimation
When the class priors πk are not accessible to the learning algorithm, they can be estimated by off-the-shelf mixture
proportion estimation approaches (Ramaswamy et al., 2016; Scott, 2015; Garg et al., 2021; Yao et al., 2022). In this section,
we discuss the problem formulation and how to adapt a state-of-the-art class-prior estimation method to our problem as an
example.

Mixture proportion estimation. Let F be a mixture distribution of two component distributions G and H with a pro-
portion θ∗, i.e.,

F = (1− θ∗)G+ θ∗H.

The task of mixture proportion estimation problems is to estimate θ∗ given training examples sampled from F and H .
For PU learning, we consider F = p(x), G = p(x|y = −1), and H = p(x|y = +1). Then, the estimation of θ∗

corresponds to the estimation of the class prior p(y = +1). It is shown that θ∗ cannot be identified without any additional
assumptions (Scott et al., 2013; Scott, 2015). Hence, various assumptions have been proposed to ensure the identifiability,
including the irreducibility assumption (Scott et al., 2013), the anchor point assumption (Scott, 2015; Liu & Tao, 2015),
the separability assumption (Ramaswamy et al., 2016), etc.

Best Bin Estimation. We use Best Bin Estimation (BBE) (Garg et al., 2021) as the base algorithm for class-prior esti-
mation because it can achieve nice performance with simple implementations. First, they split the PU data into PU training

data DPTr =
{(

xPTr
i ,+1

)}nPTr

i=1
and DUTr =

{
xUTr
i

}nUTr

i=1
, and PU validation data DPVal =

{(
xPVal
i ,+1

)}nPVal

i=1
and

DUVal =
{
xUVal
i

}nUVal

i=1
. Then, they train a positive-versus-unlabeled (PvU) classifier fPvU with DPTr and DUTr. They

collect the model outputs of the PU validation data ZP =
{
zPi
}nPVal

i=1
and ZU =

{
zUi
}nUVal

i=1
where zPi = fPvU

(
xPVal
i

)
and zUi = fPvU

(
xUVal
i

)
. They also introduce q(z) =

∫
Az
p(x) dx where Az =

{
x ∈ X |fPvU(x) ≥ z

}
. Then, q(z) can

be regarded as the proportion of data with the model output not less than z. For p (x|y = +1) and p (x), they define qP(z)
and qU(z) respectively. They empirically estimate them as

q̂P(z) =

∑nPVal

i=1 I
(
fPvU

(
xPVal
i

)
≥ z
)

nPVal
and q̂U(z) =

∑nUVal

i=1 I
(
fPvU

(
xUVal
i

)
≥ z
)

nUVal
. (21)

Then, they obtain ẑ as

ẑ = argmax
z∈[0,1]

(
q̂U(z)

q̂P(z)
+

1 + γ

q̂P(z)

(√
ln (4/δ)

2nPVal
+

√
ln (4/δ)

2nUVal

))
(22)

where γ and δ are hyperparameters respectively. Finally, they calculate the estimation value of the mixture proportion as

θ̂ =
q̂U (ẑ)

q̂P (ẑ)
(23)

and they prove that θ̂ is an unbiased estimator of θ∗ when satisfying the pure positive bin assumption, a variant of the
irreducibility assumption. More detailed descriptions of the approach can be found in Garg et al. (2021).

Class-prior estimation for SCARCE. Our class-prior estimation approach is based on BBE. First, we split the
complementary-label data into training and validation data. Then, we generate q negative binary-class datasets DNTr

k

and q unlabeled binary-class datasets DUTr
k by Eq. (10) and Eq. (11) with training data (k ∈ Y). We also generate q

negative binary-class datasets DNVal
k and q unlabeled binary-class datasets DUVal

k by Eq. (10) and Eq. (11) with validation
data (k ∈ Y). Then, we estimate the class priors (1 − πk) for each label k ∈ Y using BBE adapted by swapping the
positive and negative classes. Finally, we normalize πk to ensure that they sum up to one. The details of the algorithm are
summarized in Algorithm 3.

Experimental results. We assumed that the ground-truth class priors for all labels and datasets were 0.1, meaning that
the test set was balanced. We generated complementary labels using the SCAR assumption with π̄k = 0.5. We repeated the
generation process 5 times with different random seeds. Table 6 shows the experimental results of the proposed class-prior
estimation approach. We can observe that the class priors are generally accurately estimated with the proposed class-prior
estimation method.
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Algorithm 3 Class-prior Estimation
Input: Complementary-label training set D.

for k ∈ Y do
Generate training datasets DNTr

k , DUTr
k , validation data DNVal

k , and DUVal
k by Eq. (10) and Eq. (11);

Estimate the value of (1− πk) by employing the BBE algorithm and interchanging the positive and negative classes;
end for
Normalize πk to ensure they sum up to one;

Output: Class priors πk (k ∈ Y).

Table 6. Estimated values (mean±std) of class priors.

Label Index 1 2 3 4 5

MNIST 0.104±0.011 0.119±0.012 0.110±0.009 0.099±0.008 0.101±0.010

Kuzushiji-MNIST 0.108±0.026 0.098±0.011 0.087±0.012 0.104±0.004 0.101±0.021

Fashion-MNIST 0.091±0.016 0.118±0.005 0.090±0.024 0.090±0.009 0.077±0.020

CIFAR-10 0.085±0.016 0.102±0.039 0.073±0.019 0.109±0.047 0.100±0.031

Label Index 6 7 8 9 10

MNIST 0.087±0.007 0.089±0.005 0.106±0.019 0.091±0.008 0.096±0.016

Kuzushiji-MNIST 0.095±0.010 0.105±0.025 0.095±0.007 0.094±0.016 0.113±0.035

Fashion-MNIST 0.117±0.007 0.070±0.010 0.114±0.023 0.117±0.016 0.117±0.016

CIFAR-10 0.098±0.013 0.115±0.023 0.120±0.033 0.097±0.041 0.100±0.013

B. Discussions
B.1. Related Work on PU Learning

PU learning methods can be roughly categorized into two groups: sample selection methods and cost-sensitive methods.
Sample selection methods try to identify reliable negative examples from the unlabeled dataset and then use supervised
learning methods to learn the classifier (Wang et al., 2023; Dai et al., 2023; Garg et al., 2021). Cost-sensitive methods are
based on an unbiased risk estimator, which rewrites the classification risk as that only on positive and unlabeled data (Kiryo
et al., 2017; Jiang et al., 2023; Zhao et al., 2022).

B.2. Data Generation Process

The generation process of complementary labels is summarized in Algorithm 4.

B.3. Use of Ordinary-Label Data

If an additional ordinary-label training set DO = {(xO
i , y

O
i )}n

O

i=1 consisting of nO training examples is available, we

can include it in the training as well. Let R̂O (f1, f2, . . . , fq) =
∑nO

i=1

(
ℓ
(
fyOi (x

O
i )
)
+
∑
k∈Y\{yOi } ℓ

(
−fk(xO

i )
))
/nO

denote the empirical risk estimator calculated onDO, it is easy to see that αR̂ (f1, f2, . . . , fq)+(1−α)R̂O (f1, f2, . . . , fq)
is still an unbiased risk estimator w.r.t. Eq. (5) where α ∈ [0, 1] is a weight.

B.4. Summary of Assumptions

In this section, we briefly summarize the assumptions used in this paper.

• The SCAR assumption, which is used to describe the data generation process.
• The irreducibility assumption, which is used to allow the estimation of class priors.
• The assumptions used to prove the classification-calibrated property in Theorem 5, i.e. ℓ is convex, bounded below,

differential, and satisfies ℓ(z) ≤ ℓ(−z) when z > 0.
• The assumptions used to prove the estimation error bounds in Theorems 7, 9, and 10, e.g., supf∈F ∥f∥∞ ≤ Cf ,

15



Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical

Algorithm 4 Data Generation Process
Input: Marginal density p(x), Posterior probability distribution p(y|x), number of training data n, probabilities ck(k ∈
Y).

Initialize a complementary-label dataset D = ∅;
for i = 1, 2, . . . , n do

Sample an unlabeled example xi from p(x);
Sample the label yi from p(y|xi);
Initialize Ȳi = ∅;
for k ∈ Y do

if yi ̸= k then
Assign Ȳi = Ȳi ∪ {k} with ck;

end if
end for
Assign D = D ∪ {(xi, Ȳi)};

end for
Output: Complementary-label dataset D.

sup|z|≤Cf
ℓ(z) ≤ Cℓ, ℓ(z) is Lipschitz continuous, ∀k ∈ Y,E

[
R̂P
k (fk)

]
≥ β, the risk-correction function g(z) is

Lipschitz continuous, Rn,p(F) ≤ CR/
√
n, etc.

B.5. Limitations

Our method is designed for instance-independent settings, where the generation of complementary labels is determined
only by the ground-truth label and is not related to the feature. Moreover, if we adopt some PU learning methods that
cannot share the representation layers for different labels, we may need additional storage and computational cost.

C. Proof of Theorem 2
First, we introduce the following lemma.

Lemma 12. Under Assumption 1, we have p (x|ȳk = 1) = p(x|y ̸= k).

Proof. On one hand, we have

p(x|ȳk = 1, y ̸= k) =
p (x|ȳk = 1) p(y ̸= k|x, ȳk = 1)

p(y ̸= k|ȳk = 1)
.

According to the definition of complementary labels, we have p(y ̸= k|x, ȳk = 1) = p(y ̸= k|ȳk = 1) = 1. Therefore,
we have p(x|ȳk = 1, y ̸= k) = p (x|ȳk = 1). On the other hand, we have

p(x|ȳk = 1, y ̸= k) =
p(x|y ̸= k)p(ȳk = 1|x, y ̸= k)

p(ȳk = 1|y ̸= k)
= p(x|y ̸= k),

where the first equation is derived from Assumption 1. The proof is completed.

Then, the proof of Theorem 2 is given.
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Proof of Theorem 2.

R(f) =Ep(x,y) [L(f(x), y)]

=

q∑
k=1

(
πkEp(x|y=k) [L(f(x), k)]

)
=

q∑
k=1

(
Ep(x) [L(f(x), k)]− (1− πk)Ep(x|y ̸=k) [L(f(x), k)]

)
=

q∑
k=1

(
Ep(x) [L(f(x), k)]− (1− πk)Ep(x|ȳk=1) [L(f(x), k)]

)
=

q∑
k=1

(
Ep(x|ȳk=1) [(π̄k + πk − 1)L(f(x), k)] + Ep(x|ȳk=0) [(1− π̄k)L(f(x), k)]

)
,

which concludes the proof.

D. Proof of Theorem 3
Proof.

R(f1, f2, . . . , fq) =Ep(x,y)

ℓ (fy (x)) + q∑
k=1,k ̸=y

ℓ (−fk (x))


=Ep(x,y)

[
q∑

k=1

(I(k = y)ℓ(fk(x)) + I(k ̸= y)ℓ(−fk(x)))

]

=

q∑
k=1

Ep(x,y) [I(k = y)ℓ (fk(x)) + I(k ̸= y)ℓ (−fk(x))]

=

q∑
k=1

(
πkEp(x|y=k) [ℓ (fk(x))] + (1− πk)Ep(x|y ̸=k) [ℓ (−fk(x))]

)
=

q∑
k=1

(
Ep(x) [ℓ(fk(x))]− (1− πk)Ep(x|y ̸=k) [ℓ(fk(x))]

+(1− πk)Ep(x|y ̸=k) [ℓ(−fk(x))]
)

=

q∑
k=1

(
Ep(x) [ℓ(fk(x))]− (1− πk)Ep(x|ȳk=1) [ℓ(fk(x))]

+(1− πk)Ep(x|ȳk=1) [ℓ(−fk(x))]
)

=

q∑
k=1

(
π̄kEp(x|ȳk=1) [ℓ(fk(x))] + (1− π̄k)Ep(x|ȳk=0) [ℓ(fk(x))]

−(1− πk)Ep(x|ȳk=1) [ℓ(fk(x))] + (1− πk)Ep(x|ȳk=1) [ℓ(−fk(x))]
)

=

q∑
k=1

(
Ep(x|ȳk=1) [(1− πk)ℓ (−fk(x)) + (π̄k + πk − 1) ℓ (fk(x))]

+Ep(x|ȳk=0) [(1− π̄k) ℓ (fk(x))]
)
.

Here, I(·) returns 1 if predicate holds. Otherwise, I(·) returns 0. The proof is completed.

E. Proof of Lemma 4
Proof. Under the binary classification setting, we have the marginal density p(x) = π+p(x|y = +1) + (1− π+)p(x|y =
−1), where p(x|y = +1) and p(x|y = −1) denote the densities of positive and negative data respectively. Then, we have
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the classification risk of binary classification

R(f) =Ep(x,y)
[
ℓ
(
yfNU(x)

)]
=π+Ep(x|y=+1)

[
ℓ
(
fNU(x)

)]
+ (1− π+)Ep(x|y=−1)

[
ℓ
(
−fNU(x)

)]
=Ep(x)

[
ℓ
(
fNU(x)

)]
− (1− π+)Ep(x|y=−1)

[
ℓ
(
fNU(x)

)]
+ (1− π+)Ep(x|y=−1)

[
ℓ
(
−fNU(x)

)]
=π̄−Ep(x|ȳ=−1)

[
ℓ
(
fNU(x)

)]
+ (1− π̄−)Ep(x|ȳ=0)

[
ℓ
(
fNU(x)

)]
+ (1− π+)Ep(x|y=−1)

[
ℓ
(
−fNU(x)

)
− ℓ

(
fNU(x)

)]
=Ep(x|ȳ=−1)

[
(1− π+)ℓ

(
−fNU(x)

)
+ (π̄− + π+ − 1)ℓ

(
fNU(x)

)]
+ Ep(x|ȳ=0)

[
(1− π̄−)ℓ

(
fNU(x)

)]
,

where the last equation results from Lemma 12 under the binary-class setting. The proof is completed.

F. Proof of Theorem 5
To begin with, we show the following theoretical results about infinite-sample consistency from Zhang (2004). For ease of
notations, let f(x) = [f1(x), f2(x), . . . , fq(x)] denote the vector form of modeling outputs of all the binary classifiers.
First, we elaborate the infinite-sample consistency property of the OVR strategy.

Theorem 13 (Theorem 10 of Zhang (2004)). Consider the OVR strategy, whose surrogate loss function is defined as
Ψy (f(x)) = ℓ (fy(x)) +

∑
k∈Y\{y} ℓ (−fk(x)). Assume ℓ is convex, bounded below, differentiable, and ℓ(z) < ℓ(−z)

when z > 0. Then, the OVR strategy is infinite-sample consistent on Ω = RK with respect to the 0-1 classification risk.

Then, we elaborate the relationship between the minimum classification risk of an infinite-sample consistent method and
the Bayes error.

Theorem 14 (Theorem 3 of Zhang (2004)). Let B be the set of all vector Borel measurable functions, which take values
in Rq . For Ω ⊂ Rq , let BΩ = {f ∈ B : ∀x,f(x) ∈ Ω}. If Ψy(·) is infinite-sample consistent on Ω with respect to the 0-1
classification risk, then for any ϵ1 > 0, there exists an ϵ2 > 0 such that for all underlying Borel probability measurable p,
and f(·) ∈ BΩ,

E(x,y)∼p [Ψy(f(x))] ≤ inf
f ′∈BΩ

E(x,y)∼p [Ψy(f
′(x))] + ϵ2 (24)

implies
R0−1 (T (f(·))) ≤ R∗

0−1 + ϵ1, (25)

where T (·) is defined as T (f(x)) := argmaxk=1,...,q fk(x).

Then, we give the proof of Theorem 5.

Proof of Theorem 5. According to Theorem 3, the proposed classification risk R(f1, f2, . . . , fq) is equivalent to the OVR
risk. Therefore, it is sufficient to elaborate the theoretical properties of the OVR risk to prove Theorem 5.

G. Proof of Theorem 7
First, we give the definition of Rademacher complexity.

Definition 15 (Rademacher complexity). LetXn = {x1, . . .xn} denote n i.i.d. random variables drawn from a probability
distribution with density p(x), F = {f : X 7→ R} denote a class of measurable functions, and σ = (σ1, σ2, . . . , σn)
denote Rademacher variables taking values from {+1,−1} uniformly. Then, the (expected) Rademacher complexity of F
is defined as

Rn,p(F) = EXn
Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
. (26)

For ease of notation, we define D̄ = DU
1

⋃
DU

2

⋃
. . .
⋃
DU
q

⋃
DN

1

⋃
DN

2

⋃
. . .
⋃
DN
q denote the set of all the binary-class

training data. Then, we have the following lemma.

18



Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical

Lemma 16. For any δ > 0, the inequalities below hold with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)∣∣∣ ≤ q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
. (27)

Proof. In the following proofs, we consider a general case where all the datasets DN
k and DU

k are mutually inde-
pendent. We can observe that when an unlabeled example xU

k,i ∈ DU
k is substituted by another unlabeled ex-

ample xU
k,j , the value of supf1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)∣∣∣ changes at most (1 − π̄k)Cℓ/n
U
k .

Besides, when a negative example xN
k,i ∈ DN

k is substituted by another negative example xN
k,j , the value of

supf1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)∣∣∣ changes at most (2− 2πk − π̄k)Cℓ/nNk . According to the McDi-
armid’s inequality, for any δ > 0, the following inequality holds with probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)
≤ED̄

[
sup

f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)]

+

q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk
+ (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
, (28)

where the inequality is deduced since
√
a+ b ≤

√
a +
√
b. It is a routine work to show by symmetrization (Mohri et al.,

2012) that

ED̄

[
sup

f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)]

≤
q∑

k=1

(
(2− 2π̄k)RnU

k ,p
U
k
(ℓ ◦ F) + (4− 4πk − 2π̄k)RnN

k ,p
N
k
(ℓ ◦ F)

)
, (29)

where Rn,p(ℓ ◦ F) is the Rademacher complexity of the composite function class (ℓ ◦ F). According to Talagrand’s
contraction lemma (Ledoux & Talagrand, 1991), we have

RnU
k ,p

U
k
(ℓ ◦ F) ≤ LℓRnU

k ,p
U
k
(F), (30)

RnN
k ,p

N
k
(ℓ ◦ F) ≤ LℓRnN

k ,p
N
k
(F). (31)

By combining Inequality (28), Inequality (29), Inequality (30), and Inequality (31), the following inequality holds with
probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)
≤

q∑
k=1

(
(2− 2π̄k)LℓRnU

k ,p
U
k
(F)

+(1− π̄k)Cℓ

√
ln (2/δ)

2nUk
+ (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
. (32)

In the same way, we have the following inequality with probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R̂(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)

)
≤

q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
. (33)

19



Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical

By combining Inequality (32) and Inequality (33), we have the following inequality with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)∣∣∣ ≤ q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
, (34)

which concludes the proof.

Proof of Theorem 7.

R(f̂1, f̂2, . . . , f̂q)−R(f∗1 , f∗2 , . . . , f∗q )

=R(f̂1, f̂2, . . . , f̂q)− R̂(f̂1, f̂2, . . . , f̂q) + R̂(f̂1, f̂2, . . . , f̂q)− R̂(f∗1 , f∗2 , . . . , f∗q )

+ R̂(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f∗2 , . . . , f∗q )

≤R(f̂1, f̂2, . . . , f̂q)− R̂(f̂1, f̂2, . . . , f̂q) + R̂(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f∗2 , . . . , f∗q )

≤2 sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)∣∣∣ (35)

The first inequality is deduced because (f̂1, f̂2, . . . , f̂q) is the minimizer of R̂(f1, f2, . . . , fq). Combining Inequality (35)
and Lemma 16, the proof is completed.

H. Proof of Theorem 9
Let D+

k (fk) =
{(
DN
k ,DU

k

)
|R̂P
k (fk) ≥ 0

}
and D−

k (fk) =
{(
DN
k ,DU

k

)
|R̂P
k (fk) < 0

}
denote the sets of NU data pairs

having positive and negative empirical risk respectively. Then we have the following lemma.

Lemma 17. The probability measure of D−
k (fk) can be bounded as follows:

P
(
D−
k (fk)

)
≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
. (36)

Proof. Let

p
(
DN
k

)
= p

(
xN
k,1|ȳk = 1

)
p
(
xN
k,2|ȳk = 1

)
. . . p

(
xN
k,nN

k
|ȳk = 1

)
and

p
(
DU
k

)
= p

(
xU
k,1|ȳk = 0

)
p
(
xU
k,2|ȳk = 0

)
. . . p

(
xU
k,nU

k
|ȳk = 0

)
denote the probability density of DN

k and DU
k respectively. The joint probability density of DN

k and DU
k is

p
(
DN
k ,DU

k

)
= p

(
DN
k

)
p
(
DU
k

)
.

Then, the probability measure P
(
D−
k (fk)

)
is defined as

P
(
D−
k (fk)

)
=

∫
(DN

k ,D
U
k )∈D−

k (fk)

p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
=

∫
(DN

k ,D
U
k )∈D−

k (fk)

p
(
DN
k ,DU

k

)
dxN

k,1 . . . dx
N
k,nN

k
dxU

k,1 . . . dx
U
k,nU

k
.

When a negative example in DN
k is substituted by another different negative example, the change of the value of R̂P

k (fk)
is no more than (1 − πk − π̄k)Cℓ/nN

k ; when an unlabeled example in DU
k is substituted by another different unlabeled
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example, the change of the value of R̂P
k (fk) is no more than (1 − π̄k)Cℓ/nUk . Therefore, by applying the McDiarmid’s

inequality, we can obtain the following inequality:

P
(
E
[
R̂P
k (fk)

]
− R̂P

k (fk) ≥ β
)
≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
. (37)

Therefore, we have

P
(
D−
k (fk)

)
=P
(
R̂P
k (fk) ≤ 0

)
≤P
(
R̂P
k (fk) ≤ E

[
R̂P
k (fk)

]
− β

)
=P
(
E
[
R̂P
k (fk)

]
− R̂P

k (fk) ≥ β
)

≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
, (38)

which concludes the proof.

We present a more complete version of Theorem 9 and its proof.
Theorem 18. Based on the above assumptions, the bias of the expectation of the corrected risk estimator has the following
lower and upper bounds:

0 ≤ E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq) ≤
q∑

k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k, (39)

where ∆k = exp
(
−2β2/

(
(1− πk − π̄k)2C2

ℓ /n
N
k + (1− π̄k)2C2

ℓ /n
U
k

))
. Furthermore, for any δ > 0, the following

inequality holds with probability at least 1− δ:

|R̃(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)| ≤
q∑

k=1

(
(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+(2− 2π̄k − πk) (Lg + 1)Cℓ∆k + ((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk

)
.

Proof. First, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq) = E

[
R̃(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

]
.

Since R̃(f1, f2, . . . , fq) is an upper bound of R̂(f1, f2, . . . , fq), we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq) ≥ 0.

Besides, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq)

=

q∑
k=1

∫
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)
p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
≤

q∑
k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)∫

(DN
k ,DU)∈D−

k (fk)

p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
=

q∑
k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)
P
(
D−
k (fk)

)
≤

q∑
k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(Lg

∣∣∣R̂P
k (fk)

∣∣∣+ ∣∣∣R̂P
k (fk)

∣∣∣)P (D−
k (fk)

)
.

21



Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical

Besides,

∣∣∣R̂P
k (fk)

∣∣∣ =
∣∣∣∣∣∣ π̄k + πk − 1

nNk

nN
k∑

i=1

ℓ
(
fk(x

N
k,i)
)
+

1− π̄k
nUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣ π̄k + πk − 1

nNk

nN
k∑

i=1

ℓ
(
fk(x

N
k,i)
)∣∣∣∣∣∣+

∣∣∣∣∣∣1− π̄knUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)∣∣∣∣∣∣

≤(1− πk − π̄k)Cℓ + (1− π̄k)Cℓ = (2− 2π̄k − πk)Cℓ.

Therefore, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq)

≤
q∑

k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(Lg

∣∣∣R̂P
k (fk)

∣∣∣+ ∣∣∣R̂P
k (fk)

∣∣∣)P(D−
k (fk)).

≤
q∑

k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)

=

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k,

which concludes the first part of the proof of Theorem 3. Before giving the proof for the second part, we give the upper
bound of

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣. When an unlabeled example from DU
k is substituted by another

unlabeled example, the value of R̃(f1, f2, . . . , fq) changes at most (1− π̄k)CℓLg/nUk . When a negative example fromDN
k

is substituted by a different example, the value of R̃(f1, f2, . . . , fq) changes at most ((1− πk − π̄k)Lg + 1− πk)Cℓ/nNk .
By applying McDiarmid’s inequality, we have the following inequalities with probability at least 1− δ/2:

R̃(f1, f2, . . . , fq)− E
[
R̃(f1, f2, . . . , fq)

]
≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
,

E
[
R̃(f1, f2, . . . , fq)

]
− R̃(f1, f2, . . . , fq) ≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
.

Then, with probability at least 1− δ, we have

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣ ≤ q∑
k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
.
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Therefore, with probability at least 1− δ we have∣∣∣R̃(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)∣∣∣
=
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)] + E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)

∣∣∣
≤
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)]

∣∣∣+ ∣∣∣E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)∣∣∣
=
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)]

∣∣∣+ E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)

≤
q∑

k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk
+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk

+

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k,

which concludes the proof.

I. Proof of Theorem 10
In this section, we adopt an alternative definition of Rademacher complexity:

R′
n,p(F) = EXn

Eσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
. (40)

Then, we introduce the following lemmas.

Lemma 19. Without any composition, for any F , we have R′
n,p(F) ≥ Rn,p(F). If F is closed under negation, we have

R′
n,p(F) = Rn,p(F).

Lemma 20 (Theorem 4.12 in (Ledoux & Talagrand, 1991)). If ψ : R → R is a Lipschitz continuous function with a
Lipschitz constant Lψ and satisfies ψ(0) = 0, we have

R′
n,p(ψ ◦ F) ≤ 2LψR

′
n,p(F),

where ψ ◦ F = {ψ ◦ f |f ∈ F}.

Before giving the proof of Theorem 10, we give the following lemma.

Lemma 21. For any δ > 0, the inequalities below hold with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)∣∣∣
≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (1/δ)

2nUk
+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (1/δ)

2nNk

+

q∑
k=1

(
(4− 4π̄k)LgLℓRnU

k ,p
U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓRnN

k ,p
N
k
(F)

)
+

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k.

Proof. Similar to previous proofs, we can observe that when an unlabeled example from DU
k is substituted by an-

other unlabeled example, the value of supf1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣ changes at most

(1− π̄k)CℓLg/nUk . When a negative example from DN
k is substituted by a different example, the value of
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supf1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣ changes at most ((1− πk − π̄k)Lg + 1− πk)Cℓ/nNk . By
applying McDiarmid’s inequality, we have the following inequality with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣
−E

[
sup

f1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣]

≤
q∑

k=1

(1− π̄k)CℓLg

√
ln (1/δ)

2nUk
+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (1/δ)

2nNk
. (41)

Besides, we have

E

[
sup

f1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣]

=ED̄

[
sup

f1,f2,...,fq∈F

∣∣∣ED̄′

[
R̃(f1, f2, . . . , fq)

]
− R̃(f1, f2, . . . , fq)

∣∣∣]

≤ED̄,D̄′

[
sup

f1,f2,...,fq∈F

∣∣∣R̃(f1, f2, . . . , fq; D̄)− R̃(f1, f2, . . . , fq; D̄′)
∣∣∣] , (42)

where the last inequality is deduced by applying Jensen’s inequality twice since the absolute value function and the supre-
mum function are both convex. Here, R̃(f1, f2, . . . , fq; D̄) denotes the value of R̃(f1, f2, . . . , fq) calculated on D̄. To
ensure that the conditions in Lemma 20 hold, we introduce ℓ̃(z) = ℓ(z)− ℓ(0). It is obvious that ℓ̃(0) = 0 and ℓ̃(z) is also
a Lipschitz continuous function with a Lipschitz constant Lℓ. Then, we have∣∣∣R̃(f1, f2, . . . , fq; D̄)− R̃(f1, f2, . . . , fq; D̄′)

∣∣∣
≤

q∑
k=1

∣∣∣∣∣∣g
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U
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)

−g
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)
+
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+
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≤
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(
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(
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(
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fk(x

U
k,i)
)
− ℓ

(
fk(x

U′

k,i)
))∣∣∣∣∣∣

+

q∑
k=1

∣∣∣∣∣∣1− πknNk

nN
k∑

i=1

(
ℓ
(
−fk(xN

k,i)
)
− ℓ

(
−fk(xN′

k,i)
))∣∣∣∣∣∣ . (43)

Besides, we can observe ℓ(z1)− ℓ(z2) = ℓ̃(z1)− ℓ̃(z2). Therefore, the RHS of Inequality (43) can be expressed as

q∑
k=1

Lg

∣∣∣∣∣∣ π̄k + πk − 1

nNk
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Then, it is a routine work to show by symmetrization (Mohri et al., 2012) that

ED̄,D̄′

[
sup

f1,f2,...,fq∈F

∣∣∣R̃(f1, f2, . . . , fq; D̄)− R̃(f1, f2, . . . , fq; D̄′)
∣∣∣]

≤
q∑

k=1

(
(2− 2π̄k)LgR

′
nU
k ,p

U
k
(ℓ̃ ◦ F) + ((2− 2πk − 2π̄k)Lg + 2− 2πk)R

′
nN
k ,p

N
k
(ℓ̃ ◦ F)

)
≤

q∑
k=1

(
(4− 4π̄k)LgLℓR

′
nU
k ,p

U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓR

′
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k
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)
=
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k ,p
U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓRnN

k ,p
N
k
(F)

)
, (44)

where the second inequality is deduced according to Lemma 20 and the last equality is based on the assumption that F is
closed under negation. By combing Inequality (41), Inequality (42), and Inequality (44), we have the following inequality
with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣
≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (1/δ)

2nUk
+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (1/δ)

2nNk

+

q∑
k=1

(
(4− 4π̄k)LgLℓRnU

k ,p
U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓRnN

k ,p
N
k
(F)

)
. (45)

Then, we have

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)∣∣∣
= sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− E
[
R̃(f1, f2, . . . , fq)

]
+E

[
R̃(f1, f2, . . . , fq)

]
− R̃(f1, f2, . . . , fq)

∣∣∣
≤ sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− E
[
R̃(f1, f2, . . . , fq)

]∣∣∣
+ sup
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∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)∣∣∣ . (46)

Combining Inequality (46) with Inequality (45) and Inequality (18), the proof is completed.

We present a more complete version of Theorem 10 and its proof.

Theorem 22. Based on the above assumptions, for any δ > 0, the following inequality holds with probability at least
1− δ:

R(f̃1, f̃2, . . . , f̃q)−R(f∗1 , f∗2 , . . . , f∗q ) ≤
q∑

k=1

(4− 4π̄k − 2πk) (Lg + 1)Cℓ∆k

+

q∑
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(
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√
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√
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nNk

)

+

q∑
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(
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k ,p
U
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(F) + ((8− 8πk − 8π̄k)Lg + 8− 8πk)LℓRnN

k ,p
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k
(F)

)
.
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Proof.

R(f̃1, f̃2, . . . , f̃q)−R(f∗1 , f∗2 , . . . , f∗q )

=R(f̃1, f̃2, . . . , f̃q)− R̃(f̃1, f̃2, . . . , f̃q) + R̃(f̃1, f̃2, . . . , f̃q)− R̃(f∗1 , f∗2 , . . . , f∗q )

+ R̃(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f∗2 , . . . , f∗q )

≤R(f̃1, f̃2, . . . , f̃q)− R̃(f̃1, f̃2, . . . , f̃q) + R̃(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f∗2 , . . . , f∗q )

≤2 sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)∣∣∣ . (47)

The first inequality is deduced because (f̃1, f̃2, . . . , f̃q) is the minimizer of R̃(f1, f2, . . . , fq). Combining Inequality (47)
and Lemma 21, the proof is completed.

J. Details of Experimental Setup
J.1. Details of Synthetic Benchmark Datasets

We considered the single complementary-label setting and similar results could be observed with multiple complementary
labels.

For the “uniform” setting, a label other than the ground-truth label was sampled randomly following the uniform distribu-
tion to be the complementary label.

For the “biased-a” and “biased-b” settings, we adopted the following row-normalized transition matrices of p(ȳ|y) to
generate complementary labels:

biased-a:



0 0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043
0.043 0 0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250
0.250 0.043 0 0.250 0.043 0.040 0.043 0.040 0.250 0.040
0.040 0.250 0.043 0 0.250 0.043 0.040 0.043 0.040 0.250
0.250 0.040 0.250 0.043 0 0.250 0.043 0.040 0.043 0.040
0.040 0.250 0.040 0.250 0.043 0 0.250 0.043 0.040 0.043
0.043 0.040 0.250 0.040 0.250 0.043 0 0.250 0.043 0.040
0.040 0.043 0.040 0.250 0.040 0.250 0.043 0 0.250 0.043
0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043 0 0.250
0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043 0


,

biased-b:



0 0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080
0.080 0 0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220
0.220 0.080 0 0.220 0.080 0.033 0.080 0.033 0.220 0.033
0.033 0.220 0.080 0 0.220 0.080 0.033 0.080 0.033 0.220
0.220 0.033 0.220 0.080 0 0.220 0.080 0.033 0.080 0.033
0.033 0.220 0.033 0.220 0.080 0 0.220 0.080 0.033 0.080
0.080 0.033 0.220 0.033 0.220 0.080 0 0.220 0.080 0.033
0.033 0.080 0.033 0.220 0.033 0.220 0.080 0 0.220 0.080
0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080 0 0.220
0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080 0


.

For each example, we sample a complementary label from a multinomial distribution parameterized by the row vector of
the transition matrix indexed by the ground-truth label.

For the “SCAR-a” and “SCAR-b” settings, we followed the generation process in Section 3.1 with the following class
priors of complementary labels:

SCAR-a: [0.05, 0.05, 0.2, 0.2, 0.1, 0.1, 0.05, 0.05, 0.1, 0.1] ,
SCAR-b: [0.1, 0.1, 0.2, 0.05, 0.05, 0.1, 0.1, 0.2, 0.05, 0.05] .

We repeated the sampling procedure to ensure that each example had a single complementary label.
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J.2. Descriptions of Compared Approaches

The compared methods in the experiments on synthetic benchmark datasets:

• PC (Ishida et al., 2017): A risk-consistent complementary-label learning approach using the pairwise comparison loss.
• NN (Ishida et al., 2019): A risk-consistent complementary-label learning approach using the non-negative risk estimator.
• GA (Ishida et al., 2019): A variant of the non-negative risk estimator of complementary-label learning by using the

gradient ascent technique.
• L-UW (Gao & Zhang, 2021): A discriminative approach by minimizing the outputs corresponding to complementary

labels.
• L-W (Gao & Zhang, 2021): A weighted loss based on L-UW by considering the prediction uncertainty.
• OP (Liu et al., 2023): A classifier-consistent complementary-label learning approach by minimizing the outputs of

complementary labels.

The compared methods in the experiments on real-world benchmark datasets:

• CC (Feng et al., 2020b): A classifier-consistent partial-label learning approach based on the assumption of uniform
distribution of partial labels.

• PRODEN (Lv et al., 2020): A risk-consistent partial-label learning approach using the self-training strategy to identify
the ground-truth labels.

• EXP (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning approach by using the expo-
nential loss function.

• MAE (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning approach by using the Mean
Absolute Error loss function.

• Phuber-CE (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning approach by using the
Partially Huberised Cross Entropy loss function.

• LWS (Wen et al., 2021): A partial-label learning approach by leveraging a weight to account for the tradeoff between
losses on partial and non-partial labels.

• CAVL (Zhang et al., 2022): A partial-label learning approach by using the class activation value to identify the true
labels.

• IDGP (Qiao et al., 2023): An instance-dependent partial-label learning approach by modeling the generation process of
partial labels.

• POP (Xu et al., 2023): A partial-label learning approach by progressively purifying candidate label sets.

J.3. Details of Models

For CIFAR-10, we used 34-layer ResNet (He et al., 2016) and 22-layer DenseNet (Huang et al., 2017) as the model
architectures. For the other three datasets, we used a multilayer perceptron (MLP) with a hidden layer of width 500
equipped with the ReLU (Nair & Hinton, 2010) activation function and 5-layer LeNet (LeCun et al., 1998) as the model
architectures.

For CLCIFAR-10 and CLCIFAR-20, we adopted the same data augmentation techniques for all the methods, including
random horizontal flipping and random cropping. We used 34-layer ResNet (He et al., 2016) and 22-layer DenseNet (Huang
et al., 2017) as the model architectures.

K. More Experimental Results
K.1. Experimental Results on CIFAR-10

Table 7 shows the experimental results on CIFAR-10 with synthetic complementary labels.
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Table 7. Classification accuracy (mean±std) of each method on CIFAR-10 with a single complementary label. The best performance is
shown in bold (pairwise t-test at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model ResNet DenseNet ResNet DenseNet ResNet DenseNet ResNet DenseNet ResNet DenseNet

PC 14.33
±0.73

17.44
±0.52

25.46
±0.69

34.01
±1.47

23.04
±0.33

29.27
±1.05

14.94
±0.88

17.11
±0.87

17.16
±0.86

21.14
±1.34

NN 19.90
±0.73

30.55
±1.01

24.88
±1.01

24.48
±1.50

26.59
±1.33

24.51
±1.24

21.11
±0.94

29.48
±1.05

23.56
±1.25

30.67
±0.73

GA 37.59
±1.76

46.86
±0.84

20.01
±1.96

22.41
±1.33

16.74
±2.64

21.48
±1.46

24.17
±1.32

29.04
±1.84

23.47
±1.30

30.72
±1.44

L-UW 19.58
±1.77

17.25
±3.03

24.83
±2.67

29.46
±1.03

20.73
±2.41

25.41
±2.61

14.56
±2.71

10.69
±0.94

10.39
±0.50

10.04
±0.09

L-W 18.05
±3.02

13.97
±2.55

22.65
±2.70

27.64
±0.80

22.70
±2.33

24.86
±1.34

13.72
±2.60

10.00
±0.00

10.25
±0.49

10.00
±0.00

OP 23.78
±2.80

39.32
±2.46

29.47
±2.71

41.99
±1.54

25.60
±4.18

39.61
±2.26

17.55
±1.38

27.12
±1.17

20.08
±2.96

27.24
±2.62

SCARCE 35.63
±3.23

42.65
±2.00

39.70
±3.79

51.42
±1.81

37.82
±2.72

50.52
±2.18

29.04
±3.70

36.38
±2.56

35.71
±1.16

38.43
±0.85
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