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Abstract—Foundation models, e.g., large language models,
possess attributes of intelligence [23] which offer promise to
endow a robot with the contextual understanding necessary to
navigate complex, unstructured tasks in the wild. In the future of
space robotics, we see three core challenges which motivate the
use of a foundation model adapted to space-based applications: 1)
Scalability of ground-in-the-loop operations; 2) Generalizing prior
knowledge to novel environments; and 3) Multi-modality in tasks
and sensor data. Therefore, as a first-step towards building a foun-
dation model for space-based applications, we automatically label
the AI4Mars dataset [22] to curate a language annotated dataset
of visual-question-answer tuples. We fine-tune a pretrained LLaVA
checkpoint on this dataset to endow a vision-language model with
the ability to perform spatial reasoning and navigation on Mars’
surface. In this work, we demonstrate that 1) existing vision-
language models are deficient visual reasoners in space-based ap-
plications, and 2) fine-tuning a vision-language model on extrater-
restrial data significantly improves the quality of responses even
with a limited training dataset of only a few thousand samples.

I. INTRODUCTION

Advancements in the development of internet-scale machine
learning models trained through self-supervision on a corpus
of human knowledge, i.e., Foundation Models (FMs) [3],
provide an opportunity to automate complex decision making
and reasoning tasks transcribed through language, video,
and speech. State-of-the-art (SoTA) large language models
(LLMs) already display strong commonsense reasoning and
understanding capabilities that, for example, enable them
to score in the upper quartile on a variety of standardized
exams [17]. These commonsense reasoning capabilities make
the use of FMs attractive in space robotics, satellite operations,
and other space-related domains, where they show potential to
mitigate core challenges such as: 1) Scalability of ground-in-
the-loop operations; 2) Generalizing prior knowledge to novel
environments; and 3) Multi-modality in tasks and sensor data.

Accordingly, in this paper, we conduct a preliminary
investigation of the application of pretrained multi-modal FMs
to the space domain. As a first step towards developing a space
foundation model, we focus on a space robotics application
in which a rover navigates a planetary environment (Fig. [I).
We programmatically generate language annotations on the
Al4Mars image dataset [22] to adapt and evaluate vision-
language models (VLMs) across several spatial reasoning
and navigation tasks. These tasks are inspired by the detailed
sensory reasoning necessary to, e.g., identify sites of scientific
interest or validate candidate motion plans. Our evaluations
demonstrate that 1) existing VLMs are deficient visual reasoners
in space-based applications, and 2) fine-tuning a VLM on our
programmatically generated tasks significantly improves the
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Fig. 1: We present Space-LLaVA, initialized from a pretrained
LLaVA model [13] and fine-tuned with domain-specific data,
namely Martian imagery [22]]. Space-LLaVA can reason about
localization and navigation tasks in planetary environments.

quality of the VLM outputs across all the visual reasoning tasks,
even when the training dataset only consists of few thousand
images that are reused for different QA pairs. Subsequently, we
propose pathways for extending the approaches and concepts
discussed in this paper to orbital in-space applications. As
such, this paper represents a promising exploration towards
the development of generalist models for space.

II. RELATED WORK

Vision-Language Models: Recent advances in natural
language and image processing have enabled the development
of large-scale VLMs trained on internet-scale data. Early
work develops an understanding of vision and language by
using vision and text encoders [19], while VLMs build atop
a language model to allow for open-ended visual reasoning
such as Visual-Question-Answering (VQA) [L1} 5 [14} [7]. In
this work, we investigate LLaVA v1.5 [13]] as the base model
for fine-tuning given it is SOTA among open-source models
on standard VQA benchmarks [1} [10].

Foundation Models in Robotics: Prior work incorporates
FMs at various levels of the autonomy stack, ranging from plan-
ning/decision making [24} [12] to semantic [8] and visual [21]]
reasoning. There is also emerging work on adapting FMs
to space-based applications. SpaceTransformers [2] fine-tunes
variations of BERT [6] on a corpora of systems engineering
texts and an augmented mission standards dataset to recognize
space mission requirements, while Rodriguez-Fernandez et al.
[20]] leverages GPT-3.5 [4] as the policy backbone for language-
based autonomous satellite operations. We extend these works
by incorporating both vision and language into a shared
representation for enhanced reasoning.

Large-scale Dataset Curation: Related work in large-
scale data collection includes Gao et al. [9] that develops
a dataset of objects annotated with physical properties for
image classification. We aim to extend this work by developing



a dataset for visual reasoning for terrain-aware navigation on
Mars. Marcu et al. [[16]] and Ma et al. [[15] curate a large-scale
autonomous driving VQA benchmark to enable perception,
prediction, and planning; however, they require language
annotations from human operators, which is likely incompatible
with long-horizon data collection at scale. Consequently, our
work is distinguished from existing work by programmati-
cally generating a dataset of language annotations for visual
reasoning to fine-tune a VLM in the context of space robotics.

III. ARCHITECTING SPACE-LLAVA

In this work, we adapt a FM to two space-based applications
using the Al4Mars dataset which encompasses 35k images
with crowd-sourced semantic segmentation masks of Mars’
terrain gathered from the Curiosity, Opportunity, and Spirit
rovers. A representative example of raw terrain from the
Al4Mars dataset and its associated semantic masks for each
terrain class is provided in Fig. 2}

Given the Al4Mars dataset, we require a high-quality and
scalable technique to generate QA pairs in natural language to
endow an open-source VLM with the ability to perform spatial
reasoning and high-level motion planning on withheld terrain.

We ground a VLM in the visual and semantic features
of Mars’ terrain by fine-tuning LLaVA v1.5 13B [13] on
our augmented dataset with the standard auto-regressive
language modeling loss. Suppose we curate a dataset
D={1%,QW AW)1n_ consisting of n image I} ¢ Rh*wx3,
question QC ) G]RTQ and answer A e RT4, tuples where T
and T4 denote the maximum tokenized question and answer
sequence length, respectively, with padding. We fine-tune
LLaVA by freezing certain parameters in the model, e.g., only
fine-tuning the language backbone, to optimize the objective

min L(6|D), (1
éce

where we construct L(é | D) as the negative log-likelihood loss
on token generation assuming samples are independent and
identically distributed and using the chain rule factorization
for auto-regressive generation. More formally, we define:
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where each term in the summation represents the log-likelihood,
under the model’s current weights 6, to predlct the ground truth
next text token in the answer sequence A(¥) = {x xz yeons }
conditioned on the sample’s visual input, associated questlon
and the full answer sequence preceding :ci le Here, § C ©
indicates that the unfrozen weights are a subset of the model’s
weights ©. We evaluate the quality of the fine-tuned model’s
responses in comparison to a base model by prompting
GPT-4 to choose the preferable response conditioned on the
ground-truth answer for a particular question. A template of
the prompt we provide to GPT-4 is provided in Appendix
with further discussion on the prompt’s construction.

That is, through fine-tuning a VLM on semantically
annotated terrain from the AI4Mars dataset, we measure
whether the fine-tuned model outperforms SoTA VLMs on
the same task without adaptation, i.e., zero-shot.

soil bedrock sand

big rock

(a) Raw MSL NAVCAM
capture.

(b) MSL NAVCAM crowd-
sourced terrain labels.

Fig. 2: The Al4Mars dataset [22] provides crowd-sourced
annotations for “soil”, “bedrock”, “sand”, “big rock” on Mars.

IV. DATA GENERATION PIPELINE

In order to adapt a FM to the unique visual and semantic
features on Mars’ surface, we develop a language QA gener-
ation pipeline on Al4Mars’ semantic segmentation masks for
spatial reasoning and high-level motion planning. Explicitly, we
choose to curate a dataset of spatial reasoning and navigation
samples since these two tasks together require semantic analysis
on an extraterrestrial environment and leverage an existing,
high-quality dataset. We first present our programmatic solution
to curate spatial reasoning QA pairs after which we present a
similar methodology to curate high-level motion planning QAs.

A. Spatial Reasoning Dataset

We translate semantic segmentation masks into QA pairs
requiring spatial reasoning through two programmatic measures
of position in an image. First, we process each terrain’s
segmentation mask using KMeans clustering with K = 1 to
identify a surrogate for the centroid. While choosing K = 1
does represent a strong inductive bias in clustering, we have
noticed that dominant collections of terrain tend to naturally
cluster together on Mars’ surface, i.e., rarely is it the case
two large instances of soil or rocks are isolated on opposite
ends of an image, in which case K = 1 represents a reasonable
approximation of the terrain’s general position. Further, we
mitigate the impact of outliers in terrain classification, i.e., small
patches of classified terrain distant from the dominant patch(s),
through multiple random initializations for clustering and accept
the cluster center with the lowest total variance across all runs.

Also, we develop a second measure of each class’ position by
dividing the image into a 3x3 grid and measuring the population,
or number of pixels, for each class in each grid. This simple
measure of population helps formalize a notion of terrain
density. A weakness of KMeans clustering is that we lose global
information on the spread of terrain in an image, e.g., does 75%
of soil or only 30% of soil in view exist in the bottom right
corner of the image? Separately, we also enclose each semantic
mask with bounding box annotations. Therefore, we supplement
each cluster center with grid population counts and bounding
boxes to provide a more holistic measure of terrain position.

We use these three measures of a terrain’s position
to programmatically generate QA pairs to elicit spatial
reasoning based on the Al4Mars dataset. That is, we develop
a set of template prompts for seven styles of QA pairs:
terrain description; terrain localization; multi-instance terrain
localization; relative terrain localization; terrain coverage;



Identify the point around
which most of the sand is
centered in this image.

Most of the sand is
centered around [59, 166].

Fig. 3: Automatically generated terrain localization VQA using
sand’s true cluster center scaled to LLaVA’s image resolution of
(336 x336); (0, 0) corresponds to the top left corner. A red star
marks sand’s cluster center, which is not available at training.

terrain size; and terrain traversability. Each question type is
templated by a terrain’s cluster position, bounding box and/or
grid populations. For example, as shown in Fig. 3] to instantiate
a question on sand localization we use the terrain’s centroid.

Within each question type, we use GPT-4 to curate between 3-
6 variations of the question’s wording to discourage overfitting
to the particular prose used when the question is asked.

B. High-level Motion Planning Dataset

In order to curate high-level motion plans that are cognizant
of Mars’ terrain, we curate a sequence of cardinal direction
maneuvers, e.g., up, down, left, or right, connecting a start and
goal point through a small grid over each Al4Mars sample.
First, we discretize the image into a 5x5 grid and classify each
grid into a terrain class according to majority representation.
Then, we can mask out a particular class, e.g., large rocks,
and if a feasible path to the goal exists, we use the A* search
algorithm to plan a path from the start to the goal. We choose
the starting point as the lowest point along the center column
of the image which is not occupied by 1) the rover itself and
2) the class we choose to mask from the image. For each
sample, assuming a feasible path exists, we choose multiple
path endpoints among the unmasked grids.

For each image with an annotated mask to identify the
rover, i.e., the MSL dataset within Al4Mars, we ask 2-3
question types for every start and end point pair: 1) whether
a feasible path to the goal exists, 2) whether a candidate path
overlaid on the image is both feasible and reaches the desired
goal and 3) only if a feasible path exists, we request a path
in natural language to the goal. An example for each question

type is presented in Appendix [VI-B]
V. EXPERIMENTS AND DISCUSSION

Having outlined our approach to data collection, we
fine-tune LLaVA on our augmented planetary dataset, ablate
different training configurations, and compare the model’s
performance to SoTA FMs applied zero-shot to space-based
applications. Explicitly, we investigate whether adaptation is
necessary for SOTA VLMs in an extraterrestrial environment,
and if so, to what degree components of the model must
be adapted. Then, we discuss future work to extend a space
foundation model to applications in orbital space.

A. Experimental Setup

Recall from Fig. [I] that the LLaVA model is comprised
of three components: a vision encoder (VE), a multi-modal

Frozen Response Preference
VE MMA LM Ours vs. LLaVA  Ours vs. GPT-40
X X v 73.7% 69.2%
v X v 83.3% 78.8%
v v X 81.6% 77.9%
X X X 87.2% 85.4%
TABLE 1I: Response preference for each fine-tuned

configuration against the base LLaVA model and GPT-4o0.

adapter (MMA), and a language model (LM). In this work,
we experiment with training four combinations of LLaVA’s
components: (1) training the vision encoder and multi-modal
adapter together; (2) training only the multi-modal adapter; (3)
training only the language model backbone; and (4) training
all components of the model. A complete description of the
experimental details is available in Appendix

B. Experimental Results

The results of fine-tuning each configuration using our
augmented Al4Mars dataset in comparison to zero-shot LLaVA
and GPT-4o0 are presented in Table [l Further, we provide
an example generation from Space-LLaVA and a qualitative
comparison to GPT-4o in Fig. @] Based on these results, it is
immediately apparent that SOTA VLMs out-of-the-box are ill-
equipped to process the novel semantic features on Mars likely
due to a visual domain gap. Indeed, SOTA VLMs produce
inferior content relative to an adapted model in Table [l For
example, in Fig. fa] GPT-4o hallucinates a path of bedrock on
the left and leads the rover into a smooth sand patch in pursuit
of the goal; However, in Fig. fb] Space-LLaVA suggests a
more favorable plan which leads the rover along the bedrock
in view and thereby reaches the goal without exposure to sand.

We find that jointly training the language model and visual
components provides the largest benefit for spatial reasoning
tasks. As shown in Table [} fine-tuning the language and vision
components in concert produces the best-performing model
at just over 87% and 85% response preference to LLaVA
zero-shot and GPT-4o, respectively, as may be expected given

Identify a sequence of motion commands
i3 for the rover in order to travel to the
&%\ far left, upper region in the image.
€% The rover musn't pass over sand.

The rover should follow these steps:
1) Move forward until the rocks just

before the sand patch.

2) Turn left to align with the rocky

path on the left of the sand patch.

3) Move forward along the left edge of

the patch sand. .
4) Turn right after passing the sand
aligning with rocky path upwards.

(a) GPT-40: Terrain-aware navigation on Mars’ surface.

Identify a sequence of motion commands
for the rover in order to travel to the
far left, upper region in the image.
The rover musn't pass over sand.

Suppose the image is a 5x5 grid. Follow

these motions:

1. Drive to the right (2x)

2. Drive forward (3x)

3. Then drive to the left (4x).

(b) SpaceLLaVA: Terrain-aware navigation on Mars’ surface.
Fig. 4: GPT-40 and Space-LLaVA perform navigation on
Mars’ surface. The 5x5 grid, selected path, start and end grid
point are highlighted for visual clarity.
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Fig. 5: A notional illustration of the FALCON problem and
its four core tasks: target identification, observer positioning,
SSA catalog refinement, and RSO collision assessments.

the full flexibility of the model to adapt to Mars’ semantic
features. In contrast, the configuration with a frozen language
model demonstrates the worst relative performance against
both zero-shot models. In particular, we posit that fine-tuning
the language model significantly improves adaptation given
that our terrain classification and navigation tasks require the
VLM to perform fine-grained semantic reasoning, whereas the
VLM from Gao et al. [9]], which only trains InstructBLIP’s
equivalent to LLaVA’s multi-modal adapter, is fine-tuned to
perform the simpler task of image classification.

One of the most consistent cases in which the fine-tuned
model is preferred to the base model is in the task of
navigation. Inaccuracies in the baseline model’s spatial
reasoning and terrain classification manifest as an inability to
plan paths around the terrain types to be avoided as shown in
Fig. E} On the other hand, the most common failure mode for
our fine-tuned model appears to be image QA pairs requiring
the model to make fine-grained distinctions between soil and
sand terrain classes. Soil and sand do often have a very similar
appearance in the Al4Mars dataset, especially given that the
images are grayscale. With the lack of color features in these
images, the model will likely need to undergo additional
training to develop an understanding of grayscaled imagery,
and capture nuanced differences between soil and sand features.

C. Future Applications: Orbital Space

Extending the concept of a space foundation model to
orbital operations presents additional challenges, because
the characteristics of orbital scenarios and data sources are
even further removed from typical terrestrial applications.
Nevertheless, it remains desirable to leverage the advantages
of FMs when pursuing complex in-orbit objectives such as
resilient positioning, navigation and timing (PNT), space
situational awareness (SSA), and collision avoidance.

To provide a holistic example, we propose a novel optical
PNT/SSA framework named Fast Autonomous Lost-in-space
Catalog-based Optical Navigation (FALCON). FALCON runs
on board one or multiple observer spacecraft and uses bearing
angles to visible Resident Space Objects (RSO) to: 1) determine
the observer’s orbit; 2) refine the orbits of tracked RSO targets;
and 3) provide RSO collision avoidance alerts. FALCON oper-
ates in a “lost in space” manner, i.e. without a-priori observer

orbit knowledge. The key idea is to detect RSO in images from
an on-board camera, match RSO to existing identities in an RSO
catalog, and use the known positions of identified RSO as opti-
cal beacons for positioning. Subsequently, RSO catalog data can
be used to provide collision assessments and trigger collision
avoidance maneuvers. Figure 5] provides a notional illustration.

A key challenge presented by FALCON is its interaction with
RSO catalog data. Existing catalogs feature tens of thousands
of objects with significant orbit uncertainties, and the catalog
identification, positioning, refinement, and collision detection
tasks require, e.g., solving intensive geometric optimization
problems or extensive orbit propagation. Therefore, we may
be able to use an FM’s generalist, semantic prior to improve
flexibility or reduce computation costs on board. However,
satellite data is even further out-of-distribution than planetary
rover imagery and existing FMs will likely require extensive
training and fine-tuning to bridge the domain gap.

To address this we propose a three-pronged approach. First,
a pre-trained open-source FM is selected as the basis, motivated
by desired modalities (e.g. image sequences, catalog data)
and capabilities. Besides LLaVA, we consider models such
as VINT [21] (tuned towards solving large-scale navigation
problems) or Tool-LLM [18] (to facilitate interaction with
algorithmic tools). Second, additional training is performed
using space-specific datasets: remote sensing data, satellite
telemetry, space object catalogs, orbit trajectories, spacecraft
hardware databases, among others, to improve generalization
to spaceborne data. Third, the model is fine-tuned for tasks
of interest using labeled datasets. For FALCON, this includes
generating high-fidelity spaceborne images with accompanying
ground-truth RSO labels (and/or labeling real spaceflight
images), and generating propagated orbits and ground-truth
collision estimates from space catalog data.

VI. CONCLUSION

In this paper, we argue that future challenges in space
robotics motivate the development of a space foundation model.
We introduce a first step towards a space foundation model by
automatically labeling the Al4Mars dataset with QA pairs to
adapt a VLM to terrain classification and navigation tasks for a
planetary rover on Mars. We demonstrate that 1) existing VLMs
are deficient visual reasoners in space-based applications, and
2) fine-tuning a VLM on automatically labeled in-situ extrater-
restrial data significantly improves the quality of responses even
with a limited training dataset of only a few thousand samples.
We also propose new applications of foundation models to
satellite scenarios focusing on highly complex PNT, SSA, and
collision avoidance tasks, infeasible using traditional onboard
algorithms. Future work in the development of a foundation
model for space will incorporate: 1) collecting a sufficiently
large and diverse space dataset, e.g., remote sensing data,
spaceflight simulations, and space object catalogues, for space-
related tasks and 2) developing data encoders to process the
diverse modalities (LiDAR, GPS, etc) inherent to these data in
order to create a meaningful representation for decision making.
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APPENDIX
A. Template for GPT-4 Preference Evaluation

foe)
Sl

The image features a desert
terrain.

I

SoTA VLM (1)

A: The image contains the following terrain

classes: bedrock, big rock, and sand. — (2)

3 The image contains bedrock,
= big rock, and sand.
i —

Space-LLaVA (2)

Fig. 6: Preference analysis used to compare Space-LLaVA’s
performance relative to SoTA VLMs, i.e., GPT-40 and the
base LLaVA model.

In order to demonstrate improved proficiency on Mars
spatial reasoning and path planning tasks for our fine-tuned
models compared to existing pre-trained models, we leverage

the GPT-4 language model as an automated text evaluator.

In this side-by-side comparison, each model’s response
is collected along with the ground-truth response for the
particular question. This tuple of three natural language
responses is provided to GPT-4, prompted according to the
following template, to determine which model’s answer is

most similar to the ground-truth response in terms of content.

Specifically, we ask GPT-4 to focus on the content of each
model’s response in comparison to the ground-truth label
rather than the style or prose used, which the fine-tuned model
is expected to mirror. We ask GPT-4 to provide its output as a
single number indicating its preference between the two model
answers. If GPT-4 prefers the base model answer, it outputs 1;
if it prefers the fine-tuned model answer, it outputs 2; and if it
determines that neither of the model’s answers are correct, it
outputs 0. We visual describe this evaluation setup in Fig. [6]

System message: “You are evaluating a new foundation
model for Mars rover missions. You will be presented
with a question, the desired response, and generated
responses from two foundation models. Your job is to
decide which of the two generated responses you think
is most similar to the ground truth response based on
the response content (disregarding response structure)”
User message: “The question is ['question’]. The
desired response is [’ground-truth-answer’]. The gener-
ated response from model 1 is [’base-model-answer’]
and the generated response from model 2 is [ fine-tune-
answer]. Which model’s response is most similar to
the desired response? Provide your answer as a single
number (1 or 2) that indicates which model’s response
you think is most similar to the desired response. If
neither model’s response is correct relative to the
desired response, provide your answer as 0. Do not
provide any justification or explanation in your answer.”

We run this procedure over 12951 image-question pairs in our
withheld evaluation dataset, and track how many times the GPT-
4 evaluator prefers the fine-tuned model answer. The percentage
of evaluation samples on which GPT-4 prefers the fine-tuned
model answer is thus used as the response preference metric
described in the problem formulation for evaluation. Improved
performance on Mars spatial reasoning and high-level path
planning tasks for our fine-tuned model should be demonstrated
in response preferences that are much higher than 50%.

B. High-level Motion Planning Examples

As discussed in for each sample in the MSL dataset,
i.e., each sample for which a mask exists to identify the
rover, we programmatically curate 2-3 QA pairs requiring
a understanding of naviation on Mars’ terrain. For all MSL
samples, we divide the image into a 5x5 grid and curate two
questions: 1) we ask the model to identify whether a path exists
to connect a start and end point without crossing undesirable
terrain and 2) whether a candidate path, which we overlay on
the image, is both feasible and reaches the desired end point.
As you can see, both of these questions do not require that a
feasible path exists between any two particular grid points in
the image. Hence, we curate these questions for every MSL
image. If a feasible path does in fact exist between the selected
start point and at least one distinct end point, then we use the
A* search algorithm without diagonal movements to identify
a path in natural language to navigate the grid. We provide
an example of each VQA type in Fig. [7]] When training our
model on feasibility questions as in Fig. we provide the
raw camera image without masking out undesirable terrain or
providing a potential path between the start and end grid point:
we provide these annotations in Fig. [7a for visual clarity as
to why a feasible path exists and how to navigate through the
image. Similarly, for Fig.|7c| during training we do not provide
the model with masked terrain or path annotations. That is,
as in our evaluation of feasibility, we provide the raw camera
image. In Fig. [7c| we mask infeasible grid sections to justify the
ground-truth annotation and overlay the correct path to provide
a visual representation of our chosen path in natural language.

C. Training Infrastructure

For each configuration, we perform a hyperparameter sweep
over the learning rate and weight decay with values inspired
by Marcu et al. [16] and Gao et al. [9]. The learning rate is
selected from {1x107°,3x1075,5x 107"}, and the weight
decay is selected from {0.05,0.1} for a total of 6 settings for
each model configuration. Every configuration is trained with
an 80-20 train-validation split for 1-2 epochs on a compute
infrastructure with 4 80GB A100 GPUs. For each configuration,
the model with the best validation loss is evaluated in the
preference analysis against the base LLaVA model and GPT-4o.
We perform preference analysis as described previously in
with further detail provided in



This is an onboard camera
image from a Mars rover. Is
there a feasible path for
the rover to reach left,
g:) top region in the image
- without passing over any

sand?

Yes, it is possible for the

rover to drive to the left

top region while avoiding

any sand.

(a) Feasibility: We are able to automatically identify whether the left,
top region of the image is accessible starting from the center, bottom
region without traversing sand. In this particular case, a path does
exist while traversing soil.

This is an onboard camera
image from a Mars rover. On
the image, a proposed
motion plan for the robot
has been overlayed. Does
the given plan avoid
driving over any big rocks?

No, the given plan does not

lead to the far left, top

region while avoiding big

rocks.

(b) Feasibility overlay: We are able to automatically overlay a
candidate path from the center, bottom to the far left, top region
of the image while avoiding big rocks. In this particular case, the
candidate path is infeasible as it requires the rover to traverse big
rocks near the center, top of the image.

Based on the provided

picture onboard the robot:

Identify a sequence of

motion commands for the
,~\ rover in order to travel to
N 7 the right, top region in
the image. The rover musn’t
pass over big rocks.

The rover should drive

forward, then forward, then

to the right, then to the

right, then forward, then

forward, and finally to the

left. This will reach the

top region without driving
over big rocks

(c) Planning: Given that a feasible path exists between two distinct
points, we are able to automatically generate a language description
of a path from the center, bottom to the right, top region of the
image while avoiding big rocks.

Fig. 7: Automatically generated navigation QA pairs on
Al4Mars instantiated as a feasibility test, evaluating a candidate
path and planning a route in a 5x5 grid on the image. This
data collection pipeline only leverages the semantic masks
provided by the Al4Mars dataset.
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