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KGQUIZ: Evaluating the Generalization of Encoded Knowledge
in Large Language Models

Anonymous Author(s)

ABSTRACT
Large language models (LLMs) demonstrate remarkable perfor-
mance on knowledge-intensive tasks, suggesting that real-world
knowledge is encoded in their model parameters. However, besides
explorations on a few probing tasks in limited knowledge domains,
it is not well understood how to evaluate LLMs’ knowledge system-
atically and how well their knowledge abilities generalize, across
a spectrum of knowledge domains and progressively complex task
formats. To this end, we propose KGQUIZ, a knowledge-intensive
benchmark to comprehensively investigate the knowledge general-
ization abilities of LLMs. KGQUIZ is a scalable framework con-
structed from triplet-based knowledge, which covers three knowl-
edge domains and consists of five tasks with increasing complexity:
true-or-false, multiple-choice QA, blank filling, factual editing, and
open-ended knowledge generation. To gain a better understanding
of LLMs’ knowledge abilities and their generalization, we evaluate
10 open-source and black-box LLMs on the KGQUIZ benchmark
across the five knowledge-intensive tasks and knowledge domains.
Extensive experiments demonstrate that LLMs achieve impressive
performance in straightforward knowledge QA tasks, while set-
tings and contexts requiring more complex reasoning or employing
domain-specific facts still present significant challenges. We envi-
sion KGQUIZ as a testbed to analyze such nuanced variations in
performance across domains and task formats, and ultimately to un-
derstand, evaluate, and improve LLMs’ knowledge abilities across a
wide spectrum of knowledge domains and tasks.

ACM Reference Format:
Anonymous Author(s). 2023. KGQUIZ: Evaluating the Generalization of
Encoded Knowledge in Large Language Models. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 17 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Large language models (LLMs) have demonstrated incredible abili-
ties to encode and represent real-world knowledge in their model pa-
rameters, advancing knowledge-intensive tasks such as open-domain
question answering [15, 16, 34, 62, 63, 68], dialogue generation
[1, 13, 36], summarization [18, 37, 67], and more. However, their
knowledge abilities could also be quite brittle, with LLMs generat-
ing hallucinated information [3, 8, 24, 39, 46], struggling to encode
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long-tail facts [39], and falling short of abstaining when relevant
information is not present in model parameters [7].

As a result, studies and benchmarks have been proposed to probe
the knowledge abilities of LLMs [12, 21, 41, 48, 55]. Later works
also looked into temporality, evaluating whether LLMs could tackle
time-sensitive facts and information [12]. In addition to merely
probing LLM knowledge, knowledge-intensive tasks such as open-
domain QA [28, 32, 47], fact-checking [33, 40, 47], and more are
also proposed and employed to evaluate LLM knowledge abilities.
Despite these works’ contributions to understanding and expanding
the stored information of LLMs, we identify two important yet
underexplored factors in LLM knowledge abilities.

Knowledge Utilization: Previous works have primarily focused
on limited task formats such as fill-in-the-blank questions to test
the model’s knowledge abilities [44, 48, 53]. However, the com-
plexity or format of a task might influence a model’s knowledge
abilities, while this crucial aspect often goes unaddressed in the
current literature. For example, factual editing [2, 6] requires the
model to identify factual inconsistency and make corrections, rather
than simply evaluating memorization; reasoning with structured
knowledge [9, 64] examines the model’s ability to model knowledge
in networks and graphs, instead of only probing knowledge at the
atomic level. That being said, how well do LLM knowledge abilities
generalize to tasks and contexts of varying format and complexity
remain underexplored.

Knowledge Breadth: Existing works predominantly consider
Wikipedia or a specific domain like biomedical knowledge as the
knowledge source for evaluation. However, it has been observed that
LLM performance can vary significantly across different knowledge
domains [41, 55] - an aspect that has not been adequately addressed
in the previous works of LLM knowledge probing and understanding.
As a result, the lack of a multi-domain knowledge evaluation of large
language models, covering diverse knowledge sources, subject areas,
and more, is hindering a comprehensive understanding of LLM
knowledge abilities.

To this end, we propose KGQUIZ, a comprehensive benchmark
designed to evaluate the knowledge abilities of LLMs across mul-
tiple knowledge utilization patterns in diverse knowledge domains.
Specifically, KGQUIZ is constructed with structured information
from knowledge graphs (KGs) from three varying domains, repre-
senting commonsense, encyclopedic, and domain-specific (biomed-
ical) knowledge. For each knowledge graph, KGQUIZ presents a
collection of 41,000 knowledge-intensive questions, covering five
tasks of increasing complexity: true-or-false, multiple choice, blank-
filling, multi-hop factual editing, and open-ended text generation.
These progressively difficult tasks represent the multitudes of LLM
knowledge and reasoning abilities, providing a comprehensive and
comparative setting to assess LLMs’ abilities: they respectively test
LLMs’ abilities to judge factual correctness, select facts based on
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model confidence, retrieve entities, perform factual editing, and gen-
erate long-form knowledge documents, presenting a holistic probe
of LLM knowledge abilities in different application scenarios.

We evaluate 10 open-source and black-box LLMs on the KGQUIZ

benchmark to better understand which LLM covers what knowl-
edge domain better, and under which utilization contexts. Our ex-
periments demonstrate that: 1) LLM performance greatly varies
across knowledge domains. For instance, on Task 5: Open-Ended
Text Generation, ChatGPT [45], ChatGLM [14], and TEXT-DAVINCI-
003 [45] respectively perform best when it comes to YAGO, Con-
ceptNet, and UMLS, three knowledge graphs representing varying
knowledge domains. 2) Knowledge utilization greatly impacts
LLM’s ability to retrieve and employ factual knowledge. For
instance, ChatGPT’s performance on biomedical knowledge drops
by 30% from the fill-in-the-blank task to the factual editing task, sug-
gesting that the additional multi-hop context in factual editing poses
new challenges to LLM knowledge abilities. Together, our exten-
sive experiments demonstrate that probing the knowledge abilities
of LLMs is nuanced and multi-faceted, with the largest LLMs ex-
celling in simple knowledge utilization tasks on general knowledge
domains, while advanced knowledge contexts and domain-specific
information remain open challenges. We envision KGQUIZ as a
valuable testbed to understand, evaluate, and improve LLM knowl-
edge abilities across varying knowledge domains and utilization
contexts.

2 THE KGQUIZ BENCHMARK
KGQUIZ employs knowledge graphs from diverse domains to con-
struct five knowledge-intensive tasks with increasing complexity.
We denote a knowledge graph as a set of triples T , where the 𝑘-th
triple is T𝑘 = (ℎ𝑘 , 𝑟𝑘 , 𝑡𝑘 ), and ℎ𝑘 , 𝑟𝑘 and 𝑡𝑘 represent the head entity,
relation, and tail entity, respectively. We use E and R to denote the
sets of all entities and relations in the knowledge graph.

2.1 Task 1: True-or-False
As a base assessment of knowledge abilities, True-or-False questions
ask whether a given statement is factually correct or not. In a way,
this task tests the LLMs’ ability to verify the factuality of KG-based
information, which is the most fundamental ability to distinguish
between true and false knowledge [10].

Task Formulation We construct two sets of KG triples to rep-
resent positive and negative samples (Tpos and Tneg). For a positive
triple (ℎ, 𝑟, 𝑡) ∈ Tpos, we replace the tail entity 𝑡 with another entity
𝑡 ′ to generate a negative sample and add it to Tneg. We then use the
prompt for the positive or negative triple (ℎ, 𝑟, 𝑡): “Is the statement
ℎ 𝑟 𝑡 True or False?“. We expect LLMs to answer with True or False,
indicating their judgment of the knowledge statement based on their
parametric knowledge.

Negative Sampling We propose four approaches to sample nega-
tive entities 𝑡 ′ in the knowledge graph to obtain increasingly chal-
lenging negative samples.

• Random We randomly sample an entity from a set of entities
not connected to the head entity ℎ as 𝑡 ′, formally 𝑡 ′ ∈ E − E(ℎ),
where E(ℎ) denotes the set of entities connected to ℎ.

• Semantic Similarity We hypothesize that semantically similar
entities could provide a more challenging setting with harder nega-
tive examples. We first use the Random method to sample𝑚 neg-
ative entities. These sampled entities form the set E𝑚 . Then, we
employ an encoder-based language model, denoted as enc(·), to
encode the names of these entities. Finally, we use cosine similar-
ity sim(·, ·) to select an entity 𝑡 ′ that is most similar to 𝑡 in the em-
bedding space. Formally, 𝑡 ′ = argmax𝑒∈E𝑚 sim(enc(e), enc(t)).

• Relation Sharing We hypothesize that using entities sharing the
same relation, 𝑟 , as the selected negative sample would provide a
challenging adversarial setting. We first obtain the set of entities
that are also associated with relation 𝑟 as E (𝑟 ) , then randomly
sample one entity from E (𝑟 ) as the negative sample 𝑡 ′.

• Network Proximity We hypothesize that entities that are close
to ℎ in the KG could also present a hard negative example. We
obtain the set of entities that are connected to ℎ and randomly
sample one entity from it as the negative sample 𝑡 ′.

Evaluation We use accuracy as the evaluation metric for the
binary output of True or False.

2.2 Task 2: Multiple-Choice
Building up from the True-or-False task, the multiple-choice task
introduces distractors [22, 50, 56]. This task not only tests the ability
of LLMs to determine what is factually correct, but also their ability
to discern the false options from the true option. Therefore, the
Multiple-choice task presents a higher degree of complexity, as
LLMs need to evaluate the plausibility of different answer options
based on their parametric knowledge.

Task Formulation We randomly sample a subset of the knowl-
edge graph, denoted as T𝑠 . For (ℎ, 𝑟, 𝑡) ∈ T𝑠 , we replace the tail entity
𝑡 with [MASK] and provide 𝑚 answer options, including the correct
entity 𝑡 and𝑚 − 1 distractors. We follow the same negative sampling
strategies in Task 1: True-or-False to obtain the distractors.

Evaluation We similarly use accuracy as the evaluation metric.

2.3 Task 3: Blank-Filling
The Blank-filling task requires LLMs to directly generate the missing
information for a given statement [48], compared to the two previous
tasks where the correct answer already appeared somewhere in the
prompt context. While in tasks 1 and 2, models might just take
guesses as they can simply choose one of the available options
without knowing the actual answer, in Task 3: Blank-Filling, LLMs
are required to retrieve the correct answer without any hints or
options.

Task Formulation We randomly sample one subset of the knowl-
edge graph, denoted as T𝑠 . For (ℎ, 𝑟, 𝑡) ∈ T𝑠 , we replace the tail entity
𝑡 with [MASK]. The model is asked to generate the correct answer
to replace [MASK].

Evaluation We denote the model output as 𝑡𝑜 and we use the
following metrics for evaluation:

• LCS: We denote the Longest Common Subsequence of 𝑡𝑜 and 𝑡

as 𝒔, and LCS is defined as: LCS =
Len(𝒔 )

max{Len(𝑡𝑜 ),Len(𝑡 ) }
• F1-score: We denote the set of common tokens in both 𝑡𝑜 and

𝑡 as 𝐶. We denote the F1-score of 𝑡𝑜 and 𝑡 as F1 = 2𝑃𝑅
𝑃+𝑅 , where

𝑃 =
|𝐶 |
|𝑡𝑜 | ,𝑅 =

|𝐶 |
|𝑡𝑔 | .

2
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AnswerAnswer : C
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affiliated to AC Sparta Prague" True or

False?

AnswerAnswer : True

Miroslav Koubek plays for [MASK].

What should [MASK] be?

AnswerAnswer : AC Sparta Prague

Please correct the mistake in the following statement:

Miroslav Koubek plays for Dukla Prague is located in

Prague.

AnswerAnswer : Miroslav Koubek plays for AC Sparta Prague

is located in Prague.

Tell me some facts about Jaroslav Heyrovský:

Answer:Answer:  Jaroslav Heyrovský was born on
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Figure 1: Overview of the KGQUIZ Benchmark, featuring five knowledge-intensive tasks with increasing complexity. We illustrate the
diverse tasks employed in KGQUIZ to test large language models, highlighting the examples and corresponding natural language
prompts used to examine their knowledge abilities across domains and contexts.

• Semantic Match: We measure semantic similarity between the
model’s output and the correct answer using cosine similarity
on embeddings obtained via InstructGPT Ada LLM enc(·). This
gives us the AdaScore(𝑡𝑜 , 𝑡) = sim(enc(to), enc(t)). A thresh-
old 𝜃 of Adascore is based on a held-out validation set (detailed
in Appendix D) to determine whether the model-generated an-
swer and the ground truth are a semantically exact match. Con-
cretely, we define the semantic match metric as SM(𝑡𝑜 , 𝑡) = 1 if
AdaScore(𝑡𝑜 , 𝑡) ≥ 𝜃 , else 0.

2.4 Task 4: Factual Editing
The Factual Editing task presents enhanced challenges compared to
task 3 by moving from a single knowledge statement to a multi-hop
knowledge statement. Task 4 requires LLMs to not only memorize
and recall the facts, but also to identify which part of multi-hop
knowledge is inconsistent and revise accordingly. While previous
works have also explored LLMs’ potential in factual editing [2, 6],
we uniquely focus on a multi-hop format where one of the hops
features inconsistent factual information. This task tests LLMs’ abil-
ities to handle multi-hop information, localize errors, edit factual
inconsistencies, and more.

Task Formulation Given a knowledge graph, we first sample a
𝑘-hop path, and we use a structured format to present the multi-hop
knowledge path as 𝒅 =(ℎ1, 𝑟1, 𝑒1, 𝑟2, ..., 𝑡𝑘 ).1 We then randomly

1To avoid confusion, we denote 𝑒𝑚 as the tail entity 𝑡𝑚 of the 𝑚-th triple in the
knowledge path. At the same time, it also serves as the head entity ℎ𝑚+1 of the (𝑚 + 1)-
th triple in the knowledge path.

replace one of the entities in the path (denoted as 𝑒𝑠 ) with 𝑒′ sampled
with the negative sampling strategies described in Section 5 to obtain
𝒅′. We concatenate the names of original entities and relations to
form a multi-hop knowledge statement denoted as 𝒅 and swap one
entity with its negative sample to obtain 𝒅′. This task prompts LLMs
to correct the factual inconsistency in 𝒅′.

Evaluation We denote the left part of 𝒅 (tokens before 𝜖 (𝑒𝑠 )) as
𝑳, and the right part of 𝒅 (tokens after 𝜖 (𝑒𝑠 )) as 𝑹. We first perform
the longest common substring match between the output 𝒅 (𝑜 ) of the
model and 𝑳, 𝑹 in turn, and delete the obtained common substring
from 𝒅 (𝑜 ) to retrieve the revised entity given by LLMs. Then, We
adopt the same set of evaluation metrics as task 3, namely LCS,
F1-SCORE, and SEMANTIC MATCH, to compare the ground truth
entity 𝑒𝑠 and the revised entity given by LLMs.

2.5 Task 5: Open-Ended Text Generation
The Open-Ended Text Generation task moves from handling isolated
facts (as in the previous tasks) to generating multiple factual associa-
tions about a given entity. We evaluate whether the generated factual
associations are aligned with the information in existing knowledge
graphs. This comparison aims to measure the ability of LLMs to
generate accurate and comprehensive factual knowledge of a partic-
ular entity. In addition, while tasks in previous works mostly focus
on a single factual association [22, 56], we propose the Open-Ended
Text Generation task to encourage the knowledge abilities of LLMs
in multi-fact and knowledge synthesis settings.

3
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Task Formulation We randomly sample one subset of KG, de-
noted as T𝑠 . For (ℎ, 𝑟, 𝑡) ∈ T𝑠 , we ask the model to “Tell me some
facts about ℎ“. We denote all triplets containing ℎ in the knowledge
graph as G = {(ℎ, 𝑟𝑔, 𝑡𝑔) ∈ T }.

Evaluation We evaluate Open-Ended Text Generation generation
by comparing the model outputs with the information about entity ℎ

in the original knowledge graph, denoted as G. Concretely, we first
prompt a GPT-3.5 LLM to turn the given model output in natural
language into a list of fact triplets O = {(ℎ, 𝑟𝑜 , 𝑡𝑜 )} inspired by
previous works [26, 43], where we further evaluate this approach in
Appendix D. We then employ the semantic match metric SM in task
3, we define the Precision and Recall between model predictions O
and ground truth G as: Precision =

| O∩G|
| O | , Recall = | O∩G|

| G | , where
O ∩ G denotes the set of triples that are both in model predictions
and the knowledge graph with SM = 1.

3 EXPERIMENT SETTINGS
Knowledge Domains. In our experiments, we posit that the perfor-

mance of LLMs in knowledge-intensive tasks is greatly influenced
by diverse knowledge domains. Thus, we consider knowledge graphs
from three distinct domains in our experiments: commonsense, en-
cyclopedic, and domain-specific. For commonsense knowledge, we
leverage the ConceptNet knowledge graph [52] with 1,103,036 enti-
ties, 47 relations, and 3,098,674 triples. For encyclopedic knowledge,
we adopt the YAGO knowledge graph [38] with 123,182 entities, 37
relations, and 1,089,040 triples. For domain-specific knowledge, we
mainly consider the biomedical domain and adopt the UMLS knowl-
edge graph [4] with 297,554 entities, 98 relations, and 1,212,586
triples. By conducting our evaluations across knowledge graphs that
span varying domains, we aim to provide a comprehensive assess-
ment of how the knowledge abilities of LLMs fare across diverse
knowledge domains.

Models and Settings. We evaluate both black-box and open-
source LLMs on the KGQUIZ benchmark. For black-box LLMs,
we adopt InstructGPT [45] (TEXT-ADA-001, TEXT-BABAGGE-001,
TEXT-CURIE-001, and TEXT-DAVINCI-003) and ChatGPT (GPT-
3.5-TURBO) through the OpenAI API. For open-source LLMs, we
adopt GPT-J [60], OPT (6.7B) [66], ChatGLM [14], LLAMA (7B)
[58], and Alpaca [57] in the experiments. We use a temperature of 𝜏
= 0 to reduce randomness.

Task Settings. For Task 1: True-or-False, we construct 10k exam-
ples for each knowledge graph and adopt semantic similarity as the
default negative sampling method. In our experiments, we noticed
that some LLMs could not answer true-or-false questions based on
zero-shot instructions, thus we have added one in-context example
to demonstrate the QA format. For Task 2: Multiple-Choice, we use
four answer options as the default setting and construct 10k exam-
ples for each knowledge graph. Here, too, we incorporate a single
in-context example for clarification. For Task 3: Blank-Filling, we
randomly sample 10k triplets for each knowledge graph to generate
the blank-filling questions. Moving on to Task 4: Factual Editing, we
construct 10k knowledge walks for each knowledge graph with the
default walk length 𝑘 = 3. Given that some LLMs struggled with this
task, an in-context example is provided. Lastly, for Task 5: Open-
Ended Text Generation, we select 1k entities in each knowledge

Model Task Domain Avg.
T1 T2 T3 T4 T5 YAGO CPNet UMLS

ADA 8.3 9.7 6.1 5.1 4.8 †6.5 6.8 7.1 6.5
BABBAGE 7.0 6.0 5.0 5.0 3.8 5.7 5.5 †4.8 5.7
CURIE 8.7 9.3 2.8 4.0 2.7 †5.2 6.1 5.2 5.2
DAVINCI 2.0 2.0 1.7 1.6 3.0 †1.9 2.0 2.3 1.9
TURBO 1.0 1.0 3.0 3.9 2.8 †2.3 2.4 2.3 2.3
GPT-J 7.0 7.3 8.7 7.7 9.0 8.0 †7.6 8.1 8.0
OPT 9.0 7.0 8.0 7.8 9.8 †8.2 8.5 8.3 8.2
CHATGLM 4.7 3.0 4.0 7.1 3.8 4.3 †4.0 5.3 4.3
LLAMA 4.0 5.7 8.9 8.1 7.3 7.2 7.1 †6.1 7.2
ALPACA 3.3 4.0 6.9 4.8 7.8 5.6 †4.9 5.6 5.6

Table 1: Overall average rankings of ten LLMs on KGQUIZ
across five tasks and three knowledge domains. Bold, underline
represents the highest and the second highest ranking on each
task (or knowledge domain). † denotes the knowledge domain
on which each model has its best ranking.
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Figure 2: Model performance on Task 1: True-or-False. Larger
LMs are better at judging factual correctness, while the same
LM performs differently across varying knowledge domains.

graph and ask LLMs to perform open-ended generation2. We use
Semantic Similarity to sample negative examples in our subsequent
experiments.3

4 RESULTS
We first present the average ranking across the five knowledge rea-
soning tasks and the three knowledge domains in Table 1. In terms
of knowledge domains, we observe a considerable discrepancy in
the performances across different domains for the same LLM. This
finding highlights that LLM knowledge abilities are greatly impacted
by knowledge domain, supporting the need for multi-domain knowl-
edge probing benchmarks such as KGQUIZ. Regarding knowledge
utilization, the format in which knowledge is presented and required
to be utilized by LLMs also significantly impacts their overall per-
formance, as the best model across the five tasks could be quite
different. We further analyze each individual task in the following.

2For some tasks, we use in-context examples. More details in Appendix D.
3The specific effect of these four strategies and our choice for Semantic Similarity is
detailed in section 5.1.
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Model YAGO ConceptNet UMLS

F1-score LCS Sem. Match F1-score LCS Sem. Match F1-score LCS Sem. Match

ADA 2.26 18.24 61.67 1.24 11.76 45.43 5.72 19.43 55.52
BABBAGE 2.60 17.63 60.48 2.07 12.06 64.67 10.37 21.68 71.43
CURIE 5.38 19.63 71.54 3.32 15.11 78.68 10.90 26.04 84.70
DAVINCI 14.02 28.65 73.00 6.27 27.40 91.19 8.28 23.81 87.88
TURBO 4.47 11.83 52.33 5.56 14.42 80.48 19.44 28.18 89.27
GPT-J 0.56 10.75 24.55 1.20 4.53 39.07 9.38 11.74 73.17
OPT 0.66 10.75 27.33 0.75 4.40 45.55 6.88 11.21 73.52
CHATGLM 3.53 21.50 72.27 2.35 20.15 88.07 4.04 19.45 58.71
LLAMA 1.24 11.43 35.97 1.03 3.42 25.96 7.44 9.31 76.64
ALPACA 3.16 10.37 41.52 1.92 6.25 56.55 10.63 13.61 81.88

Table 2: LLM performance on Task 3: Blank-Filling. Sem. Match is short for the semantic match metric. DAVINCI leads on YAGO and
ConceptNet, while TURBO performs best on UMLS, indicating that LLM knowledge abilities vary greatly across knowledge domains.
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Figure 3: LLM performance on Task 2: Multiple-Choice.
DAVINCI and TURBO consistently outperform other models,
indicating their superior knowledge abilities under the multiple-
choice knowledge utilization format.

4.1 Task 1: True-or-False
As depicted in Figure 2, among the assessed LLMs, four of them
(TEXT-DAVINCI-003, GPT-3.5-TURBO, ChatGLM) performed sub-
stantially better than random chance (50%) on all KGs. Notably,
GPT-3.5-TURBO achieved the best overall performance, showcasing
its ability to discern correct from incorrect knowledge statements.
Observation of improved performance with larger model sizes sug-
gests that models with more parameters can encode more knowledge
and leverage the stored knowledge to accurately identify the veracity
of knowledge statements. Additionally, Even in the simple binary
task, many LLMs show accuracy close to 50%, indicating difficulty
in distinguishing true and false statements. This suggests a need for
further improvement in LLMs’ knowledge abilities, particularly for
smaller language models.

4.2 Task 2: Multiple-Choice
Figure 3 showcases that TEXT-DAVINCI-003 and GPT-3.5-TURBO

consistently outperform other LLMs in understanding and apply-
ing knowledge across all KGs and domains. An observation from

tasks comparison revealed that TEXT-DAVINCI-003 and GPT-3.5-
TURBO’s improved performance in Task 2: Multiple-Choice com-
pared to Task 1: True-or-False. However, Alpaca’s relative perfor-
mance dwindled in Task 2, suggesting that the specific knowledge
utilization format significantly influences an LLM’s ability to re-
trieve potentially correct answers.

4.3 Task 3: Blank-Filling
Compared to true-or-false and multiple-choice questions, blank fill-
ing requires LLMs to retrieve the correct answer from their paramet-
ric knowledge without relying on any options. In Table 2, the overall
low LCS scores reflect that LLMs’ generated answers struggle to
match the exact target answer. Moreover, the models’ abilities differ
significantly, with TEXT-DAVINCI-003 excelling in two domains
(YAGO and ConceptNet) but GPT-3.5-TURBO performing better in
the biomedical domain (UMLS). Additionally, we observe a notice-
able decrease in performance in the biomedical domain, suggesting
that the models may not be as proficient in handling domain-specific
knowledge.

4.4 Task 4: Factual Editing
Compared to blank-filling, Task 4: Factual Editing involves identify-
ing and rectifying factual inconsistencies within given knowledge
statements. According to the results in Table 3, the additional context
indeed aids certain models in generating fact-checked responses on
certain KGs (YAGO and ConceptNet), with TEXT-DAVINCI-003 and
GPT-3.5-TURBO scoring well for YAGO and ConceptNet respec-
tively, and ChatGLM excelling on UMLS. It highlights that tasks
such as dialogue generation and summarization, which usually come
with relevant context, may work better with LLMs. However, when
provided only with a short question, QA models may get confused
easily. The task-wise change in top-performing models indicates
that the form of knowledge utilization impacts an LLM’s knowledge
abilities significantly.

4.5 Task 5: Open-Ended Text Generation
Open-ended generation tasks present a more complex challenge
to LLMs as it requires not just specific factual associations, but
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Model YAGO ConceptNet UMLS

F1-score LCS Sem. Match F1-score LCS Sem. Match F1-score LCS Sem. Match

ADA 2.50 14.51 86.76 0.12 14.65 83.84 2.50 18.11 59.85
BABBAGE 2.90 9.47 90.68 0.02 10.42 86.53 2.90 17.78 60.03
CURIE 6.21 8.93 91.20 0.10 15.92 83.14 6.21 19.76 60.24
DAVINCI 16.99 20.58 91.77 5.15 17.31 93.25 5.44 7.28 64.19
TURBO 12.29 13.24 91.06 0.51 1.28 93.32 0.88 8.93 59.05
GPT-J 0.03 0.17 90.34 0.00 0.22 93.21 0.20 0.71 59.98
OPT 0.01 0.06 90.37 0.00 0.06 93.24 0.30 0.88 59.96
CHATGLM 4.94 1.32 89.66 0.14 4.57 90.62 0.42 2.58 76.26
LLAMA 0.03 0.04 90.33 0.00 0.00 93.20 0.43 1.81 59.98
ALPACA 6.80 12.27 90.20 0.87 14.84 93.20 1.46 8.66 59.93

Table 3: LLM performance on Task 4: Factual Editing. Model performance is generally higher than blank-filling, indicating the
helpfulness of additional context and emphasizing the influence of knowledge utilization. Models such as TURBO, DAVINCI, and
ChatGLM show variations in performance across different knowledge graphs, highlighting the influence of knowledge domains.

Model YAGO ConceptNet UMLS

Precision Recall Precision Recall Precision Recall

ADA 75.84 34.89 90.93 24.90 59.45 19.47
BABBAGE 84.66 35.34 95.01 18.84 81.52 22.93
CURIE 85.69 38.64 96.59 22.46 83.43 26.80
DAVINCI 76.39 53.96 88.12 41.55 77.48 46.06
TURBO 77.28 57.63 89.39 40.53 75.94 43.89
GPT-J 11.97 8.78 24.11 12.07 10.72 5.96
OPT 14.06 7.72 16.89 5.26 10.35 5.43
CHATGLM 71.00 54.54 88.05 46.49 63.59 39.72
LLAMA 39.17 29.29 36.78 11.78 26.14 11.85
ALPACA 22.96 17.77 28.63 13.94 12.69 7.53

Table 4: Model performance on Task 5: Open-Ended Text Gener-
ation. Different from previous tasks, generating long and open-
ended statements about entities poses new challenges to LLMs.

also the generation of a consistent paragraph about a certain entity
encapsulating assorted facts and knowledge. As observed in Table
4, TEXT-DAVINCI-003 tops the chart with the highest AdaScore_s
score across all three KGs, denoting its proficient ability to produce
well-structured and factually accurate knowledge paragraphs. TEXT-
CURIE-001 stands out with the highest Precision score, indicating its
preference to generate knowledge closely in line with the respective
knowledge graph. From a Recall perspective, the best performances
are achieved by GPT-3.5-TURBO, ChatGLM, and TEXT-DAVINCI-
003 on the three respective KGs. These findings emphasize that the
knowledge domain significantly affects the performance of LLMs in
knowledge-intensive tasks, underscoring the need for comprehensive
evaluations of LLMs’ knowledge abilities that consider varying
knowledge domains.

5 ANALYSIS
5.1 Negative Sampling Strategy
In section 2.1, we propose and formalize four negative sampling
methods to generated questions in the KGQUIZ benchmark. In order
to investigate their impact on the difficulty of the task, we use the
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67.33

63.12

Davinci
Turbo

Figure 4: Performance on Task 1: Ture-or-False with varying neg-
ative sampling methods. The figure illustrates the performance
of TEXT-DAVINCI-003 and GPT-3.5-TURBO on the YAGO knowl-
edge graph when using the four negative sampling strategies,
showing that the choice of negative sampling has a significant
impact on the difficulty of the task.

four negative sampling strategies, Random (RA), Semantic Simi-
larity (SS) Relation Sharing (RS), and Network Proximity (NP) to
generate questions for Task 1: True-or-False based on the YAGO
knowledge graph. We evaluate TEXT-DAVINCI-003 and GPT-3.5-
TURBO as shown in Figure 4. These results show that different
negative sampling methods do impact on the difficulty of the prob-
lem, ranging from easy to difficult in the following order: Random,
Semantic Similarity, Relation Sharing, and Network Proximity. It is
also demonstrated that whether LLMs can select the correct answer
is impacted by the plausibility of negative examples.

In particular, we employed Semantic Similarity as an intermedi-
ate strategy presenting reasonable complexity. This strategy, while
challenging, does not make the task excessively difficult. Further-
more, while we propose this specific strategy, KGQUIZ benchmark
supports the flexibility of adopting other negative sampling settings.

5.2 Consistency Study
In this study, we investigate the robustness towards minor changes
in prompts and knowledge statements. We select 100 questions from
the YAGO knowledge graph in Task 1: True-or-False and evaluate
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Question Prediction Gold

Bob Hawke graduated
from ____

Oxford University University of Oxford

Rosemary Sutcliff has
won prize ____

The Carnegie Medal Carnegie Medal (liter-
ary award)

Taito Corporation is
located in ____

Tokyo, Japan Shibuya, Tokyo

Table 5: Qualitative analysis of Task 3: Blank-Filling, suggesting
that our proposed Semantic Match presents a more nuanced
metric for knowledge probing.

with five different prompts and instructions (more details in Appen-
dix E.3). We measure response consistency of the five black-box
LLMs using the Fleiss Kappa measure [17]. The experiment results
show that LLMs have varying robustness towards prompt formats:
TURBO (0.645) has the highest score, suggesting a moderate level of
agreement. DAVINCI (0.285) exhibits a lower but still positive value.
However, ADA (-0.187), BABBAGE (-0.057), and CURIE (-0.168)
show negative Fleiss Kappa values, indicating poor agreement and
suggesting that model responses are less consistent towards minor
changes in knowledge probing instructions. This study highlights
that the robustness to minor changes in knowledge-intensive prompts
is in itself part of LLM’s knowledge abilities.

5.3 Exact Match vs. Semantic Match
We conduct qualitative analysis for Task 3: Blank-Filling and present
a few examples in Table 5. It is demonstrated that answers generated
by LLMs do not exactly match the gold label, where the exact
match (EM) metric would treat the answer as incorrect. However,
the generated responses are semantically equivalent. For instance,
in the first example, the word order is different but both answers
convey the same meaning. Similarly, in the third example, “Tokyo,
Japan” is more general than the gold answer “Shibuya, Tokyo” but
it still provides the correct location information. While the exact
match metric would treat them as incorrect, under our proposed
Semantic Match, all four answers are deemed as correct, indicating
that Semantic Match presents a better evaluation metric in LLM
knowledge probing given the nuanced nature of entity names [31].

5.4 Question Sampling
In KGQUIZ, for each task, we generate questions by randomly
sampling triplets (or head entities) from the KG, while whether the
randomly sampled subsets is represented of the whole KG remain
underexplored. To this end, we design two additional ways to sample
a problem subset:

• Relation Proportion: We first calculate the proportion of rela-
tions in the KG, then sample triplets based on the relation distribu-
tion. This ensures that the proportion of relations in the sampled
triples is consistent with the proportion of relations in the entire
knowledge graph.

• Entity Clustering: First, we use knowledge graph embedding
model TransE [5] to obtain the embedding for each entity, then we
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Figure 5: Comparison of model performance across different
question sampling methods. Models are evaluated on 1,000 Task
1: True-or-False questions and 1,000 Task 2: Multiple-Choice
questions sampled via three different methods. The results show
the model’s performance is not significantly affected by the sam-
pling method.

use K-means to obtain 10 clusters of entities. We sample triplets
based on the proportions of the number of entities in each cluster.

We generated 1,000 Task 1: True-or-False questions and 1,000 Task
2: Multiple-Choice questions on ConceptNet using these two meth-
ods respectively. According to Figure 5, we find that after changing
to these two sampling methods that can theoretically better represent
the features of the knowledge graph, the performance of each model
did not change significantly (compared to random sampling). This
indicates that randomly sampled triples can also reflect the features
of the entire knowledge graph and the corresponding results are
representative.

5.5 Negative Sampling Evaluation
Validity of Negative Samples. Regarding the four negative sam-

pling methods we proposed, a potential issue is that the sampled
data may not be genuine negative samples. Therefore, in order to
investigate the effectiveness of our negative sampling methods, we
manually evaluated 20 samples for each method. In our manual eval-
uation, all the sampled examples were indeed true negative samples,
which validated the effectiveness of our negative sampling methods.

5.6 Number of Options
Although extra answer options could serve as context information
aid LLMs (as we analyzed in Section 4.2, we hypothesize that an
increasing amount of distractors might sway LLMs away from the
correct answer. To this end, we study the impact of the number of
options on the difficulty of Task 2: Multiple-Choice. We follow the
settings in Section 3 but change the number of options to 2, 3, 5, and
10 respectively. We present the performance of TEXT-DAVINCI-003
and GPT-3.5-TURBO on YAGO in Figure 6. We find that, although
a small number of options providing extra context can give the
model hints to answer questions, as the number of options increases,
the model’s performance gradually declines due to the increasing
number of distractors.

5.7 Generating Triplets vs. Text
We use TEXT-DAVINCI-003 and GPT-3.5-TURBO to directly gen-
erate factual triplets about a certain entity (by giving an in-context
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Figure 6: Impact of the number of answer options on LLM
performance. The figure illustrates the performance of TEXT-
DAVINCI-003 and GPT-3.5-TURBO on Task 2: Multiple-Choice
(Multiple-Choice) using YAGO knowledge graph, with varying
numbers of answer options (2, 3, 4, 5, and 10). The results show
that as the number of options increases, the model’s performance
declines, indicating that a higher number of distractors makes
the task more challenging.

Model Text Triplets

Precision Recall Precision Recall

DAVINCI 76.39 53.96 85.21 37.58
TURBO 77.28 57.63 91.42 37.21

Table 6: Comparison of precision and recall for open-ended text
generation and direct triplet generation using TEXT-DAVINCI-
003 and GPT-3.5-TURBO. Direct triplet generation results in
higher precision but lower recall than open-ended generation.

example) and reported the precision and recall in Table 6. It can be
observed that although the precision has improved, the recall has
dropped significantly. We analyzed that this is due to the model gen-
erating only a few high-confidence triplets when directly asked for
triplets, which led to the aforementioned results. However, for other
smaller-scale models, directly generating factual triplets is not feasi-
ble, as they cannot adequately understand the prompt’s instructions,
resulting in poor performance.

6 RELATED WORK
LLM Knowledge Probing. Research into what knowledge is stored

in LLMs has drawn significant interest. Pioneering work like LAMA
[48], TempLAMA [12], MMLU [21] quantitatively measured the
factual knowledge in these models. Other approaches have expanded
these probing techniques, exploring topics like few-shot learning
and 2-hop relational knowledge [20]. Furthermore, open-domain
question-answering benchmarks like Natural Questions [29], and
TriviaQA [25] have been used to measure the practical knowledge
abilities of these models, aligning the probing tasks with real-world
applications.

Improving LLM Knowledge Abilities. Efforts to enhance LLM’s
knowledge abilities include augmenting language models with KGs
for structured, factual knowledge [42, 49] and using retrieval-augmented

methods like RAG [30], REALM [19], and REPLUG [51] to incor-
porate external documents as a dynamic knowledge source. Further,
REMEDI [23] aims to create a finer control over knowledge in LLMs
by understanding fact encodings in the model’s internal representa-
tion system. In parallel, the framework CooK [15] suggests using
specialized language models to provide modular and up-to-date
knowledge in a collaborative process.

Extracting Knowledge from LLMs. The extraction of knowledge
from LLMs has become an emerging topic in the research commu-
nity. Some works focus on constructing KGs from the LLMs [11, 59].
For example, Crawling Robots [11] uses a robot role-play setting to
extract named entities and relations by encoding them into actions.
Other works utilize the prompt-based paradigm, where they gener-
ate knowledge probes in the form of structured prompts [35, 65].
These tools aim to extract and organize the knowledge within an
LLM in a human-readable and interpretable way. Furthermore, other
techniques involve augmenting training data with recitation tasks to
express internally represented knowledge explicitly [54].

Investigating the Limitation of LLM Knowledge Abilities. As
LLMs have shown promise in knowledge-based tasks, researchers
have also started examining the limitations of these models’ knowl-
edge abilities. This includes their ability to handle conflicted infor-
mation [8, 61], recall abilities [39], and self-evaluating skills [27].
By investigating these limitations, researchers aim to not only de-
vise ways to address them but also shed light on how LLMs can
operate more effectively in more sophisticated tasks, particularly in
professional domains [41, 55].

In summary, while considerable work has been done in probing
the knowledge abilities of LLMs, improving these abilities, extract-
ing knowledge, and investigating their limitations, two major aspects
have seen less consideration: knowledge utilization and knowledge
breadth. These areas are vital for understanding and evaluating the
performance of LLMs in more real-world, complex scenarios. There-
fore, this calls for a more comprehensive approach, which our pro-
posed KGQUIZ benchmark aims to address, making strides towards
a future where LLMs exhibit robust knowledge abilities applicable
to a wider range of domains and utilization contexts.

7 CONCLUSION
We propose KGQUIZ, a benchmark for probing the knowledge
generalization abilities of Large Language Models (LLMs). Unlike
previous work, our benchmark focuses on two often-overlooked
aspects: the complexity of knowledge utilization and the breadth
of knowledge domains. Our benchmark uses structured informa-
tion from knowledge graphs (KGs) across three diverse domains,
and it consists of several tasks representing increasingly complex
forms of knowledge utilization. Our experimental results illustrate
varying performances of several LLMs across different domains and
tasks, underscoring the multi-faceted nature of knowledge abilities in
LLMs. This also demonstrates the importance of considering Knowl-
edge Utilization and Knowledge Breadth. We envision KGQUIZ as
a comprehensive testbed to evaluate, understand, and improve the
knowledge abilities of LLMs across varying domains and tasks.
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knowledge graphs each from a different domain. As we plan to make
KGQUIZ publicly accessible, further investigation into the perfor-
mance of a broader range of LLMs on assorted knowledge graphs is
left for future endeavors.

Evaluation Metrics. Being the case that LLMs might not fully
adhere to the context in our prompts, we were required to deploy
human-crafted string-processing functions to preprocess the content
the models generated, to evaluate the results. This step is suscepti-
ble to errors that may lead to inaccurate results. Additionally, the
Semantic Match method we utilized is also not without error. Two
semantically similar entities could have wildly different referents,
which could lead to assessment errors. Addressing the issue of fuzzy
match (semantic match) is a direction for future research.

Knowledge Coverage. Due to the vast scale of real-world knowl-
edge, we are unable to evaluate whether all the content generated
by the model is completely factual in our benchmark. We can only
assess whether the content generated by the model aligns with the
knowledge stored in the knowledge graphs. However, the coverage
of real-world knowledge by the knowledge graph is limited, leading
to potential errors in our evaluation. However, as our benchmark is
scalable, we can mitigate this limitation to some extent by generating
corresponding tasks (questions) using broader (or more applicable)
and more up-to-date knowledge graphs.

Knowledge Breadth. Our benchmark takes into account the knowl-
edge of three domains: commonsense, encyclopedic, and biomedical.
The first two domains are more general, while only biomedical is
domain-specific. However, our benchmark can be easily extended to
knowledge graphs in other domains, as long as there are correspond-
ing triplet data. This, to some extent, mitigates this limitation.

KG quality. Many knowledge graphs contain errors and noise, or
outdated knowledge, especially for encyclopedic knowledge graphs
like YAGO, which may affect the the validity of our evaluation.

Prompt Effectiveness. The prompts we utilized for each question
may not necessarily be the most effective. Given the constraints
of our budget, we were unable to execute extensive testing on all
plausible prompts. Therefore, for Task 1: True-or-False, Task 2:
Multiple-Choice Task 4: Factual Editing, we chose the method of
incorporating one in-context example to aid model understanding of
the task instructions.

B ETHICS STATEMENT
Privacy. As KGs encompass a wealth of knowledge on a multi-

farious range of topics, it can include sensitive or private informa-
tion. The potential for an LLM, that effectively covers and utilizes
this knowledge domain, could generate responses disclosing per-
sonal details of individuals or organizations. This introduces privacy
concerns and reinforces the need for developing privacy-conscious
approaches when leveraging and assessing LLMs and KGs.

Accessibility. In making KGQUIZ publicly accessible, we aspire
to propel further research on LLMs’ knowledge abilities. However,
the use of this benchmark may necessitate significant resources due
to the inherent complexities of large language models. Similarly,
evaluating black-box LLMs could incur significant costs, potentially

creating barriers to access to the benchmark for researchers with
limited computational resources or budget, contributing to elevated
entry barriers in this field.

C DISCUSSION
Performance of LLMs Across Different Knowledge Domains. Our

comprehensive exploration of ten large-scale language models utiliz-
ing KGQUIZ revealed that these models exhibited far from uniform
performance across diverse knowledge domains and contexts. For
instance, the most advanced model, TEXT-DAVINCI-003 displayed
varying performance across different knowledge graphs and tasks.
Broadly speaking, the performance of this model was the highest on
the YAGO knowledge graph, consistently surpassing other models
in tasks like true-or-false and multiple-choice. However, when faced
with the UMLS knowledge graph representing the biomedical do-
main, the model showed a significant decline in performance, with
ChatGLM and GPT-3.5-TURBO taking the lead instead. These find-
ings emphasize the model’s struggles with domain-specific knowl-
edge. Similar trends were also observed with other models like
Alpaca, which performed poorly on the multiple-choice task, but
displayed a notable improvement on the blank-filling task. Such
performance variations across knowledge domains serve as an inter-
esting direction for future research, aiming to investigate the reasons
behind such contrasts in LLM performance across diverse knowl-
edge realms.

LLM Performance Across Knowledge Utilization Contexts. KGQUIZ

has laid emphasis on knowledge utilization patterns along with
knowledge domains, providing a comprehensive overview of the
knowledge abilities of LLMs. This has enabled a detailed analysis
of the models’ performance across different knowledge-intensive
tasks. A fascinating observation is the influence of task complexity
and format on model performance. Alpaca exhibited a significant
improvement from Task 1: True-or-False to Task 2: Multiple-Choice,
while the performance of models like TEXT-CURIE-001 dipped. This
pattern suggests various models adapt differently to varying com-
plexity and the nature of knowledge utilization at hand. Such insights
could be valuable to refine LLM’s understanding and handling of
tasks, thus warranting further exploration.

Provide Comprehensive Insight for LLM Evaluation and Com-
parison. KGQUIZ is specifically designed to offer a rich set of
metrics and contexts for in-depth evaluation and comparison of
LLMs’ performance across various knowledge domains and utiliza-
tion contexts. By presenting a fine-grained and multi-perspective
analysis, KGQUIZ contributes to a thorough understanding of the
strengths and weaknesses of individual LLMs. This not only enables
researchers and users to make informed decisions when selecting the
best-suited model for a specific task, but also paves the way for the
evidence-based development of more capable and versatile LLMs in
the future.

Guidance for Future Development of LLMs. The performance
heterogeneity of LLMs that we observed across varied tasks indi-
cates the challenges certain tasks pose for these models. For instance,
LLMs, despite their robust performance on simpler tasks such as
True-or-False, struggle to meet the challenge of the increasing com-
plexity of tasks like Factual Editing, emphasizing their limitations

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

in context-rich, advanced knowledge reasoning. Moving forward,
these observations can provide valuable insights for future advance-
ments in the field. Identifying specific areas that require attention and
improvement can guide developers to iteratively refine model archi-
tectures, enrich training data, and adopt more effective pre-training
and fine-tuning methods.

D KGQUIZ DETAILS
In-Context Examples. Through experiments, we discovered that

for the majority of LLMs, their performance in a zero-shot setting is
unusually low on some tasks. We think this is because they are unable
to precisely comprehend the question’s meaning (instructions), and
they cannot produce output in the format we expect. Therefore, to
preserve fairness without compromise, we have incorporated an
in-context example into the prompts of each question for Task 1:
True-or-False, Task 2: Multiple-Choice, and Task 4: Factual Editing,
which will enable a better assessment of the model’s knowledge
abilities.

Threshold for Semantic Match. For three knowledge graphs, we
randomly selected 1,000 entities each. For each entity, we prompted
GPT-4 to generate five entities with the same reference and five
entities with different references. As a result, we obtained a total of
3×1, 000×5 positive samples and 3×1, 000×5 negative samples. For
each sample pair, we calculated their AdaScore. We chose a thresh-
old so that if a positive sample’s AdaScore is above the threshold
or a negative sample’s AdaScore is below the threshold, the sample
pair is correctly classified; otherwise, it is misclassified. We selected
the threshold that minimized the number of misclassified samples as
the Semantic Match threshold.

LLM-based Triplets Extraction. We find that it is difficult to mea-
sure the similarity between a piece of text and a set of triples. How-
ever, evaluating the similarity between two sets of triplets is much
easier. So in KGQUIZ Benchmark, we prompt a GPT-3.5 LLM to
turn the given model output in natural language into a set of fact
triplets. In order to make the model understand the instruction better,
we adopt the one-shot setting, as shown in Table 11. To obtain these
in-context examples, we first randomly sample k entities from the
knowledge graph and find all triples with these entities as head en-
tities. We prompt the TEXT-DAVINCI-003 model to generate a text
describing these triples, as shown in Table 10. In this way, we obtain
k triple-text pairs as in-context examples. To verify the reliability of
this method, we manually evaluate 20 (essay, triplets) pairs. (essay:
the TEXT-DAVINCI-003’s output text; triplets: the extracted triplets
from the model output with our method.) In our human evaluation,
the triplets extracted by this method have a precision of 0.87 and a
recall of 0.86, demonstrating that our approach has high reliability.
The problem with this method is that it extracts triples that do not
have the target entity as the head, and the extracted triples do not
conform to the format. We expect that providing more in-context
examples can help alleviate these issues.

E ANALYSIS (CONT.)
E.1 Knowledge Gap between LLMs and KGs
We conduct qualitative analysis on Task 5: Open-Ended Text Gener-
ation model outputs and present GPT-3.5-TURBO’s generated results
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Figure 7: Effect of the number of hops on LLM performance in
the Factual Editing task. The figure shows the Semantic Match
scores for TEXT-DAVINCI-003 and GPT-3.5-TURBO on 2-hop,
3-hop, and 5-hop questions generated from YAGO KG. As the
number of hops increases, the performance of TEXT-DAVINCI-
003 improves, while the performance of GPT-3.5-TURBO ex-
hibits a mixed pattern, indicating that the impact of the hop
count on LLM performance varies depending on the model.

and gold standard answers in Table 8. GPT-3.5-TURBO generated a
total of 19 knowledge statements, of which 9 can be matched with
triplets in YAGO. Among the remaining 10 knowledge statements
that cannot be matched to YAGO, 8 of them are also found to be cor-
rect after manual annotation. This indicates that there is a knowledge
gap between the parametric knowledge of LLMs and the structured
knowledge of KGs. This also further emphasizes the necessity of
considering knowledge utilization when discussing the role of KGs
in augmenting LLMs. If general information about an entity is what
we need, LLMs could provide mostly correct and factual answers;
if LLMs need to perform tasks with the exact information in KGs,
KG-augmented approaches could still be effective.

E.2 Number of Hops
Task 4: Factual Editing investigates whether LLMs can correct fac-
tual mistakes in multi-hop knowledge reasoning chains. We addi-
tionally investigate whether the number of hops would affect the
difficulty of the factual editing task. We generate 2-hop, 3-hop and
5-hop questions with triplets in YAGO and present the performance
of textsctext-davinci-003 and GPT-3.5-TURBO, shown in Figure 7.
We observe that as the number of hops increases, the performance of
textsctext-davinci-003 improves, with the highest Semantic Match
score (86.49) at 5 hops. This indicates that additional context from
more hops can be beneficial in identifying and correcting factual
inconsistencies in knowledge statements for this model. For GPT-
3.5-TURBO, When the number of hops increases from 2 to 3, the
performance of the model improves significantly. However, when
the number of hops increases to 5, the performance of the model
declines slightly but is still higher than that of 2 hops. This once
again confirms that the impact of additional context from more hops
on LLM performance in the factual editing task depends on the
model.

E.3 Consistency Study
In Section 5.2, we investigate the robustness towards minor changes
in prompts and knowledge statements. We present the five different
prompts we used in Table 9.
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E.4 Validity of Semantic Similarity Method
In section 2.1, we proposed the Semantic Similarity method for neg-
ative sampling. To reduce the computational cost, we only compare
similarities among randomly selected m entities. Table 7 presents
four Task 2: Multiple-Choice questions generated through the ss
algorithm sampling. From this, we can see that although there are

a few negative sample entities that are not semantically similar to
the ground truth entities, most of the negative sample entities have
a high semantic similarity to the corresponding ground truth. This
demonstrates that this sampling method can, to some extent, select
semantically similar entities as negative samples, thereby increasing
the difficulty of the problem compared to random sampling.
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Owen Pickard is affiliated to [MASK].
A. F.C. Lixa B. Bideford A.F.C. C. Stenhousemuir F.C. D. Erith & Belvedere F.C.
Please choose one from A, B, C, D:

Ground Truth: B. Bideford A.F.C.

Los Angeles International Airport is connected to [MASK].
A. Guangzhou Baiyun International Airport B. Honolulu International Airport C. Rohtak D. General Rodolfo Sánchez
Taboada International Airport
Please choose one from A, B, C, D:

Ground Truth: A. Guangzhou Baiyun International Airport

Nicolás Lodeiro plays for [MASK].
A. Brentwood Town F.C. B. Club Nacional de Football C. Thailand national under-23 football team D. Luverdense Esporte
Clube
Please choose one from A, B, C, D:

Ground Truth: B. Club Nacional de Football

French Polynesia has capital [MASK].
A. Preveza B. Alberto Lattuada C. Ulcinj D. Papeete
Please choose one from A, B, C, D:

Ground Truth: D. Papeete

Table 7: Examples of multiple-choice questions generated using the Semantic Similarity (SS) method for negative sampling. The ground
truth answer is indicated for each question. Despite a few dissimilar entities, most of the negative samples have high semantic similarity
with the ground truth entity, demonstrating the effectiveness of this method
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Head Gold Matched Factual Unfactual

Mike Judge {created, King of the Hill}
{was born in, Guayaquil}
{graduated from, University of
California, San Diego}
{directed, Office Space}
{directed, Idiocracy}
{directed, Extract (film)}
{created, Office Space}
{created, Idiocracy}
{created, Extract (film)}
{acted in, Office Space}
{has gender, male}
{lives in, Austin, Texas}

{creates, King of the Hill}
{was born in, Guayaquil}
{graduated from, University of
California}
{directs, Office Space}
{directs, Idiocracy}
{directs, Extract}
{produces, Office Space}
{produces, Idiocracy}
{produces, Extract}

{creates, Beavis and Butt-
Head}
{creates, The Goode Family}
{grew up in, New Mexico}
{worked for, tech companies in
Silicon Valley}
{created, Frog Baseball}
{won prize, Primetime Emmy
Award}
{won prize, Annie Award}
{is known for, dry and satirical
humor}

{started career as, program-
mer}
{won prize, Peabody Award}

John Howard
Northrop

{’was born in’, ’Yonkers, New
York’}
{’graduated from’, ’Columbia
University’}
{’works at’, ’Rockefeller Uni-
versity’}
{’has won prize’, ’Nobel Prize
in Chemistry’}
{’died in’, ’Wickenburg, Ari-
zona’}
{’works at’, ’University of Cal-
ifornia, Berkeley’}
{’has won prize’, ’Daniel Gi-
raud Elliot Medal’}
{’has academic advisor’,
’Thomas Hunt Morgan’}
{’has won prize’, ’National
Medal of Science’}
{’has gender’, ’male’}
{’is citizen of’, ’United
States’}

{’was born in’, ’Yonkers’}
{’earned a degree from’,
’Columbia University’}
{’worked at’, ’Rockefeller In-
stitute for Medical Research’}
{’won the Nobel Prize in
Chemistry in’, ’1946’}
{’passed away in’, ’Wicken-
burg’}

{’was a’, ’biochemist’}
{’shared the Nobel Prize with’,
’James Sumner and Wendell
Stanley’}
{’worked on’, ’isolation and
crystallization of enzymes’}
{’helped establish biochem-
istry as’, ’a science’}
{’conducted research on’, ’en-
zymes’}

{’earned a PhD from’, ’Univer-
sity of California’}

Table 8: Comparison between the generated answers by the GPT-3.5-TURBO model and the gold standard answers from the YAGO
knowledge graph. The matched and factual columns indicate how well the model’s answers align with the ground truth and also
highlight the factual answers not present in the knowledge graph, reflecting the knowledge gap between LLMs and KGs. The unfactual
column shows model-generated answers that are not accurate.

ID Prompt

1 Is the statement “[Insert statement here]“ True or False?
2 Given the statement “[Insert statement here]“, is this factually correct? Please answer with True or False.
3 Assess the validity of this claim: “[Insert statement here]“. Respond with only True or False.
4 Is the following statement factually accurate? “[Insert statement here]“ Provide your answer as either True or False.
5 Can you confirm if this statement is true or false? “[Insert statement here]“. Reply with just True or False.

Table 9: Five prompt templates we used to investigate the robustness towards minor changes in prompts and knowledge statements.
We use the sampled knowledge statement to replace [Insert statement here] in each template and obtain 5 different prompts for the
same knowledge statement.
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Exhaustively express the information from the sentence in a form of subject, relation, object triplets. Triplets should cover all the information
from the text, but no more.

Triplets:
Raymond Massey, is married to, Anna Massey
Raymond Massey, acted in, Hotel Berlin
Raymond Massey, acted in, Things to Come
Raymond Massey, was born in, Toronto
Raymond Massey, is married to, Daniel Massey (actor)
Raymond Massey, is affiliated to, Republican Party (United States)
Raymond Massey, acted in, Mackenna’s Gold
Raymond Massey, acted in, Abe Lincoln in Illinois (film)
Raymond Massey, has gender, male
Raymond Massey, acted in, The Drum (1938 film)
Raymond Massey, acted in, The Fountainhead (film)
Raymond Massey, acted in, East of Eden (film)
Raymond Massey, acted in, 49th Parallel (film)
Raymond Massey, died in, Los Angeles
Raymond Massey, acted in, The Great Impostor
Raymond Massey, acted in, Mourning Becomes Electra (film)
Raymond Massey, has child, Anna Massey

Text:

Table 10: An example demonstrating the process used to convert a set of fact triplets about a specific entity into a descriptive text.
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1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914
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1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Exhaustively express the information from the sentence in a form of subject, relation, object triplets. Triplets should cover all the information
from the text, but no more.

Text:
Raymond Massey, a male actor born in Toronto, was married to Anna Massey and Daniel Massey (actor). He was affiliated to the Republican
Party (United States) and acted in numerous films, such as Hotel Berlin, Things to Come, Mackenna’s Gold, Abe Lincoln in Illinois (film),
The Drum (1938 film), The Fountainhead (film), East of Eden (film), 49th Parallel (film), The Great Impostor, and Mourning Becomes
Electra (film). He also had a child with Anna Massey. Raymond Massey died in Los Angeles.

Triplets:
Raymond Massey, is married to, Anna Massey
Raymond Massey, acted in, Hotel Berlin
Raymond Massey, acted in, Things to Come
Raymond Massey, was born in, Toronto
Raymond Massey, is married to, Daniel Massey (actor)
Raymond Massey, is affiliated to, Republican Party (United States)
Raymond Massey, acted in, Mackenna’s Gold
Raymond Massey, acted in, Abe Lincoln in Illinois (film)
Raymond Massey, has gender, male
Raymond Massey, acted in, The Drum (1938 film)
Raymond Massey, acted in, The Fountainhead (film)
Raymond Massey, acted in, East of Eden (film)
Raymond Massey, acted in, 49th Parallel (film)
Raymond Massey, died in, Los Angeles
Raymond Massey, acted in, The Great Impostor
Raymond Massey, acted in, Mourning Becomes Electra (film)
Raymond Massey, has child, Anna Massey

Exhaustively express the information from the sentence in a form of subject, relation, object triplets. Triplets should cover all the information
from the text, but no more.

Text:
<Model Response of Task 5: Open-Ended Text Generation>

Triplets:

Table 11: An example prompt for the GPT-3.5 LLM to extract information triplets from the model’s open-ended text generation
response.3
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