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ABSTRACT

Federated Learning (FL) is a promising privacy-preserving distributed learning
paradigm but suffers from high communication cost when training large-scale
machine learning models. Sign-based methods, such as SignSGD (Bernstein et al.,
2018), have been proposed as a biased gradient compression technique for reducing
the communication cost. However, sign-based algorithms could diverge under
heterogeneous data, which thus motivated the development of advanced techniques,
such as the error-feedback method and stochastic sign-based compression, to
fix this issue. Nevertheless, these methods still suffer from slower convergence
rates. Besides, none of them allows multiple local SGD updates like FedAvg
(McMahan et al., 2017). In this paper, we propose a novel noisy perturbation
scheme with a general symmetric noise distribution for sign-based compression,
which not only allows one to flexibly control the tradeoff between gradient bias
and convergence performance, but also provides a unified viewpoint to existing
stochastic sign-based methods. More importantly, the unified noisy perturbation
scheme enables the development of the very first sign-based FedAvg algorithm
(z-SignFedAvg) to accelerate the convergence. Theoretically, we show that z-
SignFedAvg achieves a faster convergence rate than existing sign-based methods
and, under the uniformly distributed noise, can enjoy the same convergence rate as
its uncompressed counterpart. Extensive experiments are conducted to demonstrate
that the z-SignFedAvg can achieve competitive empirical performance on real
datasets and outperforms existing schemes.

1 INTRODUCTION

We consider the Federated Learning (FL) network with one parameter server and n clients (McMahan
et al., 2017; Li et al., 2020a), with the focus on solving the following distributed learning problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(·) is the local objective function for the i-th client, for i = 1, . . . , n. Throughout this
paper, we assume that each fi is smooth and possibly non-convex. The local objective functions are
generated from the local dataset owned by each client. When designing distributed algorithms to
solve (1), a crucial aspect is the communication efficiency since a massive number of clients need to
transmit their local gradients to the server frequently (Li et al., 2020a). As one of the most popular FL
algorithms, the federated averaging (FedAvg) algorithm (McMahan et al., 2017; Konečnỳ et al., 2016)
considers multiple local SGD updates with periodic communications to reduce the communication
cost. Another way is to compress the local gradients before sending them to the server (Li et al.,
2020a; Alistarh et al., 2017; Reisizadeh et al., 2020). Among the existing compression methods,
a simple yet elegant technique is to take the sign of each coordinate of the local gradients, which
requires only one bit for transmitting each coordinate. For any x ∈ R, we define the sign operator as:
Sign(x) = 1 if x ≥ 0 and −1 otherwise.

It has been shown recently that optimization algorithms with the sign-based compression can en-
joy a great communication efficiency while still achieving comparable empirical performance as
uncompressed algorithms (Bernstein et al., 2018; Karimireddy et al., 2019; Safaryan & Richtárik,
2021). However, for distributed learning, especially the scenarios with heterogeneous data, i.e.,
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fi ̸= fj for every i ̸= j, a naive application of the sign-based algorithm may end up with divergence
(Karimireddy et al., 2019; Chen et al., 2020a; Safaryan & Richtárik, 2021).
A counterexample for sign-based distributed gradient descent. Consider the one-dimensional
problem with two clients: minx∈R (x− A)2 + (x+ A)2, where A > 0 is some constant. For any
x ∈ [−A,A], the averaged sign gradient at x is Sign(x−A) + Sign(x+A) = 0, i.e., the algorithm
never moves. Similar examples are also discussed by (Chen et al., 2020a; Safaryan & Richtárik,
2021). The fundamental reason for this undesirable result is the uncontrollable bias brought by the
sign-based compression.
There are mainly two approaches to fixing this issue in the existing literature. The first one is the
stochastic sign-based method, which introduces stochasticity into the sign operation (Jin et al., 2020;
Safaryan & Richtárik, 2021; Chen et al., 2020a), and the second one is the Error-Feedback (EF)
method (Karimireddy et al., 2019; Vogels et al., 2019; Tang et al., 2019). However, these works are
still unsatisfactory. Specifically, on one hand, both the theoretical convergence rates and empirical
performance of these algorithms are still worse than uncompressed algorithms like (Ghadimi & Lan,
2013; Yu et al., 2019). On the other hand, none of them allows the clients to have multiple local SGD
updates within one communication round like the FedAvg, which thereby are less communication
efficient. This work aims at addressing these issues and closing the gaps for sign-based methods.
Main contributions. Our contributions are summarized as follows.

(1) A unified family of stochastic sign operators. We show an intriguing fact: The bias brought
by the sign-based compression can be flexibly controlled by injecting a proper amount of
random noise before the sign operation. In particular, our analysis is based on a novel noisy
perturbation scheme with a general symmetric noise distribution, which also provides a
unified framework to understand existing stochastic sign-based methods including (Jin et al.,
2020; Safaryan & Richtárik, 2021; Chen et al., 2020a).

(2) The first sign-based FedAvg algorithm. In contrast to the existing sign-based methods
which do not allow multiple local SGD updates within one communication round, based on
the proposed stochastic sign-based compression, we design a novel family of sign-based
federated averaging algorithms (z-SignFedAvg) that can achieve the best of both worlds:
high communication efficiency and fast convergence rate.

(3) New theoretical convergence rate analyses. By leveraging the asymptotic unbiasedness
property of the stochastic sign-based compression, we derive a series of theoretical results
for z-SignFedAvg and demonstrate its improved convergence rates over the existing sign-
based methods. In particular, we show that by injecting a sufficiently large uniform noise,
z-SignFedAvg can have a matching convergence rate with the uncompressed algorithms.

Organization. In Section 2, the proposed general noisy perturbation scheme for the sign-based
compression and its key property, i.e., asymptotic unbiasedness, are presented. Inspired by this result,
the main algorithms are devised in Section 3 together with their convergence analyses under different
noise distribution parameters. We evaluate our proposed algorithms on real datasets and benchmarks
with existing sign-based methods in Section 4. Finally, conclusions are drawn in Section 5.
Notations. For any x ∈ Rd, we denote x(j) as the j-th element of the vector x. We define the
ℓp-norm for p ≥ 1 as ∥x∥p = (

∑d
j=1 |x(j)|p)

1
p . We denote that ∥ · ∥ = ∥ · ∥2, and ∥x∥∞ =

maxj∈{1,...,d} |x(j)|. For any function f(x), we denote f (k)(x) as its k-th derivative, and for a vector
x = [x(1), ..., x(d)]⊤ ∈ Rd, we define Sign(x) = [Sign(x(1)), ...,Sign(x(d))]⊤.

1.1 RELATED WORKS

Stochastic sign-based method. Our proposed algorithm belongs to this category. Among the
existing works (Safaryan & Richtárik, 2021; Jin et al., 2020; Chen et al., 2020a), the setting considered
by (Safaryan & Richtárik, 2021) is closest to ours since the latter two consider gradient compression
not only in the uplink but also in the downlink. Despite of this difference and the use of different
convergence metrics, the algorithms therein achieve the same convergence rate O(τ−

1
4 ), where τ is

the total number of gradient queries to the local objective function. Compared to existing works, our
proposed z-SignFedAvg requires a slightly stronger assumption on the mini-batch gradient noise, but
achieves a faster convergence rate O(τ−

1
3 ) or even O(τ−

1
2 ), with the standard squared ℓ2-norm of

gradients as the convergence metric.
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Error-Feedback method. The error-feedback (EF) method is first proposed by (Seide et al., 2014)
and later theoretically justified by (Karimireddy et al., 2019). Then, (Vogels et al., 2019; Tang et al.,
2019; 2021a) further extended this EF method into distributed and adaptive gradient schemes. The
key idea of the EF-based methods is to show that the sign operator scaled by the gradient norm is a
contractive compressor, and the error induced by the contractive compressor can be compensated.
However, such EF-based methods cannot deal with partial client participation otherwise the error
residuals cannot be correctly tracked. Besides, the EF-based methods have a convergence rate
O(τ−

1
2 + d2τ−1), where d is the dimension of the gradients, and therefore is not competitive for

high-dimension problems.

Unbiased quantization method. Apart from the sign-based gradient compression, another popular
way of compression is the unbiased stochastic quantization method adopted by (Alistarh et al., 2017;
Reisizadeh et al., 2020; Haddadpour et al., 2021). A key assumption made by this category of
methods is that the quantization error is bounded by the norm of the input, which however does not
hold for sign-based compression, and therefore the existing convergence results therein do not apply
to sign-based methods. Besides, as shown in (Alistarh et al., 2017; Reisizadeh et al., 2020), these
methods usually have degraded convergence speed when fewer quantization bits are used.

As mentioned, some of the existing sign-based methods like (Chen et al., 2020a; Safaryan & Richtárik,
2021) do not adopt the standard squared ℓ2-norm of gradients as the metric for the convergence rate
analysis. Thus, it is tricky to make a fair comparison between them and the proposed z-SignFedAvg.
In Appendix A, we provide a detailed discussion and summarize the convergence rates of some
representative algorithms in Table 2.

2 SIGN OPERATOR WITH SYMMETRIC AND ZERO-MEAN NOISE

In this section, we introduce a general noisy perturbation scheme for the sign-based compression and
analyze the asymptotic unbiasedness of compressed gradients. The results serve as the foundation for
the proposed algorithms in subsequent sections.

Key observation. Let ξ be a random variable that is symmetric, zero-mean and has the p.d.f p(t). If
p(0) ̸= 0 and p(t) is continuous and uniformly bounded on (−∞,+∞), then it holds that

lim
σ→+∞

σ

2p(0)
E[Sign(x+ σξ)] = lim

σ→+∞

σ

p(0)

∫ x
σ

0

p(t)dt = x. (2)

In other words, the perturbed sign operator is an asymptotically unbiased estimator of the input x
when σ → ∞. Furthermore, assume that p(t) is uniformly bounded on (−∞,+∞) and differentiable
for an arbitrary order. Then, with the Taylor’s expansion, we can have σ

p(0)

∫ x
σ

0
p(t)dt = x +

1
p(0)

∑+∞
k=1

p(k)(0)xk+1

(k+1)!σk = x +
∑+∞

k=1 p
(k)(0)O

(
σ−k

)
. Therefore, suppose that K is the largest

integer such that p(1)(0) = 0, ..., p(K)(0) = 0. The LHS of (2) will converge to x with the order
O(σ−(K+1)). This observation motivates us to propose the following family of noise distribution
parameterized by a positive integer z ∈ Z+.
Definition 1 (z-distribution). A random variable ξz is said to follow the z-distribution if its p.d.f is

pz(t) =
1

2ηz
e−

t2z

2 , (3)

where ηz = 2
1
2z Γ

(
1 + 1

2z

)
and Γ(z) =

∫ +∞
0

tz−1e−tdt is the Gamma function.

It can be verified pz(t) in (3) is a valid p.d.f. When z = 1, it corresponds to the standard Gaussian
distribution. In addition, one can also show that pz(t) converges to the p.d.f of the uniform random
variable on the interval [−1, 1] when z → +∞ (see Lemma 2 in Appendix B). This z-distribution
has a nice property that can be leveraged to bound the bias caused by the sign-based compression, as
stated in the following lemma.
Lemma 1. For any x ∈ Rd and σ > 0,

∥ηzσE [Sign(x + σξz)]− x∥2 ≤
∥x∥4z+2

4z+2

4(2z + 1)2σ4z
, (4)

where ξz(1), ..., ξz(d) follow the i.i.d. z-distribution.

3



Under review as a conference paper at ICLR 2023

Remark 1. One can see that the RHS of (4) involves the term (∥x∥4z+2/σ)
4z . Thus, as long as

σ > ∥x∥∞, the LHS of (4) converges to zero when z → +∞. Since Lemma 2 implies that ξ∞ follows
the i.i.d uniform distribution on [−1, 1], we obtain σE [Sign(x + σξ∞)] = x as long as σ > ∥x∥∞.
It is interesting to remark that the stochastic sign operators proposed in (Jin et al., 2020; Safaryan &
Richtárik, 2021) are exactly the sign operator injected by the uniform noise, and (Chen et al., 2020a)
also considered the use of a symmetric noise for gradient perturbation. Thus, sign-based compression
with the z-distribution offers a unified perspective to understand the relationship among the existing
stochastic sign-based methods.

3 z-SIGNFEDAVG ALGORITHM

In this section, based on the analysis in Section 2, we propose the following sign-based FedAvg
algorithm, termed as z-SignFedAvg. While FedAvg-type algorithms with gradient compression are
also presented in (Haddadpour et al., 2021), they require unbiased compression and are not applicable
to sign-based methods. The details of z-SignFedAvg are presented in Algorithm 1. A prominent
difference between the proposed z-SignFedAvg and the existing sign-based methods lies in that the
clients are allowed to perform multiple SGD updates per communication round (E > 1) before
applying the stochastic sign-based compression. Like the FedAvg algorithm, it is anticipated that
z-SignFedAvg can greatly benefit from this and has a significantly reduced communication cost.

Note that in practice we only consider z = 1 and z = +∞ for the z-SignFedAvg since they
correspond to the Gaussian distribution and uniform distribution, respectively. Nevertheless, we
are interested in the convergence properties of z-SignFedAvg for a general positive integer z as it
provides better insights on the role of z for the convergence rate.

Algorithm 1 z-SignFedAvg (or z-SignSGD when E = 1)
Require: Total communication rounds T , number of local steps E, number of clients n, clients stepsize γ,

server stepsize η, noise coefficient σ, parameter of noise distribution z.
1: Initialize x0.
2: for t = 1 to T do
3: On Clients:
4: for i = 1 to n do
5: xi

t−1,0 = xt−1

6: for s = 1 to E do
7: git−1,s = gi(x

i
t−1,s−1), where gi(·) is the mini-batch gradient oracle of the i-th client.

8: xi
t−1,s = xi

t−1,s−1 − γgit−1,s.
9: end for

10: ∆i
t−1 = Sign

(
xt−1−xi

t−1,E

γ
+ σξz

)
, where ξz(1), ..., ξz(d) ∼ pz(t) i.i.d.

11: Send ∆i
t−1 to the server.

12: end for
13: On Server:
14: xt = xt−1 − ηγ 1

n

∑n
i=1 ∆

i
t−1.

15: Broadcast xt to the clients.
16: end for
17: return xT .

We first state some standard assumptions for problem (1).

Assumption 1. We assume that each fi(x) has the following properties:

A.1 We can access a mini-batch gradient oracle that is unbiased and has bounded variance, i.e.,
E[gi(x)] = ∇fi(x) and E[∥gi(x)−∇fi(x)∥22] ≤ ζ2.

A.2 Each fi is smooth, i.e., for any x, y ∈ Rd, there exists some non-negative constants

L1, . . . , Ld, such that f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+
∑d

j=1 Lj(y(j)−x(j))2

2 .

A.3 There exists some constant f∗ such that f(x) ≥ f∗,∀x ∈ Rd.

A.4 There exists a constant G ≥ 0 such that ∥∇fi(x)∥ ≤ G, ∀i = 1, ..., n, and x ∈ Rd.

Assumption A.2 is a more fine-grained assumption on the function smoothness than the commonly
used one and is also used by (Bernstein et al., 2018; Safaryan & Richtárik, 2021). For the convergence
rate analysis, we consider two cases, namely, the case with z < +∞ and the case of z = ∞.
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3.1 CASE 1: z < +∞
As we can see from Lemma 1, there always exists some gradient bias when z < +∞. In order to
bound it, we further assume that a higher order moment of the mini-batch gradient noise is bounded.
Assumption 2. There exists a constant Qz ≥ 0 such that for any x ∈ Rd, we have

E[∥gi(x)−∇fi(x)∥4z+2
4z+2] ≤ Qz. (5)

Theorem 1. Suppose that Assumption 1 and 2 hold. Denote x̄t,s = 1
n

∑n
i=1 x

i
t,s and Lmax =

maxj Lj . Then, for η = ηzσ, γ ≤ 1
Lmax

and z < +∞ in Algorithm 1, we have

E

[
1

TE

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

4γ2(E − 1)EL2
max(ζ

2 +G2)

3︸ ︷︷ ︸
(a) Standard terms in FedAvg

(6a)

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z︸ ︷︷ ︸
(b) Bias terms

(6b)

+
4η2zγσ

2
∑d

j=1 Lj

En︸ ︷︷ ︸
(c) Variance term

. (6c)

When is the bound non-trivial? Since we assume that the ℓ2-norm of gradient is bounded by G, all
the terms in the RHS of (6) should be no larger than G2. For example, to have the first term in (6b)

less than G2, one requires σ to be greater than 21+
1
4z E

(
Qz/G+G4z

) 1
4z /(2z + 1)

1
2z .

Bias-variance trade-off. An interesting observation from Theorem 1 is that there exists a trade-off
between the bias and variance terms. One can see that the terms in (6b) is caused by the gradient
bias of the sign operation (see (4)) and is an infinitesimal of σ with O

(
σ−2z

)
, while the term in (6c)

is due to the injected noise and is in the order of O
(
γσ2

)
. Specifically, the first term in (6b) only

depends on the noise scale σ and mostly affects the final objective. Meanwhile, the variance term in
(6c) mainly affects the convergence speed because a smaller stepsize is required for it to diminish.

Theoretically, we can choose an iteration-dependent noise scale σ so as to make the algorithm
converge to a stationary solution. To see this, let us denote τ = TE as the total number of gradient
queries per client, and present the following corollary.

Corollary 1 (Informal). Let γ = min{n
z

2z+1 τ−
z+1
2z+1 , L−1

max} and σ = (nτ)
1

4z+2 in Theorem 1, and
let E ≤ n− 3z

4z+2 τ
z+2
4z+2 . We have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

z
2z+1

)
. (7)

Achieveing linear speedup. From Corollary 1, we can see that the z-SignFedAvg needs (nτ)
3z

4z+2

communication rounds to achieve a linear-speedup convergence rate. Particularly, when z = 1, the
corresponding convergence rate is O((nτ)−

1
3 ) and the required communication rounds is (nτ)

1
2 . To

the best of our knowledge, the previous works have never shown the sign-based method can achieve
a linear-speedup convergence rate.

Relationship to (Chen et al., 2020a). The work (Chen et al., 2020a) also considered the use of a
symmetric and zero-mean noise for the sign-based compression and proved that the algorithm has
a convergence rate O(τ−

1
4 ). However, their results have three differences from our z-SignFedAvg

and Theorem 1. First, (Chen et al., 2020a) considered gradient compression both in the uplink and
downlink communications. In addition, the convergence metric they used is not the standard squared
ℓ2-norm of gradients and is hard to interpret. Second, their analysis is rooted in the median-based
algorithm, whereas we judiciously exploit the property of the sign operation and hence provide a
general analysis framework for the stochastic sign-based methods. Last but not the least, unlike our
z-SignFedAvg, (Chen et al., 2020a) cannot allow multiple local SGD updates.
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3.2 CASE 2: z = +∞
When z = +∞, the injected noise ξz in the z-SignFedAvg is uniformly distributed on [−1, 1].
From Remark 1, we have learned that the gradient bias can vanish as long as the noise scale σ is
sufficiently large. To quantify this threshold, we need the following assumption which is a limit form
of Assumption 2.
Assumption 3. There exists a constant Q∞ ≥ 0 such that for any x ∈ Rd, with probability 1,

∥gi(x)−∇fi(x)∥∞ ≤ Q∞. (8)

Theorem 2. (Informal) Suppose that Assumption 1 and 3 hold. For γ = min{n 1
2 τ−

1
2 , L−1

max}, η = σ,
z = +∞, E ≤ n− 3

4 τ
1
4 and σ > E(G+Q∞) in Algorithm 1 we have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

1
2

)
. (9)

However, if σ ≤ E(G+Q∞), there exists a problem instance for which Algorithm 1 cannot converge.
Remark 2. Note that Theorem 2 implies that ∞-SignFedAvg has a matching convergence rate as the
uncompressed FedAvg. The reason why ∞-SignFedAvg cannot converge when σ ≤ E(G+Q∞) is
simply that the uniform noise has a finite support and cannot always change the sign of gradients.
For example, if σ < A for some A > 0, then we have Sign(x+ σξ∞) = Sign(x) for any x ≥ A.
Relationship to (Jin et al., 2020; Safaryan & Richtárik, 2021). As mentioned in Remark 1,
both the stochastic sign operators in (Jin et al., 2020; Safaryan & Richtárik, 2021) are equivalent
to the sign operator injected by the uniform noise. Nevertheless, there are still two distinctions
when compared with our ∞-SignFedAvg. First, while (Safaryan & Richtárik, 2021) shows their
algorithm has a O(τ−

1
4 ) convergence rate, it is based on the ℓ2-norm of gradients and cannot imply

the same rate as that in (9) (see Appendix A). Second, although (Safaryan & Richtárik, 2021) does
not need Assumption 3, it relies on an input-dependent noise scale which, unfortunately, often slows
the algorithm convergence in practice especially when the problem dimension is large.

Table 1: Comparison of Case 1 and Case 2.

Case Convergence
rate

Threshold
on σ

Assumption on
gradient noise

z < +∞ O(τ
− z

2z+1 ) Õ
((

Qz
G + G4z

) 1
4z

)
Assumption 2

z = +∞ O(τ− 1
2 ) Õ(Q∞ + G) Assumption 3

More theoretical results and
proofs are relegated to Appendix
B and C. Below, we have two
more remarks.
Remark 3. (Bounded minibatch
gradient noise) While both As-
sumption 2 and 3 are slightly
stronger than the commonly used
second-order condition on the minibatch gradient noise, they are still justifiable since unbounded
minibatch gradient noise is rarely to happen in practice.
Remark 4. (Minibatch gradient noise works as noise perturbation) When the minibatch gradient
is used as the input of the sign operator in (2), the minibatch gradient noise itself may function as
the perturbation noise. In particular, as shown in (Chen et al., 2020b) the minibatch gradient noise
approximately follows a symmetric distribution. Therefore, in practice, one may not need to inject as
large noises as suggested by Theorem 2 since the minibatch gradient noise can also help mitigate
the bias due to sign-based compression. This also explains why a small noise scale is sufficient for
z-SignFedAvg to achieve good performance in the experiment section.

3.3 COMPARISON OF CASE 1 AND CASE 2
We summarize the results of Case 1 and Case 2 in Table 1, where Õ(·) hides some constants that do
not affect the comparison. Especially, we can see that when the mini-batch gradient noise has a long
tail such that Qz/G ≪ Q4z

∞, Case 1 requires a less amount of noise than Case 2 for guaranteeing
convergence. Despite of the difference in theory, we will see in Section 4 that z-SignFedAvg under
Case 1 and Case 2 have almost the same behavior in practice.

3.4 IMPLICATION ON DIFFERENTIALLY PRIVATE FEDERATED LEARNING (DP-FL)
Beyond the convergence issue, we remark that adding Gaussian noise to the local gradients is also
a common practice for privacy protection, especially in DP-FL (Geyer et al., 2017; Agarwal et al.,
2021; 2018). With this observation, it is straightforward to propose a differentially-private variant
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of z-SignFedAvg, which we term DP-SignFedAvg. More details and comparison results between
DP-SignFedAvg and the uncompressed DP-FedAvg (Geyer et al., 2017; Kairouz et al., 2021) under
different privacy budgets are given in Appendix F.

4 EXPERIMENTS

In this section, we present the experiment results on both synthetic and real problems, and all the
figures in this section are obtained by 10 independent runs and are visualized in the form of mean±std.
Noise scale as a hyperparameter. Although we explicitly characterize how the performance
of z-SignFedAvg depends on the noise scale σ in the previous section, we treat σ as a tunable
hyperparameter in the experiments. This is because, on one hand, the theoretical lower bound for
σ are difficult to compute since it is impossible to access the moment condition of the minibatch
gradient noise. On the other hand, as we have discussed in Remark 4, owing to the presence of the
minibatch gradient noise, we can use a much smaller noise scale than the theoretical one in practice.

Aside from the experiments presented in this section, we also compare our algorithm to another
popular family of unbiased stochastic compressed FL algorithms, namely, the QSGD in (Alistarh
et al., 2017) and FedPAQ in (Reisizadeh et al., 2020). For detailed results, we refer readers to
Appendix E.

4.1 A SIMPLE CONSENSUS PROBLEM

In this section, we verify our theoretical results in Section 3 by considering the simple consensus
problem with 10 clients: minx∈Rd

1
2

∑10
i=1 ∥x − yi∥2, where y1, ..., y10 ∈ Rd are generated using

i.i.d standard Gaussian distribution, and d is the problem dimension. We implemented the following
algorithms: GD (Gradient descent), Sto-SignSGD (Safaryan & Richtárik, 2021), SignSGD (Algorithm
1 with z = 1, E = 1 and σ = 0), 1-SignSGD (Algorithm 1 with z = 1 and E = 1.), ∞-SignSGD
(Algorithm 1 with z = +∞ and E = 1). For all the algorithms, we considered the full gradient (no
mini-batch SGD), and used the same stepsize 0.01 and initialization by a zero vector.
Results. As we can see from Figure 1, the vanilla SignSGD fails to converge to the optimal solution
whereas the others can. Besides, 1-SignSGD and ∞-SignSGD have roughly the same convergence
speed which is slightly slower than the uncompressed GD. It is also observed that the input-dependent
noise scale adopted by (Safaryan & Richtárik, 2021) could slow the convergence when the problem
dimension is high, as discussed in Section 3.2.

(a) d = 10 (b) d = 100 (c) d = 1000

Figure 1: Performance of tested algorithms under different problem dimension.

(a) 1-SignSGD (b) ∞-SignSGD

Figure 2: z-SignSGD under various noise scales.

Figure 2 displays the results of 1-SignSGD
and ∞-SignSGD with various noise scales.
We can see that there is a clear bias-
variance trade-off for different noise scales
and it corroborates our analysis after The-
orem 1. It is also worth mentioning that
the best choice of σ for Algorithm 1 shown
in Figure 2 is much smaller than the one
predicted by the theorems.

4.2 z-SIGNSGD ON NON-I.I.D MNIST

In this section, we consider an extremely non-i.i.d setting with the MNIST dataset (Deng, 2012).
Specifically, we split the dataset into 10 parts based on the labels and each client has the data
of one digit only. A simple two-layer convolutional neural network (CNN) from Pytorch tutorial
(Paszke et al., 2017) was used for the learning task. The following algorithms were implemented:
SGDwM (Distributed SGD (Ghadimi & Lan, 2013) with momentum), EF-SignSGDwM (Distributed
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SignSGD with error-feedback and momentum (Karimireddy et al., 2019; Vogels et al., 2019)), and
Sto-SignSGDwM (Sto-SignSGD with momentum (Safaryan & Richtárik, 2021)). For each of the
algorithms, we selected its best hyperparameters, including the stepsize, momentum coefficient and
the noise scale, via grid search (see Appendix D.1).
Results. One can observe from Figure 3a-3b that again the vanilla SignSGD does not converge
well. The proposed 1-SignSGD and ∞-SignSGD clearly outperform the existing EF-SignSGDwM
and Sto-SignSGDw, and perform closely to the uncompressed SGDwM. The reason for the slow
convergence of Sto-SignSGDw is that the injected noise is too large due to the input-dependent noise
scale. Figure 3c further displays the testing accuracy of all methods versus the accumulated number
of bits transmitted from the clients to the server. One can see that the proposed algorithms achieve
the state-of-the-art performance on this task. More results for 1-SignSGD and ∞-SignSGD under
different noise scales are presented in Appendix D.1.

(a) Training Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 3: Performance of various SignSGD algorithms on non-i.i.d MNIST.

4.3 z-SIGNFEDAVG ON EMNIST AND CIFAR-10

In this section, we evaluate the performance of our proposed z-SignFedAvg on two classical datasets:
EMNIST(Cohen et al., 2017) and CIFAR-10 (Krizhevsky & Hinton, 2010). In particular, the proposed
z-SignFedAvg with z = 1 and z = ∞ are benchmarked against the uncompressed FedAvg (McMahan
et al., 2017; Yu et al., 2019). Since 1-SignFedAvg and ∞-SignFedAvg behave similarly, we only
report the results of 1-SignFedAvg in this section and relegate the others to Appendix D.2. For
EMNIST, we use the same 2-layer CNN as the one in Section 4.2. For CIFAR-10, we used the
ResNet18 (He et al., 2016) with group normalization (Wu & He, 2018).
Settings. For both the experiments on EMNIST and CIFAR-10, we followed a setting similar
to (Reddi et al., 2020). We also considered the scenario with partial client participation. For the
EMNIST dataset, there are 3579 clients in total and 100 clients were uniformly sampled in each
communication round to upload their compressed gradients. For the CIFAR-10 dataset, the training
samples are partitioned among 100 clients, and each client has an associated multinomial distribution
over labels drawn from a symmetric Dirichlet distribution with parameter 1. In each communication
round, 10 out of 100 clients were uniformly sampled. The same noise scales for 1-SignFedAvg and
∞-SignFedAvg were used: σ = 0.01 for EMNIST and σ = 0.0005 for CIFAR-10. More details
about the hyperparameters are referred to Appendix D.2.
Results. We can see from Figure 4 and Figure 5 that both uncompressed FedAvg and 1-SignFedAvg
can benefit from multiple local SGD steps. More surprisingly, 1-SignFedAvg can even outperform
the uncompressed FedAvg. This is probably because the EMNIST dataset is less heterogeneous than
the one we used in Section 4.2. The results on the performance of 1-SignFedAvg and ∞-SignFedAvg
under various choices of noise scales are relegated to Appendix D.2, which are also consistent with
our theoretical claims in Section 3.

(a) Training Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 4: Performance of FedAvg and 1-SignFedAvg on the EMNIST dataset.
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(a) Training Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 5: Performance of FedAvg and 1-SignFedAvg on the CIFAR-10 dataset.

4.4 PLATEAU CRITERION FOR TUNING THE NOISE SCALE

From previous experiments, we have learned that the noise scale σ has to be properly chosen for the
algorithm to perform well. However, it could be time-consuming to select the optimal noise scale via
grid search. Therefore, here we introduce a simple yet useful strategy that can tune the noise scale
adaptively during the training process. Figure 2 indicates that the noise scale should plays a similar
role as the stepsize when training a neural network: Small noise scale leads to fast convergence at the
beginning, while large noise scale guarantees a better final performance. This suggests that we should
use an increasing noise scale during the optimization process. We can also see this from Corollary 1
because that the noise scale σ is proportional to τ . Besides, it has been shown that the gradients of
neural network tend to be sparser during the training process (Karimireddy et al., 2019). Therefore, as
studied in (Isik & Weissman, 2022), from the rate-distortion theoretic aspect, the noise scale should
be increasing as the compression becomes more aggressive. Motivated by all of these insights, we
propose the following Plateau criterion for adapting the noise scale.
Plateau criterion. We denote a few parameters σbound ≥ σinit > 0, κ ∈ Z+, β > 0. We first start
Algorithm 1 with a small noise scale σinit, i.e., σ = σinit, and then update the noise scale via σ = βσ,
where β ∈ [1.5, 2], whenever the objective function stops improving for κ communication rounds.
We stop updating σ if it has already been greater than a relatively large number σbound.
Results. We demonstrate the efficacy of the Plateau criterion by comparing the performance of
1-SignSGD/1-SignFedAvg with the optimal noise scale found in previous experiments and the ones
with Plateau criterion. Figure 6 shows the results under the three different settings used in Section
4.2 and 4.3. We can see that, the Plateau criterion could results in a slower convergence speed than
the optimal noise scale in the middle phase of optimization, because it requires some time for the
algorithm to adapt to a suitable noise scale. But eventually it can lead to the same objective value
obtained by using the optimal noise scale. For more details like the hyperparameters for Plateau
criterion and the evolution of noise scale, we refer readers to Appendix D.3.

(a) Non-i.i.d MNIST (b) EMNIST (c) CIFAR-10

Figure 6: Evaluating the efficacy of Plateau criterion on three different datasets.

5 CONCLUSION

In this work, we have proposed the z-SignFedAvg: a FedAvg-type algorithm with the stochastic
sign-based compression. Thanks to the novel noisy perturbation scheme in Section 2, the proposed
z-SignFedAvg provides a unified viewpoint to the existing sign-based methods as well as a general
framework for convergence rate analysis. Through both theoretical analyses and empirical experi-
ments, we have shown that the z-SignFedAvg can perform nearly the same, sometimes even better,
than the uncompressed FedAvg and enjoy a significant reduction in the number of bits transmitted
from clients to the server. As a final remark, the stochastic sign-based compression proposed in
this work can be of independent interest and can be conveniently combined with other adaptive FL
algorithms or gradient sparsification techniques such as those in (Karimireddy et al., 2020; Reddi
et al., 2020; Basu et al., 2019), to further improve the communication efficiency.
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APPENDIX

A COMPARISON WITH EXISTING STOCHASTIC SIGN-BASED METHODS

Table 2 summarizes the key features of a few representative stochastic sign-based methods and the
proposed z-SignFedAvg, including the convergence rate, metric used in the convergence rate analysis,
extra assumptions other than A.1-A.3 in Assumption 1, and whether the algorithm can achieve linear
speedup and allow multiple local SGD steps.

For communication complexity, we focus on the uplink communication cost, i.e., the number of
bits transmitted from the clients to the server in each communication round. We assume that all the
uncompressed algorithms use 32 bits to represent a single float number as it is the most common
setting in Tensorflow (Abadi et al., 2016a) and Pytorch (Paszke et al., 2017).

While most of the existing methods use the squared ℓ2-norm of gradients as the convergence metric,
the work (Safaryan & Richtárik, 2021) adopts the ℓ2-norm of gradients. The work (Chen et al.,
2020a) uses a convergence metric mixed with squared ℓ2-norm and ℓ1-norm of gradients due to the
compression in both uplink and downlink .

Among the works in Table 2, the setting considered by (Safaryan & Richtárik, 2021) is closest to ours.
(Safaryan & Richtárik, 2021) proposed an algorithm that can achieve the convergence rate O(τ−

1
4 )

with the ℓ2-norm of gradients as the metric. We remark that this is inferior to the convergence rate
O(τ−

1
2 ) with the squared ℓ2-norm as the metric. To illustrate this point, we denote a series of vector

as {α1, ..., ατ , ...} with αi ∈ Rd. If now

1

τ

τ∑
i=1

∥αi∥ = O(τ−
1
4 ), (10)

in the worst case, we can only guarantee that

1

τ

τ∑
i=1

∥αi∥2 ≤ τ

(
1

τ

τ∑
i=1

∥αi∥

)2

= O(τ
1
2 ). (11)

As a simple example, the equality in (11) holds if and only if there is exactly one non-zero term in
{α1, ..., ατ}.

On the contrary, if it holds that

1

τ

τ∑
i=1

∥αi∥2 = O(τ−
1
2 ), (12)
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Algorithm Convergence
rate / metric

Num. of bits per
commun. round

Extra
Assumptions?

Can achieve
linear speedup?

Can allow
multiple

local steps?

(Ghadimi & Lan, 2013) O(τ
− 1

2 )
squared ℓ2

32d No ✓ ✗

(McMahan et al., 2017)
(Yu et al., 2019)

O(τ
− 1

2 )
squared ℓ2

32d • Bounded gradient ✓ ✓

(Karimireddy et al., 2019) O(τ
− 1

2 + d2τ−1)
squared ℓ2

d + 32 • Bounded gradient ✗ ✗

(Safaryan & Richtárik, 2021) O(τ
− 1

4 )
ℓ2

d No ✗ ✗

(Jin et al., 2020) O(τ
− 1

4 )
squared ℓ2

d
• Bounded gradient
• n is an odd number ✗ ✗

(Chen et al., 2020a) O(τ
− 1

4 )
mixed

d
• Bounded gradient
• n is an odd number ✗ ✗

(Alistarh et al., 2017) O(τ
− 1

2 )
squared ℓ2

≈ sd + 32 No ✓ ✗

(Haddadpour et al., 2021) O(τ
− 1

2 )
squared ℓ2

≈ sd + 32
• Bounded gradient

dissimilarity ✓ ✓

1-SignFedAvg (ALG. 1)
This work

O(τ
− 1

3 )
squared ℓ2

d
• Bounded gradient
• Bounded 6th moment

of gradient noise
✓ ✓

∞-SignFedAvg (ALG. 1)
This work

O(τ
− 1

2 )
squared ℓ2

d
• Bounded gradient
• Bounded support

of gradient noise
✓ ✓

Table 2: Summary of representative stochastic sign-based methods.

then we have

1

τ

τ∑
i=1

∥αi∥ ≤

√√√√1

τ

τ∑
i=1

∥αi∥2 = O(τ−
1
4 ). (13)

Thus, the convergence results in (Safaryan & Richtárik, 2021) cannot imply the rate in Theorem 2.
Besides, the algorithm in (Safaryan & Richtárik, 2021) is equivalent to our Algorithm 1 with z = ∞,
E = 1 and σ = ∥git−1,s∥. This input-dependent noise scale is linearly increasing w.r.t the problem
dimension and is too conservative for practical applications. From Figure 1 and Figure 3, we have
already seen that this input-dependent noise scale could result in an extremely slow convergence for
high-dimensional problems.

Except for the previous sign-based compression methods, another type of compressed FL algorithms,
such as (Alistarh et al., 2017) and (Haddadpour et al., 2021), adopt a unified unbiased compressor Q(·)
that satisfies E[∥Q(x)− x∥2] ≤ C∥x∥2 for some constant C > 0. We remark that such property is
not fulfilled by any of the existing sign-based compressors. Thus, the theoretical results therein cannot
be applied to sign-based methods. A specific example of such unbiased compressor is described
below.

Definition 2 (Unbiased quantizer). For any variable x ∈ Rd, the unbiased quantizer Q(·) : Rd → Rd

is defined as below

Q(x) = ∥x∥2 ·


Sign(x1)ξ(x1, s)
Sign(x2)ξ(x2, s)

...
Sign(xd)ξ(xd, s)

 (14)
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where ξ(xi, s) is a random variable taking on value l+1
s with probability |xi|

∥x∥2
s− l and l

sotherwise.
Here, the tuning parameter s corresponds to the number of quantization levels and l ∈ [0, s) is an
integer such that |xi|

∥x∥2
∈ [l/s, l + 1/s).

In Table 2, we assume both (Alistarh et al., 2017) and (Haddadpour et al., 2021) adopt the quantizer
in (14). Generally speaking, this type of unbiased quantization usually requires much more bits
than sign-based compression to obtain a good performance, which is also verified empirically in
Appendix E. It is also worthwhile to mention that the FedPAQ in (Reisizadeh et al., 2020) and the
FedCOM in (Haddadpour et al., 2021) are equivalent in algorithm, but only the latter one considers
the heterogeneous scenario theoretically.

B DETAILED THEORETICAL RESULTS

We first state the result on the limit of z-distribution.

Lemma 2. The z-distribution weakly converges to uniform distribution on [−1, 1] when z → +∞.

The following corollary is the formal version of Corollary 1.

Corollary 2 (Formal version of Corollary 1). For γ = min{n
z

2z+1 τ−
z+1
2z+1 , 1

Lmax
} and σ = (nτ)

1
4z+2

in Theorem 1, we have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤2E[f(x0)− f∗]

(nτ)
z

2z+1
+

ζ2Lmax

(nτ)
z+1
2z+1

+
4(E − 1)En

2z
2z+1L2

max

(
ζ2 +G2

)
3τ

2z+2
2z+1

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)(nτ)
z

2z+1
+

24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2n
z

2z+1 τ
3z+1
2z+1

+
4η2z

∑d
j=1 Lj

E(nτ)
z

2z+1
. (15)

Furthermore, if E ≤ n− 3z
4z+2 τ

z+2
4z+2 , the upper bound above becomes

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤2E[f(x0)− f∗]

(nτ)
z

2z+1
+

ζ2Lmax

(nτ)
z+1
2z+1

+
4L2

max

(
ζ2 +G2

)
3(nτ)

z
2z+1

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)(nτ)
z

2z+1
+

24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2n
z

2z+1 τ
3z+1
2z+1

+
4η2z

∑d
j=1 Lj

E(nτ)
z

2z+1
. (16)

.

The formal version of Theorem 2 is given below.

Theorem 3 (Formal version of Theorem 2). Suppose that Assumption 1 and 3 hold. For γ ≤ 1
Lmax

,
η = σ, z = +∞ and σ > E(G+Q∞) in Algorithm 1, we have

E

[
1

TE

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

4γ2(E − 1)EL2
max(ζ

2 +G2)

3︸ ︷︷ ︸
Standard terms in FedAvg

+
4γσ2

∑d
j=1 Lj

En︸ ︷︷ ︸
Variance term

. (17)
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Otherwise, if σ ≤ E(G + Q∞), there exists a problem instance for which the algorithm cannot
converge. If we further choose γ = min{n 1

2 τ−
1
2 , 1

Lmax
}, we have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤2E[f(x0)− f∗]

(nτ)
1
2

+
ζ2Lmax

(nτ)
1
2

+
4(E − 1)EnL2

max

(
ζ2 +G2

)
3τ

+
4σ2

∑d
j=1 Lj

E(nτ)
1
2

. (18)

Furthermore, if E ≤ n− 3
4 τ

1
4 , the upper bound above becomes

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤2E[f(x0)− f∗]

(nτ)
1
2

+
ζ2Lmax

(nτ)
1
2

+
4L2

max

(
ζ2 +G2

)
3(nτ)

1
2

+
4σ2

∑d
j=1 Lj

E(nτ)
1
2

, (19)

which recovers the convergence result of the uncompressed FedAvg algorithm (Yu et al., 2019).

In particular, since the third term in the RHS of (18) is O(E2nτ−1), hence when E ≤ n− 3
4 τ

1
4 , this

term becomes O((nτ)−
1
2 ).

C PROOFS

C.1 PROOF OF LEMMA 1

We first state a useful inequality on the c.d.f of the z-distribution:
Lemma 3. For any x ∈ R, it holds that

|x| − |x|2z+1

2(2z + 1)
≤ |Ψz(x)| ≤ |x|, (20)

where

Ψz(x)
def.
=

∫ x

0

e−
t2z

2 dt.

Similar to the sign operator, for any vector x = [x(1), ..., x(d)]⊤ ∈ Rd, we define

Ψz (x) = [Ψz(x(1)), ...,Ψz(x(d))]
⊤.

With the presence of Lemma 3, we have

∥ηzσE [Sign(x + σξz)]− x∥2 =
∥∥∥x− σΨz

(x
σ

)∥∥∥2 =

d∑
j=1

(
x(j)− σΨz

(
x(j)

σ

))2

≤
d∑

j=1

(x(j))
4z+2

4(2z + 1)2σ4z
=

∥x∥4z+2
4z+2

4(2z + 1)2σ4z
. (21)

Proof of Lemma 3. Without loss of generality, we consider x ≥ 0. First,∫ x

0

e−
t2z

2 dt ≤
∫ x

0

1dt ≤ x. (22)

Now we define F (x)
def.
=
∫ x

0
e−

t2z

2 dt− x+ x2z+1

2(2z+1) . Note that F (0) = 0. Then, it suffices to show
F (x) ≥ 0 by

F ′(x) = e−
x2z

2 − 1 +
x2z

2
≥ 0. (23)

It is true since the inequality e−t − 1 + t ≥ 0 for any t ≥ 0.

16
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C.2 PROOF OF LEMMA 2

Now we denote the p.d.f of the uniform distribution as

p∞(x) =

{
1
2 |x| ≤ 1,

0 |x| > 1.
(24)

Without loss of generality, for any x > 1 and z ∈ Z+, we have∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ = ∣∣∣∣∫ x

0

(
1

2ηz
e−

t2z

2 − p∞(t)

)
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt+ ∫ x

1

1

2ηz
e−

t2z

2 dt. (25)

For any 0 < ϵ < min{1, x− 1}, we have∫ 1

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt = ∫ 1−ϵ

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt+ ∫ 1

1−ϵ

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt
≤
∣∣∣∣ 1

2ηz
e−

(1−ϵ)2z

2 − 1

2

∣∣∣∣+ ϵ. (26)

Since limz→∞
1

2ηz
= limz→∞

z

2
1
2z Γ( 1

2z )
= 1

2 and limz→∞ e−
(1−ϵ)2z

2 = 1, there exists an integer

Z1 > 0 such that if z > Z1, we have ∣∣∣∣ 1

2ηz
e−

(1−ϵ)2z

2 − 1

2

∣∣∣∣ ≤ ϵ.

Similarly, we have ∫ x

1

1

2ηz
e−

t2z

2 dt =

∫ 1+ϵ

1

1

2ηz
e−

t2z

2 dt+

∫ x

1+ϵ

1

2ηz
e−

t2z

2 dt

≤ ϵ+
1

2ηz
e−

(1+ϵ)2z

2 (x− 1− ϵ). (27)

Since limz→∞ e−
(1+ϵ)2z

2 = 0, there exists an integer Z2 > 0 such that if z > Z2, we have∫ x

1

1

2ηz
e−

t2z

2 dt ≤ ϵ. (28)

In all, for any 0 < ϵ < min{1, x− 1}, if z is sufficiently large, we have∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ ≤ 4ϵ. (29)

Taking ϵ → 0 and z → ∞, we have

lim
z→∞

∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ = 0. (30)

C.3 PROOF OF THEOREM 1

We denote the aggregated update x̄t = x̄t−1,E . First, we state two technical lemmas:
Lemma 4. Suppose that Assumption 1 and 2 hold. For the t-th (1 ≤ t ≤ T ) communication round in
Algorithm 1, if η = ηzσ and z < +∞, we have

E[f(xt)− f(x̄t)] ≤
γ22zE2z+1

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z

+
2η2zγ

2σ2
∑d

j=1 Lj

n
. (31)
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Lemma 5. Suppose that Assumption 1 hold. For the t-th (1 ≤ t ≤ T ) communication round in
Algorithm 1, if γ ≤ 1

Lmax
, we have

E[f(x̄t)− f(xt−1)] ≤ −γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

2γ3(E − 1)E2L2
max(ζ

2 +G2)

3
.

(32)

By combining Lemma 4 and Lemma 5, we have

E[f(xt)− f(xt−1)] = E[f(xt)− f(x̄t)] + E[f(x̄t)− f(xt−1)]

≤− γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

2γ3(E − 1)E2L2
max(ζ

2 +G2)

3

+
γ22zE2z+1

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z

+
2η2zγ

2σ2
∑d

j=1 Lj

n
. (33)

Rearranging the inequality (33), we have

1

E

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 ≤2E[f(xt−1)− f(xt)]

Eγ
+

γζ2Lmax

n
+

4γ2(E − 1)EL2
max(ζ

2 +G2)

3

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z

+
4η2zγσ

2
∑d

j=1 Lj

En
. (34)

Finally, by a telescopic sum, we obtain

E

[
1

TE

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

4γ2(E − 1)EL2
max(ζ

2 +G2)

3

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z

+
4η2zγσ

2
∑d

j=1 Lj

En
. (35)

Proof of Lemma 4. First, we know from function smoothness that

f(xt)− f(x̄t) ≤ ⟨∇f(x̄t), xt − x̄t⟩+
∑d

j=1 Lj (xt(j)− x̄t(j))
2

2
. (36)

As can be seen from (36), we need to study the xt − x̄t in order to obtaining the upper bound for
f(xt)− f(x̄t). Note that

xt − x̄t =
γ

n

n∑
i=1

(
ηzσSign

(
E∑

s=1

git,s + σξz

)
−

E∑
s=1

git,s

)
. (37)

For ease of presentation, we define that

Ai
t

def.
= ηzσSign

(
E∑

s=1

git,s + σξz

)
. (38)
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By taking the expectation over the random vector ξz , for any j = 1, ..., d, we have

Eξz [(xt(j)− x̄t(j))
2
] =

γ2

n2
Eξz

( n∑
i=1

(
Ai

t −
E∑

s=1

git,s(j)

))2
 (39a)

=
γ2

n2
Eξz

( n∑
i=1

(
Ai

t(j)− Eξz

[
Ai

t(j)
]
+ Eξz

[
Ai

t(j)
]
−

E∑
s=1

git,s(j)

))2


(39b)

≤γ2

n2
Eξz

( n∑
i=1

(
Ai

t(j)− Eξz

[
Ai

t(j)
]))2

 (39c)

+
γ2

n2
Eξz

( n∑
i=1

(
Eξz

[
Ai

t(j)
]
−

E∑
s=1

git,s(j)

))2
 , (39d)

where the last inequality is obtained because
∑n

i=1

(
Ai

t(j)− Eξz

[
Ai

t(j)
])

is zero-mean and inde-

pendent of
∑n

i=1

(
Eξz

[
Ai

t(j)
]
−
∑E

s=1 g
i
t,s(j)

)
.

From (38) it is easy to check that |An
t (j)| ≤ η2zσ

2. Hence, for the RHS of (39c), we have

Eξz

( n∑
i=1

(
Ai

t(j)− Eξz

[
Ai

t(j)
]))2

 (a)
=

n∑
i=1

Eξz

[(
Ai

t(j)− Eξz

[
Ai

t(j)
])2]

≤ 2

n∑
i=1

(
Eξz

[(
Ai

t(j)
)2]

+
(
Eξz

[
Ai

t(j)
])2)

≤ 4nη2zσ
2, (40)

where equality (a) is true because A1
t (j), ...,An

t (j) are independent to each other.

Therefore, from (39) and (40) we have

Eξz

 d∑
j=1

Lj (xt(j)− x̄t(j))
2

 =

d∑
j=1

LjEξz

[
(xt(j)− x̄t(j))

2
]

(41a)

≤
4η2zγ

2σ2
∑d

j=1 Lj

n

+
γ2

n2

d∑
j=1

LjEξz

( n∑
i=1

(
Eξz

[
Ai

t(j)
]
−

E∑
s=1

git,s(j)

))2


(41b)

≤
4η2zγ

2σ2
∑d

j=1 Lj

n

+
γ2Lmax

n2
Eξz

∥∥∥∥∥
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
2
 . (41c)
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To bound the RHS of (41c), we have

Eξz

∥∥∥∥∥
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
2
 ≤ n

n∑
i=1

Eξz

∥∥∥∥∥Eξz

[
Ai

t

]
−

E∑
s=1

git,s

∥∥∥∥∥
2


≤ n

4(2z + 1)2σ4z

n∑
i=1

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

, (42)

where the last inequality is due to Lemma 1.

Now we need to bound

E

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

 ,

where the expectation is taken over both ξz and the mini-batch gradient noise. To this end, we need
the following lemma about the ℓp-norm.

Lemma 6. For any M ∈ Z+, p > 1 and M vectors x1, ..., xM ∈ Rd, we have∥∥∥∥∥
M∑
i=1

xi

∥∥∥∥∥
p

p

≤ Mp−1
M∑
i=1

∥xi∥pp. (43)

As a direct application of Lemma 6, we obtain

E

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

 ≤ E

[
E4z+1

E∑
s=1

∥∥git,s∥∥4z+2

4z+2

]
= E4z+1

E∑
s=1

E
[∥∥git,s∥∥4z+2

4z+2

]
(44)

Then we can bound the RHS of (44) as

E
[∥∥git,s∥∥4z+2

4z+2

]
= E

[∥∥git,s −∇fi(x
i
t,s−1) +∇fi(x

i
t,s−1)

∥∥4z+2

4z+2

]
(a)

≤ E
[
24z+1

∥∥git,s −∇fti(x
i
t,s−1)

∥∥4z+2

4z+2
+ 24z+1

∥∥∇fi(x
i
t,s−1)

∥∥4z+2

4z+2

]
(b)

≤ 24z+1Qz + 24z+1
∥∥∇fi(x

i
t,s−1)

∥∥4z+2

2

(c)

≤ 24z+1(Qz +G4z+2), (45)
where inequality (a) follows Lemma 6, inequality (b) is due to Assumption 2, and inequality (c) is
due to A.4 of Assumption 1.

Combing (41), (42), (44) and (45), we have

E

[∥∥∥∥∥
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
2


≤

√
n224zE4z+2(Qz +G4z+2)

2(2z + 1)2σ4z

≤
n22zE2z+1

√
(Qz +G4z+2)√

2(2z + 1)σ2z
(46)

and

E

 d∑
j=1

Lj (xt(j)− x̄t(j))
2

 ≤
4η2zγ

2σ2
∑d

j=1 Lj

n
+

γ2Lmax

n2
E

∥∥∥∥∥
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
2


≤
4η2zγ

2σ2
∑d

j=1 Lj

n
+

γ224z+1E4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z
. (47)
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Hence, we have

E [f(xt)− f(x̄t)] ≤E

[〈
∇f(x̄t),

γ

n

n∑
i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)〉]

+ E

[∑d
j=1 Lj (xt(j)− x̄t(j))

2

2

]

≤∥∇f(x̄t)∥E

[∥∥∥∥∥γn
n∑

i=1

(
Eξz

[
Ai

t

]
−

E∑
s=1

git,s

)∥∥∥∥∥
]

+ E

[∑d
j=1 Lj (xt(j)− x̄t(j))

2

2

]

≤γ22zE2z+1
√

Qz +G4z+2G√
2(2z + 1)σ2z

+
γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z

+
2η2zγ

2σ2
∑d

j=1 Lj

n
. (48)

Proof of Lemma 6. To prove this lemma, we need to use a classical result on the monotonicity of ℓp
norm:

Lemma 7. (Kantorovich & Akilov, 2016) For any x ∈ Rd and 1 < r < p, we have

∥x∥p ≤ ∥x∥r ≤ d
1
r−

1
p ∥x∥p. (49)

Now from the definition of ℓp norm we have

∥∥∥∥∥
M∑
i=1

xi

∥∥∥∥∥
p

p

=

d∑
j=1

(
M∑
i=1

xi(j)

)p

≤
d∑

j=1

(
M∑
i=1

|xi(j)|

)p

=

d∑
j=1

∥[x1(j), ..., xM (j)]⊤∥p1

(a)

≤ Mp−1
d∑

j=1

∥[x1(j), ..., xM (j)]⊤∥pp

= Mp−1
d∑

j=1

M∑
i=1

(xi(j))
p

= Mp−1
M∑
i=1

∥xi∥pp , (50)

where inequality (a) is due to Lemma 7.
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Proof of Lemma 5. First we unroll the difference f(x̄t)− f(xt−1) into a telescopic sum across E
local steps.

f(x̄t)− f(xt−1) = f(x̄t−1,E)− f(x̄t−1,0) =

E∑
s=1

f(x̄t−1,s)− f(x̄t−1,s−1) (51a)

≤
E∑

s=1

(
−⟨∇f(x̄t−1,s−1), x̄t−1,s−1 − x̄t−1,s⟩+

Lmax

2
∥x̄t−1,s − x̄t−1,s−1∥2

)
(51b)

=

E∑
s=1

−γ⟨∇f(x̄t−1,s−1),
1

n

n∑
i=1

git−1,s⟩+
γ2Lmax

2

∥∥∥∥∥ 1n
n∑

i=1

git−1,s

∥∥∥∥∥
2
 ,

(51c)

where the inequality is due to the smoothness assumption. Taking expectation over the mini-batch
gradient noise g1t−1,s, ..., g

n
t−1,s, for the first terms in (51c), we obtain

E

[
−

〈
∇f(x̄t−1,s−1),

1

n

n∑
i=1

git−1,s

〉]
=−

〈
∇f(x̄t−1,s−1),

1

n

n∑
i=1

∇fi(x
i
t−1,s−1)

〉
(52a)

=− 1

2
∥∇f(x̄t−1,s−1)∥2 −

1

2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x
i
t−1,s−1)

∥∥∥∥∥
2

(52b)

+
1

2

∥∥∥∥∥∇f(x̄t−1,s−1)−
1

n

n∑
i=1

∇fi(x
i
t−1,s−1)

∥∥∥∥∥
2

. (52c)

For the second terms in (51c), we have

E

∥∥∥∥∥ 1n
n∑

i=1

git−1,s

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1n
n∑

i=1

git−1,s −
1

n
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, (53)

where equalities (a) and (b) are true because the mini-batch gradient noise is independent, and
inequality (c) is due to A.1 of Assumption 1.

Notice that owing to the function smoothness, we have for arbitrary x, y ∈ Rd,

f(y) ≤ ⟨∇f(x), y − x⟩+ Lmax

2
∥y − x∥2, (54)

which is equivalent to

∥∇f(x)−∇f(y)∥ ≤ Lmax∥y − x∥. (55)
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Now to bound the term in (52c), for every s, we have∥∥∥∥∥∇f(x̄t−1,s−1)−
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For any t = 1, ..., T , i = 1, ..., n and q = 1, ..., s− 1, taking expectation over mini-batch gradient
noise, we have

E
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Substituting (57) into (56), we have∥∥∥∥∥∇f(x̄t−1,s−1)−
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Further substituting (53), (52) and (58) into (51) and by rearranging the terms, we obtain
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where inequality (a) is by (γ2Lmax − γ) ≤ 0.
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Note that
E∑

s=1

(s− 1)2 =
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6
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3
. (60)

By applying it to (59), we finally have
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(61)

C.4 PROOF OF THEOREM 3

We need a lemma similar to Lemma 4.
Lemma 8. Suppose that Assumption 1 and 3 hold. For the t-th (1 ≤ t ≤ T ) communication round in
Algorithm 1, if η = σ and z = +∞, and σ > E(G+Q∞), then
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∑d
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n
. (62)

Following the similar idea as in the proof of Theorem 1, we have
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Rearranging the terms, we have
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Form the telescopic sum, we obtain
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Here we provide a simple example to show that when σ < E(G + Q∞), the algorithm cannot
converge. Consider E = 1, Q∞ = 0 and the problem

min
x∈R

(x−A)2 + (x+A)2,

where A > 0 is some positive number. If we choose the initial to be x0 = A
2 . As one can see, the

gradient at x0 for the two parts of the objective function are −A and 3A, respectively. We denote that
ξ∞ as the random noise following uniform distribution at [−1, 1]. If now σ < A, we have

Sign(−A+ σξ∞) + Sign(3A+ σξ∞) = 0, (66)

i.e., this algorithm never update the variable.
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Proof of Lemma 8. We first note that, when z = +∞, we have

Ψ∞(x) =
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Again, from the smoothness assumption (A.2 in Assumption 1) we have,
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Taking expectation over ξ∞,
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where equality (a) is because for any x ∈ Rd, Eξ∞ [Sign(x+ σξ∞)] = Ψ∞(x/σ), equality (b) is due
to σ > ∥

∑E
s=1 g

i
t,s∥∞ almost surely and the property of the function Ψ∞(·) in (67).

For ease of presentation, we define that
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From (69) we have learned that Eξ∞ [Bi
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Finally, substituting (69) and (71) into (68), and taking the expectation over both ξ∞ and the mini-
batch gradient noise, we have

E[f(xt)− f(x̄t)] ≤ E[⟨∇f(x̄t), xt − x̄t⟩] + E
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n
. (72)
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D EXPERIMENT DETAILS

D.1 DETAILS FOR THE EXPERIMENT IN SECTION 4.2

In Table 3, we provide the tuned hyperparameters for all the tested algorithms on non-i.i.d MNIST.
Specifically, we tuned the hyperparameters via grid search: [0.1, 0.05, 0.01, 0.005] for stepsize,
[0, 0.3, 0.5, 0.7, 0.9] for the momentum coefficient, and [0, 0.02, 0.05, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5]
for the noise scale.

Algorithm Stepsize Momentum coefficient Noise scale

SGDwM 0.05 0.9
EF-SignSGDwM 0.05 0.9
Sto-SignSGDwM 0.01 0.9

SignSGD 0.01 0 0
1-SignSGD 0.01 0 0.05
∞-SignSGD 0.01 0 0.05

Table 3: Hyperparameters used for FL on non-i.i.d MNIST.

In Figure 7, we visualize the performance of 1-SignSGD and ∞-SignSGD under different noise
scales. As we can see, the results for 1-SignSGD and ∞-SignSGD are almost the same, except that
the ∞-SignSGD is slightly better than 1-SignSGD when the noise scale is large.

(a) Training Loss:1-SignSGD (b) Test Accuracy:1-SignSGD

(c) Training Loss:∞-SignSGD (d) Test Accuracy:∞-SignSGD

Figure 7: z-SignFedAvg under different noise scales on non-i.i.d MNIST

D.2 DETAILS FOR THE EXPERIMENT IN SECTION 4.3

We denote the noiseless case, i.e., Algorithm 1 with σ = 0 as SignFedAvg.
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EMNIST: For the experiment on EMNIST, we fixed the client stepsize as 0.05. We
tuned the server stepsize, noise scales via grid search: [1, 0.5, 0.1, 0.05, 0.01, 0.005] for step-
size, [0, 0.005, 0.02, 0.05, 0.01, 0.03, 0.05, 0.1, 0.2] for noise scale. The comparison between 1-
SignFedAvg and ∞-SignFedAvg on EMNIST is shown in Figure 8. The used hyperparameter in the
Figure 4 and 8 are summarized in Table 4. We also visualize the performance of 1-SignFedAvg and
∞-SignFedAvg under various noise scales and local steps in Figure 9 and Figure 10.

CIFAR-10: For the experiment on CIFAR-10, we fixed the client stepsize as 0.1. We tuned the server
stepsize, noise scales via grid search: [100, 10−0.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3] for the stepsize,
[0, 0.0001, 0.0005, 0.001, 0.005] for the noise scale. The comparison between 1-SignFedAvg and
∞-SignFedAvg on CIFAR-10 is displayed in Figure 11. The used hyperparameter in the Figure
5 and 11 are summarized in Table 5. We also visualize the performance of 1-SignFedAvg and
∞-SignFedAvg under various noise scales and different numbers of local steps in Figure 12 and
Figure 13. An interesting phenomeNon-in Figure 12 amd Figure 13 is that the more local steps are,
the less impact the additive noise has on the convergence performance.

(a) Training Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 8: Performance of 1-SignFedAvg and ∞-SignFedAvg on EMNIST dataset.

Algorithm Server stepsize Noise scale

1-SignFedAvg 0.03 0.01
∞-SignFedAvg 0.03 0.01

SignFedAvg 0.03 0

Table 4: Hyperparameters for tested Algorithms on EMNIST.

(a) E = 2 (b) E = 5 (c) E = 10 (d) E = 20

(e) E = 2 (f) E = 5 (g) E = 10 (h) E = 20

Figure 9: EMNIST: 1-SignFedAvg under different noise scales and different numbers of local steps
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(a) E = 2 (b) E = 5 (c) E = 10 (d) E = 20

(e) E = 2 (f) E = 5 (g) E = 10 (h) E = 20

Figure 10: EMNIST: ∞-SignFedAvg under different noise scales and different numbers of local steps

Algorithm Server stepsize Noise scale

1-SignFedAvg 0.0032 0.0005
∞-SignFedAvg 0.0032 0.0005

SignFedAvg 0.0032 0

Table 5: Hyperparameters for tested Algorithms on CIFAR-10.

(a) Training Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 11: Performance of 1-SignFedAvg and ∞-SignFedAvg on CIFAR-10 dataset.
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(a) E = 2 (b) E = 5 (c) E = 10

(d) E = 2 (e) E = 5 (f) E = 10

Figure 12: CIFAR-10: 1-SignFedAvg under different noise scales and different numbers of local
steps

(a) E = 2 (b) E = 5 (c) E = 10

(d) E = 2 (e) E = 5 (f) E = 10

Figure 13: CIFAR-10: ∞-SignFedAvg under different noise scales and different numbers of local
steps
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D.3 DETAILS FOR THE EXPERIMENT IN SECTION 4.4

For the experiment results shown in Figure 6, except for the noise scale, both 1-SignSGD/1-
SignFedAvg and 1-SignSGD-plateau/1-SignFedAvg-plateau used the same hyperparameters found
in previous experiments. In Table 6, we show the hyperparameters of the Plateau criterion for the
adaptive noise scale, which are chosen by a few rounds of trial and error. Besides, we also show
the corresponding test accuracy in Figure 14, and how the noise scale evolves over communication
rounds in Figure 15.

Dataset σinit σbound κ β

Non-i.i.d. MNIST 0.01 0.5 30 1.5
EMNIST 0.0001 0.1 10 2
CIFAR-10 0.001 0.1 200 1.5

Table 6: Hyperparameters of Plateau criterion for three different datasets.

(a) Non-i.i.d. MNIST (b) EMNIST (c) CIFAR-10

Figure 14: The corresponding test accuracy to Figure 6.

(a) Non-i.i.d. MNIST (b) EMNIST (c) CIFAR-10

Figure 15: The corresponding trends of noise scale to Figure 6.

E COMPARISON WITH UNBIASED STOCHASTIC QUANTIZATION METHOD

In this part, we compare our Algorithm 1 to the QSGD (Alistarh et al., 2017) along with its extension
to FedAvg, i.e., FedPAQ (Reisizadeh et al., 2020). As we have shown that z-SignSGD/z-SignFedAvg
with the Gaussian noise and uniform noise behave very closely, here we only consider 1-SignSGD/1-
SignFedAvg for comparison. We use the unbiased quantizer in (14) for both QSGD and FedPAQ.

We can see that the quantization level s plays as a key role in the performance and communication
efficiency of QSGD and FedPAQ. In a rough sense, s also represents the number of bits needed to
transmit for a single coordinate. Thus, we will compare our algorithms to them with different choices
of s. We remark that, even in the most extreme case, i.e., s = 1, it still needs three alphabets −1, 1, 0
for communication, while sign-based method only uses −1 and 1.

Setting. Again, we consider the three different datasets used in Section 4.2 and 4.2. Specifically, we
compare the 1-SignSGD with QSGD on the non-i.i.d. MNIST dataset, and compare 1-SignFedAvg
with FedPAQ on EMNIST and CIFAR-10. For all the algorithms, the client’s stepsize and batchsize
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are set to the same values used in Section 4.2 and 4.2. For 1-SignSGD/1-SignFedAvg, we reuse
the previously found optimal hyperparameters. For QSGD, we tune the server stepsize via grid
search on [0.1, 0.05, 0.01, 0.005]. For FedPAQ, we tune the server stepsize via grid search on
[1, 0.5, 0.1, 0.05, 0.01, 0.005]. The chosen server stepsizes for QSGD and FedPAQ under three
datesets are presented in Table 7.

Algorithm Non-i.i.d. MNIST EMNIST CIFAR-10

QSGD(s = 1) 0.01
QSGD(s = 2) 0.05
QSGD(s = 4) 0.05

FedPAQ(s = 1) 1 1
FedPAQ(s = 2) 1 1
FedPAQ(s = 4) 1 1
FedPAQ(s = 8) 1 1

Table 7: The chosen server stepsizes for tested QSGD and FedPAQ on three datasets.

Results. From Figure 16, we can see that, our proposed sign-based compressor is consistently
superior to the unbiased stochastic quantization method in low precision region (1 bit to 8 bits), except
the only case that QSGD with s = 4 is slightly better than our 1-SignSGD on the non-i.i.d MNIST
dataset. These results again, as (Bernstein et al., 2018; Karimireddy et al., 2019) did, show that
the biased compressor, or more specifically the sign-based compressor, can be a strong competitor
to those unbiased quantizer due to reduced variance. Our contribution in this work is to provide a
generic framework that bridges the unbiased compressor and the biased one, which allows one to
conveniently seek an optimal trade-off between the compression bias and variance.

(a) Non-i.i.d MNIST (b) EMNIST (c) CIFAR-10

(d) Non-i.i.d MNIST (e) EMNIST (f) CIFAR-10

Figure 16: Comparison of 1-SignSGD/1-SignFedAvg with QSGD/FedPAQ on three datasets.

F DIFFERENTIAL PRIVATE FEDERATED LEARNING ON EMNIST

Let us first review the definition of DP.

Definition 3 (Approximate DP (Dwork et al., 2014)). A randomized algorithm M that takes as input
a dataset consisting of individuals is (ε, δ)-differentially private if for any pair of datasets S,S′ that
differ in the record of a single individual, and for any event E,

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (73)
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The value ε is regarded as the privacy budget, and the smaller it is the stronger privacy the algorithm
provides. The quantity δ is usually set to 1

n . The most popular mechanism to achieve DP is the
Gaussian mechanism (Dwork et al., 2014). Specifically, similar to (Agarwal et al., 2021; Kairouz
et al., 2021), here we consider client-level DP guarantee for Federated Learning, i.e, we regard each
client as a single data point in Definition 3. Besides, we also adopt the local version of DP gurantee,
i.e., each dataset in Definition 3 contains only one data point. Such DP guarantee do not assume that
the server is trustworthy and hence is commonly used in practice (Agarwal et al., 2021; Kairouz et al.,
2021). For more details on DP and its application in FL, we refer readers to (Dwork et al., 2014;
Mironov, 2017; Abadi et al., 2016b; Geyer et al., 2017).

Here we describe the differential private version of Algorithm 1, which we term DP-SignFedAvg
(Algorithm 2). The only difference between DP-SignFedAvg and z-SignFedAvg is that z = 1 is
chosen (Gaussian noise), and the norm of local gradients is clipped before perturbing it by the noise
and applying the sign compression. To obtain the client-level privacy guarantee, we adopt the privacy
accounting method in (Mironov et al., 2019).

Algorithm 2 DP-SignFedAvg
Require: Total communication rounds T , Number of local steps E, Number of clients n, Client

sampling ratio q, Clients stepsize γ, Server stepsize η, Noise coefficient σ, Norm clipping
coefficient C.

1: Initialize x0 and for i = 1, ..., n.
2: for t = 1 to T do
3: Sample a set of clients S with size qn for current round.
4: On Clients:
5: for i in S do
6: xi

t−1,0 = xt−1

7: for s = 1 to E do
8: git−1,s = gi(x

i
t−1,s−1), where gi(·) is the mini-batch gradient oracle of the i-th client.

9: xi
t−1,s = xi

t−1,s−1 − γgit−1,s.
10: end for
11: ∆i

t−1 = Sign
(

xt−1−xi
t−1,E

max{1,∥xt−1−xi
t−1,E∥/C} +N (0, σ2C2I)

)
.

12: Send ∆i
t−1 to the server.

13: end for
14: On Server:
15: xt = xt−1 − η 1

n

∑n
i=1 ∆

i
t−1.

16: Broadcast xt to clients.
17: end for
18: return xT .

Now we investigate the empirical performance of the DP-SignFedAvg on EMNIST, and compared it
with the uncompressed DP-FedAvg used in (Agarwal et al., 2021; Kairouz et al., 2021).

Settings. We followed a setting similar to (Kairouz et al., 2021) for the experiment on EMNIST.
We adopted the client-level differential privacy, i.e., to treat each client as a single data point, and
perturbed the local gradients before sending them to server. We also used the technique of privacy
amplification by client sub-sampling in (Kairouz et al., 2021; Geyer et al., 2017). For both DP-FedAvg
and DP-SignFedAvg, the same CNN in Section 4.2 was used, and the maximum norm for clipping
was set to 0.01. We sampled 100 clients at each communication round and ran both algorithms for
500 communication rounds. Similar to (Kairouz et al., 2021), we run the experiments under the
privacy budgets ε = [1, 2, 4, 6, 8, 10]. In Table 8, we provide the hyperparameter for DP-FedAvg
and DP-SignFedAvg for all levels of privacy budgets. Unlike previous experiments, the noise scales
used in this experiment were determined by the privacy budget and the privacy accounting method in
(Mironov et al., 2019).

Results. It can be seen from Figure 17 that DP-SignFedAvg is only slightly inferior to the
uncompressed DP-FedAvg for various levels of privacy budget. It is worthy to note that the work
(Kairouz et al., 2021) conducted a similar experiment and showed that the compressed DP-FedAvg
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Privacy budget η for DP-FedAvg η for DP-SignFedAvg Noise scale

1.0029 1 0.03 2.77
2.0171 2 0.05 1.57
4.0459 5 0.05 1.02
6.0135 5 0.05 0.845
8.0336 5 0.05 0.75
9.9996 5 0.05 0.685

Table 8: Hyperparameters for DP Algorithms on EMNIST.

with 12 bits for each gradient coordinate can be far worse than the uncompressed DP-FedAvg. It is a
strong contrast to our DP-SignFedAvg which uses only 1 bit for each coordinate.

(a) Training Loss (b) Test Accuracy

Figure 17: Performance of DP-SignFedAvg and DP-FedAvg
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