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ABSTRACT

When solving inverse problems, one increasingly popular approach is to use pre-
trained diffusion models as plug-and-play priors. This framework can accommo-
date different forward models without re-training while preserving the generative
capability of diffusion models. Despite their success in many imaging inverse
problems, most existing methods rely on privileged information such as deriva-
tive, pseudo-inverse, or full knowledge about the forward model. This reliance
poses a substantial limitation that restricts their use in a wide range of problems
where such information is unavailable, such as in many scientific applications.
We propose Ensemble Kalman Diffusion Guidance (EnKG), a derivative-free ap-
proach that can solve inverse problems by only accessing forward model evalua-
tions and a pre-trained diffusion model prior. We study the empirical effectiveness
of EnKG across various inverse problems, including scientific settings such as in-
ferring fluid flows and astronomical objects, which are highly non-linear inverse
problems that often only permit black-box access to the forward model.

1 INTRODUCTION

The idea of using pre-trained diffusion models (Song et al., 2020; Ho et al., 2020) as plug-and-play
priors for solving inverse problems has been increasingly popular and successful across various ap-
plications including medical imaging (Song et al., 2021; Sun et al., 2023), image restoration (Chung
et al., 2022b; Wang et al., 2022), and image and music generation (Rout et al., 2024; Huang et al.,
2024). A key advantage of this approach is its flexibility to accommodate different problems with-
out re-training while maintaining the expressive power of diffusion models to capture complex and
high-dimensional prior data distributions. However, most existing algorithms rely on privileged
information of the forward model, such as its derivative (Chung et al., 2022a; Song et al., 2023b),
pseudo-inverse (Song et al., 2023a), or knowledge of its parameterization (Chung et al., 2023a). This
reliance poses a substantial limitation that prevents their use in problems where such information is
generally unavailable. For instance, in many scientific applications (Oliver et al., 2008; Evensen &
Van Leeuwen, 1996; Iglesias, 2015), the forward model consists of a system of partial differential
equations whose derivative or pseudo-inverse is generally unavailable or even undefined.

The goal of this work is to develop an effective method that only requires black-box access to the for-
ward model and pre-trained diffusion model for solving general inverse problems. Such an approach
could significantly extend the range of diffusion-based inverse problems studied in the current lit-
erature, unlocking a new class of applications – especially many scientific applications. The major
challenge here arises from the difficulty of approximating the gradient of a general forward model
with only black-box access. The standard zero-order gradient estimation methods are known to scale
poorly with the problem dimension (Berahas et al., 2022).

To develop our approach, we first propose a generic prediction-correction (PC) framework using
an optimization perspective that includes existing diffusion guidance-based methods (Chung et al.,
2022a; Song et al., 2023b;a; Peng et al., 2024; Tang et al., 2024) as special cases. The key idea of
this PC framework is to decompose diffusion guidance into two explicitly separate steps, uncon-
ditional generation (i.e., sampling from the diffusion model prior), and guidance imposed by the
observations and forward model. This modular viewpoint allows us to both develop new insights of
the existing methods, as well as to introduce new tools to develop a fully derivative-free guidance
method. Our approach, called Ensemble Kalman Diffusion Guidance (EnKG), uses an ensemble
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of particles to estimate the guidance term while only using black-box queries to the forward model
(i.e., no derivatives are needed), using a technique known as statistical linearization (Evensen, 2003;
Schillings & Stuart, 2017) that we introduce to diffusion guidance via our PC framework.

Contributions

• We present a generic prediction-correction (PC) framework that provides an alternative
interpretation of guided diffusion, as well as additional insights of the existing methods.

• Building upon the PC framework, we propose Ensemble Kalman Diffusion Guidance
(EnKG), a fully derivative-free approach that leverages pre-trained model in a plug-and-
play manner for solving general inverse problems. EnKG only requires black-box access to
the forward model and can accommodate different forward models without any re-training.

• We evaluate on various inverse problems including the standard imaging tasks and scientific
problems like the Navier-Stokes equation and black-hole imaging. On more challenging
tasks, such as nonlinear phase retrieval in standard imaging and the scientific inverse tasks,
our proposed EnKG outperforms baseline methods by a large margin. For problems with
very expensive forward models (e.g., Navier-Stokes equation), EnKG also stands out as
being much more computationally efficient than other derivative-free methods.

2 BACKGROUND & PROBLEM SETTING

Problem setting Let G : Rn → Rm denote the forward model that maps the true unobserved
source x to observations y. We consider the following setting:

y = G(x) + ξ, x ∈ Rn,y, ξ ∈ Rm (1)

where we only have black-box access to G (generally assumed to be non-linear). ξ represents the
observation noise which is often modeled as Gaussian, i.e., ξ ∼ N (0,Γ), and y represents the
observation. Solving the inverse problem amounts to inverting Eq. (1), i.e., finding the most likely x
(MAP inference) or its posterior distribution P (x|y) (posterior inference) given y. This inverse task
is often expressed via Bayes’s rule as p(x|y) ∝ p(y|x)·p(x). Here p(x) is the prior distribution over
source signals (which we instantiate using a pre-trained diffusion model), and p(y|x) is defined as
(1). Because we only have black-box access toG, we can only sample from p(y|x), and do not know
its functional form. For simplicity, we focus on finding the MAP estimate: argmaxx p(y|x) · p(x).

Diffusion models Diffusion models (Song et al., 2020; Karras et al., 2022) capture the prior
p(x) implicitly using a diffusion process, which includes a forward process and backward pro-
cess. The forward process transforms a data distribution x0 ∼ pdata into a Gaussian distribution
xT ∼ N (0, σ2(T )I) defined by a pre-determined stochastic process. The Gaussian distribution is
often referred to as noise, and so the forward process (t going from 0 to T ) is typically used to create
training data (iteratively noisier versions of x0 ∼ pdata) for the diffusion model. The backward pro-
cess (t going from T to 0), which is typically learned in a diffusion model, is the standard generative
model and operates by sequentially denoising the noisy data into clean data, which can be done by
either a probability flow ODE or a reverse-time stochastic process. Without loss of generality, we
consider the following probability flow ODE since every other probability flow ODE is equivalent
to it up to a simple reparameterization as shown by Karras et al. (2022):

dxt = −σ̇(t)σ(t)∇xt
log pt(xt)dt. (2)

Training a diffusion model amounts to training the so-called score function ∇xt
log pt(xt), which

we assume is already completed (and not the focus of this paper). Given a trained diffusion model,
we can sample p(x) by integrating (2) starting from random noise.

Diffusion guidance for inverse problems As surveyed in Daras et al. (2024), arguably the most
popular approach to solving inverse problems with a pre-trained diffusion model is guidance-
based (Chung et al., 2022a; Wang et al., 2022; Kawar et al., 2022; Song et al., 2023a; Zhu et al.,
2023; Rout et al., 2023; Chung et al., 2023b; Tang et al., 2024). Guidance-based methods are origi-
nally interpreted as the conditional reverse diffusion process targeting the posterior distribution. For
ease of notation and clear presentation, we use the probability flow ODE to represent the reverse
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process and rewrite it with Bayes Theorem.

dxt = −σ̇(t)σ(t)∇xt
log pt(xt|y)dt,

= −σ̇(t)σ(t)∇xt
log pt(xt)dt− σ̇(t)σ(t)∇xt

log pt(y|xt)dt, (3)

where ∇xt
log pt(xt) is the unconditional score and the ∇xt

log pt(y|xt) is the guidance from
likelihood. In practice, the unconditional score is approximated by a pre-trained diffusion model
sθ(xt, t). The corresponding reverse dynamics are:

dxt = −σ̇(t)σ(t)sθ(xt, t)dt− wt∇xt log p̂t(y|xt)dt, (4)

where wt is the adaptive time-dependent weight. The design of wt in Eq. (4) varies across different
methods but it is typically not related to σ̇(t)σ(t) that Eq. (3) suggests, which makes it hard to inter-
pret from a posterior sampling perspective. In this paper, we will take an optimization perspective
develop a useful interpretation for designing our proposed algorithm.

One key issue with Eq. (4) is that many algorithms for sampling along Eq. (4) assume access to the
gradient∇xt

log p̂t(y|xt). When this gradient is unavailable (e.g., only black-box access to p̂t(y)),
then one must develop a derivative-free approach, which is our core technical contribution.

Two existing derivative-free diffusion guidance methods are stochastic control guidance (SCG)
(Huang et al., 2024), and diffusion policy gradient (DPG) (Tang et al., 2024). Both SCG and DPG
are developed from the stochastic control viewpoint, and guides the diffusion process via estimating
a value function, which can be challenging to estimate well (as seen in our experiments).

Derivative-free optimization Derivative-free optimization (DFO) refers to settings where one
only has black-box access to the function of interest (i.e., no direct access to derivatives). Tradi-
tional DFO algorithms include direct search, which includes the coordinate search (Fermi, 1952),
stochastic finite-difference approximations of the gradient (Spall, 1998), Nelder-Mead simplex
methods (Nelder & Mead, 1965), and model-based methods which include descent and trust region
methods (Conn et al., 2000; Bortz & Kelley, 1998). Recent stochastic zero-order optimization tech-
niques involve approximating the gradient via Gaussian smoothing (Nesterov & Spokoiny, 2017);
these gradient estimates can be plugged into gradient-based algorithms directly, which we use to
establish strong baselines in this paper. Our approach builds on top of the core idea of statistical
linearization (Booton, 1954) from Ensemble Kalman methods, which is a popular family of scien-
tific computing methods for solving physical inverse problems (Iglesias et al., 2013; Calvello et al.,
2022). From an optimization perspective, the method can be seen as performing gradient decent
with a particle-based approximation to the derivative of the forward operator (Schillings & Stuart,
2017; Kovachki & Stuart, 2019). Prior works (Bergou et al., 2019; Chada & Tong, 2022) establish
the convergence results for some variants in the non-linear setting. However, their proofs do not
directly apply to our case due to the difference in the update rule.

3 METHOD

To develop our Ensemble Kalman Diffusion Guidance (EnKG) method, we first provide an interpre-
tation of diffusion guidance through the lens of the prediction-correction framework. EnKG can be
viewed as an instantiation which enables derivative-free approximation of the guidance term.

3.1 PREDICTION-CORRECTION INTERPRETATION OF GUIDANCE-BASED METHODS

Inspired by the idea of the Predictor-Corrector continuation method in numerical analysis (Allgo-
wer & Georg, 2012), we show how to express the guidance-based methods within the following
prediction-correction framework. Suppose the time discretization scheme is T = t0 > t1 · · · >
tN = 0. Let wi = wti for light notation. As illustrated in Algorithm 1, guidance-based methods for
inverse problems can be summarized into the following steps.

Prior prediction step This step is simply a numerical integration step of the unconditional prob-
ability flow ODE, i.e., by moving one step along the unconditional ODE trajectory:

x′
i = xi − σ̇(ti)σ(ti)sθ (xi, ti) (ti+1 − ti). (5)
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Algorithm 1 Generic Guidance-based Method (ODE version)

Require: G,y, sθ, {ti}Ni=1, {wi}Ni=1

1: sample x0 ∼ N (0, σ2(t0)I)

2: for i ∈ {0, . . . , N − 1} do
3: x′

i ← xi − σ̇(ti)σ(ti)sθ (xi, ti) (ti+1 − ti) ▷ Prior prediction step
4: log p̂(y|xt) ≈ log p(y|xt) ▷ Log-likelihood estimation

5: xi+1 ← argminxi+1

∥xi+1−x′
i∥

2
2

2wi
− log p̂(y|xi+1) ▷ Guidance correction step

6: end for
7: return xN

Figure 1: Illustration of the prediction-
correction interpretation for guidance-based
methods on a 1D Gaussian mixture example.
From left to right, the probability flow ODE
gradually transforms pt(xt) from a Gaussian
into a mixture of two Gaussians. The grey lines
indicate the vector field of the probability flow.
The prediction step is simply a numerical inte-
gration step over the probability flow trajectory.
The correction step moves towards the MAP es-
timator while staying near to the initial predic-
tion point.

Log-likelihood estimation step This step estimates the log-likelihood log p(y|xt):

log p̂(y|xi) ≈ log p(y|xi).

Guidance correction step This step solves the following optimization problem that formulates a
compromise between maximizing the log-likelihood and being near x′i:

xi+1 = argmin
xi+1

∥xi+1 − x′
i∥22

2wi
− log p̂(y|xi+1), (6)

where the larger guidance scale wi gives the solution point near the MAP estimator and smaller
value leads to small movement towards the MAP estimator. Eq. (6) is essentially a proximal opera-
tor (Parikh et al., 2014) if wi is lower bounded by a positive number. This optimization problem is
often non-convex in most practical scenarios. As a result, the optimization algorithm may converge
to a local maximum rather than a global one.

To solve Eq. (6) efficiently, one can use a first-order Taylor approximation of log p̂(y|xi+1) at x′
i:

log p̂(y|xi+1) = log p̂(y|x′
i) +∇⊤

x log p̂(y|x′
i) (xi+1 − x′

i) +O
(
|xi+1 − xi|2

)
. (7)

Substituting the approximation Eq. (7) into the correction step (6) gives:

xi+1 ≈ argmin
xi+1

∥xi+1 − x′
i∥22

2wi
− log p̂(y|x′

i)−∇⊤
x log p̂(y|x′

i) (xi+1 − x′
i) (8)

= x′
i + wi∇x log p̂(y|x′

i), (9)

which can recover the gradient step structure of most existing guidance-based methods (Chung et al.,
2022a; Song et al., 2023b;a; Mardani et al., 2023).

Putting it together. Figure 1 depicts the Prediction-Correction interpretation in a 1D Gaussian
mixture example, where guidance-based methods iteratively step towards the MAP estimator while
staying close to the initial unconditional generation trajectory defined by the prediction step. Impor-
tantly, the PC framework allows more degrees of freedom in method design.
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Algorithm 2 Our method: Ensemble Kalman Diffusion Guidance (EnKG).

Require: G,y, sθ, solver ϕ, {ti}Ni=1, {wi}Ni=1, J

1: sample x
(j)
0 ∼ N (0, σ2(t0)I), j = 1, . . . , J ▷ Initialize particles

2: for i ∈ {0, . . . , N − 1} do

3: x
′(j)
i ← x

(j)
i − σ̇(ti)σ(ti)sθ

(
x

(j)
i , ti

)
(ti+1 − ti) ▷ Prior prediction step

4: x̂
(j)
N ← ϕ

(
x

(j)
i , ti

)
, j = 1, . . . , J

5: g
(j)
i ← 1

J

∑J
k=1

〈
G(x̂

(k)
N )− Ḡ,y −G(x̂

(j)
N )

〉
Γ

(
x

(k)
i − x̄i

)
6: x

(j)
i+1 ← x

′(j)
i + wig

(j)
i , j = 1, . . . , J ▷ Guidance correction step

7: end for
8: return {x(j)

N }
J
j=1

3.2 OUR APPROACH: ENSEMBLE KALMAN DIFFUSION GUIDANCE

We now demonstrate how the correction step can be performed in a derivative-free manner using the
idea of statistical linearization. Our overall approach is described in Algorithm 2.

Likelihood estimation. The likelihood term can be factorized as follows:

p(y|xi) =
∫
p(y|xN )p(xN |xi)dxN = ExN∼p(xN |xi)p(y|xN ), (10)

which is intractable in general. We use the following Monte Carlo approximation:

p(y|xi) = ExN∼p(xN |xi)p(y|xN ) ≈ p(y|x̂N ), (11)

where x̂N is obtained by running the Probability Flow ODE solver ϕ starting at xi. One attractive
property of this estimate compared to popular ones based on E[xN |xi] and isotropic Gaussian ap-
proximations in previous works Chung et al. (2022a); Song et al. (2023a;b) is that our approximation
stays on data manifold but the Gaussian approximations include additive noise that do not live on
data manifold. This aspect is particularly important for scientific inverse problems based on partial
differential equations (PDEs), where staying on the data manifold is important for reliably solv-
ing the forward model p(y|x). For instance, we observe that Gaussian approximations frequently
violate the stability conditions of numerical PDE solvers, leading to meaningless estimates.

Derivative-free correction step. Consider an ensemble of particles {x(j)
i }Jj=1. Let x̄i denote

their empirical mean and C(i)
xx denote their empirical covariance matrix, at the i-th iteration:

x̄i =
1

J

J∑
j=1

x
(j)
i , C(i)

xx =
1

J

J∑
j=1

(
x
(j)
i − x̄i

)(
x
(j)
i − x̄i

)⊤
.

Instead of the commonly used scalar weight wi, we use a weighting matrix wiC
(i)
xx in Eq. (8):

x
(j)
i+1 ≈ argmin

xi+1

1

2

(
xi+1 − x

′(j)
i

)⊤ (
wiC

(i)
xx

)−1 (
xi+1 − x

′(j)
i

)
(12)

−∇⊤
x log p̂

(
y|x′(j)

i

)(
xi+1 − x

′(j)
i

)
(13)

= x
′(j)
i +wiC

(i)
xx∇x log p̂

(
y|x′(j)

i

)
. (14)

Note that in practice, C(i)
xx can be singular when the number of particles is smaller than the particle

dimension. In such cases, the matrix inverse in Eq. (12) is generalized to the sense of the Moore-
Penrose inverse as C(i)

xx is always positive semi-definite. Eq. (14) effectively becomes a gradient
projected onto the subspace spanned by the particles. At its current form, Eq. (14) still requires the
gradient information. Next, we show how to approximate this gradient step without explicit deriva-
tive by Leveraging the idea of statistical linearization in the ensemble Kalman methods (Bergemann
& Reich, 2010; Schillings & Stuart, 2017).
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Assumption 1. G ◦ ϕ has bounded first and second order derivatives. Let ψ denote G ◦ ϕ. There
exist constants M1,M2 such that for all u,u′,v,v′ ∈ Rd,

∥ψ(u)− ψ(u′)∥ ≤M1∥u− u′∥,v⊤Hψ(v
′)v ≤M2∥v∥2.

where Hψ denotes the Hessian matrix of ψ.

Assumption 2. The distance between ensemble particles is bounded. There exists a constant M3

such that ∥x(j)
i − x̄i∥ < M3, j = 1, . . . , J .

Assumption 3. The observation empirical covariance matrix does not degenerate to zero unless the
covariance matrix collapses to zero. In other words, tr

(
C

(i)
yy

)
= 0 if and only if C(i)

xx = 0, and

C(i)
xx ̸= 0→ tr

(
C(i)
yy

)
> M4,M4 > 0,

where

C(i)
yy =

1

J

J∑
j=1

(
ψ(x

(j)
i )− ψ̄i

)(
ψ(x

(j)
i )− ψ̄i

)⊤
, ψ̄i =

1

J

J∑
j=1

ψ(x
(j)
i ). (15)

Proposition 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented as follows
with wi = 1/

(
tr
(
C

(i)
yy

))
,

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x
′(j)
i

))
(16)

= x
′(j)
i + wi

1

J

J∑
k=1

〈
ψ
(
x
′(k)
i

)
− Ḡ,y − ψ

(
x
′(j)
i

)〉
Γ

(
x
′(k)
i − x̄i

)
, (17)

where

C(i)
xy =

1

J

J∑
j=1

(
x
′(j)
i − x̄i

)(
ψ
(
x
′(j)
i

)
− ψ̄i

)⊤
.

After sufficient iterations, we have the following approximation:

C(i)
xy

(
y − ψ

(
x
′(j)
i

))
=

1

J

J∑
k=1

〈
ψ
(
x
′(k)
i

)
− Ḡ,y − ψ

(
x
′(j)
i

)〉
Γ

(
x
′(k)
i − x̄i

)
(18)

≈ C(i)
xx∇x log p̂

(
y|x′(j)

i

)
, (19)

where

Ḡ =
1

J

J∑
j=1

G
(
x̂
(j)
N

)
=

1

J

J∑
j=1

ψ(x
′(j)
i ).

The detailed derivation can be found in Appendix A.2. Proposition 1 shows that the ensemble update
step defined in Eq. (29) effectively approximates the preconditioned gradient step defined in Eq. (12)
without explicit derivative:

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x
′(j)
i

))
≈ x

′(j)
i + wiC

(i)
xx∇x log p̂

(
y|x′(j)

i

)
. (20)

Algorithm 2 puts it all together and provides a complete description of the proposed method. Imple-
mentation details are provided in Appendix A.4.

4 EXPERIMENTS

We empirically study our EnKG method on the classic image restoration problems and two scientific
inverse problems. We view the scientific inverse problems as the more interesting domains for
evaluating our method, particularly the Navier-Stokes equation where it is impractical to accurately
compute the gradient of the forward model.
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Table 1: Quantitative evaluation on FFHQ 256x256 dataset. We report average metrics for image
quality and consistency on four tasks. Measurement noise is σ = 0.05 unless otherwise stated.

Inpaint (box) SR (×4) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Forward-GSG 17.82 0.562 0.302 18.08 0.469 0.384 24.43 0.704 0.206 7.88 0.070 0.838
Central-GSG 18.76 0.720 0.229 26.55 0.740 0.169 25.39 0.775 0.180 10.10 0.353 0.691
DPG 20.89 0.752 0.184 28.12 0.831 0.126 26.42 0.798 0.143 15.47 0.486 0.495
SCG 4.71 0.302 0.763 4.71 0.302 0.760 4.69 0.300 0.759 4.623 0.294 0.764
EnKG(Ours) 21.70 0.727 0.286 27.17 0.773 0.237 26.13 0.723 0.224 20.06 0.584 0.393

Baselines We focus on comparing against methods that only use black-box access to the for-
ward model. The first two baselines, Forward-GSG and Central-GSG (Algorithm 3), use numer-
ical estimation methods instead of automatic differentiation to approximate the gradient of the
log-likelihood, and plug it into a standard gradient-based method, Diffusion Posterior Sampling
(DPS) (Chung et al., 2023b). Specifically, Forward-CSG uses a forward Gaussian smoothed gradi-
ent (Eq. 37), and Central-CSG uses a central Gaussian smoothed gradient (Eq. 38). More details are
in Appendix A.3. The last two baselines are Stochastic Control Guidance (SCG) (Huang et al., 2024)
and Diffusion Policy Gradient (DPG) (Tang et al., 2024), discussed in Sec. 2. For Navier-Stokes,
we also add the conventional Ensemble Kalman Inversion (EKI) (Iglesias et al., 2013).

4.1 IMAGE INVERSE PROBLEMS

Tackling image inverse problems (e.g., deblurring) is common in the literature and serves as a rea-
sonable reference domain for evaluation. We note that we consider a harder version of the problem
where we do not use the gradient of the forward model. Moreover, most imaging problems use a
linear forward model (except for phase retrieval), which is significantly simpler than the non-linear
forward models more often used in scientific domains.

Problem setting We evaluate our algorithm on the standard image inpainting, superresolution,
deblurring (Gaussian), and phase retrieval problems. For inpainting, the forward model is a box
mask with randomized location. For superresolution, we employ bicubic downsampling (either ×2
or ×4) and for Gaussian deblurring, a blurring kernel of size 61 × 61 with standard deviation 3.0.
Finally, phase retrieval takes the magnitude of the Fourier transform of the image as the observation.
We use measurement noise σ = 0.05 in all experiments except for superresolution on 64 × 64
images, where we set σ = 0.01. The pre-trained diffusion model for FFHQ 64 × 64 is taken
unmodified from Karras et al. (2022). The model for FFHQ 256 × 256 is taken from Chung et al.
(2022a) and converted to the EDM framework (Karras et al., 2022) using their Variance-Preserving
(VP) preconditioning.

Evaluation metrics We evaluate the sample quality of all methods using peak signal signal-to-
noise-ratio (PSNR), structural similarity (SSIM) index (Wang et al., 2004), and learned perceptual
image patch similarity (LPIPS) score (Zhang et al., 2018).

Results We show the quantitative results in Table 1(Appendix), and qualitative results in Figure 7
(Appendix). On the easier linear inverse problems (inpainting, superresolution, and deblur), EnKG
comes in second to DPG. On the harder non-linear phase retrieval problem, EnKG is comfortably
the best approach. This trend is consistent with our results in the scientific inverse problems, which
are all non-linear.

4.2 NAVIER-STOKES EQUATION

The Navier-Stokes problem is representative of the key class of scientific inverse problems (Iglesias
et al., 2013) that our approach aims to tackle. The gradient of the forward model is impractical to
reliably compute via auto-differentiation, as it requires differentiating through a PDE solver. Having
effective derivative-free methods would be highly desirable here.

Problem setting We consider the 2-d Navier-Stokes equation for a viscous, incompressible fluid
in vorticity form on a torus, where u ∈ C

(
[0, T ];Hr

per((0, 2π)
2;R2)

)
for any r > 0 is the velocity
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Table 2: Comparison on the Navier-Stokes inverse problem. Numbers in parentheses represent the
sample standard deviation. Metrics to evaluate computation costs are defined in Sec. 4.2. ∗: one or
two test cases are excluded from the results due to numerical instability. Runtime is reported on a
single A100 GPU.

σnoise = 0 σnoise = 1.0 σnoise = 2.0 Computation cost

Relative L2 Relative L2 Relative L2 Total # Fwd Total # DM Seq # Fwd Seq # DM Runtime

EKI 0.577 (0.138) 0.609 (0.119) 0.673 (0.107) 1024k 0 0.50k 0 121 mins

Forward-GSG 1.687 (0.156) 1.612 (0.173) 1.454 (0.154) 2049k 1k 1k 1k 105 mins
Central-GSG 2.203* (0.314) 2.117 (0.295) 1.746 (0.191) 2048k 1k 1k 1k 105 mins
DPG 0.325 (0.188) 0.408* (0.173) 0.466 (0.171) 4000k 1k 1k 1k 228 mins
SCG 0.908 (0.600) 0.928 (0.557) 0.966 (0.546) 384k 384k 0.75k 1k 119 mins
EnKG(Ours) 0.120 (0.085) 0.191 (0.057) 0.294 (0.061) 295k 2695k 0.14k 1.3k 124 mins

Figure 2: Visualization of results on Navier-Stokes inverse problem with different levels of obser-
vation noise. Each observation is subsampled by a factor of 2, representing a sparse measurement.
Note that the results of Central-GSG are here for demonstration purpose because neither Central-
GSG nor Forward-GSG is able to produce reasonable results.

field, w = ∇ × u is the vorticity, w0 ∈ L2
per

(
(0, 2π)2;R

)
is the initial vorticity, ν ∈ R+ is the

viscosity coefficient, and f ∈ L2
per

(
(0, 2π)2;R

)
is the forcing function. The solution operator G

is defined as the operator mapping the vorticity from the initial vorticity to the vorticity at time T .
G : w0 → wT . Our experiments implement it as a pseudo-spectral solver (He & Sun, 2007).

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 2π)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 2π)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 2π)2
(21)

The goal is to recover the initial vorticity field from a noisy sparse observation of the vorticity field
at time T = 1. Eq. (21) does not admit a closed form solution and thus there is no closed form
derivative available for the solution operator. Moreover, obtaining an accurate numerical derivative
via automatic differentiation through the numerical solver is challenging due to the extensive com-
putation graph that can span thousands of discrete time steps. We first solve the equation up to time
T = 5 using initial conditions from a Gaussian random field, which is highly complicated due to
the non-linearity of Navier-Stokes equation. We sample 20,000 vorticity fields to train our diffusion
model. Then, we independently sample 10 random vorticity fields as the test set.

Evaluation metrics We report the relative L2 error to evaluate the accuracy of the algorithm,
which is given by ∥ŵ0−w∗

0∥L2

∥w∗
0∥L2

where ŵ0 is the predicted vorticity and w∗
0 is the ground truth. To

comprehensively analyze the computational requirements of inverse problem solvers, we use the
following metrics: the total number of forward model evaluations (Total # Fwd); the number of
sequential forward model evaluations (Seq. # Fwd), where each evaluation depends on the previous

8
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Figure 3: (a): runtime of single evaluation of the forward model, diffusion model, and diffusion
model gradient (tested on a single A100). (b): comparison of computational characteristics of differ-
ent algorithms on Navier-Stokes problem. Metrics are defined in the ”Evaluation metrics” paragraph
of Sec. 4.2. Each axis is normalized by dividing by the maximum over the algorithms. (c): compare
EnKG with EKI on compute cost versus error.

one.; the total number of diffusion model evaluations (Total # DM); the number of sequential dif-
fusion model evaluations (Seq. # DM), which is analogous to Seq. # Fwd but focuses on diffusion
model evaluation; the total number of diffusion model gradient evaluations (Total # DM grad); the
number of sequential diffusion model gradient evaluations (Seq. # DM grad). These metrics are
designed to reflect the primary computational demands: forward model queries and diffusion model
queries. Sequential metrics are particularly important because they determine the minimum runtime
achievable, independent of the available computational resources. By isolating sequential evalua-
tions, we can better assess the parallelization potential of the algorithm, akin to the “critical path”
concept in algorithm analysis from the computer science literature (Kohler, 1975).

Results In Table 2, we show the average relative L2 error of the recovered ground truth at different
noise levels of the observations. Our EnKG approach dramatically outperforms all other methods.
Qualitatively, we see in Figure 2 that EnKG give solutions which qualitatively preserve important
features of the flow, while some methods completely fail (i.e., overly noisy outputs).

On the computational aspect, the Navier-Stokes forward model (which requires a PDE solve) is
extremely expensive, as shown in Figure 3(a). As such, the number of calls to the forward model
dominates the computational cost. We see in Table 2 that our EnKG approach actually makes the
fewest calls to the forward model (since it uses statistical linearization rather than trying to numeri-
cally approximate the gradient or value function), and thus EnKG is also the most computationally
efficient approach, as seen in Figure 3(b). The traditional Ensemble Kalman Inversion (EKI) ap-
proach also employs statistical linearization, and so we do a detailed comparison in Figure 3(c),
where we see that EnKG dominates EKI in the computational cost versus error trade-off curve.

4.3 BLACK-HOLE IMAGING INVERSE PROBLEM

The black-hole imaging problem is interesting due to its highly non-linear and ill-posed forward
model (i.e., the sparse observations captured by telescopes on Earth). For evaluation purposes, we
assume only black-box access to the forward model.

Problem setting The black hole interferometric imaging system aims to reconstruct image of
black holes using a set of telescopes distributed on the Earth. Each pair of telescopes produces a
measurement V ta,b called visibility, where (a, b) is a pair of telescopes and t is the measuring time.
To mitigate the effect of measurement noise caused by atmosphere turbulence and thermal noise,
multiple visibilities can be grouped together to cancel out noise (Chael et al., 2018), producing noise-
invariant measurements, termed closure phases ycph

t,(a,b,c) and log closure amplitudes ycamp
t,(a,b,c,d). We

specify the likelihood of these measurements similar to Sun & Bouman (2021):

ℓ(y|x) =
∑
t

∥Acph
t (x)− ycph

t ∥22
2β2

cph

+
∑
t

∥Acamp
t (x)− ycamp

t ∥22
2β2

camp

+ ρ
∥
∑

xi − yflux∥22
2

, (22)
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Figure 4: Visualization of generated samples on the black-hole imaging inverse problem. The first
row shows the results on the original resolution, while the second row shows the blurred images in
the intrinsic resolution of the imaging system.

Table 3: Quantitative evaluation of the reconstructed black-hole images.

PSNR ↑ Blurred PSNR ↑ χ2
cph ↓ χ2

camp ↓
Central-GSG 24.700 30.011 4.616 79.669
SCG 20.201 20.976 1.103 1.134
DPG 13.222 14.281 5.116 15.679
EnKG (Ours) 29.093 32.803 1.426 1.270

where Acph
t and Acamp

t measures the closure phase and log closure amplitude of black hole images
x. βcph and βcamp are known parameters from the telescope system. The first two terms are the
sum of chi-square values for closure phases and log closure amplitudes, and the last term constrains
the total flux of the black-hole image. We trained a diffusion model on the GRMHD dataset (Wong
et al., 2022) with resolution 64× 64 to generate black hole images from telescope measurements.

Evaluation metrics We report the chi-square errors of closure phases χ2
cph and closure amplitudes

χ2
camp to measure how the generated samples fit the given measurement. We calculate the peak

signal-to-noise ratio (PSNR) between reconstructed images and the ground truth. Moreover, since
the black-hole imaging system provides only information for low spatial frequencies, following
conventional evaluation methodology (EHTC, 2019), we blur images with a circular Gaussian filter
and compute their PSNR on the intrinsic resolution of the imaging system.

Results Figure 4 shows the reconstructed images of the black-hole using our EnKG method and
the baseline methods with black box access. EnKG is able to generate black hole images with
visual features consistent with the ground truth. Table 3 shows the quantitative comparison. EnKG
achieves relatively low measurement error (i.e., consistency with observations) and the best (blurred)
PSNR compared with baseline methods (i.e., realistic images). SCG achieves slightly better data
fitting metrics, but produces much noisier images than those by EnKG (Figure 4).

5 DISCUSSION

In this work, we propose EnKG, a fully derivative-free approach to solve general inverse problems
that only permit black-box access. EnKG can accommodate different forward models without any
re-training while maintaining the expressive ability of diffusion models to capture complex distri-
bution. The experiments on various inverse problems arising from imaging and partial differential
equations demonstrate the robustness and effectiveness of our methodology.

One limitation of the proposed EnKG is that as a optimization-based method, it cannot capture the
exact posterior distribution and thus cannot provide reliable uncertainty quantification, which might
be important in some applications. Another limitation is that while the per-sample time cost of EnKG
is smaller than the standard gradient-based approach, the total runtime is much longer because EnKG
maintains a whole ensemble of interacting particles. However, as shown in Figure 6, even a small
number of particles can achieve 20-30% relative error reduction. A potential future direction could
be to adaptively control the number of particles according to the optimization landscape to improve
efficiency.
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Table 4: Table of notations.

Notation Description
G the forward model of the inverse problem
ϕ Probability ODE solver
ψ Composition of G and ϕ
Df Jacobian matrix of function f

Lrper Lebesgue space of periodic r-integrable functions

Hr
per Sobolev space of r-times weakly differentiable periodic functions

Γ Covariance matrix of the Gaussian noise model
⟨·, ·⟩Γ Weighted Euclidean inner product, ⟨·, ·⟩Γ =

〈
·,Γ−1·

〉
∇̂f approximate gradient of f

µ Gaussian smoothing factor

Q number of gradient estimation queries

wi log-likelihood gradient scale at step i

N number of sampling steps

Eµ,Q(f(x)) gradient estimator of f(x) using smoothing factor µ and Q queries

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 NOTATION

A.2 PROOFS

Lemma 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented with wi =
1/
(
tr
(
C

(i)
yy

))
as follows,

x
(j)
i+1 = x

(j)
i + wiC

(i)
xy

(
y − ψ

(
x
(j)
i

))
, (23)

where j ∈ {1, . . . , J} and

C(i)
xy =

1

J

J∑
j=1

(
x
(j)
i − x̄i

)(
ψ
(
x
(j)
i

)
− ψ̄i

)⊤
.

Then tr
(
C

(i)
xx

)
monotonically decreases to zero in the limit as i goes to infinity.

Proof. We first start from the ensemble update of the correction step given in Eq. (23) at iteration i
as follows

x
(j)
i+1 = x

(j)
i + wiC

(i)
xy

(
y − ψ

(
x
(j)
i

))
, (24)

where j ∈ {1, . . . , J}. The covariance matrix at the next iteration is given by

C(i+1)
xx =

1

J

J∑
j=1

(x
(j)
i+1 − x̄i+1)(x

(j)
i+1 − x̄i+1)

⊤. (25)
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Plugging the update rule in Eq. (23) into Eq. (25), we have

C(i+1)
xx =

1

J

J∑
j=1

[
(x

(j)
i − x̄i) + wiC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)] [

(x
(j)
i − x̄i) + wiC

(i)
xy (ψ̄i − ψ(x

(j)
i ))

]⊤
=
1

J

J∑
j=1

[
(x

(j)
i − x̄i)(x

(j)
i − x̄i)

⊤ + w2
iC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)(

ψ̄i − ψ(x(j)
i )
)⊤

C(i)⊤
xy

]

+
1

J

J∑
j=1

[
wiC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)
(x

(j)
i − x̄i)

⊤ + wi(x
(j)
i − x̄i)(ψ̄i − ψ(x(j)

i ))⊤C(i)⊤
xy

]
.

(26)
We notice that

1

J

J∑
j=1

wiC
(i)
xy

(
ψ̄i − ψ(x(j)

i )
)(

x
(j)
i − x̄i

)⊤
= −wiC(i)

xyC
(i)⊤
xy

1

J

J∑
j=1

wi

(
x
(j)
i − x̄i

)(
ψ̄i − ψ(x(j)

i )
)⊤

C(i)⊤
xy = −wiC(i)

xyC
(i)⊤
xy .

Therefore, we can rewrite Eq. (26) as follows:

C(i+1)
xx = C(i)

xx − 2wiC
(i)
xyC

(i)⊤
xy + w2

iC
(i)
xyC

(i)
yyC

(i)⊤
xy .

Further, by linearity of trace, we have

tr
(
C(i+1)
xx

)
= tr

(
C(i)
xx

)
− 2witr

(
C(i)
xyC

(i)⊤
xy

)
+ w2

i tr
(
C(i)
xyC

(i)
yyC

(i)⊤
xy

)
.

By cyclic and submultiplicative properties, we have

w2
i tr
(
C(i)
xyC

(i)
yyC

(i)⊤
xy

)
= w2

i tr
(
C(i)
yyC

(i)⊤
xy C(i)

xy

)
≤ w2

i tr
(
C(i)
yy

)
tr
(
C(i)⊤
xy C(i)

xy

)
.

Since wi = 1/
(
tr
(
C

(i)
yy

))
, we have

tr
(
C(i+1)
xx

)
≤ tr

(
C(i)
xx

)
− 2

tr
(
C

(i)
yy

) tr (C(i)
xyC

(i)⊤
xy

)
+

1

tr
(
C

(i)
yy

) tr (C(i)⊤
xy C(i)

xy

)
= tr

(
C(i)
xx

)
− 1

tr
(
C

(i)
yy

) tr (C(i)
xyC

(i)⊤
xy

)
. (27)

By Assumption 1 and 2, we know that both tr
(
C

(i)
xx

)
and tr

(
C

(i)
yy

)
are upper bounded. By As-

sumption 3, tr
(
C

(i)
xyC

(i)⊤
xy

)
is lower bounded unless all the ensemble members collapse to a single

point. Thus, there exists a α > 0 such that tr
(
C

(i)
xyC

(i)⊤
xy

)
≥ α · tr

(
C

(i)
xx

)
tr
(
C

(i)
yy

)
. Therefore,

tr
(
C(i+1)
xx

)
≤ tr

(
C(i)
xx

)
− 1

tr
(
C

(i)
yy

) tr (C(i)
xyC

(i)⊤
xy

)
≤ (1− α) tr

(
C(i)
xx

)
.

Note that from Eq. (27), we have α ≤ 1. Therefore, tr
(
C

(i)
xx

)
monotonically decreases to zero.

Additionally, we empirically check how quickly the average distance decays as we iterate in our
experiments as shown in Figure 5.

Proposition 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented as follows
with wi = 1/

(
tr
(
C

(i)
yy

))
,

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x
′(j)
i

))
(28)

= x
′(j)
i + wi

1

J

J∑
k=1

〈
ψ
(
x
′(k)
i

)
− Ḡ,y − ψ

(
x
′(j)
i

)〉
Γ

(
x
′(j)
i − x̄i

)
, (29)
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Figure 5: Distance of ensemble members quickly decays over update steps. Empirical verification
of Lemma 1.

where

C(i)
xy =

1

J

J∑
j=1

(
x
′(j)
i − x̄i

)(
ψ
(
x
′(j)
i

)
− ψ̄i

)⊤
.

After sufficient iterations, we have the following approximation:

C(i)
xy

(
y − ψ

(
x
′(j)
i

))
=

1

J

J∑
k=1

〈
ψ
(
x
′(k)
i

)
− Ḡ,y − ψ

(
x
′(j)
i

)〉
Γ

(
x
′(j)
i − x̄i

)
(30)

≈ C(i)
xx∇x log p̂

(
y|x′(j)

i

)
. (31)

Proof. Note that we can always normalize the problem so that Γ is identity. Therefore, without loss
of generality and for the ease of notation, we assume Γ = I throughout the whole proof. Given
the inverse problem setting in Eq. 1 where the observation noise is Gaussian, we can rewrite the
preconditioned gradient w.r.t x′(j)

i as

C(i)
xx∇ log p̂

(
y|x′(j)

i

)
(32)

= − 1

J

J∑
k=1

(
x
′(k)
i − x̄i

)(
x
′(k)
i − x̄i

)⊤
∇1

2

∥∥∥ψ (x′(j)
i

)
− y

∥∥∥2 (33)

= − 1

J

J∑
k=1

(
x
′(k)
i − x̄i

)(
x
′(k)
i − x̄i

)⊤
D⊤ψ

(
x
′(j)
i

)(
ψ
(
x
′(j)
i

)
− y

)
(34)

= − 1

J

J∑
k=1

(
x
′(k)
i − x̄i

)(
Dψ

(
x
′(j)
i

)
x
′(k)
i −Dψ

(
x
′(j)
i

)
x̄i

)⊤ (
ψ
(
x
′(j)
i

)
− y

)
(35)

= − 1

J2

J∑
k=1

J∑
l=1

(
x
′(k)
i − x̄i

)(
Dψ

(
x
′(j)
i

)(
x
′(k)
i − x

(l)
i

))⊤ (
ψ
(
x
′(j)
i

)
− y

)
. (36)

By definition, we have

tr
(
C(i)
xx

)
= tr

 1

J

J∑
j=1

(
x
(j)
i − x̄i

)(
x
(j)
i − x̄i

)⊤
=

1

J

J∑
j=1

tr

((
x
(j)
i − x̄i

)⊤ (
x
(j)
i − x̄i

))

=
1

J

J∑
j=1

∥x(j)
i − x̄i∥22,

which represents the average distance between ensemble members. By Lemma 1, we know that
tr
(
C

(i)
xx

)
monotonically decreases to zero in the limit. Therefore, the ensemble members will get
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sufficiently close as we iterate. Therefore, we can apply first-order Taylor approximation to ψ at
x
′(j)
i under Assumption 1 and obtain

ψ
(
x
′(k)
i

)
= ψ

(
x
′(j)
i + x

′(k)
i − x

′(j)
i

)
= ψ

(
x
′(j)
i

)
+Dψ

(
x
′(j)
i

)(
x
′(k)
i − x

′(j)
i

)
+O

(
∥x′(k)

i − x
′(j)
i ∥

2
2

)
,

where k ∈ {1, . . . , J}. Therefore for any k, l ∈ {1, . . . , J}, by applying the approximation above
at both x

′(k)
i and x

′(l)
i , we have

ψ
(
x
′(k)
i

)
− ψ

(
x
′(l)
i

)
≈Dψ

(
x
′(j)
i

)(
x
′(k)
i − x

′(l)
i

)
We then plug it into Eq. 36

C(i)
xx∇ log p̂

(
y|x′(j)

i

)
≈ − 1

J2

J∑
k=1

J∑
l=1

(
x
′(k)
i − x̄i

)(
ψ
(
x
′(k)
i

)
− ψ

(
x
(l)
i

))⊤ (
ψ
(
x
′(j)
i

)
− y

)
= − 1

J

J∑
k=1

(
x
′(k)
i − x̄i

)(
ψ
(
x
′(k)
i

)
− ψ̄i

)⊤ (
ψ
(
x
′(j)
i

)
− y

)
= − 1

J

J∑
k=1

〈
ψ
(
x
′(k)
i

)
− ψ̄i, ψ

(
x
′(j)
i

)
− y

〉(
x
′(k)
i − x̄i

)
=

1

J

J∑
k=1

〈
G(x̂

′(k)
N )− Ḡ,y −G(x̂(k)

N )
〉(

x
′(k)
i − x̄i

)
,

concluding the proof.

A.3 ZERO-ORDER GRADIENT ESTIMATION BASELINE

We use the forward Gaussian smoothing and central Gaussian smoothing gradient estimation meth-
ods to establish a baseline to compare against. These methods approximate the gradient of a function
using only function evaluations and can be expressed in the following (Forward-GSG) form :

∇̂f(x) =
Q∑
i

f(x+ µui)− f(x)
µ

ũi (37)

And Central-GSG:

∇̂f(x) =
Q∑
i

f(x+ µui)− f(x− µui)
2µ

ũi (38)

For Gaussian smoothing, ui follows the standard normal distribution and ũi =
1
Qui. The smoothing

factor µ and number of queries Q are both tunable hyperparameters.

Posterior sampling requires computation of the scores ∇xt
log p(xt) and ∇xt

log p(y | xt); the
former is learned by the pre-trained diffusion model, and the latter can be estimated by various
approximation methods. In our baseline derivative-free inverse problem solver, we substitute the
explicit automatic differentiation used in algorithms such as DPS with (37) and (38). We estimate
this gradient by leveraging the fact that a probability flow ODE deterministically maps every xt to
x0; ∇̂x̂0

log p(y | x̂0) is approximated with Gaussian smoothing, and a vector-Jacobian product
(VJP) is used to then calculate ∇̂xt

log p(y | xt). Our gradient estimate is defined as follows:

∇̂xt log p(y | xt) = ∇̂xt log p(y | x̂0) = D⊤
xt
x̂0∇̂x̂0

log p(y | x̂0) (39)
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Algorithm 3 Central/Forward-GSG baseline with σ(t) = t and s(t) = 1

Require: G,y, Dθ, {ti}Ni=1, {wi}Ni=1, Eµ,Q

1: sample x0 ∼ N (0, t20I)

2: for i ∈ {0, . . . , N − 1} do
3: x̂0 ← Dθ (xi, ti)

4: x′
i ← xi +

xi−x̂0

ti
(ti+1 − ti) ▷ Prior prediction step

5: ∇̂xi
log p(y|xi)← ∇xi

(x̂⊤
0 Eµ,Q(log p(y | x̂0))) ▷ Gradient estimation

6: xi+1 ← x′
i + wi∇̂xt

log p(y|xi) ▷ Guidance correction step
7: end for
8: return xN

1000 2000 3000 4000
Number of particles

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Re
l. 

L2
 E

rro
r

Figure 6: Ablation study on the number of particles for Navier-Stokes. The shaded region represents
best and worst particle.

D⊤
xt

is the transpose of the Jacobian matrix; (39) can be efficiently computed using automatic differ-
entiation. Note that although automatic differentiation is used, differentiation through the forward
model does not occur. Thus, this method is still applicable to non-differentiable inverse problems.
Furthermore, we choose to perturb x̂0 and use a VJP rather than directly perturb xt so that we
can avoid repeated forward passes through the pre-trained network, which is very expensive. Pseu-
docode for these algorithms is provided in Algorithm 3.

A.4 ENKG IMPLEMENTATION DETAILS

There are mainly two design choices in our algorithm 2 to be made. The first is the step size wi
which controls the extent to which the correction step moves towards the MAP estimator. In the
ensemble Kalman literature (Kovachki & Stuart, 2019), the following adaptive step size is widely
used, and we adopt it for our experiments as well.

w−1
i =

1

J2

√√√√ J∑
k=1

∥∥∥G(x̂′(k)
N )− Ḡ

∥∥∥2 ∥∥∥y −G(x̂(j)
N )
∥∥∥2 (40)

Secondly, we find it useful to perform two correction steps in Eq. (6) when solving highly nonlinear
and high-dimensional problems such as Navier Stokes. Therefore, we perform two correction steps
at each iteration when running experiments on Navier Stokes.
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Table 5: Qualitative evaluation on FFHQ 64x64 dataset. We report average metrics for image quality
and samples consistency on four tasks. Measurement noise level σ = 0.05 is used if not otherwise
stated.

Inpaint (box) SR (×2, σ = 0.01) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Forward-GSG 19.62 0.612 0.189 25.25 0.836 0.093 20.27 0.606 0.170 10.307 0.170 0.493
Central-GSG 21.37 0.764 0.095 27.41 0.916 0.030 20.88 0.729 0.123 11.36 0.283 0.619
DPG 21.92 0.799 0.088 26.86 0.917 0.027 20.00 0.734 0.114 15.56 0.438 0.446
SCG 20.27 0.734 0.098 27.02 0.910 0.036 20.73 0.754 0.100 10.59 0.233 0.617
EnKG(Ours) 23.53 0.822 0.067 29.52 0.930 0.036 22.02 0.698 0.136 26.14 0.840 0.122

Figure 7: Qualitative results on FFHQ 256.

A.5 BASELINE DETAILS

A.6 ADDITIONAL RESULTS

We include more qualitative results for inverse problems on FFHQ 256x256 dataset in Figure 7.

A.7 DETAILS OF BLACK HOLE IMAGING

The measurement of black hole imaging is defined as (Sun & Bouman, 2021)

ycph
t,(a,b,c) = ∠(V ta,bV

t
b,cV

t
a,c) := A

cph
t,(a,b,c)(x) (41)

ycamp
t,(a,b,c,d) = log

(
|V ta,b||V tc,d|
|V ta,c||V tb,d|

)
:= Acamp

t,(a,b,c,d)(x) (42)

where Va,b is the visibility defined by

V ta,b(x) = gtag
t
b exp(−i(ϕta − ϕtb)) · Ĩta,b(x) + ηa,b. (43)

ga, gb are telescope-based gain errors, ϕta, ϕ
t
b are phase errors, and ηa,b is baseline-based Gaussian

noise. The measurements consist of (M − 1)(M − 2)/2 closure phases ycph and M(M − 3)/2 log
closure amplitudes ycamp for an array ofM telescopes. Our experiments useM = 9 telescopes from
Event Horizon Telescope.
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Table 6: Hyperparameter choices for Forward-GSG and Central-GSG (64× 64).

Inpaint (box) SR (×2, σ = 0.01) Deblur (Gauss) Phase retrieval

Forward GSG
µ 0.001 0.001 0.001 0.001
Q 10000 10000 10000 10000
wi 1.0 1.0 1.0 1.0
N 1000 1000 1000 1000

Central GSG
µ 0.001 0.001 0.001 0.001
Q 10000 10000 10000 10000
wi 1.0 1.0 1.0 1.0
N 1000 1000 1000 1000

Table 7: Hyperparameter choices for baselines Forward-GSG and Central-GSG (256× 256).

Inpaint (box) SR (×4, σ = 0.05) Deblur (Gauss) Phase retrieval

Forward-GSG
µ 0.01 0.01 0.01 0.01
Q 10000 10000 10000 10000
wi 1.0 1.0 3.0 0.7
N 1000 1000 1000 1000

Central-GSG
µ 0.01 0.01 0.01 0.01
Q 10000 10000 10000 10000
wi 1.0 1.0 3.0 0.7
N 1000 1000 1000 1000

A.8 ADDITIONAL COMPARISON

To provide a more comprehensive evaluation, we provide comparisons against several gradient-
based methods across different tasks.

Image restoration on FFHQ256 Table 8 presents comparisons with DPS (Chung et al., 2023b)
and DiffPIR (Zhu et al., 2023) on four image restoration tasks: inpainting, super-resolution (x4), de-
blurring, and phase retrieval. We observe that EnKG achieves performance comparable to gradient-
based methods, with no single approach emerging as a clear winner across all tasks. This demon-
strates that EnKG offers competitive performance while maintaining its derivative-free property.

Navier-Stokes equation Table 9 reports comparison with DPS and PnP-DM (Wu et al., 2024) on
the Navier-Stokes equation problem. We observe that EnKG clearly outperforms the gradient-based
methods, while PnP-DM encounters numerical instability, resulting in either a crash or timeout.

Figure 8: Vorticity field predicted by EnKG with different number of particles. From left to right,
the result gets better as we increase the number of particles.
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Since DPS and PnP-DM do not have such experiments in their paper, we perform a grid search
for its guidance scale over range [10−3, 102] to find the best choice. For PnP-DM, we explore all
hyperparameter combinations mentioned in their paper; however, all result in a numerical crash
within the PDE solver. Although reducing the Langevin Monte Carlo learning rate improved sta-
bility, it led to infeasible runtimes (e.g., exceeding 100 hours). Consequently, we mark PnP-DM
as “crashed/timeout” in Table 9. Additionally, in this problem, autograd encounters out-of-memory
issues when the pseudospectral solver unrolls beyond approximately 6k steps on an A100-40GB
GPU. This limitation suggests that gradient-based methods may not be applicable to more complex
problems that require a large number of PDE solver iterations.

Black hole imaging As shown in Table 10 shows additional comparisons for the black hole imag-
ing problem, including DPS and PnP-DM. Once again, EnKG delivers performance comparable to
gradient-based methods. For DPS, we performed a grid search to optimize hyperparameters, while
for PnP-DM, we used the settings provided in their paper. These results further demonstrate the
robustness and competitiveness of EnKG across diverse scientific inverse problems.

Table 8: Additional comparison with a few gradient-based methods on FFHQ 256x256 dataset.
We report average metrics for image quality and consistency on four tasks. Measurement noise is
σ = 0.05 unless otherwise stated.

Inpaint (box) SR (×4) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Gradient-based
DPS 21.77 0.767 0.213 24.90 0.710 0.265 25.46 0.708 0.212 14.14 0.401 0.486
DiffPIR 22.87 0.653 0.268 26.48 0.744 0.220 24.87 0.690 0.251 22.20 0.733 0.270

Black-box access
EnKG(Ours) 21.70 0.727 0.286 27.17 0.773 0.237 26.13 0.723 0.224 20.06 0.584 0.393

Table 9: Additional comparison of relative L2 error on the Navier-Stokes inverse problem. Numbers
in parentheses represent the sample standard deviation.

σnoise = 0 σnoise = 1.0 σnoise = 2.0

Gradient-based
DPS 0.308 (0.214) 0.349 (0.246) 0.382 (0.228)
PnP-DM Crashed or timeout Crashed or timeout Crashed or timeout

Black-box access
EnKG(Ours) 0.120 (0.085) 0.191 (0.057) 0.294 (0.061)

Table 10: Additional comparison with a few gradient-based methods on the black-hole imaging
problem.

PSNR ↑ Blurred PSNR ↑ χ2
cph ↓ χ2

camp ↓
DPS 23.984 26.220 1.212 1.079
PnP-DM 28.211 32.499 1.120 1.224
EnKG (Ours) 29.093 32.803 1.426 1.270

A.9 ROBUSTNESS TO THE PRETRAINED PRIOR QUALITY

In this section, we conduct a controlled experiment on Navier-Stokes equation problem to investigate
the performance dependence on the quality of pre-trained diffusion models. Specifically, we trained
a diffusion model prior using only 1/10 of the original training set and limited the training to 15k
steps to simulate a lower-quality model. We evaluate the top two algorithms, EnKG and DPG, with
the same hyperparameters used in the main experiments.

Robust performance As shown in Table 11, we observe that while both algorithms experienced a
performance drop due to the reduced quality of the diffusion model, the decline was relatively small
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compared to the significant reduction in training data. Notably, our EnKG demonstrated greater
robustness, with a smaller performance drop than the best baseline method, DPG. These results
indicate that while EnKG benefits from high-quality diffusion models, it is not overly sensitive to
their quality. It maintains strong performance even with reduced model capabilities.

Table 11: Relative L2 error of DPG and EnKG (ours) with different diffusion model quality.

Original model trained with full data New model trained with 1/10 data

DPG 0.325 (0.188) 0.394 (0.178)
EnKG (Ours) 0.120 (0.085) 0.169 (0.117)
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