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Abstract

It is a crucial challenge to reconstruct population dynamics using unlabeled sam-
ples from distributions at coarse time intervals. Recent approaches such as flow-
based models or Schrödinger Bridge (SB) models have demonstrated appealing
performance, yet the inferred sample trajectories either fail to account for the
underlying stochasticity or are unnecessarily rigid. In this article, We extend the
approach in [1] to operate in continuous space and propose Deep Momentum
Multi-Marginal Schrödinger Bridge (DMSB), a novel computational framework
that learns the smooth measure-valued spline for stochastic systems that satisfy
position marginal constraints across time. By tailoring the celebrated Bregman
Iteration and extending the Iteration Proportional Fitting to phase space, we manage
to handle high-dimensional multi-marginal trajectory inference tasks efficiently.
Our algorithm outperforms baselines significantly, as evidenced by experiments
for synthetic datasets and a real-world single-cell RNA sequence dataset. Addition-
ally, the proposed approach can reasonably reconstruct the evolution of velocity
distribution, from position snapshots only, when there is a ground truth velocity
that is nevertheless inaccessible.

1 Introduction

We consider the multi-marginal trajectory inference problem, which pertains to elucidating the
dynamics and reactions of indiscernible individuals, given static snapshots of them taken at sporadic
time points. Due to the inability of tracking each individual, one considers the evolution of the
statistical distribution of the population instead. This problem received considerable attention,
and associated applications appear in various scientific areas such as estimating cell dynamics
[2, 3], predicting meteorological evolution [4], and medical healthcare statistics tracking [5]. [6,
7] constructed an energy landscape that best aligned with empirical observations using neural
network. [8, 9] learn regularized Neural ODE [10] to encode such potential landscape. Notably,
in the aforementioned work, the trajectory of samples is represented in a deterministic way. In
contrast, [11, 12] employ Schrödinger Bridge (SB) to determine the most likely evolution of samples
between marginal distributions when individual sample trajectories are also affected by environmental
stochasticity. Yet, these approaches scale poorly w.r.t. the state dimension due to specialized neural
network architectures and computational frameworks.

SB can be viewed as a solution to the entropy-regularized optimal transport problem. SB seeks a
nonlinear SDE that yields a straight path measure between two arbitary distributions. The straightness
is implied by achieving optimality of minimizing transportation costs (i.e. 2-Wasserstein distance
(W2)). We note SB is often related to Score-based Generated Model (SGM), both of which can be
used for generative modeling by constructing certain Stochastic Differential Equation (SDE) that
links data distribution and a tractable prior distribution (i.e. 2 marginals). SGM accomplishes the
generative task by first diffusing data to prior through a pre-specified linear SDE, during which a
neural network is also learned to approximate the score function. Then this score approximator is
used to reverse this diffusion process, and consequently establish the generation. Critically-damped
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Table 1: Comparison between different models in terms of optimality and boundary distributions p0
and p1. Our DMSB extends standard SB, which generalizes SGM beyond Gaussian priors, to phase
space, similar to CLD. However, unlike CLD, DMSB jointly learns the phase space distributions,
i.e., pθ(x, v) = pA(x)qθ(v|x) and pϕ(x, v) = pB(x)qϕ(v|x). In other words, DMSB infers the
underlying phase state dynamics given only state distributions.

Models Optimality p0(·) p1(·)
SGM [20] ✗ pA(x) N (0,Σ)
CLD [13] ✗ pA(x)⊗N (0,Σ) N (0,Σ)⊗N (0,Σ)
SB [14] ↓ W2 → kinks pA(x) pB(x)

DMSB (ours) ↓ W2 → smooth pA(x)qθ(v|x) pB(x)qϕ(v|x)

Langevin Diffusion (CLD) [13] extends the SGM SDE to the phase space by introducing an auxiliary
velocity variable with a tractable Gaussian distribution at both the initial and terminal time. The
resulting trajectory in the position space becomes smoother, as stochasticity is only injected into the
velocity space, and the empirical performance and sample efficiency are enhanced due to the structure
of the critical damped SDE. The connection between SGM and SB has been elaborated in [14, 15]
and scalable mean matching Iterative Proportional Fitting algorithm (IPF) is proposed to estimate SB
efficiently in high dimensional cases. Applications of SB, such as image-to-image transformation
[16, 17], RNA trajectory inference [11], solving Mean Field Game[18], Riemannian interpolation
[19], demonstrate the effectiveness of SB in various domains.

In this work, we start with SB in phase space (termed momentum SB, mSB in short), and then
further investigate mSB with multiple empirical marginal constraints present in the position space,
which was formulated as multi-marginal mSB (mmmSB) in [1]. This circumvents the need for
expensive space discretization which does not scale well to high dimensions. We also address the
challenge of intricate geometric averaging in continuous space setup by strategically partitioning and
reorganizing the constraint sets. Furthermore, we enhance the algorithm’s computational efficiency
by incorporating the method of half-bridge IPF. The optimality of transportation cost in SB leads to
straight trajectories, and if one solves N 2-marginal SB problems and connect the resulting trajectories
to match N+1 marginals, the connected trajectories will have kinks at all connection points. On the
contrary, in mmmSB, the optimality of transportation cost leads to a smooth measure-spline over the
state space that also interpolates the empirical marginals. Therefore, this approach is highly suitable
for problems originated from physical systems and/or those that should have smooth trajectories,
such as trajectory inference in single-cell RNA sequencing. Our research will emphasize on solving
mmmSB efficiently in high-dimensions (thus the approach will differ from that in the seminal work
[1]; see Sec.4). The differences between our algorithm and prior work are demonstrated in Table.1,
and the main contributions of our work are fourfold:

• We extend the mean matching IPF to phase space allowing for scalable mSB computing.

• We introduce and tailor the Bregman Iteration [21] for mmmSB which makes it compatible with
the phase space mean matching objective, thus the efficient computation is activated for high
dimensional mmmSB.

• We show how to overcome the challenge of sampling the velocity variable when it is not available
in training data, which enhances the applicability of our model.

• We show the performance of proposed algorithm DMSB on toy datasets which contains intricate
bifurcations and merge. On realistic high-dimension (100-D) single-cell RNA-seq (scRNA-seq)
datasets, DMSB outperforms baselines by a significant margin in terms of the quality of the
generated trajectory both visually and quantitatively. We show that DMSB is able to capture
reasonable velocity distribution compared with ground truth while other baselines fail.

2



2 Preliminary

2.1 Dynamical Schrödinger Bridge problem

Dynamical Schrödinger Bridge problem has been extensively studied in the past few decades. The
objective of the SB problem is to solve the following optimization problem:

min
π∈Π(ρ0,ρT )

DKL (π||ξ) , (1)

where π ∈ Π(ρ0, ρT ) belongs to a set of path measures with its marginal densities at t = 0 and T
being ρ0 and ρT . ξ is the reference path measure (i.e., [14] sets ξ as Wiener process from ρ0). The
optimality of the problem (1) is characterized by a set of PDEs (3).
Theorem 2.1 ([22]). The optimal path measure π in the problem (1) is represented by forward and
backward stochastic processes

dxt = [2∇x logΨt]dt+
√
2 dwt, x0 ∼ ρ0, (2a)

dxt = [−2 ∇x log Ψ̂t]dt+
√
2 dŵt,xT ∼ ρT . (2b)

in which Ψ, Ψ̂ ∈ C1,2 are the solutions to the following coupled PDEs,

∂Ψt

∂t
= −∆Ψt,

∂Ψ̂t

∂t
= ∆Ψ̂t

s.t. Ψ(0, ·)Ψ̂(0, ·) = ρ0(·), Ψ(T, ·)Ψ̂(T, ·) = ρT (·),
(3)

The stochastic processes of SB in (2a) and (2b) are equivalent in the sense of ∀t ∈ [0, T ], p
(2a)
t ≡

p
(2b)
t ≡ pSB

t . Here pSB
t stands for the marginal distribution of SB at time t, which also represents the

marginal density of stochastic process induced by either of Eq.2. The potentials Ψt and Ψ̂t explicitly
represent the solution of Fokker-Plank Equation (FPE) and Hamilton–Jacobi–Bellman equation (HJB)
after exponential transform [14] where FPE describes the evolution of samples density and HJB
represents for the optimality of Eq.1. Furthermore, the marginal density also obeys a factorization
of pSB

t = ΨtΨ̂t. Such rich structures of SB will later on be used to construct the log-likelihood
objective (Thm.B.1) and Langevin sampler for velocity (§4.4).

To solve SB, prior work have primarily used the half-bridge optimization technique, also known as
Iterative Proportional Fitting (IPF), in which one iteratively solves the optimization problem with one
of the two boundary conditions [14, 15, 23],

π(d+1) := argmin
π∈Π(·,ρ1)

DKL(π||π(d)) ⇄ π(d+2) := argmin
π∈Π(ρ0,·)

DKL(π||π(d+1)) (4)

with initial path measure π(0) := ξ. By repeatedly iterating over aforementioned optimizations until
the algorithm converges, the SB solution will be attained as πSB ≡ limd→∞ π(d) [24]. In addition,
[25] shows that the drift term in SB problem can also be interpreted as the solution Stochastic Optimal
Control (SOC) problem by having optimal control policy z∗ = 2∇x logΨ(t,xt):

z∗(x) ∈ argmin
z∈Z

E

[∫ T

0

1

2
∥zt∥2dt

]
s.t

{
dxt = ztdt+

√
2 dwt

x0 ∼ ρ0, x1 ∼ ρT .

This formulation will be used later on for constructing phase space likelihood objective function in
§3. Regarding solving the half-bridge problem, abundant results exist in the literature for the vanilla
SB described above [14, 15, 23], but we will be solving a different SB problem; see Prop.4.1 for
formulation and §.4 for a solution.

2.2 Bregman Iterations for Multiple Constraints

Bregman iteration [21] can be viewed as a multiple marginal generalization of IPF, and it is widely
used to solve entropy regularized optimal transport problem [1] with multiple constraints. The
algorithm can efficiently solve problems in the form of,

inf
π∈K

KL (π|ξ) ,
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Figure 1: A summary of various SB problems and corresponding algorithms. The toy example in
the 3rd row illustrates that vanilla SB determines ‘straight’ paths (modulo fluctuations due to noise)
between pairwise empirical marginals, while our multi-marginal momentum SB approach establishes
a smooth measure-spline between marginals in the position space (albeit still stochastic, the path is
smooth between any pair of adjacent 2 marginals, because noise is added to velocity, and the path is
also smooth across different pairs of adjacent 2 marginals per design.

where K is the intersection of multiple closed convex constraint sets Kl: K = ∩L
l=1Kl. Bregman

Projection (BP) is defined as optimization w.r.t one of the constraint Kl,

PKL
Kl

(ξ) := argmin
π∈Kl

KL(π|ξ),

and d-th Bregman Iteration (BI) is recursively computing BP over all the constraints in K:

∀0 < n ≤ L, π(d,n) := PKL
Kn

l
(π(d,n−1)),

The initial condition for (d+ 1)-th BI is π(d+1,0) = π(d,L). Under certain conditions (see e.g., [24]),
one has that π(d,L) converges to the unique solution:

π(d,L) → PKL
K (ξ) as d → +∞

Remark 2.2. One BI traverses all constraints via multiple BPs, and each BP solves an optimization
problem with one constraint.One can notice that the BI will become the aforementioned IPF procedure
solving SB problem (1) by defining L = 2, K1 = Π(ρ0, ·), K2 = Π(·, ρ1).

Table 2: Mathematical notation.

Notation Definition
x position variable
v velocity variable
m concatenation of [x,v]T

Notation Definition
ρ position distribution ρ(x)
γ velocity Distribution γ(v)
µ distribution of µ(x,v)

3 Momentum Schrödinger Bridge

We first describe how to conduct half-bridge IPF training in the phase space, which can be used
to solve momentum SB (mSB) problem with two marginals constraints. This scalable phase space
half-bridge technique will then be applied to multi-marginal cases (Sec.4). Fig.1 demonstrates
how we develop an algorithm based on [14]. Notations used in following sections are listed in
Table.2. mSB extends SB problem to phase space, which consists of both position and velocity.
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We will first consider boundary distributions that depend on both x and v, although eventually
we will use this as a module to find transport maps between two distributions that only depend
on position x, as velocity v is an auxiliary variable artificially introduced for obtaining smooth
transport. Conceptually, as an entropy regularized optimal transport problem, SB tries to obtain the
straightest path between empirical marginals of positions x with additive noise, but mSB aims at
finding the smooth interpolation between empirical marginals of x [26] conditioned on boundary
velocity distributions (see Fig.1). Such smooth measure-valued splines in the position space are
obtained by the optimization problem in the phase space [1]:

min
π∈Π(µ0,µT )

KL(π|ξ) s.t π = Law(x,v) :

(
dxt

dvt

)
︸ ︷︷ ︸

dmt

=

(
vt

0

)
︸ ︷︷ ︸
f(v,t)

dt+
(
0 0
0 gt

)
︸ ︷︷ ︸

g(t)

(
0
zt

)
︸ ︷︷ ︸
Z(t)

dt+
(
0 0
0 gt

)
︸ ︷︷ ︸

g(t)

dwt,

Similar to Theorem 2.1, one can derive a set of PDEs using the potential functions Ψ(t,x,v) and
Ψ̂(t,x,v), and subsequently apply IPF procedure to solve the problem. The formulation of the
phase space PDE can be found in Appendix.B.2. Such PDE representation of mSB results in a
straightforward yet innovative log-likelihood training that enables efficient optimization of the IPF.

Proposition 3.1 (likelihood bound). The half-bridge IPF in phase space

π(d+1) := argmin
π∈Π(µ0,·)

DKL(π||π(d)) ⇄ π(d+2) := argmin
π∈Π(·,µT )

DKL(π||π(d+1))

represents the bound of the likelihood and gives approximate likelihood training:

Zt := argmin
Zt

− log p(m0, 0) ⇄ Ẑt := argmin
Ẑt

− log p(mT , T ).

where log p(m0, 0) ∝
∫ T

0

Em̂t

[
1

2
∥ẑt + zt − g∇v log p̂t∥2

]
dt.

and m̂t samples from: dm̂t =
[
f − gẐt

]
dt+ g(t)dwt, m̂T ∼ µT (5)

Ẑt
∆
=

(
0
ẑt

)
and p̂t is the density of path measure induced by eq.5 at time t. A similar result for

log(mT , T ) can be obtained in a similar derivation.

Proof. See Appendix B.1.

Remark 3.2. After optimizing Ẑt, the reference path measure becomes eq.5, which implies π ∈
Π(·, µT ), i.e., the constraint in half-bridge IPF is satisfied. A path measure π is induced by either Zt or
Ẑt. As being mentioned in Remark.2.2. One half-bridge IPF is basically one BP and one IPF is one BI.
Prop.3.1 provides a convenient way to perform one BP in the form of π := argminπ∈Kl

DKL(π||π̄)
by maximizing log-likelihood given constraint K and reference path measure π̄.

Prop.3.1 provides an alternative way to conduct the BI which will be heavily used in mmmSB §3,
and it is computationally efficient after parameterizing and discretization (§4.4).

4 Deep Momentum Multi-Marginal Schrödinger Bridge

We first state the problem formulation of momentum multi-marginal Schrödinger Bridge (mmmSB).
Different from previous two marginals case, we consider the scenario where N + 1 probability
measures µti are lying at time ti. In addition, velocity distributions are not necessarily known.

Proposition 4.1 ([1]). The dynamical mmmSB with multiple marginal constraints reads:

min
π

J (π) :=

N−1∑
i=0

KL
(
πti:ti+1

|ξti:ti+1

)
, s.t π ∈ K := ∩N

i=0Kti (6)
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Figure 2: The procedure details the Bregman Iteration (BI) employed in DMSB. The gray and blue
blocks represent the BP step performed under Kboundary constraint for forward and backward policies,
respectively. The red block signifies the BP step executed under the Kbridge constraint. Algorithms for
training and sampling can be found in Appendix.D.

where: Kt0 =

{∫
πt0:t1dmt1 = µt0 ,

∫
µt0dvt0 = ρt0

}
KtN =

{∫
πtN−1:tN dmtN−1

= µtN ,

∫
µtN dvtN = ρtN

}
Kti =

{∫
πti:tt+1dmti+1 = µti ,

∫
πti−1:tidmti−1 = µti ,

∫
µtidvti = ρti

}
, (7)

and K is the intersection of close convex set of Kti .

The problem described in Prop.4.1 can be solved by classical BI algorithm integrated with Sinkhorn
method [1]. However, due to the curse of dimensionality and unfavorable geometric explicit solution,
the BP cannot be applied in high-dimensional and continuous state space directly. To tackles these
difficulties, we parameterize the forward and backward policies zt and ẑt by a pair of neural networks.
We further decouple and resemble the constraints by which it enables the scalable likelihood IPF and
avoids the geometric averaging issue under mmmSB context.

4.1 Decoupling and Reassembling Constraints

We decompose the constraint set (7) by

Kti = ∩2
r=0Kr

ti , where
K0

ti =
{∫

πti:tt+1
dmti+1

= µ̂ti ,
∫
µ̂tidvti = ρti

}
K1

ti =
{∫

πti−1:tidmti−1 = µti ,
∫
µtidvti = ρti

}
K2

ti =
{∫

πti:tt+1
dmti+1

=
∫
πti−1:tidmti−1

}
.

(8)

One can notice that the K0
ti and K1

ti share similar structure as simpler boundary marginal conditions
Kt0 and KtN , hence we can get rid of the notorious geometric averaging (see §4 in [1]). Notably, this
type of constraint provides an opportunity to utilize Proposition 3.1 for optimization, but the joint
distribution of x and v is still absent. We classify the constraints into two categories:

Kboundary =
{
∩N−1
i=1 Kr

ti ∩ Kt0 ∩ KtN |∀r ∈ {0, 1}
}
, Kbridge =

{
∩N−1
i=1 K2

ti

}
.

By following BI (§2.2), we execute optimization w.r.t. (6) while projecting the solution to subset of
Kboundary or Kbridge iteratively. The sketch can be found in Fig.2. The next sections will provide more
details on obtaining the joint distribution µ and optimizing within each constraint set.

Hereafter, we only demonstrate the optimization for forward policy zt given reference path measure
π̄ driven by fixed backward policy ẑt. The procedure can be applied for the ẑt and vice versa.

4.2 Optimization in set Kboundary

We first show how to optimize forward policy zt w.r.t. objective function (6) given the reference path
measure π̄ driven by fixed backward policy ẑt under one subset of Kboundary.
Proposition 4.2 (Optimality w.r.t. Kboundary). Given the reference path measure π̄ driven by the
backward policy ẑt from boundary µti+1 in the reverse time direction, the optimal path measure in
the forward time direction of the following problem

min
π

J (π) :=

N−1∑
i=0

KL
(
πti:ti+1

|π̄ti:ti+1

)
, s.t π ∈

{∫
πti:ti+1

dmti+1
= µti ,

∫
µtidvti = ρti

}
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is : π∗
ti:ti+1

=
ρti π̄ti:ti+1∫

π̄ti:ti+1
dmti+1

dvti

.

When πti:ti+1
≡ π∗

ti:ti+1
, the following equations need to hold ∀t ∈ [ti, ti+1]:

∥zt + ẑt − g∇v log p̂t∥22 = 0, (9a)
pti(vti |xti) ≡ q̂ti(vti |xti), (9b)

where p̂t and q̂t denote the marginal density and conditional velocity distribution of the reference
path measure at time t, respectively.

Proof. See appendix.B.5

Remark 4.3. When the ground truth distributions of velocity γti are available, one can simply sample
from γti since the joint distribution µt is available in this case. In order to matching the reference
path measure in KL divergence sense, one needs to match both the intermediate path measure eq.9a
and the boundary condition eq.9b. In the traditional two-boundary SB case, matching the boundary
condition is often disregarded due to either having a predefined data distribution or a tractable prior.
However, in our specific case, as the velocity is not predefined, it becomes imperative to address this
issue and optimize it through the application of Langevin dynamics.

4.3 Optimization in set Kbridge

The formulation of optimization under Kbridge is similar to the previous section but differs by the
boundary condition (eq.10b):
Proposition 4.4 (Optimality w.r.t. Kbridge). Given the reference path measure π̄ driven by the
backward policy ẑt from boundary µtN in the reverse time direction, the optimal path measure in the
forward time direction of the following problem

min
π

J (π) :=

N−1∑
i=0

KL
(
πti:ti+1 |π̄ti:ti+1

)
, s.t π ∈ Kbridge =

{
∩N−1
i=1 K2

ti

}
is: π∗

t0:tN =
qt0 π̄t0:tN∫

π̄t0:tN dmtN dvt0

.

when πt0:tN ≡ π∗
t0:tN , the following equations need to hold ∀t ∈ [t0, tN ]:

∥zt + ẑt − g∇v log p̂t∥22 = 0 (10a)
pt0(vt0 ,xt0) ≡ q̂t0(vt0 ,xt0) (10b)

Proof. See appendix.B.6

Conceptually, the above optimization objective with Kbridge constraint aims at finding a continuous
path measure close to reference path measure π̄ while any intermediate marginals constraints will not
be considered. The boundary condition of reference path measure in the next iteration pt0(vt0 ,xt0) is
determined by eq.10b. Fortunately, the empirical samples from this distribution are available, though
the analytic representation of the distribution q̂t0(vt0 ,xt0) is unknown. Hence we can utilize these
samples as empirical sources from boundary distribution q̂t0(vt0 ,xt0) for the next BP. For further
explanation and intuition, one can find it in Appendix.G

4.4 Parameterization and Training Objective Function

Inspired by the success of prior work [14], we parameterize path measure π by forward policy zθt or
backward policy ẑϕt combined with one of constraints in Kboundary or Kbridge (see Fig.8 in Appendix
for visualization). We adopt Euler–Maruyama discretization and denote the timestep as δt. Notably,
eq.9b and eq.10b can be implied by minimizing phase space NLL in Prop.3.1. This leads to the
following objective function, termed as phase space mean matching objective, which will be used to
train neural networks that represent zθt and ẑϕt after time discretization:

LMM = E
[
||δtzθt (mt+δt) + δtẑ

ϕ
t+δt

(mt+δt)−
(
mt + δtz

θ
t −mt+δt

)
||2

]
.

The velocity boundary condition for the reference path measure in the succeeding BP is encoded in
eq.9b or eq.10b, but the representation of conditional distribution eq.9b is not clear. We leverage the
favorable property of SB to parameterize and sample from such distribution.
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Figure 4: Validation of our DMSB model on complex GMM synthetic dataset. The velocity and
position of the same sample correspond to the same shade level. Upper: Samples’ evolution in the
position space. Bottom: Learnt samples’ evolution in the velocity space.

Proposition 4.5 ([27, 28]). If πθ and π̄ϕ shares same path measure, then

p̃θ,ϕti (vti ,xti) ≡ qϕti(vti ,xti) ∝ qϕti(vti |xti), where: ∇v log p̃
θ,ϕ
t =

(
zθt + ẑϕt

)
/g. (11)

Prop.4.5 suggests that one can use pti(vti |xti) := p̃θ,ϕti to imply condition (9b) and obtain samples
from such distribution by simulating Langevin dynamics. Namely, we first sample position from
ground truth xti ∼ ρti , and then sample vti ∼ p̃θ,ϕt using eq.11. One can further adopt the same
regularization [29] to enforce the condition of Prop.4.5.

4.5 Training Scheme

Here we introduce the scheme to traverse BI (see Fig.2). In one BI, all constraints must be iterated
once. For the sake of LMM, the reference path measure should be induced by opposite direction. A
single BI cannot be recursively repeated due to the conflict of reference path measure direction. For
example (see Fig.2), at the end of d-th BI, π̄ is yielded by forward policy while the first BP of d-th BI
is also optimizing forward policy which violates LMM. Instead, we reschedule the optimization order.
Specifically, in (d+ 1)-th BI, we optimize backward policy at the first BP and the last BP.

5 Experiments

Setups: We test DMSB on 2D synthetic datasets and real-world scRNA-seq dataset [30]. We choose
state of the art algorithms MIOFlow [9] and NLSB [11] as our baselines. We tune both models to the
best of our hardware capacity. We choose Sliced-Wasserstein Distance (SWD)[31] and Maximum
Mean Discrepancy (MMD)[32] together with visualization as our criterion. The detailed setup of
training and evaluation can be found in Appendix.C.

Synthetic Datasets: The Petal [9] and Gaussian Mixture Model (GMM) dataset are simple yet
challenging, as they mimic natural dynamics arising in cellular differentiation, including bifurca-
tions and merges. We compare our algorithm with MIOFlow in Fig.3. DMSB can infer trajecto-
ries aligned with ground truth distribution more faithfully at timesteps when snapshots are taken.

DMSB(ours) MIOFlow[8] Ground Truth

t0 t1 t2 t3 t4

Figure 3: Comparsion with MIOFlow
and ground truth on challenging petal
dataset. DMSB is able to generate tra-
jectories whose time marginal matches
ground truth faithfully and outperforms
prior work. Time is indicated by colors.

In GMM experiments (see Fig.4), we choose standard
Gaussian at initial and terminal time steps while four-
modal GMM and eight-modal GMM are placed at inter-
mediate time steps. Besides good position trajectory, it
is almost serendipity that DMSB can also learn the rea-
sonable velocity trajectory without any access to ground
truth velocity information. This paves the way for our
later velocity estimation for the RNAsc dataset. scRNA-
seq Dataset: The emergence of single-cell profiling tech-
nologies has facilitated the acquisition of high-resolution
single-cell data, enabling the characterization of individ-
ual cells at distinct developmental states [7]. However,
because the cell population is eliminated after the mea-
surement, one may only gather statistical data for single
samples at particular timesteps, which neither preserves
any correlations over time nor provides access to the ground truth trajectory. The diversity of embry-
onic stem cells after development from embryoid bodies, which comprises mesoderm, endoderm,
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Table 3: Numerical result of MMD and SWD on 100 dimensions single-cell RNA-seq dataset and
results for leaving out (LO) marginals at different observation. DMSB outperforms prior work by a
large margin for both metrics and all leave-out case. See Appendix.4 for Results over 3 seeds.

MMD ↓ SWD ↓
Algorithm w/o LO LO-t1 LO-t2 LO-t3 w/o LO LO-t1 LO-t2 LO-t3
NLSB[10] 0.66 0.38 0.37 0.37 0.54 0.55 0.54 0.55

MIOFlow[8] 0.23 0.23 0.90 0.23 0.35 0.49 0.72 0.50
DMSB(ours) 0.03 0.04 0.04 0.04 0.20 0.20 0.19 0.18

neuroectoderm, and neural crest in 27 days, is demonstrated by the scRNA-seq dataset. The snapshot
of cells are collected between (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15, t3: day 18 to 21,t4: day
24 to 27). Snapshot data are prepossessed by the quality control [30] and then projected to feature
space by principal component analysis (PCA). We inherit processed data from [8]. We validate
DMSB on 5-dim and 100-dim PCA space to show superior performance on high-dimension problems
compared with baselines. We further show that DMSB can estimate better velocity distribution
compared with baselines when the ground truth is absent during training and testing.

We testify the performance of our model by computing MMD and SWD with full snapshots and when
one of snapshots is left out (LO). We postpone the comparison of all the models on 5-d RNA space to
the appendix (see Fig.9 and Table.6) because the problem is relatively simple and all models can infer
accurate trajectory. Table.3 summarizes the average MMD and SWD between estimated marginal
and ground truth over different snapshot timesteps. DMSB outperforms prior work by a large margin
in high (100) dimensional scenarios. The visualization (Fig.5) in PCA space further justifies the
numerical result and highlights the variety and quality of the samples produced by DMSB.
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DMSB Predicted Velocity Ground Truth Velocity

Figure 5: Comparison of population-level dynamics on 100-dimensional PCA space at the moment of
observation for scRNA-seq data using MIOFlow, NLSB, and DMSB. We display the plot of the first
6 principle components (PC). Baselines can only learn the trajectory’s fundamental trend, whereas
DMSB can match the target marginal along the trajectory across different dimensions. The right
figure shows Kernel Density Estimation [33] of samples generated by DMSB and ground truth at t3
and t4. The generated samples for all timesteps and comparison with baseline are in Appendix.F.

Interestingly, Fig.4 demonstrates that DMSB can reconstruct reasonable evolution of the velocity
distribution which was not accessible to the algorithm. We further validate such property in 100-D
RNAsc dataset. During the training and testing, all the models do not have access to the ground truth
velocity. We run the experiments of 100-D and 5-D RNAsc datasets and average the discrepancy
between ground truth velocity and estimated velocity over snapshot time. The numerical values
are listed in the Table.7 and Table.6. The plot of velocity and position can be found in Fig.9 and
Fig.10. The plot illustrates that while all models are capable of learning reasonable trajectories, only
DMSB has the ability to estimate a plausible velocity distribution. This property holds even for
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100-D RNA dataset (see Fig.5,11,12). This is notable, despite the velocity estimated by DMSB does
not perfectly match the ground truth, because it should be noted that the proposed phase space SDE
and the optimality of OT are artificial and may not necessarily represent the actual RNA evolution.
Moreover, as individual evolutions cannot be tracked, possibilities such as {A→A, B→B} versus
{A→B, B→A} can not be discerned, which renders exact velocity recovering almost impossible.

6 Conclusion and Limitations

In this paper, we propose DMSB, a scalable algorithm that learns the trajectory which fits the different
marginal distributions over time. We extend the mean matching objective to phase space which
enables efficient mSB computing. We propose a novel training scheme to fit the mean matching
objective without violating BI which is the root of solving mmmSB problem. We demonstrate the
superior result of DMSB compared with the existing algorithms.

A main limitation of this work is, the rate of convergence to the actual mmmSB has not been quantified
after neural network approximations are introduced. Even though [15] theoretically analyzed the
convergence of mean matching iteration, supporting its outstanding performance [14], the iteration
still fails to converge to the actual SB [34] precisely due to practical neural network estimation errors
accumulating over BI. However, recent work [35] shows the convergence of SB when training error
exists. In addition, DMSB cannot simulate the process with death and birth of cells which can be
potentially described as unbalanced optimal transport [36].
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A Appendix

B Proof in §3 and §4

Before stating our proofs, we provide the assumptions used throughout the paper. These assumptions
are adopted from stochastic analysis for SGM [27, 37, 38], SB [39], and FBSDE [40–42].

(i) µti with finite second-order moment for all ti.

(ii) f and g are continuous functions, and |g(t)|2 > 0 is uniformly lower-bounded w.r.t. t.

(iii) ∀t ∈ [0, T ], we have ∇v log pt(mt, t),∇v logΨ(·, ·, ·),∇v log Ψ̂(·, ·, ·),Z(·, ·, ·; θ), and
Ẑ(·, ·, ·;ϕ) Lipschitz and at most linear growth w.r.t. x and v.

(iv) Ψ, Ψ̂ ∈ C1,2.

(v) ∃k > 0 : pSB
t (m) = O(exp−∥m∥2

k) as m → ∞.

Assumptions (i) (ii) (iii) are standard conditions in stochastic analysis to ensure the existence-
uniqueness of the SDEs; hence also appear in SGM analysis [37]. Assumption (iv) allows applications
of Itô formula and properly defines the backward SDE in FBSDE theory. Finally, assumption (v)
assures the exponential limiting behavior when performing integration by parts. w.o.l.g, we denote
f = [v,0]T.

B.1 Proof of Proposition.3.1

The results of the Prop.3.1 is part of results of Prop.B.4 which gives the results for both forward and
backward likelihood objective.

Theorem B.1. The optimization problem

min

∫ 1

0

∫
1

2
∥a∥22µdxdvdt, (12)

s.t

{
∂µ(mt)

∂t = −∇m · {[(f + gu)]µ}+ 1
2g

2∆vµ,

µ0 = p(0,x,v), µ1 = p(T,x,v),
(13)

will induce the coupled PDEs,

∂µ(mt)

∂t
= −∇m ·

[(
f + g2∇vϕ

)
µ
]
+

1

2
g2∆vµ, (14)

∂ϕ(mt)

∂t
= −1

2
∥g∇vϕ∥22 − vT∇xϕ− 1

2
g2∆vϕ, (15)

and the optimal control of the problem is

a∗ = g∇vϕ.
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Proof. One can write the Lagrange by introducing lagrangian multiplier ϕ:

L(µ,a, ϕ) =
∫ 1

0

∫
Rn×Rn

1

2
∥a∥22µdxdvdt+

∫ 1

0

∫
Rn×Rn

ϕ
∂µ

∂t
dvdxdt

+

∫ 1

0

∫
Rn×Rn

ϕ

{
−1

2
g2∆mµ+∇m · [(f + gu)µ]

}
dvdxdt

=

∫ 1

0

∫
Rn×Rn

1

2
∥a∥22µdxdvdt−

∫ 1

0

∫
Rn×Rn

µ
∂ϕ

∂t
dvdxdt

+

∫ 1

0

∫
Rn×Rn

ϕ∇m · [(f + gu)µ]− ϕ

[
1

2
g2∆mµ

]
dvdxdt

=

∫ 1

0

∫
Rn×Rn

1

2
∥a∥22µdxdvdt−

∫ 1

0

∫
Rn×Rn

µ
∂ϕ

∂t
dvdxdt

+

∫ 1

0

∫
Rn×Rn

−∇mϕT [(f + gu)]µ− µ

[
1

2
g2∆mϕ

]
dvdxdt

=

∫ 1

0

∫
Rn×Rn

{
1

2
∥a∥22 −

∂ϕ

∂t
− vT∇xϕ− 1

2
g2∆vϕ− g∇vϕ

Ta

}
µ dvdxdt

By taking the minimization within the bracket, The optimal control is,

a∗ = g∇vϕ

By Plugging it back, the optimality of the aforementioned problem is presented as:

∂µ(mt)

∂t
= −∇v ·

[(
f + g2∇vϕ

)
µ
]
+

1

2
g2∆vµ,

∂ϕ(mt)

∂t
= −1

2
∥g∇vϕ∥22 − vT∇xϕ− 1

2
g2∆vϕ,

Theorem B.2. The optimal forward and backward processes are represented as:

dmt =
[
f + guf∗

t

]
dt+ g(t)dwt (forward) (16)

dms =
[
f + gub∗

s

]
dt+ g(t)dws (Backward) (17)

in which f = [v,0]T. Optimal control is expressed as,

uf∗
t := Zt ≡

(
0
zt

)
≡

(
0

g∇v logΨt

)
(18)

ub∗
t := Ẑt ≡

(
0
ẑt

)
≡

(
0

g∇v log Ψ̂t

)
(19)

where Ψ and Ψ̂ are the solution of following PDEs,

∂Ψt

∂t
= −1

2
g2∆vΨt −∇xΨ

T
t v

∂Ψ̂t

∂t
=

1

2
g2∆vΨ̂t −∇xΨ̂

T
t v

s.t Ψ(x,v, 0)Ψ̂(x,v, 0) = p(x,v, 0), Ψ(x,v, T )Ψ̂(x,v, T ) = p(x,v, T )

(20)

Proof. By Lemma.B.1, we notice that the optimal control is:

a∗ = g∇vϕ.

By leveraging Hopf-Cole [43, 44] transformation, here we define

Ψ = exp (ϕ) ,

Ψ̂ = µ exp (−ϕ) .
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Then we can have the following expressions:

∇Ψ = exp(ϕ)∇ϕ

∆Ψ = ∇ · (∇Ψ)

=
∑
i

∂

∂mi
[exp (ϕ)∇ϕ]

=

[
∇ϕT

(
exp (ϕ)

∂ϕi

∂mi

)
+ exp (ϕ)

∂(∇ϕ)i
∂mi

]
= exp (ϕ)

[
∥∇ϕ∥22 +∆ϕ

]
∇Ψ̂ = µ exp (−ϕ) (−∇ϕ) + exp(−ϕ)∇µ

= exp(−ϕ)(−µ∇ϕ+∇µ)

∆Ψ̂ = ∇ ·
(
∇Ψ̂

)
=

∑
i

∂

∂mi
[exp (−ϕ) (−µ∇ϕ+∇µ)]

=
∑
i

[
(−µ∇ϕ+∇µ)

T

(
exp (−ϕ)

−∂[∇ϕ]i
∂mi

)
+exp (−ϕ)

(
∂

∂mi
[∇µ]i − µ

∂

∂mi
[∇ϕ]i −∇ϕT ∂

∂mi
[∇µ]i

)]
= exp (−ϕ)

[
µ∥∇ϕ∥22 −∇µT∇ϕ+∆µ− µ∆ϕ−∇ϕT∇µ

]
= exp (−ϕ)

[
µ∥∇ϕ∥22 − 2∇µT∇ϕ+∆µ− µ∆ϕ

]
Thus, we can have.

∂Ψ

∂t
= exp (ϕ)

∂ϕ

∂t

= exp (ϕ)

(
−1

2
∥g∇vϕ∥22 − vT∇xϕ− 1

2
g2∆vϕ

)
= −1

2
g2∆vΨ−∇xΨ

Tv

∂Ψ̂

∂t
= exp (−ϕ)

∂µ

∂t
− µ exp (−ϕ)

∂ϕ

∂t

= exp (−ϕ)

(
∂µ

∂t
− µ

∂ϕ

∂t

)
= exp (−ϕ)

[
−∇m · {[(f + gu) Id]µ}+

1

2
g2∆mµ+ µ

(
1

2
∥g∇vϕ∥22 + vT∇xϕ+

1

2
g2∆vϕ

)]
= exp (−ϕ)

[
−∇v · (g2µ∇vϕ)− vT∇xµ+

1

2
g2∆vµ+

µ

2
∥g∇vϕ∥22 + µvT∇xϕ+ µ

1

2
g2∆vϕ

]
= exp (−ϕ)

[
−g2∇vµ

T∇vϕ− g2µ∆vϕ− vT∇xµ+
1

2
g2∆vµ+

µ

2
∥g∇vϕ∥22 + µvT∇xϕ+ µ

1

2
g2∆vϕ

]
= exp (−ϕ)

[
−g2∇vµ

T∇vϕ− µ
1

2
g2∆vϕ− vT∇xµ+

1

2
g2∆vµ+

µ

2
∥g∇vϕ∥22 + µvT∇xϕ

]
= exp (−ϕ)

[
µ

2
∥g∇vϕ∥22 − g2∇vµ

T∇vϕ− µ
1

2
g2∆vϕ+

1

2
g2∆vµ− vT∇xµ+ µvT∇xϕ

]
=

1

2
g2∆vΨ̂−∇xΨ̂

Tv
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Then we can represent the optimal control as:

uf∗
t := Zt ≡

(
0
zt

)
(21)

≡
(

0
g∇vϕ

)
Hopf-Cole

=

(
0

g∇v logΨt

)
(22)

Then the solution of such mSB is characterized by the forward SDE:

dmt =
[
f + guf∗

t

]
dt+ g(t)dwt, (23)

Due to the structure of Hopf-Cole transform, one can have

pSB
t = p

eq.(23)
t = ΨtΨ̂t (24)

According to [27, 28], the reverse drift of such SDE (eq.23) ub∗
t should admits,

uf∗
t + ub∗

t = g∇v log p
SB
t (25)(

0
g∇v logΨt

)
+ ub∗

t =

(
0

g∇v logΨt + g∇v log Ψ̂t

)
(26)

ub∗
t =

(
0

g∇v log Ψ̂t

)
(27)

which yields The backward optimal control

ub∗
t := Ẑt ≡

(
0
ẑt

)
≡

(
0

g∇v log Ψ̂t

)
(28)

Thus, the optimal forward and backward process is

dmt =
[
f + guf∗

t

]
dt+ g(t)dwt (29)

dms =
[
f + gub∗

s

]
dt+ g(t)dŵs (30)

And Ψ and Ψ̂ satisfy following PDEs,

∂Ψt

∂t
= −1

2
g2∆vΨt −∇xΨ

T
t v

∂Ψ̂t

∂t
=

1

2
g2∆vΨ̂t −∇xΨ̂

T
t v

Lemma B.3. By specifying f = [v,0]T, The PDE shown in 20 can be represented by following
SDEs (

dx
dv

)
=

(
v

−g2∇v logΨ

)
dt+

(
0 0
0 g

)
dw

dy =
1

2
∥z∥2dt+ zTdwt

dŷ =

[
1

2
∥ẑ∥2 + zTẑ+∇v · gẑ

]
dt+ ẑTdwt

s.t : exp (y0 + ŷ0) = p(x,v, 0), exp (yT + ŷT ) = p(x,v, T )

(31)

(32)

(33)

(34)

Where:

y ≡ y(xt,v, t) = logΨ(xt,vt, t), z ≡ z(xt,vt, t) = g∇v logΨ(xt,vt, t)

ŷ ≡ ŷ(xt,vt, t) = log Ψ̂(xt,vt, t), ẑ ≡ ẑ(xt,vt, t) = g∇v log Ψ̂(xt,vt, t)
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Proof. One can write
∂ logΨ

∂t
=

1

Ψ

(
−∇xΨ

Tv − 1

2
g2∆vΨ

)
= −∇x logΨ

Tv − 1

2
g2

∆vΨ

Ψ

= −∇x logΨ
Tv − 1

2
g2 Tr

[
1

Ψ
∇2

vΨ

]

∂ log Ψ̂

∂t
=

1

Ψ̂

(
−∇xΨ̂

Tv +
1

2
g2∆vΨ̂

)
= −∇x log Ψ̂

Tv − 1

2
g2 Tr

[
1

Ψ̂
∇2

vΨ̂

]

By applying Itô’s lemma,

d logΨ =
∂ logΨ

∂t
dt+

[
∇x logΨ

Tv + g2∥∇v logΨ∥22 +
1

2
g2∆v logΨ

]
dt+

[
∇m logΨT

]
gdwt

=

[
−∇x logΨ

Tv − 1

2
g2 Tr

[
1

Ψ
∇2

vΨ

]]
dt

+

[
∇x logΨ

Tv + g2∥∇v logΨ∥22 +
1

2
g2 Tr

[
1

Ψ
∇2

vΨ− 1

Ψ2
∇vΨ∇vΨ

T

]]
dt+ g

[
∇v logΨ

T
]

dwt

=

[
g2∥∇v logΨ∥22 −

1

2
g2 Tr

[
1

Ψ2
∇vΨ∇vΨ

T

]]
dt+ g

[
∇v logΨ

T
]

dwt

=

[
1

2
g2∥∇v logΨ∥22

]
dt+ g

[
∇v logΨ

T
]

dwt

Similarly, one can have,

d log Ψ̂ =
∂ log Ψ̂

∂t
dt+

[
∇x log Ψ̂

Tv + g2∇v logΨ
T∇v log Ψ̂ +

1

2
g2∆v log Ψ̂

]
dt+

[
∇m log Ψ̂T

]
gdwt

=

[
−∇x log Ψ̂

Tv +
1

2
g2 Tr

[
1

Ψ̂
∇2

vΨ̂

]]
dt

+

[
∇x log Ψ̂

Tv + g2∇v logΨ
T∇v log Ψ̂ +

1

2
g2∆v log Ψ̂

]
dt+ g

[
∇v log Ψ̂

T
]

dwt

Noticing:
1

2

[
1

Ψ̂
∇2

vΨ̂ +∇2
v log Ψ̂

]
= Tr

[
1

Ψ
∇2

vΨ̂− 1

2
∥∇v log Ψ̂∥2

]
=

1

2
∥∇v log Ψ̂∥2 +∆v log Ψ̂

Following the above derivation, one can have,

d log Ψ̂ =

[
−∇x log Ψ̂

Tv +
1

2
g2 Tr

[
1

Ψ̂
∇2

vΨ̂

]]
dt

+

[
∇x log Ψ̂

Tv + g2∇v logΨ
T∇v log Ψ̂ +

1

2
g2∆v log Ψ̂

]
dt+ g

[
∇v log Ψ̂

T
]

dwt

=

[
g2∇v logΨ

T∇v log Ψ̂ +
1

2
g2∥∇v log Ψ̂∥2 + 2

1

2
g2∆v log Ψ̂

]
dt+ g

[
∇v log Ψ̂

T
]

dwt
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By defining

y ≡ y(xt,v, t) = logΨ(xt,vt, t), z ≡ z(xt,vt, t) = g∇v logΨ(xt,vt, t)

ŷ ≡ ŷ(xt,vt, t) = log Ψ̂(xt,vt, t), ẑ ≡ ẑ(xt,vt, t) = g∇v log Ψ̂(xt,vt, t)

One can conclude the results.

(
dx
dv

)
=

(
v

−g2∇v logΨ

)
dt+

(
0 0
0 g

)
dw

dy =
1

2
∥z∥2dt+ zTdwt

dŷ =

[
1

2
∥ẑ∥2 + zTẑ+∇v · gẑ

]
dt+ ẑTdwt

s.t : exp (y0 + ŷ0) = p(x,v, 0), exp (yT + ŷT ) = p(x,v, T )

Proposition B.4. The log-likelihood at data point m0 can be expressed as

log p(m0, 0) = Emt∼(17) [log p(mT , T )]−
∫ T

0

Emt∼(17)

[
1

2
∥zt∥2dt+

1

2
∥ẑt∥2 + zTt ẑt +∇v · gẑt

]
dt

= Emt∼(17) [log p(mT , T )]−

∫ T

0

Emt∼(17)

1

2
∥zt∥2 +

1

2
∥ẑt − g∇v log p

(17) + zt∥2︸ ︷︷ ︸
mean matching objective

−1

2
∥g∇v log p

(17) − zt∥2

 dt

∝
∫ T

0

Emt∼(17)

1

2
∥ẑt − g∇v log p

(17) + zt∥2︸ ︷︷ ︸
mean matching objective

 dt

log p(mT , T ) = Emt∼(16) [log p(m0, 0)]−
∫ T

0

Emt∼(16)

[
1

2
∥zt∥2dt+

1

2
∥ẑt∥2 + zTt ẑt +∇v · gzt

]
dt

= Emt∼(16) [log p(m0, 0)]−

∫ T

0

Emt∼(16)

1

2
∥ẑt∥2 +

1

2
∥ẑt − g∇v log p

(16) + zt∥2︸ ︷︷ ︸
mean matching objective

−1

2
∥g∇v log p

(16) − ẑt∥2

 dt

∝ Emt∼(16)

1

2
∥ẑt − g∇v log p

(16) + zt∥2︸ ︷︷ ︸
mean matching objective

 dt

By maximizing the log-likelihood at time t = 0 then t = T iteratively, (zt, ẑt) will converge to the
solution of phase space SB.

19



Proof. from Lemma.B.3, one can have:

log p(m0, 0) = E [y0 + ŷ0]

= E [yT + ŷT ]−
∫ T

0

E
[
1

2
∥zt∥2dt+

1

2
∥ẑt∥2 + zTt ẑt +∇v · gẑt

]
dt

= E [log p(mT , T )]−
∫ T

0

E
[
1

2
∥zt∥2 +

1

2
∥ẑt∥2 + zTt ẑt +∇v · gẑt

]
dt

= E [log p(mT , T )]−
∫ T

0

E
[
1

2
∥zt∥2 +

1

2
∥ẑt∥2 − ẑTt

(
g∇v log p

SB
)
+ zTt ẑt

]
dt

= E [log p(mT , T )]

−
∫ T

0

E
[
1

2
∥zt∥2 +

1

2
∥ẑt − g∇v log p

SB + zt∥2 −
1

2
∥g∇v log p

SB − zt∥2
]

dt

A similar result can be obtained for log p(mT , T ).

One can notice that the likelihood objective is a continuous time analog of the mean matching
objective proposed in [15], and iterative optimization between logp(m0, 0) and log p(mT , T ) are
the continuous analog of IPF. Hence, the convergence proof will keep valid (see Proposition 4 in
[15]).

The equivalence of KL divergence optimization in IPF and likelihood optimization is widely analyzed
in [14, 15, 18]. The objective function will eventually boil down to the mean matching objective
shown in the above proposition.B.4.

Proposition B.5 (Optimality w.r.t. Kboundary). . Given the reference path measure π̄ driven by the
policy ẑt from boundary µti+1

in the reverse time direction, the optimal path measure in the forward
time direction of the following problem

min
π

J (π) :=

N−1∑
i=0

KL
(
πti:ti+1 |π̄ti:ti+1

)
, s.t π ∈

{∫
πti:ti+1dmti+1 = µti ,

∫
µtidvti = ρti

}

is : π∗
ti:ti+1

=
ρti π̄ti:ti+1∫

π̄ti:ti+1dmti+1dvti

.

When πti:ti+1 ≡ π∗
ti:ti+1

, the following equations need to hold ∀t ∈ [ti, ti+1]:

∥zt + ẑt − g∇v log p̂t∥22 = 0, (35a)
pti(vti |xti) ≡ q̂ti(vti |xti), (35b)

where p̂t and q̂t denote the marginal density and conditional velocity distribution of the reference
path measure at time t and ti, respectively.

Proof. Due to the similarity of optimization for Kboundary, the close form solution of the next path
measure is (see §4 in [1] for detail):

π∗
ti:ti+1

=
ρti π̄ti:ti+1∫

π̄ti:ti+1
dmti+1

dvti

.

By denoting the transition kernel of parameterized SDE driven by backward policy ẑt as q(·|·), and
the time range between ti and ti+1 is discretized into S interval by EM discretization. Then one can
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get

π∗
ti:ti+1

=
ρti π̄ti:ti+1∫

π̄ti:ti+1
dmti+1

dvti

=
pti(xti)qti(mti |mti+δt) · · · qti+1−δt(mti+1−δt |mti+1

)µti+1
(mti+1

)

qti(xti)

=
pti(xti)qti(xti ,vti |xti+δt ,vti+δt)qti+δt

(xti+δt ,vti+δt) · · · qti+1−δt(mti+1−δt |mti+1
)µti+1

(mti+1
)

qti(xti)qti+δt
(xti+δt ,vti+δt)

=
pti(xti)qti(xti ,vti ,xti+δt ,vti+δt) · · · qti+1−δt(mti+1−δt |mti+1)µti+1(mti+1)

qti(xti)qti+δt
(xti+δt ,vti+δt)

=
pti(xti)qti(vti ,xti+δt ,vti+δt |xti) · · · qti+1−δt(mti+1−δt |mti+1)µti+1(mti+1)

qti+δt
(mti+δt)

= pti(xti)qti(vti ,xti+δt ,vti+δt |xti)
qti+δt

(mti+δt |mti+2δt) · · · qti+1−δt(mti+1−δt |mti+1
)µti+1

(mti+1
)

qti+δt
(mti+δt)

= pti(xti)q(vti |xti)q(mti+δt |mti)
qti+δt

(mti+δt |mti+2δt) · · · qti+1−δt(mti+1−δt |mti+1
)µti+1

(mti+1
)

qti+δt
(mti+δt)

= pti(xti)q(vti |xti)q(mti+δt |mti)
qti+δt

(mti+2δt |mti+δt) · · · qti+1−δt(mti+1−δt |mti+1)µti+1(mti+1)

qti+δt
(mti+2δt)

(36)
Doing eq.36 revursively

= pti(xti)q(vti |xti)q(mti+δt |mti)

S−1∏
s=1

qs(mti+(s+1)·δt |mti+s·δt)

= pti(xti)q(vti |xti)

S−1∏
s=0

qs(mti+(s+1)·δt |mti+s·δt)

According to [15], given the policy ẑt, the transition kernel qs(mti+(s+1)·δt |mti+s·δt) can be esti-
mated by ẑt (see Proposition 3 in [15])and it can be treated as the label for the forward policy zt for
all s. Thus, if πtiti+1

is aligned with π∗
titi+1

, then one can construct following objective function for
policy zt:

L =
∑
t

∥mt + δtZt(mt)︸ ︷︷ ︸
1

−(mt +mt+δt + δtẐt+δt(mt+δt)︸ ︷︷ ︸
2

−(mt + δtẐt+δt(mt)︸ ︷︷ ︸
3

))∥22 (37)

=
∑
t

∥δtZt(mt) + δtẐt+δt(mt)− (mt+δt −mt − δtẐt+δt(mt+δt))∥22 (38)

≈
∑
t

∥Zt(mt) + Ẑt+δt(mt)−∇v log p
(17)
t ∥22 (39)

due to the special structure of Zt and Ẑt (40)

=
∑
t

∥zt(mt) + ẑt+δt(mt)−∇v log p
(17)
t ∥22 (41)

Where 1 , 2 , 3 corresponds to Fk, Bk, and Bk+1 in [15] respectively. Furthermore, we need to
find a density function pti(vti |xti) which satisfies

pti(xti)pti(vti |xti) ≡ pti(xti)q̂(vti |xti)

pti(vti |xti) ≡ q̂ti(vti |xti)

to be the new boundary condition.
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Proposition B.6 (Optimality w.r.t. Kbridge). Given the reference path measure π̄ driven by the policy
ẑt from boundary µtN in the reverse time direction, the optimal path measure in the forward time
direction of the following problem

min
π

J (π) :=

N−1∑
i=0

KL
(
πti:ti+1

|π̄ti:ti+1

)
, s.t π ∈ Kbridge =

{
∩N−1
i=1 K2

ti

}
is: π∗

t0tN =
qt0 π̄t0:tN∫

π̄t0:tN dmtN dvt0

.

when πt0tN ≡ π∗
t0tN , the following equations need to hold ∀t ∈ [t0, tN ]:

∥zt + ẑt − g∇v log p̂t∥22 = 0 (42a)
pt0(vt0 ,xt0) ≡ q̂t0(vt0 ,xt0) (42b)

Proof. Same proof as B.5.

Remark B.7. The optimizer of such a problem can be represented as
π∗ = µtN π̄·|tN (43)

which can also be represented as,

π∗ =

∫
π̄dµtN · (π̄·|tN )R (44)

Where the notation R represents for the time reversal. The Proposition.4.4 is basically using neural
network Zθ

t to approximate eq.44.

C Experiment Details

We test DMSB on 2D synthetic datasets and realworld scRNA-seq dataset [30]. We parameterize
z(t,m; θ) and ẑ(t,m;ϕ) with residual-based networks for all datasets (see.fig.6). The network adopts
position encoding and is trained with AdamW[45] on one Nvidia 3090 Ti GPU. We use constant g(t)
for simplicity though the framework can adopt time varying function g(t). We set the time horizon
T = tN = 1 ·N and interval δt = 0.01. We use EM discretization throughout the whole paper. For
scRNA-seq dataset, we split data into train and test subsets(85% and 15%).All the experiment results
are simulated by all-step push forward from initial data points at time t = t0.

MIOFlow and NLSB setup: We use the official implementation of NLSB and MIOFlow.For
MIOFlow, we report the best performance for all experiments w/GAE(or AE) and w/o GAE(or AE)
embedding. For NLSB, we enlarge the size of the neural network to the best of our GPU capacity for
a 100-dimensional scRNA-seq dataset and report the best performance during the training.

We evaluate the velocity of NLSB, as an SDE model, by its estimated drift term at time steps
t = {1, 2, 3, 4, 5}. Because MIOflow w/ GAE simulates trajectories in the latent space, we estimate
the velocity by using the forward finite difference technique with discretization 1E − 3 sec after
mapping from the latent code to the original space. We run the experiments of 100-D and 5-D RNAsc
datasets and average the discrepancy between ground truth velocity and estimated velocity over
snapshot time. The numerical values are listed in the Table.7 and Table.6. The plot of velocity and
position can be found in Fig.9 and Fig.10. We do not want to underestimate any prior work and
tried out best to tune the prior work. Feel free to communicate with the first author if one can
reproduce better results in the experiment section, and we are willing to update it.

Metrics and Evaluations The 1-Wasserstein Distance suffers from the curse of dimensionality
seriously. In the main paper, we are using Sliced-Wasserstein Distance (SWD) and Maximum Mean
Distance as our criterion for 100-dim RNA dataset. An example is listed in the following toy code.
One can notice that W1 suffers from the curse of dimensionality seriously, the distance between
two gaussian samples is even larger than the distance between gaussian and zeros (See following
code snapshot). Hence such a metric is not suitable for high dimension (≥ 100) dataset evaluation
even though some papers report W1. In order to better evaluate our model compared with baselines,
we are using W1, Energy Distance, Max-sliced Wasserstein distance, Sliced-Wasserstein Distance
and MMD. Our metric is adapted from Geoloss (W1 and Energy), POT (Sliced Wassersetein and
Maximum-Sliced Wasserstein) and this repo (MMD).

Trajectories Cache Similar to prior work [14, 15], we also need to cache the trajectories for training
purposes. We cache 4096 trajectories for each Bregman Projection.

22

https://www.kernel-operations.io/geomloss/
https://pythonot.github.io/gen_modules/ot.sliced.html
https://pythonot.github.io/gen_modules/ot.sliced.html
https://github.com/ZongxianLee/MMD_Loss.Pytorch


Special Clarification for NLSB

We evaluate the velocity of NLSB, as an SDE model, by its estimated drift term at time steps
t = {1, 2, 3, 4, 5}. It may not be reasonable to consider the drift term as the real velocity, but the drift
term can certainly depict a trend of SDE, so we still provide the result here.

1 from ot.sliced import sliced_wasserstein_distance
2 a=torch.randn (1000 ,100) #1000 gaussian samples with dimension 100
3 b=torch.zeros (1000 ,100) #1000 zeros samples with dimension 100
4 c=torch.randn (1000 ,100) #1000 gaussian samples with dimension 100
5 Loss=sliced_wasserstein_distance
6 print(’SWD distance between a and b is: {}’.format(Loss(a,b)))
7 print(’SWD distance between a and c is: {}’.format(Loss(a,c)))
8 #SWD distance between a and b is: 1.0433608293533325
9 #SWD distance between a and c is: 0.11096614599227905

Listing 1: Distance compute by SWD distance with 1000 samples and 100 dimensions.

1 from geomloss import SamplesLoss
2 a=torch.randn (1000 ,100) #1000 gaussian samples with dimension 100
3 b=torch.zeros (1000 ,100) #1000 zeros samples with dimension 100
4 c=torch.randn (1000 ,100) #1000 gaussian samples with dimension 100
5 Loss=SamplesLoss(’sinkhorn ’,p=1)
6 print(’W1 distance between a and b is: {}’.format(Loss(a,b)))
7 print(’W1 distance between a and c is: {}’.format(Loss(a,c)))
8 #W1 distance between a and b is: 9.781818389892578
9 #W1 distance between a and c is: 11.734640121459961

Listing 2: Distance compute by W1 distance with 1000 samples and 100 dimensions.

Training:We use Exponential Moving Average (EMA) with a decay rate of 0.999. Table.7 details
the hyperparameters used for each dataset.The learning rate for all the datasets is set to be 2e-4
and the training batching size is 256. For computation efficiency, we cache large batch size of
empirical samples from reference trajectory and sample training batch size from the cache data. The
hyperparameters can be found in Table.7.

Figure 6: Neural network architecture for all experiments. The network size (# parameters) are
varying between different tasks.

Figure 7: Training Hyper-parameters

Dataset time steps # BI g(t) # Parameters T SNR # vt Langevin

Semicircle 15 2000 0.2 1.21M 3 0.15 1
Petal 30 2000 0.2 1.21M 2 0.15 1

GMM 15 2000 0.2 1.21M 4 0.15 1
scRNA (100 dim) 15 4000 0.4 1.34M 4 0.15 1

Langevin sampling:The Langevin sampling procedure for the velocity is summarized in 2. Given
some pre-defined signal-to-noise ratio r (we set snr =0.15 for all experiments), the Langevin noise
scale σ at each time step t and each corrector step i is computed by

σt =
2r2g2∥ϵ∥2

∥z(t,mt) + ẑ(t,mt)∥2
, (45)
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D Algorithms

Algorithm 1 Sampling Procedure of DMSB

Input: Policies z(·, ·; θ) and ẑ(·, ·;ϕ) Total sampling step S = tN
δt

. Data distributions ρti . Initializing
velocity distributions γti = N (0, I) if they are not avaliable.
for s = 0 to S − 1 do

if s==0 then
Sample position data xt0 from ρt0 .
if ground truth velocity distribution γt0 avaliable then

Sample velocity data vt0 from γt0
else

Sample velocity data vt0 by Langevin simulation conditioning on xt0 .(Algorithm.2)
end if
mt0 = [xt0 ,vt0 ]

T

end if
Simulating dynamics: dmt = [f(mt, t) + g(t)Zt] dt+ g(t)dwt(eq.16)

end for
return mt∈[t0,tN ]

Algorithm 2 Langevin Sampler at ti marginal constraint

Input: policies z(·, ·; θ) and ẑ(·, ·;ϕ), Previous timestep predicted velocity vti .
Sample position from ground truth xti ∼ ρti .
for step = 0 to # Langevin steps do

Sample ϵ ∼ N (0, I).
Construct new mti = [xti ,vti ]

T

Compute∇v log p̃θ,ϕt ≈ [z(ti,mti)+ẑ(ti,mti)]/g.
Compute σt with (45).
Langevin Sampling vti ← vti + σti∇v log p̃θ,ϕti

+
√
2σt ϵ.

end for
return mti = [xti ,vti ]

T
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Algorithm 3 DMSB Training

Input: N + 1 Marginal position distribution ρti , i ∈ [0, N ].Parametrized policies z(· · · ; θ) and ẑ(· · · ;ϕ).
The number of Bregman Iteration B. Initialize postion and velocity at time step ti : m̄ti := None for the
first iteration.
if Use ground truth velocity then

set prior velocity: γti = γti
else

set initial velocity γti = N (0, I)
end if
for b = 0 to B − 1 do

for k = N to 1 do
zϕ, _ = OptSubSet(tk, tk−1, zref = zθ, zopt = zϕ, η = ϕ, m̄ = None) [Optimize Kboundary]

end for
for k = 0 to N − 1 do

zθ, _ = OptSubSet(tk, tk+1, zref = zϕ, zopt = zθ, η = θ, m̄ = None) [Optimize Kboundary]
end for
zϕ, m̂ = OptSubSet(tN , t0, zref = zθ, zopt = zϕ, η = ϕ, m̄ = m̄) [Optimize Kbridge]
for k = 0 to N − 1 do

zθ, _ = OptSubSet(tk, tk+1, zref = zϕ, zopt = zθ, η = θ, m̄ = m̄) [Optimize Kboundary]
end for
for k = N to 1 do

zϕ, _ = OptSubSet(tk, tk−1, zref = zθ, zopt = zϕ, η = ϕ, m̄ = None) [Optimize Kboundary]
end for
zϕ, m̂ = OptSubSet(t0, tN , zref = zϕ, zopt = zθ, η = θ, m̄ = m̄) [Optimize Kbridge]

end for

Algorithm 4 Function OptSubSet (Optimization for subsets)

input: Initial time ti and terminal time tj . Reference path measure boundary condition ρti . Reference path
measure driver zref . Policy being optimized zopt and corresponding parameter η. Empirical sample form last
iteration m̂.
output: zopt,samples m̂tj from reference path measure.
if m̂ is None then

Sample position data xti from ρti .
if velocity distribution γti avaliable then

Sample conditional velocity data vti from γti
else

Sample velocity data vti by Langevin simulation conditioning on xti .(see Algorithm.2.)
end if
mti = [xti ,vti ]

T

else
mti = m̄

end if
Sample trajectory mt∈[ti,tj ] from mti using zref
Compute L = αLMM + (1− α)Lreg (Regularization of SB Lreg[29] is optional )
update η
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E Additional Diagram

Figure 8: The detailed example diagram of Fig.2. We demonstrate an example of 3 marginals case.
The training scheme can be extended to general N marginals easily. The figure consists of two BIs that
differs by the training order. Given the reference path measure, we first run the Bregman Projection
(BP) within the subset of Kboundary sequentially and end up with the constraint Kbridge.

F Additional Experiment

Table 4: Our algorithm results over 3 seeds. Numerical result of MMD and SWD on 100 dimensions
single-cell RNA-seq dataset and results for leaving out marginals at different observation. DMSB
outperforms prior work by a large margin for both metrics and all leave-out case.

LO Metrics t1 t2 t3 t4 Avg
w/o LO MMD↓ 0.021±1E-3 0.029±5E-3 0.038±2E-3 0.034±2E-3 0.032±3E-3

SWD↓ 0.114±5E-2 0.155±2E-2 0.19±3E-2 0.155±1E-2 0.16±2E-2
w/ LO-t1 MMD↓ 0.09±1E-3 0.019±1E-2 0.032±2E-2 0.029±2E-2 0.042±2E-2

SWD↓ 0.140±2E-2 0.155±1E-2 0.19±2E-2 0.155±1E-2 0.153±3E-2
w/ LO-t2 MMD↓ 0.021±1E-3 0.065±5E-3 0.032±2E-3 0.02±2E-3 0.033±3E-3

SWD↓ 0.100±5E-2 0.202±2E-2 0.13±3E-2 0.191±1E-2 0.155±2E-2
w/ LO-t3 MMD↓ 0.025±2E-3 0.026±2E-2 0.075±1E-2 0.029±2E-2 0.040±2E-2

SWD↓ 0.124±2E-2 0.14±1E-2 0.27±2E-2 0.18±1E-2 0.179±3E-2

Table 5: Numerical result of Wasserstein-1 (W1), MMD, energy distance and Max-sliced Wasserstein
distance (MWD) on position of 5 dimensions single-cell RNA-seq dataset using 500 generative
samples and 500 ground truth data.

Dim=5 Energy ↓ MMD ↓ W1 ↓ SWD↓ MWD ↓
NLSB 0.04 0.10 0.74 0.24 0.48

MIOFLOW 0.09 0.28 0.79 0.388 0.66
DMSB(ours) 0.03 0.06 0.67 0.22 0.41

Table 6: Numerical result of Wasserstein-1 (W1), MMD, energy distance and Max-sliced Wasserstein
distance (MWD) on the velocity of 5 dimensions single-cell RNA-seq dataset using 500 generative
samples and 500 ground truth data.

Dim=5 Energy ↓ MMD ↓ W1 ↓ SWD↓ MWD ↓

NLSB1 0.44 1.37 1.75 0.83 1.40
MIOFLOW 0.68 2.11 1.88 0.94 1.54

DMSB(ours) 0.40 0.85 1.67 0.74 1.43

1See special clarification (Appendix.C) for the velocity generated NLSB
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Table 7: Numerical result of Wasserstein-1 (W1), MMD, energy distance and Max-sliced Wasserstein
distance (MWD) on the velocity of 100 dimensions single-cell RNA-seq dataset using 500 generative
samples and 500 ground truth data.

Dim=100 Energy ↓ MMD ↓ SWD↓ MWD ↓

NLSB2 2.12 1.6 0.94 1.27
MIOFLOW 9.18 2.41 1.89 5.66

DMSB(ours) 0.36 0.18 0.39 0.78
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Figure 9: Comparison of population-level dynamics on 5-dimensional PCA space at the moment of
observation for scRNA-seq data using MIOFlow, NLSB, and DMSB. We display the plot of the first
4 principle components (PC). All method performs well under this experiment setup.
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Figure 10: Comparison of estimated velocity on 5-dimensional PCA space at the moment of obser-
vation for scRNA-seq data using MIOFlow, NLSB, and DMSB. We display the plot of the first 4
principle components (PC). For the results of NLSB, see special clarification of NLSB in Appendix.C

2See special clarification (Appendix.C) for the velocity generated NLSB
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Figure 11: Comparison of estimated velocity on 100-dimensional PCA space at the moment of
observation for scRNA-seq data using MIOFlow, NLSB, and DMSB. We display the plot of the first 6
principle components (PC). For the results of NLSB, see special clarification of NLSB in Appendix.C
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Figure 12: Comparison of estimated velocity on 100-dimensional PCA space at the moment of
observation for scRNA-seq data using DMSB with ground truth. We display the plot of the first 6
principle components (PC).

G Intuitions of Propositions and Theorems

1. Remark for Proposition 3.1: Within each half-bridge IPF, the variable Zt(or Ẑt) is essentially
learning the reverse-time stochastic process induced by Ẑt. This process can also be viewed
as minimizing the approximated parameterized negative log-likelihood.
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2. Remark for Proposition 4.2: In order to matching the reference path measure in KL diver-
gence sense, one need to match both the intermediate path measure eq.(9a) and the boundary
condition eq.(9b). In the traditional two boundary SB case, matching the boundary condition
is often disregarded due to either having a predefined data distribution or a tractable prior.
However, in our specific case, as the velocity is not predefined, it becomes imperative to
address this issue and optimize it through the application of Langevin dynamics.

3. Remark for Proposition 4.3: Following the same argument as the remark of Proposition 4.2,
it becomes evident that, in this particular scenario, there is no need to account for the data
distribution since there are no position constraints when optimizing with K. Consequently,
the optimal solution will inherently align faithfully with the reverse diffusion and adapt to
the boundary conditions imposed by the reference path measure.

4. Remark for Proposition 4.5: We indeed underexplained an important nontrivial fact (thank
you so much for catching it): the unique structure of SB leads to a beautiful fact that the
score is proportional to the sum of the forward and backward drift terms. This facilitates
the sampling of velocity. Specifically, the score function can be obtained using eq(11), as
supported by the findings in eq(24). It can also be understood as the one realization of
Nelson duality (see Lemma 1 in [46] and [28]).

H Complexity

Here we provide the complexity of our algorithm.

Table 8: Time complexity w.r.t Dimensionality ( Marginals=5)

# dimensions 5 10 50 100

Train 24min 25min 33min 44min
Sampling 1sec 1.6sec 2.0 sec 2.02sec

Table 9: Time complexity w.r.t number of marginals (Dim=100)

# Marginal 2 3 4 5

Train 32min 25min 33min 44min
Sampling 2.02sec 1.6sec 2.0 sec 2.02sec

29


	Introduction
	Preliminary
	Dynamical Schrödinger Bridge problem
	Bregman Iterations for Multiple Constraints

	Momentum Schrödinger Bridge
	Deep Momentum Multi-Marginal Schrödinger Bridge
	Decoupling and Reassembling Constraints
	Optimization in set  Kboundary 
	Optimization in set  Kbridge 
	Parameterization and Training Objective Function
	Training Scheme

	Experiments
	Conclusion and Limitations
	Acknowledgement
	Appendix
	Proof in §3 and §4
	Proof of Proposition.3.1

	Experiment Details
	Algorithms
	Additional Diagram
	Additional Experiment
	Intuitions of Propositions and Theorems
	Complexity

