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Abstract

Despite their growing ubiquity, the inner workings of deep neural networks are1

still largely a black box. Even in the case of classification tasks, common methods2

used to assess model performance do not give insight into whether the model will3

generalize to unseen data. In this extended abstract, we investigate local complexity4

(LC) Humayun et al. (2024b), a geometric measure of the input space, as a predictor5

of model performance on out-of-distribution (OOD) data. We find that LC alone is6

not sufficient to predict model generalization, but that it does capture meaningful7

information about the correctness of individual predictions, suggesting it may be8

useful as part of a larger set of tools to understand OOD generalization.9

1 Introduction10

Out-of-distribution (OOD) generalization–reliable performance when the deployment distribution11

differs from the training distribution–remains a central challenge in machine learning. Research12

addressing this problem ranges from developing algorithms to improve OOD generalization to13

identifying model properties that facilitate robust generalization, such as the stability of estimations14

under small data perturbations Gupta & Rothenhausler (2021).15

Recently, Humayun et al. (2024b) introduced local complexity (LC), a data-dependent geometric16

measure that approximates the local density of linear regions around inputs in networks with piecewise-17

linear activation functions. They proposed local complexity as a progress measure Barak et al. (2022)18

and linked decreases in LC in the final phase of training to grokking (delayed generalization) and19

increased adversarial robustness. Building on this work and motivated by the intuition that larger20

linear regions around the training data promote generalization, we investigate whether LC can serve21

as an effective predictor of model generalization capabilities.22

The key question we ask is whether LC can predict OOD classification performance at the model23

or the per-example level. At the model level, we examine whether qualitative training-time LC24

trajectories predict performance on OOD data. We find that these dynamics alone are insufficient for25

reliable predictions about model generalization, primarily because LC dynamics are highly dependent26

on model architecture. However, at the per-example level, we find that LC is significantly lower27

for correctly classified OOD inputs compared to misclassified ones, suggesting that it captures a28

meaningful component of OOD generalization. This indicates that while LC may not work as a29

standalone predictor at the model level, it may complement other uncertainty measures, a direction30

we plan to explore in future work.31

2 Local complexity32

Local complexity, introduced by Humayun et al. (2024b), measures the density of spline partition33

regions that tile a deep neural network’s (DNN) input space. DNNs map an input vector, x to an34

Submitted to 1st Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



output vector y through a composition of affine and nonlinear functions. In particular, a network with35

activation function a and K layers can be written as36

y = bK +WKa
[
bK−1 +WK−1a

[
. . . b2 +W2a [b1 +W1a [b0 +W0x]] . . .

]]
. (1)

where bk is the vector of biases for hidden layer k + 1 and Wk is the weights matrix applied to the37

kth layer. In this work, the activation function a is always ReLU. Balestriero & Baraniuk (2018)38

showed that for any piecewise-linear activation function, (1) is a continuous piecewise-affine spline39

operator. That is, there is a partition Ω of the input space such that the network acts affinely on any40

region ω ∈ Ω. These are the spline partition regions whose density local complexity tracks.41

Measuring local complexity For a convex region V in the input space of our network, local42

complexity can be computed in terms of the hyperplanes stemming from each neuron. For the kth43

layer of a network with weight matrix Wk, bias vector bk, and output dimension dk, the spline44

partition Ωk of the input space to layer k can be written as the hyperplane arrangement where45

each hyperplane is associated to a neuron in layer k, that is, ∂Ωk =
⋃dk

i=1 H
(i)
k , where H(i)

k =46 {
x ∈ Rdk−1 : ⟨w(i)

k , x⟩+ b
(i)
k = 0

}
, w(i)

k is the ith row of Wk, and b
(i)
k is the ith entry of bk.47

To approximate the LC induced by the kth layer on V , we simply count the number of regions in48 ⋃dk

i Φ ∩ H(i)
k , where Φ is the embedded representation of V after being passed through layers 149

through k − 1 of the network. To simplify computation, we consider the number of hyperplanes50

passing through Φ as a proxy for the LC of V at layer k. Following Humayun et al. (2024b)51

and utilizing their code base1, to measure how local complexity changes throughout training, we52

randomly sample data points and construct randomly-oriented, P -dimensional ℓ1-norm balls with53

radius r centered at each data point. We then count the number of hyperplanes passing through these54

neighborhoods to approximate the local complexity in that area for a given layer. In this work, we55

take P = 2 and r = 0.5. These choices are discussed further in Appendix B.2.56

Training dynamics of local complexity In Section 4, we will compare the dynamics of local57

complexity across models. We use the word “dynamics” to refer to the general qualitative behavior,58

as well as phases described in Humayun et al. (2024b). In that work, the authors describe the two59

descent phases of LC. After initialization, they note the first descent. This phase does not always60

occur; it is dependent on the network parameterization and initialization. Then, in the ascent phase,61

region density accumulates around training and testing points until training interpolation is reached.62

Finally, in the second descent phase, also called the region migration phase, the nonlinearities shift63

towards the decision boundary leading to increased LC near the boundary and decreased LC away64

from the training data. They document these dynamics for a variety of model architectures and65

datasets. Additionally, the authors study how architecture and regularization influence LC dynamics66

in both Humayun et al. (2024b) and Humayun et al. (2023).67

3 Experimental set up68

To test model performance on out-of-distribution data, we train 25 different models on CIFAR-10269

Krizhevsky et al. (2009). These models include architectures from the ResNet, DenseNet, and70

VGG families, among others. We trained models with and without data augmentation (random crop,71

random horizontal flip, and random erasing) to compare its effect on LC. A full list of models can be72

found in Appendix B.1, and details on model training in Appendix B.2. To simulate OOD data, we73

evaluated each of our models on a subset of images from CIFAR-10-Warehouse3 (CIFAR-10-W) Sun74

et al. (2024), a collection of 180 datasets motivated by the observation that many collections of OOD75

testsets have a small number of domains or rely on synthetic corruptions. Specifically, we used the76

subset of CIFAR-10-W sourced from the internet image search engine, 360. This dataset has over77

60,000 images separated into 12 different colors across the same classes as CIFAR-10. The images78

were chosen through keyword searches of the form “color class” (i.e., “red airplane”).79

1https://github.com/AhmedImtiazPrio/grok-adversarial; released with an MIT License
2https://www.cs.toronto.edu/~kriz/cifar.html; released with an MIT License
3Licensed under CC BY-NC 4.0 1
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Figure 1: Left: LC on training and testing data (CIFAR-10) throughout training for three models.
Differences in model architecture lead to different qualitative behavior in LC. Right: Accuracy
on CIFAR-10-W is shown in blue, with accuracy on the CIFAR-10 test set overlaid in orange for
comparison.

4 Results and Discussion80

Different LC dynamics, similar OOD performance As in Humayun et al. (2023), our work81

corroborates that training-time LC trajectories depend on model architecture. Figure 1 shows three82

examples of LC trajectories, measured at the final layer before the classification layer. DenseNet-16183

(left, top) is closest to having two descent phases4: after rising upon initialization, the mean number84

of regions intersected decreases slightly, and then flattens, before decreasing for the remainder85

of training. In contrast, for both ResNet-34 and InceptionV3 the sharp spike after initialization86

is followed by a much faster decrease. (Note that the maximum number of possible hyperplane87

intersections is directly related to the number of neurons, making it difficult to compare LC values88

directly between models with different architectures). Despite the qualitative differences in local89

complexity dynamics, DenseNet-161 and ResNet-34 perform very similarly on CIFAR-10-W, with90

55.18% and 54.34% accuracy, respectively. While Inception-V3 and ResNet-34 have very similar LC91

dynamics, Inception-V3 outperforms ResNet-34, getting 58.41% accuracy. As shown in Figure 1,92

Inception-V3, DenseNet-161, and ResNet-34 are 87.74%, 91.44%, 88.83% accurate on the CIFAR-1093

test set, respectively. Overall, the trends we saw in LC dynamics confirmed findings in Humayun94

et al. (2023) that LC is highly dependent on model architecture. (Figure 6 in Appendix E show the95

similarity in LC dynamics between models from the same architecture families.) Consequently, LC96

dynamics alone are not sufficient information to predict a model’s ability to generalize to OOD data.97

Comparing LC of correctly and incorrectly classified examples Though LC alone is not enough98

to predict model performance on OOD data overall, we found that it does reflect some information99

about the correctness of individual predictions. We evaluate DenseNet-161 and ResNet-34 on 128100

random samples from each of the 12 color groups of CIFAR-10-W’s 360 dataset, separate the data101

based on whether it was correctly or incorrectly classified by the model, and measure the difference in102

LC at the end of training (we omitted InceptionV3 because of its similarity in LC dynamics to ResNet-103

34). We find, on average, that the number of hyperplanes intersecting a neighborhood is higher among104

the incorrectly classified points than those correctly classified (Figure 3). In fact, computing t-tests105

on LC measurements by color and model reveals that the majority of these differences are statistically106

significant (p ≤ 0.05). We found 19 of 24 t-tests were statistically significant. Further details can be107

found in Appendix C. A possible future direction is to train a classifier that considers LC, among108

other information, as input and predicts if an individual OOD example will be correctly classified.109

4All three models use batch normalization, which could be the reason we see only a single descent phase.
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Figure 2: Top: Model confidence vs. local complexity for examples from the in-distribution CIFAR-
10 holdout test set. To evaluate model confidence, we take the difference of the two highest softmax
logits. Bottom: Model confidence vs. local complexity for examples from CIFAR-10-W in color ‘02’
(“orange”) on three models.

LC and model confidence Since average thresholded confidence is used to predict accuracy on110

unlabeled test data Garg et al. (2022), as an initial step towards understanding what features could be111

used in conjunction with LC, we study the relationship between LC and confidence. Our intuition is112

guided by the idea that the spline partitions will migrate towards the decision boundary throughout113

training Humayun et al. (2024b). So, we expect that an example with low local complexity will be114

firmly located within a particular label’s region, implying that the model is confident in its prediction.115

Conversely, an example near the decision boundary will have high LC and low confidence. The plots116

of model confidence vs. LC on our in-distribution testing data shown in Figure 2, top, support this.117

We see that for both DenseNet-161 and ResNet-34 there are a cluster of correctly classified points in118

the upper left, while incorrectly classified points more often fall in the lower right.119

Figure 2, bottom, shows model confidence vs. LC but for OOD data. In this case, we still see a120

distinct cluster of correctly classified points in the upper left, but also see more incorrectly classified121

examples in this area. This suggests that these examples fall firmly within the region of the input122

space for a particular label (far from the decision boundary), but that it is the incorrect label, reflecting123

one way in which data can be OOD. Additionally, we see many examples in the OOD data that124

fall in the lower left. These examples are not easily explained by our current understanding and125

warrant further investigation. One could use a tool like SplineCam Humayun et al. (2024a) to better126

understand where in the input space these OOD examples lie.127

5 Future directions128

The statistically significant difference in mean LC between correctly and incorrectly classified OOD129

samples indicates this measure captures meaningful aspects of OOD generalization and suggests130

several avenues for future study. Future work could use the full distribution of LC values rather131

than just the means, including class-specific patterns, to further understand model generalization and132

robustness. Notably, since this approach computes LC at the end of training, it can be extended to133

pretrained models, broadening its practical applications.134

It would also be interesting to use LC to identify confusing training examples or important data fea-135

tures. Examples of questions include how removing high-LC training examples affects generalization136

performance, and whether analyzing which hyperplanes intersect neighborhoods most often could137

reveal key features. While the present work uses CIFAR-10 and CIFAR-10-W, in future work we138

plan to expand to other datasets and evaluate our hypotheses on a larger collections of models.139
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A Related work177

OOD generalization A recent survey Yu et al. (2024) categorizes OOD evaluation into three groups178

based what test data it requires. OOD performance testing evaluates models when labeled test data179

is available, OOD performance prediction evaluates models when unlabeled test data is available,180

and OOD intrinsic property characterization aims to discover properties of models that inform OOD181

generalization when no test data is available. Examples of intrinsic properties include characteristics182

like stability of estimates under small perturbations Gupta & Rothenhäusler (2023) and flatness Foret183

et al. (2020). When unlabeled test data is available, Garg et al. (2022) proposes the method Average184

Thresholded Confidence to predict accuracy on OOD data using model confidence.185

Local complexity Patel & Montúfar (2024) uses a slightly different definition of local complexity186

and develops theory that explains some of the results in Humayun et al. (2024b). Namely, they show187

that their formulation of local complexity is an upper bound on the total variation of the network188

over the input space. They also connect local complexity to local rank, the average dimension of the189

feature manifold at intermediate layers. Though they do not discuss local complexity directly, Hanin190

& Rolnick (2019) studies spline partitions and investigates alternative ways to quantify the changing191

partition regions.192

B Additional details on experimental setup193

B.1 Complete list of trained models194

We trained 25 models on CIFAR-10. Unless stated otherwise, all models were trained with data195

augmentation. Below is the complete list:196

• ConvNeXt197

• DenseNet-121198

• DenseNet-161199

• DenseNet-169200

• EfficientNet201

• EfficientNet without data aug.202

• GoogLeNet203

• Inception-V3204

• LeNet-5 without data aug.205

• MobileNet-V2206

• ResNet-18207

• ResNet-18 without data aug.208

• ResNet-34209

• ResNet-50210

• ResNet-9211

• ResNet-9 without data aug.212

• VGG-11213

• VGG-11 with batch norm.214

• VGG-13215

• VGG-13 with batch norm.216

• VGG-16217

• VGG-16 with batch norm.218

• VGG-19219

• VGG-19 with batch norm.220

• ViTTiny221

Many of these models were listed here5 as suggestions for use on CIFAR-10. Of these models,222

we chose to exclude VGG-11, VGG-13, VGG-16, and VGG-19 without batch normalization from223

analysis because they never learned better than random chance.224

B.2 Experimental choices225

Local complexity hyperparameters We made choices in our experimental design based on226

observations of preliminary MNIST experiments. For example, we set the radius r = 0.5 for the227

ℓ1-neighborhoods (Section 2). We experimented with various sizes of radii and settled on 0.5 as it228

seemed to capture the most change in LC–with larger r, the number of intersections was always229

quite high and smaller caused the neighborhoods to be too small to consistently intersect any of the230

hyperplanes.231

5https://zenodo.org/badge/latestdoi/195914773
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We chose the dimension of the neighborhoods to be P = 2. Our experiments with MNIST showed232

that increasing the dimension increased the scale of the number of intersections per neighborhood,233

but did not tend to change the overall dynamics. Thus, we chose the minimum dimension for234

computational efficiency.235

Dataset selection We chose to use CIFAR-10-W over a dataset with synthetic corruptions to better236

simulate real-world encounters of unseen data. We chose to experiment on only a subset of CIFAR-237

10-W. There are many different datasets from various internet search engines within CIFAR-10-W. In238

addition, for some search engines, they create cartoon datasets by searching “color class cartoon” to239

further push the data out of distribution. The dataset also includes images generated using diffusion240

models. Within CIFAR-10-W, we focused on the search engine 360 for simplicity and the existence241

of an analogous cartoon version, though we ultimately did not analyze that data.242

Model confidence In Section 4, we evaluate model confidence using the difference of the two243

highest softmax logits. We chose this computation instead of simply taking the highest value as it244

suggests the model prefers a single label over all others which we interpret as a data point lying far245

from the decision boundary.246

Training details When training each of our models, we used stochastic gradient descent as our247

optimizer and trained for 200 epochs. We set weight decay to be 0.01, learning rate to be 0.1,248

momentum to be 0.9, and used a batch size of 128. We used a scheduler to set the learning rate249

to follow a linear warmup schedule followed by a cosine annealing schedule. We used the default250

train/test split of CIFAR-10 with 50,000 training points and 10,000 test points. All models were251

trained on a single NVIDIA A100.252

C Full t-test results253

We chose to run independent t-tests as we wish to compare the means of a statistic between two254

different populations. We sample 128 points randomly from CIFAR-10-W and assume that the LC255

of each point is an independent observation. We find that the correctly and incorrectly classified256

examples have similar variances. The table below shows the p-values for each of the t-tests described257

in Section 4. The bold values are statistically significant (p ≤ 0.05).258

Color DenseNet-161 ResNet-34
Red ‘01’ 0.01688 0.00176
Orange ‘02’ 0.00021 0.07751
Yellow ‘03’ 3.05161 e-07 1.30424 e-05
Green ‘04’ 0.00059 5.04387 e-06
Light Blue ‘05’ 0.00812 0.27444
Blue ‘06’ 4.41172 e-09 0.00011
Purple ‘07’ 0.00019 0.25146
Pink ‘08’ 1.0775 e-06 8.61807 e-05
Brown ‘09’ 0.00041 9.86942 e-05
Gray ‘10’ 2.17557 e-06 7.99038 e-08
White ‘11’ 0.04719 6.84716 e-05
Black ‘12’ 0.69873 0.08998

259

In addition to studying differences between means, we also examined how LC changes throughout260

training, both overall (Figure 3) and for individual examples (Figure 4). Although there is notable261

overlap between the correctly and incorrectly classified examples, the statistically significant differ-262

ence between the two distributions suggests that we may be able to discern which examples will be263

correctly classified using local complexity.264

D Preliminary MNIST experiments265

Preliminary experiments on MNIST6 LeCun et al. (2010) informed our approach to studying CIFAR-266

10. We trained 10 different models on MNIST for 10 epochs each and computed local complexity267

6Licensed under MIT License
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Figure 3: Mean intersections per neighborhood for examples from CIFAR-10-W in color ‘06’ (“blue”)
from three models. Examples are separated based on if they were correctly (green) or incorrectly
(red) classified by the model. The mean among the incorrectly classified examples is higher than
among the correctly classified examples. This is true across all colors. The statistical significance is
discussed in Section 4.

Figure 4: Number of intersections per neighborhood for 128 examples taken from CIFAR-10-W in
color ‘06’ (“blue”). Examples that are correctly classified are shown in green and those incorrectly
classified in red. This allows us to see how local complexity changes throughout training for each
example individually.

throughout training on 100 training and 100 testing examples. We then evaluated each of the models268

on MNIST-C7 Mu & Gilmer (2019), a corrupted, synthetic version of MNIST. We compared accuracy269

and LC across models and across the 15 corruptions in MNIST-C. We found that even when a model270

was able to achieve high accuracy on corrupted data, the LC dynamics for “brightness” and “fog”271

were qualitatively different than for other corruptions. These two corruptions are the only two that272

edit the contrast of the original images leading us to wonder if contrast is a particularly important273

feature in the model’s decision-making process. Further study could reveal if local complexity can274

identify how influential certain data features are in model predictions.275

E Additional figures276

7Licensed under Apache License Version 2.0
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Figure 5: Two bar plots showing model performance separated by each of the color groups within
CIFAR-10-W. Left: comparing the performance between the 12 colors by each of the 3 models.
Right: comparing performance between models on each of the 12 colors.
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Figure 6: LC at the final layer before the classification layer for three DenseNet architectures
(DenseNet-121, DenseNet-161, DenseNet-169), three ResNet architectures (Resnet-9, ResNet-18,
ResNet-34) and three VGG architectures (VGG13, VGG16, and VGG19). LC dynamics look very
similar between models with similar architecture.

TAG-DS Paper Checklist277

1. Claims278

Question: Do the main claims made in the abstract and introduction accurately reflect the279

paper’s contributions and scope?280

Answer: [Yes]281

Justification: The abstract and introduction accurately reflect the findings and motivations282

of the paper. We discuss our main claim: that local complexity captures a meaningful283

component of OOD generalization, but is alone not sufficient to predict OOD generalization.284

Guidelines:285

• The answer NA means that the abstract and introduction do not include the claims286

made in the paper.287
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• The abstract and/or introduction should clearly state the claims made, including the288

contributions made in the paper and important assumptions and limitations. A No or289

NA answer to this question will not be perceived well by the reviewers.290

• The claims made should match theoretical and experimental results, and reflect how291

much the results can be expected to generalize to other settings.292

• It is fine to include aspirational goals as motivation as long as it is clear that these goals293

are not attained by the paper.294

2. Limitations295

Question: Does the paper discuss the limitations of the work performed by the authors?296

Answer: [Yes]297

Justification: We are clear in our explanation that this is work performed on a single dataset298

and provides encouraging evidence that local complexity may be a helpful tool to understand299

OOD generalization. We make no claims that our trends necessarily hold in general and300

discuss making these findings more robust in Section 5. We perform t-tests in Section 4 and301

in the Appendix (Section C) the circumstances that lead us to believe this is an accurate test302

to use.303

Guidelines:304

• The answer NA means that the paper has no limitation while the answer No means that305

the paper has limitations, but those are not discussed in the paper.306

• The authors are encouraged to create a separate "Limitations" section in their paper.307

• The paper should point out any strong assumptions and how robust the results are to308

violations of these assumptions (e.g., independence assumptions, noiseless settings,309

model well-specification, asymptotic approximations only holding locally). The authors310

should reflect on how these assumptions might be violated in practice and what the311

implications would be.312

• The authors should reflect on the scope of the claims made, e.g., if the approach was313

only tested on a few datasets or with a few runs. In general, empirical results often314

depend on implicit assumptions, which should be articulated.315

• The authors should reflect on the factors that influence the performance of the approach.316

For example, a facial recognition algorithm may perform poorly when image resolution317

is low or images are taken in low lighting. Or a speech-to-text system might not be318

used reliably to provide closed captions for online lectures because it fails to handle319

technical jargon.320

• The authors should discuss the computational efficiency of the proposed algorithms321

and how they scale with dataset size.322

• If applicable, the authors should discuss possible limitations of their approach to323

address problems of privacy and fairness.324

• While the authors might fear that complete honesty about limitations might be used by325

reviewers as grounds for rejection, a worse outcome might be that reviewers discover326

limitations that aren’t acknowledged in the paper. The authors should use their best327

judgment and recognize that individual actions in favor of transparency play an impor-328

tant role in developing norms that preserve the integrity of the community. Reviewers329

will be specifically instructed to not penalize honesty concerning limitations.330

3. Theory assumptions and proofs331

Question: For each theoretical result, does the paper provide the full set of assumptions and332

a complete (and correct) proof?333

Answer: [NA]334

Justification: This paper does not contain any theoretical results. We make only empirical335

claims about the relationship between local complexity and OOD generalization.336

Guidelines:337

• The answer NA means that the paper does not include theoretical results.338

• All the theorems, formulas, and proofs in the paper should be numbered and cross-339

referenced.340
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• All assumptions should be clearly stated or referenced in the statement of any theorems.341

• The proofs can either appear in the main paper or the supplemental material, but if342

they appear in the supplemental material, the authors are encouraged to provide a short343

proof sketch to provide intuition.344

• Inversely, any informal proof provided in the core of the paper should be complemented345

by formal proofs provided in appendix or supplemental material.346

• Theorems and Lemmas that the proof relies upon should be properly referenced.347

4. Experimental result reproducibility348

Question: Does the paper fully disclose all the information needed to reproduce the main ex-349

perimental results of the paper to the extent that it affects the main claims and/or conclusions350

of the paper (regardless of whether the code and data are provided or not)?351

Answer: [Yes]352

Justification: We provide a detailed description of our set-up in the paper. An overview can353

be found in Section 3 with further details in the Appendix (Sections B.1, D, and B.2)354

Guidelines:355

• The answer NA means that the paper does not include experiments.356

• If the paper includes experiments, a No answer to this question will not be perceived357

well by the reviewers: Making the paper reproducible is important, regardless of358

whether the code and data are provided or not.359

• If the contribution is a dataset and/or model, the authors should describe the steps taken360

to make their results reproducible or verifiable.361

• Depending on the contribution, reproducibility can be accomplished in various ways.362

For example, if the contribution is a novel architecture, describing the architecture fully363

might suffice, or if the contribution is a specific model and empirical evaluation, it may364

be necessary to either make it possible for others to replicate the model with the same365

dataset, or provide access to the model. In general. releasing code and data is often366

one good way to accomplish this, but reproducibility can also be provided via detailed367

instructions for how to replicate the results, access to a hosted model (e.g., in the case368

of a large language model), releasing of a model checkpoint, or other means that are369

appropriate to the research performed.370

• While NeurIPS does not require releasing code, the conference does require all submis-371

sions to provide some reasonable avenue for reproducibility, which may depend on the372

nature of the contribution. For example373

(a) If the contribution is primarily a new algorithm, the paper should make it clear how374

to reproduce that algorithm.375

(b) If the contribution is primarily a new model architecture, the paper should describe376

the architecture clearly and fully.377

(c) If the contribution is a new model (e.g., a large language model), then there should378

either be a way to access this model for reproducing the results or a way to reproduce379

the model (e.g., with an open-source dataset or instructions for how to construct380

the dataset).381

(d) We recognize that reproducibility may be tricky in some cases, in which case382

authors are welcome to describe the particular way they provide for reproducibility.383

In the case of closed-source models, it may be that access to the model is limited in384

some way (e.g., to registered users), but it should be possible for other researchers385

to have some path to reproducing or verifying the results.386

5. Open access to data and code387

Question: Does the paper provide open access to the data and code, with sufficient instruc-388

tions to faithfully reproduce the main experimental results, as described in supplemental389

material?390

Answer: [No]391

Justification: This work is part of an ongoing project. We intend to make our code available392

when we submit the full-length version of this paper.393

Guidelines:394
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• The answer NA means that paper does not include experiments requiring code.395

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/396

public/guides/CodeSubmissionPolicy) for more details.397

• While we encourage the release of code and data, we understand that this might not be398

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not399

including code, unless this is central to the contribution (e.g., for a new open-source400

benchmark).401

• The instructions should contain the exact command and environment needed to run to402

reproduce the results. See the NeurIPS code and data submission guidelines (https:403

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.404

• The authors should provide instructions on data access and preparation, including how405

to access the raw data, preprocessed data, intermediate data, and generated data, etc.406

• The authors should provide scripts to reproduce all experimental results for the new407

proposed method and baselines. If only a subset of experiments are reproducible, they408

should state which ones are omitted from the script and why.409

• At submission time, to preserve anonymity, the authors should release anonymized410

versions (if applicable).411

• Providing as much information as possible in supplemental material (appended to the412

paper) is recommended, but including URLs to data and code is permitted.413

6. Experimental setting/details414

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-415

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the416

results?417

Answer: [Yes]418

Justification: Yes, this information can be found in Section 3 with further details in the419

Appendix (Sections B.1, D, B.2).420

Guidelines:421

• The answer NA means that the paper does not include experiments.422

• The experimental setting should be presented in the core of the paper to a level of detail423

that is necessary to appreciate the results and make sense of them.424

• The full details can be provided either with the code, in appendix, or as supplemental425

material.426

7. Experiment statistical significance427

Question: Does the paper report error bars suitably and correctly defined or other appropriate428

information about the statistical significance of the experiments?429

Answer: [Yes]430

Justification: On figures where we report a mean, we provide a shaded region around the431

mean representing one standard deviation above and below the mean. We compute t-tests in432

Section 4 to support our claim that there is a significant difference in the mean LC between433

correctly and incorrectly classified examples. Further details of these t-tests, including all434

p-values are provided in Section C.435

Guidelines:436

• The answer NA means that the paper does not include experiments.437

• The authors should answer "Yes" if the results are accompanied by error bars, confi-438

dence intervals, or statistical significance tests, at least for the experiments that support439

the main claims of the paper.440

• The factors of variability that the error bars are capturing should be clearly stated (for441

example, train/test split, initialization, random drawing of some parameter, or overall442

run with given experimental conditions).443

• The method for calculating the error bars should be explained (closed form formula,444

call to a library function, bootstrap, etc.)445

• The assumptions made should be given (e.g., Normally distributed errors).446
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• It should be clear whether the error bar is the standard deviation or the standard error447

of the mean.448

• It is OK to report 1-sigma error bars, but one should state it. The authors should449

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis450

of Normality of errors is not verified.451

• For asymmetric distributions, the authors should be careful not to show in tables or452

figures symmetric error bars that would yield results that are out of range (e.g. negative453

error rates).454

• If error bars are reported in tables or plots, The authors should explain in the text how455

they were calculated and reference the corresponding figures or tables in the text.456

8. Experiments compute resources457

Question: For each experiment, does the paper provide sufficient information on the com-458

puter resources (type of compute workers, memory, time of execution) needed to reproduce459

the experiments?460

Answer: [Yes]461

Justification: Yes, this information can be found in Appendix B.2.462

Guidelines:463

• The answer NA means that the paper does not include experiments.464

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,465

or cloud provider, including relevant memory and storage.466

• The paper should provide the amount of compute required for each of the individual467

experimental runs as well as estimate the total compute.468

• The paper should disclose whether the full research project required more compute469

than the experiments reported in the paper (e.g., preliminary or failed experiments that470

didn’t make it into the paper).471

9. Code of ethics472

Question: Does the research conducted in the paper conform, in every respect, with the473

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?474

Answer: [Yes]475

Justification: We adhere to the Code of Ethics.476

Guidelines:477

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.478

• If the authors answer No, they should explain the special circumstances that require a479

deviation from the Code of Ethics.480

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-481

eration due to laws or regulations in their jurisdiction).482

10. Broader impacts483

Question: Does the paper discuss both potential positive societal impacts and negative484

societal impacts of the work performed?485

Answer: [NA]486

Justification: Our work generally seeks to improve our ability to predict OOD generalization.487

We claim to have made partial progress towards this goal, but do not entirely solve it. As488

such, we see no immediate societal impacts.489

Guidelines:490

• The answer NA means that there is no societal impact of the work performed.491

• If the authors answer NA or No, they should explain why their work has no societal492

impact or why the paper does not address societal impact.493

• Examples of negative societal impacts include potential malicious or unintended uses494

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations495

(e.g., deployment of technologies that could make decisions that unfairly impact specific496

groups), privacy considerations, and security considerations.497
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• The conference expects that many papers will be foundational research and not tied498

to particular applications, let alone deployments. However, if there is a direct path to499

any negative applications, the authors should point it out. For example, it is legitimate500

to point out that an improvement in the quality of generative models could be used to501

generate deepfakes for disinformation. On the other hand, it is not needed to point out502

that a generic algorithm for optimizing neural networks could enable people to train503

models that generate Deepfakes faster.504

• The authors should consider possible harms that could arise when the technology is505

being used as intended and functioning correctly, harms that could arise when the506

technology is being used as intended but gives incorrect results, and harms following507

from (intentional or unintentional) misuse of the technology.508

• If there are negative societal impacts, the authors could also discuss possible mitigation509

strategies (e.g., gated release of models, providing defenses in addition to attacks,510

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from511

feedback over time, improving the efficiency and accessibility of ML).512

11. Safeguards513

Question: Does the paper describe safeguards that have been put in place for responsible514

release of data or models that have a high risk for misuse (e.g., pretrained language models,515

image generators, or scraped datasets)?516

Answer: [NA]517

Justification: The paper poses no such risks. We exclusively used pre-existing models and518

datasets.519

Guidelines:520

• The answer NA means that the paper poses no such risks.521

• Released models that have a high risk for misuse or dual-use should be released with522

necessary safeguards to allow for controlled use of the model, for example by requiring523

that users adhere to usage guidelines or restrictions to access the model or implementing524

safety filters.525

• Datasets that have been scraped from the Internet could pose safety risks. The authors526

should describe how they avoided releasing unsafe images.527

• We recognize that providing effective safeguards is challenging, and many papers do528

not require this, but we encourage authors to take this into account and make a best529

faith effort.530

12. Licenses for existing assets531

Question: Are the creators or original owners of assets (e.g., code, data, models), used in532

the paper, properly credited and are the license and terms of use explicitly mentioned and533

properly respected?534

Answer: [Yes]535

Justification: All assets are cited in the bibliography. When appropriate, URLs are provided.536

We were unable to find the license for CIFAR-10, but it is linked and properly cited. All537

other assets have their licenses provided in footnotes when they are first mentioned.538

Guidelines:539

• The answer NA means that the paper does not use existing assets.540

• The authors should cite the original paper that produced the code package or dataset.541

• The authors should state which version of the asset is used and, if possible, include a542

URL.543

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.544

• For scraped data from a particular source (e.g., website), the copyright and terms of545

service of that source should be provided.546

• If assets are released, the license, copyright information, and terms of use in the547

package should be provided. For popular datasets, paperswithcode.com/datasets548

has curated licenses for some datasets. Their licensing guide can help determine the549

license of a dataset.550
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• For existing datasets that are re-packaged, both the original license and the license of551

the derived asset (if it has changed) should be provided.552

• If this information is not available online, the authors are encouraged to reach out to553

the asset’s creators.554

13. New assets555

Question: Are new assets introduced in the paper well documented and is the documentation556

provided alongside the assets?557

Answer: [NA]558

Justification: The paper does not release any new assets.559

Guidelines:560

• The answer NA means that the paper does not release new assets.561

• Researchers should communicate the details of the dataset/code/model as part of their562

submissions via structured templates. This includes details about training, license,563

limitations, etc.564

• The paper should discuss whether and how consent was obtained from people whose565

asset is used.566

• At submission time, remember to anonymize your assets (if applicable). You can either567

create an anonymized URL or include an anonymized zip file.568

14. Crowdsourcing and research with human subjects569

Question: For crowdsourcing experiments and research with human subjects, does the paper570

include the full text of instructions given to participants and screenshots, if applicable, as571

well as details about compensation (if any)?572

Answer: [NA]573

Justification: Our paper does not include crowdsourcing nor human subjects.574

Guidelines:575

• The answer NA means that the paper does not involve crowdsourcing nor research with576

human subjects.577

• Including this information in the supplemental material is fine, but if the main contribu-578

tion of the paper involves human subjects, then as much detail as possible should be579

included in the main paper.580

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,581

or other labor should be paid at least the minimum wage in the country of the data582

collector.583

15. Institutional review board (IRB) approvals or equivalent for research with human584

subjects585

Question: Does the paper describe potential risks incurred by study participants, whether586

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)587

approvals (or an equivalent approval/review based on the requirements of your country or588

institution) were obtained?589

Answer: [NA]590

Justification: Our paper does not involve crowdsourcing nor research with human subjects.591

Guidelines:592

• The answer NA means that the paper does not involve crowdsourcing nor research with593

human subjects.594

• Depending on the country in which research is conducted, IRB approval (or equivalent)595

may be required for any human subjects research. If you obtained IRB approval, you596

should clearly state this in the paper.597

• We recognize that the procedures for this may vary significantly between institutions598

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the599

guidelines for their institution.600

• For initial submissions, do not include any information that would break anonymity (if601

applicable), such as the institution conducting the review.602
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16. Declaration of LLM usage603

Question: Does the paper describe the usage of LLMs if it is an important, original, or604

non-standard component of the core methods in this research? Note that if the LLM is used605

only for writing, editing, or formatting purposes and does not impact the core methodology,606

scientific rigorousness, or originality of the research, declaration is not required.607

Answer: [NA]608

Justification: The core method of development does not involve LLMs as any important609

components. We consulted LLMs only for suggestions on minor tasks (i.e., formatting610

figures in matplotlib), not for any scientific portion of our research.611

Guidelines:612

• The answer NA means that the core method development in this research does not613

involve LLMs as any important, original, or non-standard components.614

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)615

for what should or should not be described.616
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