
Under review as submission to TMLR

A Unified Approach Towards Active Learning
and Out-of-Distribution Detection

Anonymous authors
Paper under double-blind review

Abstract

In real-world applications of deep learning models, active learning (AL) strategies are essen-
tial for identifying label candidates from vast amounts of unlabeled data. In this context,
robust out-of-distribution (OOD) detection mechanisms are crucial for handling data out-
side the target distribution during the application’s operation. Usually, these problems have
been addressed separately. In this work, we introduce SISOM as a unified solution designed
explicitly for AL and OOD detection. By combining feature space-based and uncertainty-
based metrics, SISOM leverages the strengths of the currently independent tasks to solve
both effectively without requiring specific training schemes. We conducted extensive experi-
ments showing the problems arising when migrating between both tasks. In our experiments
SISOM underlined its effectiveness by achieving first place in one of the commonly used
OpenOOD benchmark settings and top-3 places in the remaining two for near-OOD data.
In AL, SISOM 1 outperforms others and delivers top performance in common benchmarks.

1 Introduction

Large-scale deep learning models encounter several data-centric challenges during training and operation,
particularly in real-world problems such as mobile robotic perception (Cai & Koutsoukos, 2020) and au-
tonomous driving (Nitsch et al., 2021). On the one hand, these models require vast amounts of data and
labels for training, driven by the uncontrolled nature of real-world tasks. On the other hand, even when
trained with extensive data, these models can behave unpredictably when encountering samples that deviate
significantly from the training data, known as out-of-distribution (OOD) data.
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Figure 1: CIFAR-10 UMAP plot of unla-
beled, near and far OOD data compared to
labeled data. For details see Appendix B.4.

Active learning (AL) addresses the first limitation by guiding
the selection of label candidates. In the traditional pool-based
AL scenario (Settles, 2010), models start with a small labeled
training set and can iteratively query data and its labels from
an unlabeled data pool. The selection is based on model met-
rics such as uncertainty, diversity, or latent space encoding.
One AL cycle concludes with the model being trained on the
labeled subset, including the newly added samples.

The second challenge, dealing with unknown data during oper-
ation, is typically addressed by OOD detection. OOD detection
distinguishes between in-distribution (InD) data used for train-
ing the model and OOD samples, which differ from the training
distribution. Literature differentiates between near-ODD and
far-OOD, which can be categorized by the type of distribution
shifts occurring. Yang et al. (2022); Zhang et al. (2023) defines near-OOD as a pure covariate shift, while
far-OOD often contains a semantic shift.

Recent works in AL combined AL and OOD detection into the Open-set AL (OSAL) scenario, assuming
the existence of OOD data in the unlabeled pool, enabling a selection from the data pool without prior

1Code will be published upon acceptance - for review in supplementary
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knowledge. However, existing methods Ning et al. (2022); Yang et al. (2023); Du et al. (2021) usually rely
on separate components for OOD separation and data selection, respectively.
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Figure 2: Real-world application life cycle comprising
active learning in the training phase (left) and out-of-
distribution detection in the operation phase (right).

As a result, a consideration of the connection be-
tween both tasks has rarely been done. From
a method perspective, both methodologies utilize
common metrics, such as uncertainty, latent space
distances, and energy. In addition, a sample de-
tected by such metrics can be, on the one hand, a
novel AL sample that is insufficiently represented
by the current training distribution. On the other
hand, the sample can pose a covariant shift in an
OOD setting. Considering both cases as depicted in
Fig. 1 show an ambiguity and overlap of both sam-
ple categories. This raises the question whether an
examination of the ambiguity of and relations between the respective samples can provide valuable insights
for designing approaches for both tasks and OSAL2, where current methods mostly consider both subtasks
as independent.

Besides the methodology perspective, mobile robotic applications often train neural networks on recordings
and afterward deploy them for operation as shown in Fig. 2 as an integrated life cycle. Given the amount
of collected data, AL is applied for label-efficient training. During operation, OOD detection is employed
to observe if the current operation is within the trained domain, which is necessary for real-world operation
domains. Existing works address both challenges, which are separate methods that can lead to diverging goals
like specific training schemes. Addressing these tasks separately introduces significant overhead, especially
for deployment and development like hyperparameter optimization or the training of auxiliary models.

Our work explores the connection between AL and OOD detection, introducing a unified approach for both
tasks that leverages their mutual strengths. Specifically, we propose Simultaneous Informative Sampling
and Outlier Mining (SISOM), which uses enriched feature space distances based on coverage creating a
symbiosis between AL and OOD detection. By exploiting the ambiguity of both tasks, SISOM achieves
top performance across most near-OOD and AL benchmarks. By uniting both tasks, SISOM simplifies the
application life cycle by eliminating the need for a separate OOD design phase and resolves conflicting design
goals. This perspective contrasts with open-set AL, where OOD data is incorporated into the unlabeled
pool, forming a combined task. Additionally, SISOM provides a novel latent space analysis for post-training
latent space refinement and a first-of-its-kind self-balancing of uncertainty and diversity metrics.

In summary, our contributions are as follows:

• We propose Simultaneous Informative Sampling and Outlier Mining (SISOM), a novel method
designed for both OOD detection and AL.

• We introduce a latent space analysis enabling an optimization loop for further post-training latent
space refinement and a self-balanced uncertainty diversity fusion.

• In extensive experiments, we demonstrate SISOM effectiveness in AL and OOD benchmarks against
highly specialized state-of-the-art methods.

2 Preliminaries

Active Learning: AL is a subfield of machine learning designed to reduce the number of required labels by
querying a set of new samples A of a query size q in a cyclic process. Let X represent a set of samples and
Y a set of labels. AL starts with an initially labeled pool L, containing data samples with features x and
corresponding label y, and an unlabeled pool U where only x is known. However, y can be queried from a
human oracle. We further assume that L and U are samples from a distribution Ω. In each cycle, a model

2In fact, Schmidt et al. (2025) employed SISOMe for OSAL based on a preprint version of this work.
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f is trained such that f : XL → YL. This model then selects new samples from U based on a query strategy
Q(x, f), which utilizes (intermediate) model outputs. As a result, the newly annotated set A is added to the
labeled pool Li+1 and removed from the unlabeled pool Ui+1.

Out of Distribution Detection: Ancillary, OOD detection assumes a model f : XL → YL trained on our
training data {x, y} ∈ L which have been sampled from the distribution Ω. During evaluation or inference,
a model f encounters data samples x̃ from a distribution Θ and Ω, where Ω ∩ Θ = ∅ and x̃ /∈ L. Data
sampled from Ω are referred to as InD data, while samples from Θ are referred to as OOD data. Based on
the trained model f , a metric S is used to determine whether a sample x is sampled from Ω or Θ.

G(x, f) =
{

InD if S(x; f) ≥ λ

OOD if S(x; f) < λ
(1)

OOD detection is further categorized into near- and far-OOD (Zhang et al., 2023). Far-OOD refers to
completely unrelated data, such as comparing MNIST (LeCun et al., 1998) to CIFAR-100 (Krizhevsky
et al., 2009), while CIFAR-10 (Krizhevsky et al., 2009) to CIFAR-100 would be considered as near-OOD.
OpenODD (Yang et al., 2022) ranks near-OOD detection as more challenging.

3 Related Work

Given the disentanglement of fields, we review the related work individually.

Active Learning: AL mainly considers the pool-based and stream-based scenario (Settles, 2010), where
data is either queried from a pool in a data center or a stream on the fly. For deep learning, the majority of
current research deals with pool-based AL (Ren et al., 2021). However, further scenarios have been evaluated
by Schmidt & Günnemann (2023) and Schmidt et al. (2024). Independent of the scenarios, samples are
selected either by prediction uncertainty, latent space diversity, or auxiliary models. A majority of the
uncertainty-based methods rely on sampling - like Monte Carlo Dropout (Gal & Ghahramani, 2016) - or
employ ensembles (Beluch et al., 2018; Lakshminarayanan et al., 2017). To additionally ensure batch diversity
Kirsch et al. (2019) used the joint mutual information. The uncertainty concepts have been employed and
further developed for major computer vision tasks, including object detection (Feng et al., 2019; Schmidt
et al., 2020), 3D object detection (Hekimoglu et al., 2022; Park et al., 2023b), and semantic segmentation
(Huang et al., 2018). One of the few works breaking the gap between both tasks (Shukla et al., 2022)
modified an OOD detection method for pose estimation. Dutta et al. (2025), proposed to use imprecise
probability by Imprecise Neural Networks for statistical verification of autonomous system to enable save
operation and AL for in reinforcement learning. Mukhoti et al. (2023) proposed DDU, an uncertainty
baseline based on spectral convolutions and Gaussian mixture models, which show improvements against
other general uncertainty approaches on AL and OOD detection compared to other uncertainty approaches.
Given the requirements of spectral convolutions, DDU is not flexible applicable for all use cases. In contrast,
diversity-based approaches aim to select key samples to cover the whole dataset. Sener & Savarese (2018)
proposed to choose a CoreSet of the latent space using a greedy optimization. Yehuda et al. (2022b) selected
samples having high coverage in a fixed radius for low data regimes. Mishal & Weinshall (2024) extends
the approach for more data regimes dynamic strategy mixing. Ash et al. (2020) enriched the latent space
dimensions to the dimensions of the gradients and included uncertainty in this way. The concept of combining
uncertainty with diversity has been further refined for 3D object detection (Yang et al., 2024; Luo et al.,
2023). Liang et al. (2024) combined different diversity metrics for the same task. In semantic segmentation,
Surprise Adequacy (Kim et al., 2020) has been employed to measure how surprising a model finds a new
instance. Yi et al. (2022) used auxiliary tasks for unsupervised model training to select diverse samples.
Besides the metric-based approach, the selection can also be made by auxiliary models mimicking diversity
and uncertainty. These approaches range from loss estimation (Yoo & Kweon, 2019), autoencoder-based
approaches (Sinha et al., 2019; Zhang et al., 2020; Kim et al., 2021) and graph models (Caramalau et al.,
2021), to teacher-student approaches (Peng et al., 2021; Hekimoglu et al., 2024).

Out-of-Distribution Detection: To facilitate a fair comparison and evaluation of OOD methods, bench-
marking frameworks like OpenOOD (Yang et al., 2022; Zhang et al., 2023) have been introduced, which
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categorizes the methods into preprocessing methods altering the training process and postprocessing meth-
ods being applied after training. Preprocessing techniques include augmenting training data like mixing
(Zhang et al., 2018; Tokozume et al., 2018) different samples or applying fractals to images (Hendrycks
et al., 2022). Postprocessing approaches include techniques of manipulations on neurons and weights of the
trained network, such as filtering for important neurons (Ahn et al., 2023; Djurisic et al., 2022), or weights
(Sun & Li, 2022), or clipping neuron values to reduce OOD-induced noise (Sun et al., 2021). Recent advance-
ments in post-hoc network enhancement include SCALE (Xu et al., 2024), which enhances OOD detection
by activation scaling. Logit-based approaches encompass the model output to estimate uncertainties using
temperature-scaling (Liang et al., 2018), modified entropy scores (Liu et al., 2023), energy scores (Liu et al.,
2020; Elflein et al., 2021) or ensembles (Arpit et al., 2022). Other methods use distances in the feature
space, such as the Mahalanobis distance between InD and OOD samples (Lee et al., 2018), rely on gradients
(Liang et al., 2018; Hsu et al., 2020; Huang et al., 2021; Schwinn et al., 2021), estimate densities (Charp-
entier et al., 2020; 2022) or apply k-nearest-neighbor on latent space distances (Sun et al., 2022). Nearest
Neighbor Guidance (NNGuide) (Park et al., 2023a) refines classifier-based scores by respecting the data
manifold’s boundary geometry. A different branch operates on the features directly and evaluates properties
like the Norm (Yu et al., 2023) or performs rank reductions via SVD (Song et al., 2022). NAC (Liu et al.,
2024) combined gradient information with a density approach, where a probability density function over InD
samples is estimated. CombOOD (Rajasekaran et al., 2024) is a semi-parametric framework that combines
nearest-neighbor and Mahalanobis distances to improve OOD detection accuracy.

OpenSet Active Learning: The emerging field of OpenSet AL considers both tasks in one cycle, assuming
the AL pool is polluted by OOD samples. Existing approaches (Ning et al., 2022; Park et al., 2022; Yang
et al., 2023; Safaei et al., 2024) present strong results by primarily tackling both tasks by separate modules
containing auxiliary models. As both unlabeled and OOD samples are considered decoupled with uncor-
related modules, this field is orthogonal to our examination of correlation and entanglement. Alternative
approaches such as SIMILAR (Kothawade et al., 2021) are being explored, which proposes a unified active
learning framework using submodular information measures to handle OOD data within the unlabeled set.
However, the computation of these measures introduces additional computational overhead and requires
access to initially known OOD data. Furthermore, Stojnić et al. (2024) built on top of the open-set classifier
concept and created an ensemble of models with an additional OOD class for semi-supervised AL, which
comes with the increased computational demands. In contrast to works in this field, we investigate the cor-
relation between unlabeled and OOD samples to provide a unified metric for both. We believe that this field
benefits from the joint consideration of AL and OOD samples as well as an examination of their ambiguity.

While various works exist in OOD and AL, both tasks are considered independent. Even in OSAL, the
tasks are mostly considered by independent method components. Some uncertainty methods are evaluated
on both tasks but limit their evaluation to the uncertainty domain. Current state-of-the-art approaches are
often specified for one task. In addition, the application life cycle consideration is unexplored.

4 Methodology

To address both AL and OOD detection tasks in a unified method to simplify real-world applications, we
need to first understand the goals of these two tasks. AL aims to identify and select samples that are
beneficial for training and increase the model’s performance. These samples typically position themselves
between the existing clusters in the latent space or near the decision boundaries. OOD detection targets the
identification of data outside the training data and, therefore, outside the known clusters in latent space.
Given the definition of far- and near-OOD, near-ODD is closer to InD data and located close to the decision
boundaries and in between the existing clusters. Liu & Qin (2024) recently showed that OOD is generally
closer to the decision boundary than InD, confirming this hypothesis. Fig. 1 investigates this hypothesis and
shows the overlap n distribution of interesting unlabeled data and (near-)OOD data compared to distance
to far-OOD samples.

To target these overlapping regions, we designed a method that focused on the latent space regions between
the clusters. To do so, SISOM employs an enlarged feature space Coverage (1) and increases expressiveness
by weighting important neurons in a Feature Enhancement (2). Based on this feature representation,
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we refine the AL selection and the InD and OOD border by using an inner-to-outer class Distance Ratio
(3), guiding it to unexplored and decision boundary regions. As feature space distances are prone to poorly
defined latent space representations, we introduce Feature Space Analysis (4) providing a self-deciding
fusion of our distance metric with an uncertainty-based energy score. Optionally, our previous analysis
enables us to optimize the Sigmoid Steepness (5), providing a further refinement of the feature space
representations from (2). An overview is depicted in Fig. 3. With this setup, SISOM specifically addresses
both tasks without any requirements on the training scheme.

(1) Coverage: We aim to identify the regions of the samples that are interesting and unexplored for AL
as well as OOD samples in latent space. To do so, we rely on an informative latent space covering as much
information as possible.

To increase the information gain, we cover the full network and define the feature space representation of an
input sample x as a concatenation of the latent space of multiple layers hj in a set of selected layers H in
Eq. (2). This approach follows the procedures of neural coverage (Kim et al., 2019; Liu et al., 2024) and is
contrasting to most diversity-based AL approaches (Sener & Savarese, 2018; Ash et al., 2020), which use a
single layer.

z = h1(x) ⊕ · · · ⊕ hj(x) ⊕ · · · ⊕ hn(x) (2)
Given the feature space z, we further denote ZU as a set of feature space representations of unlabeled samples
from U, while ZL denotes the set of representations of all labeled samples L.

(2) Feature Enhancement: To enhance the expressiveness of our defined latent space, improving class
separation, we introduce a weighting of individual layers. Prior research (Huang et al., 2021; Liu et al., 2024)
have demonstrated that the gradients of neurons with respect to the KL divergence of the model’s output
and a uniform distribution encapsulate valuable information for OOD detection.

We apply the technique to improve the features further and enrich these by representing the individual
contribution of each neuron i, denoted as gi. This gradient describes each neuron’s contribution to the
actual output being different from the uniform distribution. A low value suggests that the neuron has little
influence on the prediction of a given input sample. Conversely, if the value is high, the respective neuron is
crucial for the decision process.

(2) Enhance Features

(3) Distance Ratio

OOD Detection Active Learning

Update labeled
set and retrain

Filter OOD samples
and predict InD samples

(1) Coverage

Trained Model

(4) Feature Space Analysis

SISOM Query:

(5) Sigmoid Steepness

Figure 3: SISOM framework for OOD detection and
AL combined.

Thus, the gradient vector can be interpreted as a
saliency weighting for the activation values in the
feature space to support separability. In detail, we
compute the gradient of the Kullback-Leibler (KL)
divergence between an uniform distribution u and
the softmax output distribution f(x) for an input
sample x with respect to the selected features z:

g = ∂DKL(u||f(x))
∂z . (3)

We create a weighted feature representation z̃ by
multiplying the calculated saliency element-wise
with the feature space representation z using the
hadamard product ⊙ and restrict it to [−1, 1] with
the sigmoid function σ:

z̃ = σ(z ⊙ g). (4)

The resulting gradient-weighted feature representa-
tion effectively prioritizes the most influential neu-
rons for each input. This facilitates the identifica-
tion of inputs activating atypical influence patterns,
which is significant for AL as well as OOD detec-
tion. A qualitative analysis demonstrating the effect
of the feature enrichment is given in Appendix A.4.
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Figure 4: Density plots for SISOM with energy, Optimal Sigmoid Steepness (OS) and Reduced Subset
Selection (RS) on CIFAR-100 with near-OOD (nOOD) and far-OOD (fOOD) as defined in OpenOOD.

(3) Distance Ratio: After we defined and enhanced our latent space, we design our metric to identify
the respective samples. Contrasting to other works in the latent space domain for AL and OOD detection
(Sener & Savarese, 2018) which, rely on simple distance metrics, we take inspiration from complex distance
metrics (Kim et al., 2019) for detecting adversarial examples.

We assume the location of important samples in between the existing clusters in latent space. While far-OOD
and curious AL samples are easier to detect due to larger latent space distances, near-OOD or AL samples
close to the decision boundary, are more difficult to detect and often more important. To identify samples
in these regions, we rely on a distance quotient between inner-class and outer-class distances, boosting the
detection of samples close to the decision boundary.

The inner-class distance din is defined as the minimal feature space distance to a known sample of the
same class c as the predicted pseudo-class of the given sample. The outer-class distance dout represents the
minimal feature space distance to a known sample of a different class than the sample’s pseudo-class.

din(z̃) = min
z′∈ZL(c′=c)

||z̃ − z̃′||2 (5) dout(z̃) = min
z′∈ZL(c′ ̸=c)

||z̃ − z̃′||2 (6)

The distance is computed on the gradient-enhanced feature space z̃ defined in Eq. (4) with z′ describing the
nearest sample from the set of known samples ZL.

In many state-of-the-art works on AL, computationally expensive distance calculations are often present
(Sener & Savarese, 2018; Ash et al., 2020; Caramalau et al., 2021). To make our approach more efficient for
AL and feasible for large-scale OOD detection tasks, we select a representative subset T ⊂ ZL as a comparison
set, thereby significantly reducing computational overhead. We utilize a fixed radius neighborhood to select
samples, maximizing the coverage of the dataset within this radius in the feature space for each class. The
effect of this subset selection is further investigated in Section 5.

Our SISOM score r reflects the distance between each neuron’s weighted feature representation in the latent
space and the nearest sample of the predicted class relative to the closest distance to a sample from a different
class:

r = din

dout
. (7)

An extended comparison of the different distance metrics and their ability to separate InD and OOD is
shown in Appendix A.4, while a SISOM is depicted in Fig. 4a.

Since we calculated a scale-value for each sample, we follow the most commonly used top-k selection (Yoo
& Kweon, 2019; Kim et al., 2021; Gal & Ghahramani, 2016) to select q samples with the highest distance
ratio r, with q being the AL query size:

A = argmaxqr(x) : x ∈ U. (8)

For OOD Detection, we map the distance ratios r to an interval [0; 1] with the strictly monotonically
decreasing function:

rOOD = 1 − σ(r) + 1
2 . (9)
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(4) Feature Space Analysis: Having a well-defined latent space is crucial for SISOM to attain optimal
performance. Furthermore, we hypothesize that techniques relying on feature space metrics are more de-
pendent on feature space separation than uncertainty-based methods. This dependency is important for
SISOM as it utilizes a quotient of feature space metrics. Nevertheless, obtaining a well-defined and separable
latent space may pose challenges in specific contexts and tasks.

To estimate the separability of feature space, we compute the average distance ratio ravg using Eq. (4) and
Eq. (7) for the known set as:

ravg = 1
|L|

∑
z̃∈L

din(z̃)
dout(z̃) = 1

|L|
∑
z∈L

din(σ(z ⊙ g))
dout(σ(z ⊙ g)) . (10)

A lower ravg value indicates better separation of the samples in the enhanced feature space, implying that
samples of the same class are relatively closer together than samples of different classes.

To mitigate possible performance disparities of SISOM in difficult separable domains, we introduce
a novel self-deciding process combining SISOM with the uncertainty-based energy score E(x) =
− log

∑c
i=1 exp(f(x)i) estimated from the model’s output logits f(x). We utilize ravg to weights the combi-

nation of uncertainty with our SISOM diversity metric as follows:

r̂i = min(ravg, 1) · Ei + max(1 − ravg, 0) · ri. (11)

The created SISOMe score r̂ balances between uncertainty and diversity and relies either more on the
energy score E or the distance ratio ri, based on the feature space separability. If ravg → 1, indicating
poorly separated classes, r̂i relies more on the energy score. Conversely, if ravg → 0, suggesting a well-
separated feature space, r̂i relies more on the distance ratio. A density outline of our combined approach
SISOMe is given in Fig. 4b. Alternatively, one can replace ravg with a tuneable hyperparameter in Eq. (11).

(5) Sigmoid Steepness: Since Eq. (10) depends on the sigmoid function defined in Eq. (4), the sigmoid
function has a large influence on the enhanced feature space z̃. An additional hyperparameter α can influence
the sigmoid function’s steepness. As z is concatenated from different layers in Eq. (2), the sigmoid can be
applied to each layer j individually. This allows for a more nuanced control over the influence of each
neuron’s contribution to the final decision, and so influences the separability of the feature space. We define
the sigmoid using the steepness parameter α as:

σj(x) = 1
1 + e−αjx ; {αj : hj ∈ z ∀j}. (12)

Relating to Eq. (4), the set α of steepness parameters of the sigmoid function for each layer hj , determines
the degree of continuity or discreteness of the features within that layer. By applying a layerwise sigmoid,
Eq. (4) is formulated as follows:

z̃ = σ1(h1(x) ⊙ gi,1) ⊕ · · · ⊕ σj(hj(x) ⊙ gi,j) ⊕ · · · ⊕ σn(hn(x) ⊙ gi,n), (13)

with gi,j = ∂DKL(u||f(x))
∂hj,i

; ∀j.

Following this consideration we can select α values which optimize the feature space separability metric ravg

from Eq. (10) by minimizing αopt = arg minα ravg(α). Besides the quantitative assessment of our Feature
Space Analysis and Sigmoid Steepness in Section 5, the influence of the Sigmoid Steepness is shown in Fig. 4c.

5 Experiments

To evaluate the abilities of SISOM for the real-world application life cycle (Fig. 2), we conducted compre-
hensive experiments on AL and OOD detection individually. We utilize the commonly used closed-set
pool-based AL scenario (Settles, 2010) for AL. For OOD detection, we employ the extensive OpenOOD
benchmark (Yang et al., 2022; Zhang et al., 2023). In addition, we conduct OOD detection using models
trained by AL to evaluate the whole application life cycle steps from Fig. 2.
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Figure 5: T-SNE feature space comparison of Loss Learning, CoreSet and SISOM for SVHN on cycle 1.
SISOM effectively targets the areas in-between the clusters.

An evaluation of the OSAL scenario, where OOD data is present in the unlabeled AL pool, is out of
scope in this work. Existing OSAL (Ning et al., 2022; Park et al., 2022; Yang et al., 2023; Safaei et al.,
2024) approaches employ two components one for each task, while this work focuses on a single component
which solves both based on an ambiguity. This ambiguity would confuse the proposed method when applied
independently to the compound task. In addition, the OOD filtering components often require access to
OOD samples, which is not permitted in the classic OOD detection setup. However, a recent work (Schmidt
et al., 2025) effectively integrated SISOM with additional components into a framework addressing OSAL.

Latent Space Assessment: In Fig. 1, we compare near- and far-OOD data as well as unlabeled data with
the labeled data. It can be seen that the near-OOD data and the unlabeled data are positioned close to the
individual clusters of the InD labeled data. This confirms our hypothesis that near-OOD can be ambiguous
to unlabeled data. Moreover, in real-world applications, the model is more likely to encounter semantic shifts
along with contextually similar data, like TinyImagenet (Le & Yang, 2015) to CIFAR-10 Krizhevsky et al.
(2009) instead of contextual shifted far-OOD data like MNIST (LeCun et al., 1998) to CIFAR-10.

To validate the assumptions made in Section 4 for AL, we examine the configuration of the latent space
of our selection in the AL experiments. The objective of our method is to select samples in the decision
boundary region for the AL case. In Fig. 5, we compare CoreSet and Loss Learning with SISOM . It can be
observed that CoreSet, as intended, exhibits high diversity in unseparated regions. The pseudo-uncertainty-
based Loss Learning method is more concentrated in its selection but fails to diversify the selection across
all decision boundaries. In contrast, SISOM , as shown in Fig. 5c, focuses on the decision boundary while
successfully covering the entire area between the unseparated samples, demonstrating the effectiveness of
our SISOM in targeting the region for AL and near-OOD.

Active Learning: AL exists in numerous variants; given the focus on showing the relation between OOD
detection and AL, we adhered to common close-set AL benchmark settings (Yoo & Kweon, 2019; Ash et al.,
2020) with the in this context widely evaluated datasets, namely CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009), as well as SVHN (Netzer et al., 2011), in conjunction with different ResNet models (He et al.,
2016). Since we assume a complete learning life-cycle, we mostly focus on the high and mid data regions
(Lüth et al., 2023), as low data regions would not allow reasonable performance for deployment. We selected
our query sizes accordingly and followed the commonly suggested sizes of q = 1000 for CIFAR-10 (Yoo &
Kweon, 2019; Lüth et al., 2023) and q = 2000 for CIFAR-100 (Caramalau et al., 2021). We employ several
baselines, including CoreSet (Sener & Savarese, 2018), CoreGCN (Caramalau et al., 2021), Random,
Badge (Ash et al., 2020), and Loss Learning (LLoss) (Yoo & Kweon, 2019). Additionally, we adapted
NAC (Liu et al., 2024) from OOD detection to AL to assess the transferability from OOD to AL.

Since more recent AL methods use pre-text tasks or unsupervised weights to select samples, we additionally
consider an additional Semi-Supervised AL setup for a fair comparison, including more recent approaches.
In this setting we compare SISOM with TypiClust Yehuda et al. (2022a), ProbCover (Yehuda et al.,
2022b) and PT4AL Yi et al. (2022). Additionally, in this setup, SISOM can profit from the well-defined
feature space. All experiment details, including parameters and settings, are in Appendix B.1.

CIFAR-10: In the CIFAR-10 benchmark depicted in Fig. 6a, SISOM and SISOMe demonstrate rapid progress
and consistent performance, surpassing other methods in all selection cycles. Furthermore, as the sample size
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increase, our method maintains its superiority over Learning Loss and CoreSet. NAC does not demonstrate
superior performance compared to Random. To underline the versatility of SISOM , we analyze additional
mid-data regimens and different query sizes as proposed by Lüth et al. (2023) in Appendix A.3. In the mid
data regime in Fig. 10a. In this data regime, SISOM and SISOMe can maintain their performance shown in
the high data region. As SISOM does not involve continuous distance updates and applies a top-k selection,
it could suffer from less diversity in the selected batch. To investigate this problem, we perform additional
experiments with reduced and increased query sizes in Fig. 9a and Fig. 9b (Appendix A.2), respectively.
SISOM ’s high performance in both settings strengthens our hypothesis that targeting the areas between
clusters leads to higher batch diversification than purely uncertainty-based approaches.
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Figure 7: Comparison of different active learning
methods on a semi-supervised CIFAR-10 setup with
indicated standard errors for ResNet 18.

CIFAR-100: After examining SISOM in datasets
with a limited number of classes, we examine the
AL setup on the larger CIFAR-100 dataset and re-
port the results in Fig. 6b. In this setting, all meth-
ods are less stable in their ranking compared to
the other dataset, reflecting the increased difficulty
of the dataset. The complexity of the dataset re-
quires more data for the model to perform effec-
tively. While in the early stages, pure diversity-
based methods are in the lead, SISOM gains veloc-
ity in the last selection steps and achieves the high-
est performance difference only in the last step SI-
SOMe is more effective.

Semi-Supervised: In Fig. 7, we compare different ap-
proaches designed for a semi-supervised AL setup.
For this experimental setup, every approach builds
upon the unsupervised pre-train weights, which are
required for TypiClust and ProbCover. While both
approaches do not perform strongly in the classic data regime, PT4AL shows a good performance by leverag-
ing training on auxiliary pre-tasks. However, SISOM strongly profits from the pre-training and outperforms
PT4AL without additional pre-task training.

SVHN: Following the experiments on CIFAR-10 and CIFAR-100 we conducts experiments on SVHN and
report them in Appendix A.1.
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Figure 6: Comparison of different active learning methods on CIFAR-10 and CIFAR-100 with ResNet18
with indicated standard errors. Relative Accuracy is the absolute performance difference between a method
and random selection.
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Additionally Active Learning Experiments: To underline the flexibility of SISOM , we conduct additional
experiments on different models. Appendix A.3 and Fig. 10b show experiments with a larger ResNet version.
The larger model leads to lower performance differences between all methods. SISOMe struggles in the early
cycles with latent space assessment but eclipses others and SISOM after a few cycles. Finally, SISOM and
SISOMe achieve the highest accuracy in the final cycles.

In all AL experiments, SISOM achieved state-of-the-art performance across all three datasets, confirming its
viability for AL. Although SISOM initially lags behind on CIFAR-100, it surpasses other methods in later
selection cycles as more training data improves feature space separation.

Out-of-Distribution Detection: Following our evaluation of SISOM on classic AL benchmarks, we
utilize the OpenOOD framework Yang et al. (2022); Zhang et al. (2023) to assess its performance on the
OOD detection task. We employ to the recommended benchmarks on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet 1k (Deng et al., 2009). For a fair evaluation, we use the
official leader board Cross-Entropy training checkpoints and report near- and far-OOD results. The results
are reported as aligned to the framework without standard deviation. In addition to the official benchmark,
we evaluate the life cycle setting. The assignment of OOD datasets follows the framework’s categorization
Yang et al. (2022); Zhang et al. (2023) and is reported with additional settings in Appendix B.2. For all
experiments, we employ the implementation provided by the OpenOOD framework when it is available. The
baselines used for validation include NAC (Liu et al., 2024), Ash (Djurisic et al., 2022), KNN (Sun et al.,
2022), Odin (Hsu et al., 2020), ReAct (Sun et al., 2021), MSP (Hendrycks & Gimpel, 2016), Energy
(Liu et al., 2020), Dice (Sun & Li, 2022), SCALE (Xu et al., 2024), CombOOD (Rajasekaran et al.,
2024), NNGuide (Park et al., 2023a), RankFeat (Yu et al., 2023), FeatureNorm (Song et al., 2022) and
GEN (Liu et al., 2023) and were selected based on their near-OOD performance. Moreover, we ported the
CoreSet (Sener & Savarese, 2018) AL method to verify the transferability from AL to OOD.

In Table 1, we examine the performance of SISOM and SISOMe for the three benchmarks. As stated before,
the near-OOD data is more relevant for this task. We focus on the near-OOD evaluation and report the
far-OOD results in Appendix A.5. For the CIFAR-10 benchmark SISOMe and SISOM achieve the highest
AUROC score for near-OOD data, respectively. In the CIFAR-100 evaluation SISOMe ranks as the third-
best method for near-OOD and standing apart from the individual metrics, SISOM and Energy. GEN, which
shows weaker performance in the other setting, achieves the first place. This is an interesting finding since,
in contrast to CIFAR-10, Energy achieves better performance than SISOM among the individual metrics
on CIFAR-100. This supports our hypothesis that we obtain stronger performances in well-separated and
poorly-separated feature spaces by considering the average ratio ravg as a proxy for feature separation. The
ImageNet 1k benchmark suggested by OpenOOD contains more classes and is a much larger dataset than
the previous ones. In this setup SISOMe achieve the third-best scores on near-OOD, making it the only
method with three top-three rankings. In addition, when aggregating the individual ranks across the three
benchmarks, SISOMe ranks first. Interestingly, the NAC method, which showed high performance in CIFAR-

Table 1: near-OOD AUROC benchmark for CIFAR-10, CIFAR-100, and ImageNet1k with Cross-Entropy
training. Dataset and official checkpoints according to OpenOOD. It can be seen that most methods focus
on one particular setting. Given the number of baselines for each dataset, we estimated a rank for each
benchmark and aggregated them for an overall ranking reported in the first row. The top three ranks are
marked in gray from dark to light, with the top method name also in bold. For individual datasets, the top
three ranks are indicated from first to third using bold, double underlined or single underlined formatting.
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Overall Rank 1 4 10 9 14 2 8 7 6 16 11 17 13 15 12 5 3 8
CIFAR-10 91.76 91.40 90.93 90.64 90.34 88.20 88.03 87.58 87.11 85.52 82.87 79.46 79.19 78.34 75.27 82.55 91.13 87.56
CIFAR-100 81.10 79.42 75.90 80.18 75.69 81.31 80.27 80.91 80.77 47.87 79.90 61.88 76.56 79.38 78.20 80.99 78.77 81.25
ImageNet 1k 78.59 77.33 74.43 71.10 - 76.85 76.02 76.03 77.38 67.57 74.75 50.99 76.64 73.07 78.17 81.36 95.22 73.57
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Table 2: OOD benchmark for CIFAR-10 using the AL checkpoints of SISOM .

AUROC SISOMe ReAct GEN MSP ASH NAC RankFeat
Near-OOD 86.84 86.84 85.43 84.37 83.39 82.26 60.20
Far-OOD 88.39 87.72 86.04 84.85 87.33 85.06 56.73

10, ranks much lower, and KNN, the third-best method in CIFAR-10, ranks last. Meanwhile, ASH, which
ranks forth in this benchmark, ranked last in the CIFAR-10 setting. This underlines the difficulty of the
different datasets and their benchmarked OOD pairs. In the real-world applications less relevant far-OOD
evaluation in Appendix A.5, the dependence on the performance between datasets and methods persists.
Despite this, SISOMe and SISOM achieve high scores, with SISOMe remaining the only method with a top-3
ranking in all benchmarks, leading to an overall top-one rank.

Full Life Cycle: To evaluate the effectiveness of SISOM in a life cycle setting, we conduct OOD benchmark
experiments with models trained in an AL cycle. We used the same setting as for the benchmark CIFAR-10
experiments with similar near- and far-OOD. The exact setup and training scheme of the checkpoints is
described in Appendix B. In Table 2, all methods suffer from less training data, however SISOMe archived
the top performance for both OOD categories, making it suitable for the full application life cycle.

Overall benchmarks, SISOMe is the only approach, being consistently under the top three ranks and even
secured first place in two of them. Excluding SISOMe , SISOM achieved one top-three ranking and one
top-one ranking. As intended, our method performs relatively better on near-OOD data than on far-OOD
data. This is understandable, as the ratio between inner and outer class distance is higher for data close to
the training data distribution, while the quotient is lower for far-OOD. Additionally, near-OOD is closer to
the data of interest for AL selection. According to (Yang et al., 2022), near-OOD is considered the more
challenging task and is more likely to occur in real-world applications. Thus, a higher score on near-OOD
may be preferred in practice.

Ablations Studies: In an ablation study, we examine the effect of unsupervised feature space analysis
and reduce labeled set T. A study of the individual components of SISOM is given in Appendix A.4.

Optimal Sigmoid Steepness: In our feature space analysis in Section 4, we derived ravg in Eq. (10) as a proxy
for the feature space separability. Due to the distance concept of SISOM , we hypothesize that it works
better in well-separated feature spaces. To examine this, we conduct a random search for different α sets
and record the different ravg values. To reduce the search space, we follow the premise postulated in Section 4
that generally, deeper layers require a steeper sigmoid curve, i.e., a higher αj value due to the nature of the
features captured within these layers. After computing every ravg value for each combination of α, we select
the αopt set that minimizes ravg. Formally, this can be written as:

αopt = arg min
α

ravg(α)

In Table 3, an optimized set αopt is marked with OS. As it can be seen, a set with better feature space
separation leads to increased performance for CIFAR-100 and ImageNet, partly confirming our hypothesis.
In CIFAR-10, however, the original set of parameters yields the best results. One explanation might be
that, in CIFAR-10, the different classes are already well separated, such that optimization on this separation
yields no improvement and leads to an overfitting behavior.

Reduced Subset Selection: For larger datasets, distance-based approaches like CoreSet (Sener & Savarese,
2018) or Badge (Ash et al., 2020) suffer from huge computational efforts, which is problematic for OOD
detection, too. In Section 4, we suggested to use a reduced subset T of the comparison set ZL, selecting
class-wise samples with the most neighbors in a given radius. For each dataset, we select a total of 10%
of the samples for each class, drastically increasing inference speed. We compare the effect of our reduced
subset selection (RS) in Table 3 and highlight it qualitatively in Fig. 4d. A comparison of the preprocessing
steps for SISOM in Table 3 indicates that the AUROC near-OOD score has improved for all datasets. It
can be observed that pre-selection enhances feature space separability based on the ravg column. This also
supports our hypothesis from the previous subsection. For both ImageNet and CIFAR-100, the combination
of feature analysis and pre-selection yield increased performance. However, for CIFAR-10, the additional
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Table 3: Ablation Study on Optimal Sigmoid Steepness (OS) and Reduced Subset Selection (RS) on Near
OOD Benchmarks.

ImageNet CIFAR 100 CIFAR 10
Method AUROCn ravg AUROCn ravg AUROCn ravg

SISOM 77.21 0.270 75.93 0.33 91.33 0.26
SISOM , OS 77.4 0.266 79.56 0.19 90.37 0.099
SISOM , RS 77.33 0.249 76.07 0.31 91.40 0.24

SISOM , OS, RS 77.37 0.245 79.69 0.18 90.54 0.086

Table 4: Runtime comparison of different subset selection sizes for SISOMe . The setup time is the time to
build up the set for comparison, while eval time measures one run over all OpenOOD evaluation datasets
for CIFAR-100.

Subset Size T 100% 60% 20% 5%
Setup Time 291.17 ± 1.14 60.87 ± 0.93 40.63 ± 0.79 14.53 ± 0.92
Eval Time 885.67 ± 3.31 688.34 ± 6.27 376.57 ± 1.60 251.67 ± 0.74

AUROC near OOD 80.97 81.01 81.03 81.10

analysis of the feature space did not lead to improved performance. Considering the low average relevance
score, the selected values may have overly constrained the feature space, resulting in an overfitting behavior.
All parameters are detailed in Appendix B.3.

Runtime Considerations: In Table 4, we compare the runtime of SISOMe for different subset sizes for a
full OpenOOD CIFAR-100 evaluation. It can be seen that with decreasing subset size, the computational
efficiency is increasing for setup and evaluation time. Perhaps surprisingly, even the performance is slightly
improving with decreasing subset size. One reason might be, that a smaller subset is a more compact, outlier-
free representation of the data distribution. We also compare SISOM ’s and SISOMe ’s runtime to other
OOD detection and AL methods in Appendix A.5. In general, approaches without distance calculations are
faster than diversity-based methods such as SISOM .

6 Conclusion

We proposed SISOM , the first approach designed explicitly to solve OOD detection and AL jointly, providing
an effective simplification in real-world application life cycles by eliminating an additional OOD detection de-
sign phase and avoiding conflicting goals of AL and OOD detection. By weighting latent space features with
KL divergence of the neuron activations and relating them to the latent space clusters of the different classes
SISOM achieves state-of-the-art performance in both tasks, without requiring a specific training scheme. In
addition, SISOM provides a novel feature space analysis scheme enabling a post-training feature space refine-
ment as well as a self-balancing uncertainty and diversity fusion introduced as SISOMe . Our experiments
show that unlabeled samples and near-OOD data can be ambiguous, which SISOM can leverage. In the
common OpenOOD benchmarks, SISOM archives the top-1 performance in one of the three benchmarks and
the is the only method with top-three places in all benchmarks for challenging near-OOD scenario. For AL,
SISOM surpasses state-of-the-art approaches in eight different benchmark settings. While current state-of-
the-art approaches are highly specialized for either AL or OOD detection, SISOM solves both tasks with
the same approach. This versatility makes SISOM well-suited for real-world applications, like environment
sensing, which face high label costs, abundant unlabeled data, and OOD samples at inference. In addition,
SISOM provides important insights into the ambiguity of unlabeled and near-OOD samples.

In future work, we aim to leverage the relation of near-OOD data and unlabeled samples to explore tasks
setup like open-set AL where currently two components are required. In addition, we aim extend SISOM to
more complex tasks and investigate the effect batch diversification techniques on our two task approach.
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