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Abstract

Scaling laws for large language models in natural language domains are typically
derived under the assumption that performance is primarily compute-constrained.
In contrast, antibody language models (AbLMs) trained on paired sequences are pri-
marily data-limited, thus requiring different considerations. To explore how model
size and data scale affect AbLM performance, we trained 15 AbLMs across all
pairwise combinations of five model sizes and three training data sizes. From these
experiments, we derive an AbLM-specific scaling law and estimate that training a
data-optimal AbLM equivalent of the highly performant 650M-parameter ESM-2
protein language model would require ~5.5 million paired antibody sequences.
Evaluation on multiple downstream classification tasks revealed that significant
performance gains emerged only with sufficiently large model size, suggesting that
in data-limited domains, improved performance depends jointly on both model
scale and data volume.

1 Introduction

Extracting the structural and functional information stored in protein sequences is a long-standing
and fundamental biological problem [1]. Language models (LMs), originally developed for natural
language processing (NLP), have been broadly adapted to biological sequences with the goal of better
understanding the “language” of proteins and antibodies. Transformer-based [2] protein language
models (pLMs) such as ProteinBERT [3]], the ProtTrans model family [4]], and the Evolutionary Scale
Modeling (ESM) series [SH7] have emerged as a transformative paradigm for learning context-aware
representations of amino acid sequences with a variety of biological and clinical applications [8H10].

Antibodies are highly diverse, with previous studies estimating that the circulating antibody repertoire
contains as many as 108 unique paired antibodies [[I1]]. Prior to antigen exposure, antibody repertoire
diversity is achieved through the recombination of modular variable (V), diversity (D), and joining
(J) germline gene segments. The majority of pre-immune repertoire diversity is concentrated in
the complementarity-determining regions (CDRs) of antibody heavy and light chains, the result of
non-templated addition at the junctions between recombined germline gene segments. Upon antigen
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recognition, antibodies are affinity matured by somatic hypermutation, which introduces mutations
into the B cell receptor (BCR) sequence, followed by antigen-driven selection of productive mutations
[12]. Characterization of these functional antibody profiles elucidates critical mechanisms underlying
both protective immunity and immunopathogenesis [[13H16] and even proposes potential therapeutic
solutions [17419]].

Previous studies have shown that specialized antibody LMs (AbLMs), as opposed to repurposed
pLMs or other general biological LMs, are more useful for antibody-specific tasks [20H22]]. However,
the modular nature of antibody recombination results in large regions of tokens that are well conserved
even among affinity-matured antibodies. This means that most tokens in an antibody sequence have
relatively little training value and may even inhibit the model from learning useful features like
somatic hypermutation [21]. Focusing training on non-templated heavy and light chain CDR3s using
techniques such as preferential masking [23]] or focal loss [21, 24] can improve model performance,
mediated by a better understanding of these complex and information-dense regions.

In addition, antibodies are composed of a unique pairing of heavy and light chains, and cross-
chain structural and functional features are critical to antibody specificity and antigen binding
kinetics [25}|26]. We and others have shown that training AbLLMs using natively paired antibody
sequences results in improved model performance [21} 22} 127], despite the relative paucity of paired
antibody sequence datasets [28| [29]. Moreover, a recent study revealed that incorporating unpaired
sequences makes it possible to train larger models, but yields only marginal gains in downstream
task performance compared to training with exclusively paired sequences [30]. This suggests that
optimizing the training of exclusively paired AbLMs, which has thus far been overlooked, is an
essential next step.

Optimal LM training involves carefully balancing model size, training data scale, and compute
resources [31]. Here again, AbLM training requires a different set of considerations than pLMs or
NLP LMs. Within reasonable limits, transformer-based LMs generally improve as their parameter
count increases [32,[33]]. NLP LMs are principally compute-constrained, so much work on NLP LM
scaling has focused on discovering compute-optimal scaling laws [31} [34]]. Recent work on pLM
scaling has similarly focused on compute-optimality [35)[36]]. In contrast, training paired AbLMs
is primarily data-constrained, a fact that is exacerbated by the low training value of many tokens in
an antibody sequence. Here, we address the question: Given a fixed number of training examples
and unconstrained compute, what is the optimal AbLM model size? We systematically pretrained
AbLMs across five different model sizes and three training data scales. These models facilitate a
rigorous evaluation of performance scaling trends to define the rules for data-optimal training of
natively paired AbLMs.

2 Results

Model Size
( (Parameters)

35M 150M 350M 650M
~1.7M Paired

Dataset-F
~1.6M
Antlbody Sequences

Dataset-H
Y(/T 1 '- § 0aM 15 AbLMs I
Eval/Test Splits L ‘ - : Di‘:iemt Q
| J

Figure 1. Experimental design for evaluating AbLM scaling dynamics. Fifteen models were
pretrained with combinations of five model sizes (8M, 35M, 150M, 350M, and 650M parameters)
and three training-data scales (Dataset-F: 1.6 M sequences; Dataset-H: 0.8 M; Dataset-Q: 0.4 M).
Separate evaluation and test sets were held out from the training data. Created with BioRender.com.
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2.1 Models and training data

We trained a series of AbLMs of five different sizes: 8, 35, 150, 350, and 650 million parameters
(Figure 1). All models used an ESM-2 architecture 6], which includes rotary positional embeddings
[37] and pre-layer normalization [38]]. All models were trained using an identical training schedule.
To ensure fair model comparisons, checkpoint selection was guided by performance on the held-out
evaluation dataset. The optimal checkpoint was defined as the point at which evaluation loss began
diverging from training loss, indicating the onset of overfitting. The chosen checkpoint for each
model is provided in Table S1.

We constructed our dataset from antibody repertoires of healthy donors, applied quality filtering (see
Methods), and clustered at 90% sequence identity to minimize redundancy. To ensure consistency
across experiments, fixed evaluation (2%) and test (2%) subsets were extracted from the full dataset
before any training subset sampling. The remaining 96% of the paired antibody sequences were used
to generate nested structure training sets. AbLMs of each size were trained on three datasets: the
full training set of paired antibody sequences with ~1.6M sequences (Dataset-F), half of the dataset
with ~800k sequences (Dataset-H), and a quarter of the dataset with ~400k sequences (Dataset-Q).
Training datasets were randomly sampled from the next largest dataset to give us a nested structure,
allowing us to isolate the effects of model capacity and training data volume. Pairwise 2 tests of
independence on V, J, and V/J gene usage composition showed no significant differences between the
three subsampled training datasets (Figure S1, Table S2). For clarity and brevity, we will denote
model configurations as {model size}-{training data scale} (e.g., 35M-Q), where “F,” “H,” and “Q”
represent Dataset-F, Dataset-H, and Dataset-Q, respectively.

2.2 Identifying data-optimal AbLM sizes using FixedData profiles

Inspired by the IsoFLOP profiles previously used to assess compute optimality [31], we developed
“FixedData profiles” by measuring the performance of differently sized models while keeping the
training data scale constant. Each of the 15 pretrained models (Figure 1) was evaluated using a
masked language modeling (MLM) objective across 10 independent evaluation datasets of paired
antibody sequences, each derived from distinct donors not present in the training, evaluation, or test
datasets. A quadratic regression was fit to the average cross-entropy loss across all test datasets for
each model (Figure 2a, Table S3), with outlier points far from the loss minimum excluded from
the fit. The complete set of points, including those excluded from the fit, is shown in Figure S2.
As expected, models of the same size showed improved performance with increasing training data
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Figure 2. Establishing FixedData profiles. (a) For each dataset size, model sizes were log-transformed
to linearize the exponentially scaling relationship with evaluation loss. A quadratic regression was
then fit to the transformed data to create FixedData profiles (Dataset Q, R2 = 1.00; Dataset H,
R? = 0.84; Dataset F, R? = (0.98), with the x-axis displayed on a logarithmic scale. Circles (O)
represent the mean loss averaged over 10 donor datasets for each model—data size combination, while
crosses (X) mark the minima of the fitted curves, corresponding to the model size achieving the
lowest loss. (b) Using the inferred optimal model sizes from (a), we estimate the optimal data size for
a 650M-parameter AbLM by fitting a power-law regression model (R? = 0.9997).



scale. The optimal model size, identified as the minimum of the FixedData curve, also increased with
training data scale. We then fit a power law to the optimal model sizes to extrapolate the optimal
amount of training data for any model size (Figure 2b). The 650M parameter variant of the ESM-2
protein LM is highly performant and widely used [6]; we estimate that data-optimal training of
a similarly sized AbLM will require approximately 5.5M paired antibody sequences (Figure 2b),
which is roughly double the amount of paired antibody sequences currently present in the Observed
Antibody Space (OAS) database [29]].

2.3 Optimally scaled AbLMs improve residue identity prediction primarily in the highly
variable CDRH3 regions

To explore if models deemed optimal by FixedData profiles (which are based on MLM loss) also
perform the best on tasks that better represent real-world use cases, we evaluated the models on a
series of benchmarks. First, we sampled 1,000 mutated and unmutated sequences from each of the
10 evaluation datasets and assessed all models pretrained using Dataset-F for their ability to predict
masked residues. Heavy chain sequences were iteratively masked, and for each antibody region we
calculated the median cross-entropy loss across all masked positions in that region (Figure 3, Table
S4). Similar analysis was performed on unmutated heavy chains (Figure S3). All models show
comparable performance in framework regions (FWRs), presumably due to the inherent germline
bias of most AbLMs [21]], but differed more on non-templated heavy chain CDR3s. The 150M-F and
350M-F models perform similarly (Figure 3a), in agreement with the FixedData-based prediction
that the optimal parameter count falls between these two model sizes. 650M-F performed worse
than both 150M-F and 350M-F, likely because 650M-F overfit more rapidly than the other models,
underscoring the importance of training optimally sized models.

To further examine model performance in the CDRH3, we partitioned CDRH3 residues based on
their derivation from V, D, and J gene segments or from the non-templated (N-addition) regions
generated during V(D)J recombination (Figure 3b). We observe that the median loss is substantially
higher for N-addition residues of both unmutated and mutated sequences, as expected due to the
increased sequence variability introduced during junctional diversification. As model size increases
from 8M to 350M parameters, we observe a clear reduction in median loss on D gene residues in
mutated sequences. Paired t-tests across model sizes (Table S5) show significant differences on D
gene predictions for 8M vs 35M (p = 0.001), 8M vs 150M (p = 0.017), 8M vs 350M (p = 0.017),
and 35M vs 650M (p = 0.030). Because the D gene contributes the largest share of templated
residues in CDRH3, these trends likely contribute significantly to the aggregate model performance
across the CDRH3 region. This suggests that larger, data-optimal AbLLMs start to learn the D gene
region in mutated sequences but not the stochastic patterns in non-templated regions.
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Figure 3. Regional per-residue prediction performance. (a) Median per-residue cross-entropy loss for
each AbLM trained on Dataset-F across four antibody regions in the heavy chain (FWRs, CDRH1-3),
evaluated separately on 10,000 mutated antibody sequences from 10 unique donors. (b) CDRH3
predictions are further broken down into subregions: V, D, and J gene-derived segments, and non-
templated N-addition residues. Error bars represent the 95% confidence interval (CI) of the median.



2.4 Joint scaling of data and model size improves specificity classification performance

Next, we assessed model performance on binary (coronavirus (CoV)-specific or healthy donor)
(Figure 4a, c¢) and multi-class (CoV-specific, influenza-specific, or healthy donor) (Figure 4b, d)
antibody specificity classification using 5-fold cross-validation (CV). Plotting the binary classification
accuracy of each model reveals an interesting scaling phenomenon (Figure 4a). All models exhibit
better performance as the training data scale increases, except the 8M parameter model. The 8M
parameter models perform similarly regardless of training data scale, consistent with our previous
observation that 8M parameter models are likely too small to benefit from additional pretraining
data. We see the largest performance separation at 350M parameters, where 350M-F significantly
outperforms 350M-H. However, we observe no further improvements in classification performance
when the models are scaled up to 650M parameters. Similar trends are observed across the other
classification metrics (Figure 4c, Table S6).

In the multi-class task, the 350M-F parameter model performed the best across the classification
metrics (Figure 4d). To further analyze the predictions of the 350-F model, we plot a confusion
matrix comparing the true and predicted classes across all 5 folds (Figure 4b). The confusion
matrix reveals strong diagonal dominance, with the majority of sequences correctly classified into
their respective categories. However, the model frequently misclassifies healthy donor sequences
as influenza-specific, likely due to the construction of the classification dataset: the ‘healthy donor’
repertoires may contain influenza-specific antibodies, making it difficult for the model to separate the
two classes.

Overall, the 350M-F model consistently outperforms the other models across model sizes and data
scales on both classification tasks (Table S6). This suggests that the FixedData profiles may slightly
underestimate the performance-optimal model size, particularly on tasks that differ from the MLM
objective used to compute test loss. In addition, the reduction of performance observed in the 650M
models suggests that in data-limited regimes like natively paired AbLMs, increasing the available
training data is a prerequisite for scaling model size beyond existing thresholds.
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Figure 4. Antibody specificity classification performance. (a) Average binary classification accuracy
as a function of model size and dataset size. Error bars denote the standard error across 5-fold CV
replicates. (b) Confusion matrix for the three-way classifier model trained on the 350M-F base. (c)
Binary classification results distinguishing CoV-specific antibodies and Healthy Donor antibodies for
Dataset-F models. (d) Three-way classification results distinguishing CoV-specific, Influenza-specific,
and Healthy Donor antibodies for Dataset-F models. For each classification task, the best overall
model for each metric is indicated in bold.



2.5 Data-optimal AbLMs improve recognition of natively paired antibody chains

Based on mounting evidence that antibody heavy and light chain pairing is not entirely random [39],
we and others have previously fine-tuned AbLMs to distinguish between natively paired and randomly
paired antibody heavy and light chains [23][40]]. To assess the effects of scaling on this task, we fine-
tuned each of our models to perform a binary classification of whether a paired sequence is a native
or shuffled pair with 5-fold CV (Figure 5, Table S7). Even the smallest models achieve a level of
classification accuracy that surpasses random guessing, but improvement over this baseline accuracy
is not observed until the model size reaches 350M parameters (Figure 5a). In line with previous
results, we additionally observe that the 650M parameter models consistently perform worse than the
350M models. 350M parameters also represents the model size for which classification performance
across the three training data scales becomes distinguishable. Further prediction outcome analysis of
the 350M parameter models revealed that performance gains are driven by improved classification
of native pairs, while shuffled pair classification remained largely unchanged across increasing data
scales (Figure 5b). This suggests that as models become more data-optimal, features that signal
native chain pairing become more apparent in the resulting sequence embeddings.

Previous studies have demonstrated that much of the accuracy achieved by current pair classification
models results from learning that natively paired chains tend to have similar levels of somatic
hypermutation [23]. To identify whether a similar heuristic explains our observed results, we analyzed
the performance of the 350M models across different combinations of chain-specific mutation counts
(Figure 5¢). As data scale increases, improvements tend to be focused on sequence pairs with low
and similar mutation counts (1-7 mutations) in both the heavy and light chains: average prediction
accuracy in these pairs was observed to increase from 45.9% in Dataset-Q, to 54.2% in Dataset-H, to
63.2% in Dataset-F. Since performance gains are primarily observed in the correct classification of
native pairs with similar mutation counts, our models are likely using the chain-specific mutation
count heuristic to correctly identify native pairs more frequently. This heuristic must be learned
implicitly, as mutation count information is not explicitly provided during training [23]]. We similarly
observe improved performance within other model sizes (Figure S4), suggesting that increased data
scale promotes improved learning of affinity maturation-driven mutation.
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Figure 5. Comparison of model performance on the native vs. shuffled chain pairing classification
task. (a) Average classification accuracy for all model sizes and data scales. (b) Number of correct
predictions of the shuffled and native classes for the 350M model classifiers. Error bars indicate the
standard error of the mean across 5-fold CV replicates. (c) Average classification accuracy by the
350M model classifiers for different combinations of chain-specific mutation counts. More accurate
predictions are darker red.



3 Discussion

Existing scaling laws for NLP and protein LMs focus on compute-optimal scaling [31]], given that
these models are primarily compute-constrained. Here, we explore the optimal scaling of natively
paired AbLMs, where the primary limitation is the amount of available training data. We trained 15
AbLMs to explore the relationship between model size and training data scale. FixedData profiles
revealed that the optimal training data volume scales as a power law of model size. The 650M
parameter variant of the ESM-2 protein LM is widely used because it is both highly performant and
compatible with the GPUs commonly found in academic research environments. By extrapolation,
we show that optimal training of a 650M-parameter AbLM will require ~5.5M sequences, which is
approximately twice the number of paired antibody sequences currently available in the Observed
Antibody Space repository [28| 29]. Notably, these figures correspond to the optimal number of
sequences after clustering at 90% identity; therefore, the total number of paired sequences required
will likely be higher.

One major area of concern for AbLMs is their poor performance on the highly variable, but function-
ally critical, CDR3 loops. To further evaluate this poor performance, we assessed the model’s ability
to predict the V, D, J, and N addition regions of the CDRH3. We observe very little improvement in
model performance on N addition regions, which is expected given that N additions are stochastic
and drive much of the antibody repertoire’s diversity [41]. However, the optimally scaled 150M-F
and 350M-F models show improved performance at predicting mutated D gene regions.

Additionally, each of the pretrained AbLMs was evaluated on a suite of downstream tasks designed
to more accurately mimic real-world use cases. The best performing models on these tasks were
typically larger than the size predicted by FixedData profiles (~152M parameters for Dataset-F).
Specifically, the 350M parameter models consistently outperformed the 150M parameter models
on downstream classification tasks. One potential explanation for this observation is the size of
the output projection layer used for the classification tasks. The 350M model has a larger hidden
dimension than the 150M model, which results in more trainable parameters in its classification
head that are not accounted for by FixedData. However, this factor alone does not fully explain
performance differences, as the 650M model has the largest output layer but is not the top performer.
This suggests that when the optimal model size falls between two feasible model sizes, selecting
the larger of the two sizes may be a viable strategy, but scaling too far beyond optimal will lead to
deteriorated performance.

The results of our pairing classification task indicate that a subset of randomly paired chains with
mismatched mutation frequencies is easily distinguishable by even the smallest models, but the
remaining examples require more sophistication to classify accurately. This suggests that pairing
classification may become an increasingly usable function of AbLMs as they are scaled with sufficient
data. The potential for emergent abilities [42]], which appear in NLP models as model size increases,
may be observed in AbLMs as model and data sizes are optimally scaled.

While not explored here, previous studies have implemented methods for improving data efficiency in
AbLMs, such as focal loss or preferential masking [21,122]]. When applied effectively, incorporating
these methods into pretraining would alter the scaling law such that fewer paired sequences are
required to achieve a data-optimal 650M parameter model. This is an interesting potential direction
for future studies, given the limitations that prevent rapid generation of large paired sequence datasets.
However, data efficiency methods do not overcome the need for more paired sequencing data, and it
remains important to consider the balance between model size and data scale.

Our work highlights the current data bottlenecks for specific downstream tasks and provides practical
guidelines for estimating the amount of data required to optimally train AbLMs of varying sizes. By
establishing clear scaling laws, we offer a systematic approach to balancing data collection efforts
against model complexity. Ultimately, our results emphasize that future improvements in antibody
language modeling will increasingly depend on dedicated efforts to expand and diversify paired
antibody datasets to expand the downstream capabilities of future AbLMs.



4 Methods

4.1 Datasets

The pretraining data was downloaded from the OAS [29]] on September 12th, 2024, and supplemented
with sequences from Jaffe et al. [39] and an internally generated dataset of 400k sequences from
healthy donor B cells. These sequences were derived from circulating B cells of healthy adult donors
without any selection or enrichment for binding to a specific antigen. Raw sequences were annotated
using abstar [43]], filtered as described in AntiRef [44], and clustered at 90% identity using MMseqs
[45]], resulting in 1,717,423 sequence pairs.

For model pretraining, we partitioned the full dataset such that 96% was allocated for training
(1,648,726 pairs), while 2% was held out for evaluation (34,349 pairs) and an additional 2% for
testing. To investigate the influence of dataset size on model performance, we further derived two
training subsets from the primary training set. First, we randomly selected 50% of the training pairs
(824,363 pairs) to create a half-size dataset, from which a further random selection of 50% (412,182
pairs) was made to form the quarter-size dataset. Paired sequences were concatenated with two <cls>
tokens as the separator and tokenized using the ESM-2 tokenizer [6]], with a vocabulary of 33 tokens.

For model evaluation, we used an internally generated collection of paired antibody sequence datasets
from 10 distinct donors not present in the training set. This reduces the impact of donor-specific
effects from pretraining, ensuring the generalizability of our findings. Sequences were clustered at
90% identity, resulting in 94,483 paired antibody sequences.

4.2 Model pretraining

We trained fifteen ESM-2 architecture [[6] language models of varying sizes (approximately 8, 35,
150, 350, and 650 million parameters) on the three paired antibody datasets described above. The
model parameters are provided in more detail in Zable S1. Models were trained with the HuggingFace
Transformers library [46]], using a masked language modeling objective. For each training sequence,
15% of the sequence was randomly selected for prediction, and of these, 80% were masked, 10%
were replaced with a random token, and 10% were left unchanged. Models were trained for 500,000
steps, with a linear warm-up of 30,000 steps, and a peak learning rate of 1 x 10~%. The total batch
size was 128 per update, trained on 4 GPUs. We ensured reproducibility by setting a random seed of
42. Training progress and metrics were logged using Weights & Biases [47]].

4.3 FixedData Evaluation

To calculate the optimal model size for each dataset size, we used our 10 distinct donor test datasets
and adopted the approach used by [31]] to construct “FixedData profiles”. We retain only the points
around the minimum for each curve for quadratic regression analysis; including points far from this
minimum would dilute the estimate of the optimal configuration and introduce unnecessary variance.

To investigate the relationship between model performance (test loss), model size (parameter count),
and pretraining dataset scale, we modeled average test loss as a quadratic function of the log-
transformed parameter counts using the following equation:

Loss = a - (logyo(params))? + b - log,o(params) + ¢

The minimum of each FixedData curve was used to determine the optimal model sizes for each
dataset scale. We then projected the optimal amount of training data for an ESM-2-sized AbLM
(650M parameters) by fitting a power-law regression to these FixedData minima (Figure 2B).

We obtained the following optimal scaling relationship with strong fit (R? = 0.9997):

Data size = 0.232 x (Model Size)®-83%°

This scaling law indicates sub-linear scaling, suggesting diminishing marginal data requirements as
models grow and providing practical guidance for efficient model scaling strategies.



4.4 Classification tasks

For the specificity classification tasks, the datasets consisted of 27,442 paired sequences (13,721
for each class) for the binary classification task (healthy donor vs CoV) and 4,398 paired sequences
(1,466 for each class) for the three-way classification task (healthy donor vs CoV vs Flu). CoV-
specific sequences were sourced from the CoV-AbDab [48]], Flu-specific antibodies were obtained
from Wang et al. [49], and healthy donor antibodies were obtained from the Ng et al. control dataset
[23]]. For the binary classification, models were fine-tuned (with the base model weights frozen) for
3 epochs with a batch size of 128. For the multi-class classification, models were fine-tuned for 5
epochs with a batch size of 32.

For the native pairing classification task, we shuffled our 10 distinct donor test datasets as described
in [23]]. Shuffled pairs were generated by randomly sampling 50% of the sequences from each donor
and shuffling their heavy and light chains. In total, the dataset comprised 94,414 antibody sequence
pairs (47,207 for each class). The models were fine-tuned for 50 epochs with a batch size of 256.

All classification tasks were performed using 5-fold CV with stratification and different random seeds
during training. All models were trained using a linear learning rate scheduler with a 10% warmup
ratio and a peak learning rate of 5 x 107°. To evaluate the classifier performance, we computed
several metrics: accuracy, F1 score, area under the receiver operating characteristic curve (AUC),
area under the precision-recall curve (AUPR), and Matthews correlation coefficient (MCC).

5 Code and Data Availability

All code used for data processing, model training, and evaluation is available at
this GitHub repository: https://github.com/brineylab/AbLMs-scaling-laws/. Pre-
trained AbLMs and associated model checkpoints are archived and openly accessible
through Zenodo at https://zenodo.org/records/16938681. All models are also hosted
on the HuggingFace Model Hub at https://huggingface.co/collections/brineylab/
ablms-scaling-laws-6824e4beaabf4b16107cac4f, where users can load and fine-tune the
models using standard HuggingFace tools.
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A Supplementary

Checkpoint Transformer Attention Hidden Intermediate

step layers heads size size

500,000

435,000 6 20 320 1280

425,000

500,000

430,000 12 20 480 1920

240,000

500,000

330,000 30 20 640 2560

165,000

500,000

300,000 32 20 960 3840

155,000

395,000

330,000 33 20 1280 5120

130,000

Model size (M) Dataset

35

150

350

650

OITMOITMOITMOITNMOIT

Table S1. Model architecture and checkpoint selections. Each row corresponds to a distinct configu-
ration of a pretrained model, varying by model size (in millions of parameters), training data size
(Full, Half, or Quarter), and chosen checkpoint (in training steps).
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Figure S1. Distribution of V- and J-gene usage and sequence diversity across datasets. (a) V-gene

usage across training-set splits. Grouped bar plots show the proportion of sequences in each dataset
with a particular heavy-chain V (top) or light-chain V (bottom) gene. (b) J-gene usage across training-

set splits. Grouped bar plots show the proportion of sequences in each dataset with a particular
heavy-chain J (bottom) or light-chain J (top) gene. (c) Sequence diversity visualized using a t-SNE

with each point representing a single paired sequence. All

)

650M embeddings
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training sets exhibit comparable diversity.
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Feature Training Splits # of Categories x? Statistic x? p-value

Quarter vs Half 51 20.079451 0.999950

IR Gl Half vs Full 51 17.889161 0.999992
V-gene

Quarter vs Full 51 37792155 0.897789

Quarter vs Half 6 1.066540 0.957022

Heavy Chain Half vs Full 6 2090143 0.836537
Jgene

Quarter vs Full 6 3.341937 0.647428

Quarter vs Half 299 107.238132 1.000000

InEzy ChEt Half vs Ful 301 101794289 1.000000

VJ-gene usage

Quarter vs Full 301 198.955262 0.999999

Quarter vs Half 69 22.444984 1.000000

Light Chain Half vs Ful 69 25.491875 0.999999
V-gene

Quarter vs Full 69 44.962355 0.986015

Quarter vs Half 10 2113995 0.989534

Lioftelean Half vs Full 10 1188426 0.998866
Jgene

Quarter vs Full 10 4.035732 0.909045

Quarter vs Half 302 94.901586 1.000000

Light Chain Half vs Full 304 100.277863 1.000000

VJ-gene usage
Quarter vs Full 304 179.888776 1.000000

Table S2. \? tests of gene-usage distributions across training-set splits. Pairwise comparisons
between datasets (Q vs. H, H vs. F, Q vs. F) of heavy and light chain V, J, and V/J gene-usage
distribution. Comparisons are reported with the number of categories tested, the x? statistic, and the
corresponding p-value.

(o]
0.246 - fo)
o
0.244 -
(%]
3 o ° !
7]
0.242 A
2 o
0.240- Dataset
. Q
H
I3
0.238 T T T T T
8M 35M 150M 350M 650M

Model size (parameters)

Figure S2. Cross-entropy loss curves with all evaluated points for each dataset size. Model sizes
were log-transformed and evaluated to generate FixedData profiles. Circles (O) represent the mean
loss averaged over 10 donor datasets for each model-data size combination, while crosses (X) mark
the fitted curve minimum corresponding to the lowest loss. In this figure, all evaluated mean cross
entropy losses are displayed, with outlier points shown as unfilled circles. .
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Dataset Model size (M) Average loss

8 0.2454

35 0.2445

Q 150 0.2459
350 0.2458

650 0.2463

8 0.2450

35 0.2416

H 150 0.2429
350 0.2432

650 0.2425

8 0.2428

35 0.2401

F 150 0.2394
350 0.2397

650 0.2401

Table S3. Average cross-entropy loss during evaluating models across different scales that were
evaluated using a masked language modeling (MLM) objective on data from 10 distinct donors.
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Figure S3. Regional per-residue prediction performance, as in Figure 3, on unmutated heavy chains.

Region Condition Model size (M) Accuracy Perplexity
8 57.14 12.87
35 58.33 12.32
Mutated 150 58.82 11.56
350 60.00 11.32
650 57.89 11.99
CDRH3 8 64.70 10.33
35 65.21 9.91
Unmutated 150 66.66 9.35
350 66.66 9.19
650 65.21 9.69

Table S4. CDRH3 prediction metrics for all full data models. Median cross entropy loss and median
perplexity of models trained on the full dataset for per-residue prediction in the CDRH3. Metrics are
shown across varying model sizes (in millions of parameters) and grouped by mutated and germline
(unmutated) sequence categories.
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Model 1 Model 2 Pairs t-test P-value Sig

8 35 240829 3.961 0.001 *
8 150 240829 2.917 0.017 *
8 350 240829 2.793 0.017 2
8 650 240829 1.468 0.237

35 150 240829 -1.012 0.346

35 350 240829 -1.132 0.322

35 650 240829 -2.517 0.030 @

150 350 240829 -0.121 0.904

150 650 240829 -1.483 0.237

350 650 240829 -1.360 0.248

Table S5. Paired t-test across model sizes for D-segment prediction on the CDRH3 region. Each
comparison reports the t-statistic, Benjamini—Hochberg corrected p-value, and significance level
for paired evaluations across models. Asterisks indicate statistically significant differences between
models.

Classification Dataset Model size (M) Accuracy AUC AUPR Mcc F1 Score
8 0.6740 (+ 0.0034) 0.7362 (+ 0.0025) 0.7253 (+ 0.0024) 0.3504 (+ 0.0067) 0.6923 (+ 0.0028)
35 0.6820 (+ 0.0023) 0.7445 (+ 0.0024) 0.7354 (+ 0.0018) 0.3643 (+ 0.0045) 0.6866 (+ 0.0026)
Quarter 150 0.6884 (+ 0.0042) 0.7541 (+ 0.0037) 0.7520 (+ 0.0037) 0.3773 (+ 0.0083) 0.6954 (+ 0.0046)
350 0.6944 (+ 0.0021) 0.7673 (+ 0.0015) 0.7699 (+ 0.0016) 0.3900 (+ 0.0041) 0.7048 (+ 0.0025)
CoV vs. 650 0.6909 (+ 0.0029) 0.7608 (+ 0.0020) 0.7656 (+ 0.0016) 0.3827 (+ 0.0059) 0.6981 (+ 0.0053)
Healthy Donors 8 0.6732 (+ 0.0035) 0.7411 (+ 0.0031) 0.7350 (+ 0.0033) 0.3520 (+ 0.0071) 0.6998 (+ 0.0032)
35 0.6869 (+ 0.0028) 0.7544 (+ 0.0025) 0.7487 (+ 0.0038) 0.3756 (+ 0.0057) 0.7014 (+ 0.0033)
Half 150 0.6974 (+ 0.0036) 0.7667 (+ 0.0023) 0.7667 (+ 0.0018) 0.3955 (+ 0.0072) 0.7057 (+ 0.0043)
350 0.7042 (+ 0.0023) 0.7765 (+ 0.0017) 0.7818 (+ 0.0027) 0.4088 (+ 0.0045) 0.7093 (+ 0.0033)
650 0.6990 (+ 0.0034) 0.7697 (+ 0.0023) 0.7716 (+ 0.0031) 0.3988 (+ 0.0068) 0.7067 (+ 0.0043)
8 0.6062 (+ 0.0051) - - 0.4169 (+ 0.0067) 0.6058 (+ 0.0049)
35 0.5769 (+ 0.0109) - - 0.3699 (+ 0.0159) 0.5751 (+ 0.0119)
Quarter 150 0.6444 (+ 0.0078) - - 0.4694 (+ 0.0118) 0.6448 (+ 0.0074)
350 0.6467 (+ 0.0057) - - 0.4731 (+ 0.0076) 0.6462 (+ 0.0059)
lnflél:‘r;zvas .VS- 650 0.6353 (+ 0.0041) - - 0.4558 (+ 0.0062) 0.6364 (+ 0.0036)
Healthy Donor 8 0.5928 (+ 0.0055) - - 0.3986 (+ 0.0056) 0.5894 (+ 0.0060)
35 0.6253 (+ 0.0083) - - 0.4458 (+ 0.0116) 0.6230 (+ 0.0093)
Half 150 0.6476 (+ 0.0084) - - 0.4756 (+ 0.0117) 0.6481 (+ 0.0090)
350 0.6610 (+ 0.0043) - - 0.4949 (+ 0.0067) 0.6619 (+ 0.0038)
650 0.6576 (+ 0.0026) - - 0.4888 (+ 0.0036) 0.6597 (+ 0.0026)

Table S6. Performance of antibody specificity classification models across AbLMs trained on
Dataset-H and Dataset-Q. Binary classification results for distinguishing CoV-specific antibodies
from healthy donor sequences. Three-way classification results differentiating Influenza-specific,
CoV-specific, and healthy donor antibodies. For each dataset size, the best model is indicated in bold
per metric.
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Classification Dataset Model Size (M) Accuracy AUC AUPR Mcc F1 Score

8 0.6540 (+ 0.0024) 0.6944 (+ 0.0029) 0.7187 (+ 0.0028) 0.3180 (+ 0.0051) 0.6050 (+ 0.0025)

35 0.6663 (+ 0.0022) 0.7063 (+ 0.0031) 0.7432 (+ 0.0032) 0.3485 (+ 0.0048) 0.6081 (+ 0.0021)

Quarter 150 0.6664 (+ 0.0010) 0.7065 (+ 0.0017) 0.7367 (x 0.0019) 0.3479 (x 0.0021) 0.6096 (+ 0.0015)

350 0.6534 (+ 0.0017) 0.7020 (+ 0.0023) 0.7217 (+ 0.0022) 0.3200 (+ 0.0036) 0.5961 (+ 0.0020)

650 0.6174 ( 0.0012) 0.6644 (x 0.0020) 0.6726 (x 0.0015) 0.2424 (+ 0.0026) 0.5628 (+ (0.0012)

8 0.6480 (+ 0.0021 0.6857 (+ 0.0028) 0.6986 (+ 0.0028) 0.2999 (+ 0.0043) 0.6169 (+ 0.0023)

Native ve. 35 0.6650 (+0.0023 0.7086 (+ 0.0023) 0.7488 (+ 0.0024) 0.3519 (+ 0.0047) 0.5947 (+ 0.0031)
Shuffled Half 150 0.6701 (z 0.0016) 0.7167 ( 0.0016) 0.7539 (x 0.0014) 0.3568 (+ 0.0035) 0.6116 (+ 0.0017)
Pairing 350 0.6773 (x 0.0021) 0.7316 (+ 0.0017) 0.7653 (+ 0.0018) 0.3762 ( 0.0044) 0.6126 (+ 0.0028)
650 0.6429 (+ 0.0021) 0.6919 (+ 0.0020) 0.7164 (+ 0.0017) 0.2920 (+ 0.0046) 0.6022 (+ 0.0016)

8 0.6573 (+ 0.0007 0.6994 (+ 0.0024) 0.7414 (+ 0.0021) 0.3323 (+ 0.0019) 0.5914 (+ 0.0012)

35 0.6832 (+ 0.0009) 0.7239 (+ 0.0008) 0.7695 (+ 0.0010) 0.3998 (+ 0.0021) 0.6041 (+ 0.0017)

Full 150 0.6696 (+ 0.0023) 0.7200 (+ 0.0027) 0.7616 (+ 0.0021) 0.3519 (+ 0.0052) 0.6187 (+ 0.0018)

350 0.7046 (+ 0.0017) 0.7618 (+ 0.0018) 0.8056 (+ 0.0014) 0.4399 (+ 0.0037) 0.6381 (+ 0.0021)

650 0.6917 (+ 0.0020) 0.7438 (+ 0.0020) 0.7868 (+ 0.0017) 0.4107 (+ 0.0038) 0.6242 (+ 0.0030)

Table S7. Detailed classification results for pair classification. Performance metrics are presented for
models ranging from 8M to 650M parameters, evaluated across Dataset-F, Dataset-H, and Dataset-Q.
The best-performing model for each metric across all datasets is shown in bold, while the top-
performing model for each metric within individual datasets is underlined.
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Figure S4. Classification accuracy across all model sizes and data scales for pair classification.
Heatmaps show average classification accuracy for all models for different combinations of chain-
specific mutation counts. Darker red values indicate higher accuracy, while lighter blue values
indicate lower accuracy.
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