
Span-based Semantic Role Labeling as Lexicalized Constituency Tree
Parsing

Anonymous ACL submission

Abstract

Semantic Role Labeling (SRL) is a critical task001
that focuses on identifying predicate-argument002
structures in sentences. Span-based SRL, a003
prominent paradigm, is often tackled using004
BIO-based or graph-based methods. However,005
these approaches often fail to capture the in-006
herent relationship between syntax and seman-007
tics. While syntax-aware models have been pro-008
posed to address this limitation, they heavily009
rely on pre-existing syntactic resources, lim-010
iting their general applicability. In this work,011
we propose a lexicalized tree representation for012
span-based SRL, which integrates constituency013
and dependency parsing to explicitly model014
predicate-argument structures. By structurally015
representing predicates as roots and arguments016
as subtrees directly linked to the predicate, our017
approach bridges the gap between syntactic and018
semantic representations. Experiments on stan-019
dard benchmarks (CoNLL05 and CoNLL12)020
demonstrate that our model achieves competi-021
tive performance, with particular improvement022
in predicate-given settings.023

1 Introduction024

Semantic Role Labeling (SRL) is a fundamental025

task in natural language processing, aiming to iden-026

tify the arguments of predicates in a sentence and027

assign them appropriate semantic roles. There028

are two dominant paradigms in SRL: word-based029

(dependency-based) SRL, which assigns roles to030

individual words, and span-based SRL, which iden-031

tifies multi-word argument spans. This paper fo-032

cuses on span-based SRL.033

Span-based SRL is typically approached through034

two primary methods: BIO-based tagging and035

(span-based) graph parsing. The BIO-based ap-036

proach formulates SRL as a sequence labeling037

task (Zhou and Xu, 2015; Strubell et al., 2018),038

where each word in the sentence is assigned one of039

three labels {B, I,O}, denoting the beginning, in-040

side, or outside of an argument span. To ensure the041

coherence of argument spans, structural constraints, 042

such as linear-chain Conditional Random Fields 043

(CRFs), are applied. On the other hand, graph 044

parsing directly identifies predicate-argument pairs 045

by linking argument spans to predicates (He et al., 046

2018a; Li et al., 2019). While this method excels 047

at capturing the full scope of predicate-argument 048

structures, it faces significant challenges, includ- 049

ing large search spaces (O(n3)) and potential con- 050

flicts between argument spans due to the absence 051

of structural constraints. 052

A long-standing hypothesis in SRL research is 053

that syntactic information plays a critical role in 054

accurate predicate-argument identification and clas- 055

sification (Gildea and Jurafsky, 2002). Syntac- 056

tic structures provide key insights into predicate- 057

argument structures, as evidenced in Propbank- 058

style SRL (Bonial et al., 2010), where arguments 059

are often syntactic constituents. Additionally, the 060

process of establishing semantic relationships be- 061

tween predicates and arguments mirrors the con- 062

struction of dependency relationships between 063

words. These observations have led to the devel- 064

opment of syntax-aware SRL models that leverage 065

syntactic information, such as dependency and con- 066

stituency trees, to improve SRL performance. 067

Syntax-aware models typically involve using 068

syntactic trees to guide argument pruning (He et al., 069

2018b), integrating syntactic features derived from 070

these trees (Xia et al., 2019), or employing multi- 071

task learning frameworks to jointly learn syntax 072

and semantics (Zhou et al., 2020). These ap- 073

proaches consistently demonstrate that incorporat- 074

ing syntactic knowledge leads to improved SRL 075

performance. However, a significant limitation of 076

most existing syntax-aware SRL models is their 077

reliance on pre-existing syntactic resources, hinder- 078

ing their applicability to low-resource domains and 079

languages. 080

Recent advances in structured representations for 081

span-based SRL have sought to address this limita- 082

1

tion by directly modeling argument structures with083

tree-based representations. Liu et al. (2022, 2023)084

introduced a framework where argument structures085

are represented as constituent trees, with each argu-086

ment span corresponding to a tree node. Similarly,087

Zhang et al. (2022) explored the internal structures088

of argument spans, treating them as latent subtrees089

in a dependency representation. These approaches090

highlight the potential of structured representations091

to effectively capture the hierarchical and relational092

nature of predicate-argument structures.093

In this work, we introduce a novel lexicalized094

tree representation for span-based SRL, seam-095

lessly integrating the strengths of constituency and096

dependency parsing. A lexicalized tree captures097

the local domain of a headword—in this case, the098

predicate along with all its semantic arguments.099

This allows predicate-argument structures to be100

naturally modeled as (flat) lexicalized trees, where101

the predicate serves as the root, arguments are or-102

ganized as constituent subtrees, and dependencies103

explicitly link arguments to the predicate. Our tree-104

based representation preserves the full complexity105

of predicate-argument structures, akin to graph-106

based models, while maintaining the coherence of107

argument spans, as seen in BIO-based models. Our108

main contributions are as follows:109

• We treat span-based SRL as lexicalized tree pars-110

ing, combining the strengths of constituency and111

dependency parsing into a more integrated and112

interpretable framework.113

• The tree-based modeling retains the global ex-114

pressiveness needed to capture intricate predicate-115

argument relationships, while simultaneously en-116

forcing span-level structural constraints.117

• The proposed model achieves competitive perfor-118

mance on standard span-based SRL benchmarks119

(CoNLL05 and CoNLL12), outperforming exist-120

ing methods in predicate-given settings.121

Our code will be released on GitHub.122

2 Background123

2.1 Preliminaries and Notations124

Formally, an input sentence is defined as x =125

x0, x1, . . . , xn, where x0 is a pseudo-root token126

and xi is the i-th word in the sentence.127

Semantic Role Labeling The span-based SRL128

aims to identify the spans of words that corre-129

spond to the arguments of predicates, and assign130

semantic roles representing the relationships be-131

tween predicates and their argument spans. The132

predicate-argument structures are formally repre- 133

sented as: A = {(i, j, p, r) | 1 ≤ i ≤ j ≤ 134

n, p /∈ [i, j], r ∈ R}, where (i, j, p, r) denotes 135

an argument span of predicate p from the i-th word 136

to the j-th word with semantic role r. For sim- 137

plicity, we represent each predicate p separately: 138

Ap = {(i, j, r) | 1 ≤ i ≤ j ≤ n, r ∈ R}. Fig- 139

ure 1a shows an example sentence with a predicate 140

and its corresponding arguments. 141

Dependency Parsing Dependency parsing (d- 142

parsing) captures syntactic relationships between 143

words in a sentence by constructing a dependency 144

tree. A dependency tree is a directed graph where 145

nodes represent words, and edges represent syn- 146

tactic relations between them. A dependency tree 147

is defined as: d = {(h,m, r) | 0 ≤ h ≤ n, 1 ≤ 148

m ≤ n, r ∈ R} where (h,m, r) denotes a depen- 149

dency arc from head word h to dependent word m 150

with dependency relation r. Figure 1b illustrates 151

an example of a dependency tree. 152

Constituency Parsing Constituency parsing (c- 153

parsing) produces a parse tree that captures the 154

hierarchical phrase structure of a sentence. In this 155

tree, internal nodes represent syntactic constituents, 156

while leaf nodes correspond to individual words. 157

A constituency tree is defined as: c = {(i, j, ℓ) | 158

1 ≤ i ≤ j ≤ n, ℓ ∈ L} where (i, j, ℓ) represents a 159

constituent spanning from the i-th word to the j-th 160

word with syntactic category ℓ. Figure 1c provides 161

an example of a constituency tree. 162

2.2 The Connection between SRL and Syntax 163

SRL is closely tied to syntactic theory. For instance, 164

predicates are typically verbs, where the Agent 165

role often corresponds to the subject of the verb, 166

and the Patient role aligns with the object. From 167

a syntactic perspective, argument spans in SRL 168

frequently map to constituents in a constituency 169

tree, such as noun phrases or prepositional phrases. 170

Additionally, identifying predicate-argument rela- 171

tions is conceptually similar to establishing head- 172

dependent relations in a dependency tree. 173

Building on these insights, we propose a lexical- 174

ized tree representation for span-based SRL. This 175

representation integrates two fundamental types of 176

syntactic structures—constituency and dependency 177

structures—into a unified framework. By seam- 178

lessly modeling predicate-argument structures, the 179

lexicalized tree representation provides a more 180

structured and interpretable perspective for SRL. 181

2

The1 chef2 prepared3 the4 meal5 quickly6

A0 A1

(a) Span-based SRL

$0 The1 chef2 prepared3 the4 meal5 quickly6

det nsubj

root

det

dobj

advmod

(b) A dependency tree

S

VP

ADVP

quickly6

NP

meal5the4prepared3

NP

chef2The1

(c) A constituency tree

S[prepared]

VP[prepared]

ADVP[quickly]

quickly6

NP[meal]

meal5the4prepared3

NP[chef]

chef2The1

(d) A lexicalized tree

Figure 1: Semantic and syntactic representations for the sentence “The chef prepared the meal quickly”.

LINK : HEAD :

h

i j h p

i j p

i k h

h

k + 1 j

h

i j

Figure 2: Deduction rules for lexicalized tree (LINK and
HEAD). We show only left-rules, omitting the symmet-
ric right-rules as well as initial conditions for brevity.

3 Proposed Method182

This section presents our proposed method for span-183

based SRL using a lexicalized tree representation.184

We begin by introducing the foundational concepts185

of lexicalized trees, followed by detailing the con-186

struction of lexicalized trees from span-based SRL187

and their conversion into predicate-argument struc-188

tures.189

3.1 Lexicalized Tree Representation190

A lexicalized tree is a specialized constituency tree191

where each constituent is annotated with a head-192

word, capturing the most important information193

within the constituent. For example, in Figure 1d,194

the headword of the “S” constituent is the word195

“prepared”, which serves as the core of the sen-196

tence. Headwords propagate from the leaves to197

the root of the tree, and based on the dependency198

relations between these headwords, a dependency199

tree can be derived. Thus, a lexicalized tree y can200

be viewed as a combination of a constituency tree201

c and a dependency tree c: y = c ∪ d.202

While a lexicalized tree can be directly factor- 203

ized into constituency spans and dependency arcs, 204

its construction follows a specific process, as illus- 205

trated in Figure 2: 206

• A span (i, j) can be linked by an external anchor 207

word p /∈ [i, j] via a dependency arc, forming a 208

linked span (i, j, p). For simplicity, we omit the 209

semantic role here. 210

• Each word is headed by itself, forming a single- 211

word headed span (h, h, h). 212

• Linked spans can combine with sibling headed 213

spans to form larger headed spans (i, j, h), where 214

h ∈ [i, j] is the anchor word of the linked span. 215

• By recursively combining these spans, a com- 216

plete lexicalized tree is constructed. 217

These two types of spans—linked spans and 218

headed spans—are closely related to predicate- 219

argument structures. A predicate-argument pair 220

can be viewed as a special case of linked spans, 221

where the predicate acts as the external anchor 222

word. Similarly, arguments can be represented by 223

single words, as in word-based SRL, making ar- 224

gument spans a specific instance of headed spans. 225

This connection makes it natural to use a lexical- 226

ized tree to represent predicate-argument structures. 227

In such a tree, the predicate serves as the root, with 228

each subtree corresponding to an argument span 229

attached to it. 230

For the remainder of this section, we demon- 231

strate how our method: (1) transforms span-based 232

SRL into a lexicalized tree, and (2) reconstructs the 233

resulting tree into predicate-argument structures. 234

3

S[prepared]

∅[∗]

quickly6

A1[∗]

the4 meal5

PRD[prepared]

prepared3

A0[∗]

The1 chef2

(a) A latent lexicalized tree

S[prepared]

∅[quickly]

quickly6

A1[meal]

the4 meal5

PRD[prepared]

prepared3

A0[chef]

The1 chef2

(b) The optimal lexicalized tree

Figure 3: Illustration of our lexicalized tree representation. (a) A latent lexicalized tree derived from SRL, with the
symbol ∗ indicating unrealized headwords. (b) The optimal lexicalized tree to be reconstructed into SRL.

3.2 Converting SRL to Lexicalized Tree235

The lexicalized parsing method operates within a236

two-stage framework, where predicate-argument237

structure identification and semantic role classifi-238

cation are addressed separately and then combined239

to form the final result. To construct the lexical-240

ized tree, we individually process each predicate.241

Given a sentence x and the argument structure Ap242

for a predicate p, the (unlabeled) lexicalized tree is243

constructed through the following steps:244

1) Span Partition: The sentence is divided into245

four types of spans: a) Predicate span: The pred-246

icate itself. b) Argument span: Spans requir-247

ing semantic role labeling. c) Non-argument248

span: Spans between the predicate and argu-249

ment spans, often representing complements or250

adjuncts. d) Sentence span: The entire sentence.251

2) Head Assignment: Each span is assigned a252

head word: a) The head of the predicate span253

and the sentence span is the predicate itself.254

b) For argument spans and non-argument spans,255

the head is treated as a latent variable and in-256

ferred during training. Additionally, the internal257

dependency structure of these spans is also la-258

tent. Figure 3a provides an example.259

3) Span Linking: Dependency relations are es-260

tablished between spans. Argument spans and261

non-argument spans are linked to the predicate262

span via dependency arcs. The predicate span263

is linked to the root token x0.264

Notably, the constructed lexicalized tree is latent,265

meaning its internal dependency structure is not266

explicitly annotated. A latent lexicalized tree corre-267

sponds to a forest of possible trees, each represent-268

ing a realization of syntactic structure.269

For semantic role classification, semantic roles270

are assigned to linked spans (i, j, p) rather than271

to constituent spans (i, j) or head spans (i, j, h).272

This is because semantic roles are inherently tied273

to predicates and are meaningless without their 274

involvement. If the linked span is an argument, the 275

corresponding argument role is assigned. If the 276

linked span is a non-argument, the semantic role 277

is set to ∅. The linked predicate span is assigned 278

the special role PRD, which is used to identify the 279

predicate in the next stage. If the gold-standard 280

predicate is provided, this step can be skipped. 281

3.3 Recovering SRL from Lexicalized Tree 282

Assuming we have a trained parser that predicts 283

the (unlabeled) lexicalized tree, and a labeler that 284

assigns semantic roles to linked spans, the recovery 285

of predicate-argument structures can be achieved 286

through the following steps: 287

1) Predicate Identification: The predicate is iden- 288

tified as the (single-word) span directly linked 289

to the root token with the label PRD. If the 290

predicate is provided, this step is skipped. 291

2) Optimal Tree Prediction: For each predicate 292

p, the optimal lexicalized tree (as shown in Fig- 293

ure 3b) is predicted using Equation 12, which 294

ensures distinct results for different predicates. 295

3) Argument Recovery: All spans linked to the 296

predicate span are extracted and assigned their 297

optimal semantic roles. Non-argument spans 298

(labeled as ∅) are discarded, while argument 299

spans are retained with their semantic roles. 300

The final result contains all predicates and 301

their associated argument spans, fully recovering 302

the predicate-argument structures. Notably, our 303

method operates in an end-to-end manner, meaning 304

that predicate identification and argument recovery 305

are seamlessly integrated within a single model, 306

trained jointly and decoded step by step. 307

4 Model 308

In this section, we describe the detailed implemen- 309

tation of our lexicalized parsing model. Our ap- 310

4

proach consists of four key components: (1) scor-311

ing mechanism, (2) model architecture, (3) training,312

and (4) inference.313

4.1 Scoring Factorization314

As mentioned earlier, we adopt a two-stage frame-315

work for lexicalized parsing, following Dozat and316

Manning (2017) and Zhang et al. (2020). The tree317

skeletons and semantic roles are scored separately.318

For a unlabeled lexicalized tree y, the basic (or319

first-order, 1O) score is the sum of the constituency320

and dependency scores:321

s1O(y) = s(c ∪ d)

=
∑

(i,j)∈c

s(i, j) +
∑

(h,m)∈d

s(h,m) (1)322

where s(i, j) is the score of a constituent span323

(i, j) and s(h,m) is the score of a dependency arc324

(h,m).325

To account for additional structural features re-326

lated to predicate-argument structures, we extend327

the scoring factorization by including headed spans328

(i, j, h) and linked spans (i, j, p):329

s(y) = s1O(y) +
∑

(i,j,h)∈y

s(i, j, h)

+
∑

(i,j,p)∈y

s(i, j, p)
(2)330

4.2 Model Architecture331

For an input sentence x = x0, x1, . . ., xn, we first332

obtain contextual representations for each word xi333

using the BERT model (Devlin et al., 2019).334

ri = BERT(xi) (3)335

These representations are then used to compute336

scores for constituent spans and dependency arcs337

using biaffine attention mechanisms (Dozat and338

Manning, 2017). For constituents, we use two sep-339

arate MLPs to compute left and right boundary340

representations:341

rleft
i = MLPleft(ri)

r
right
j = MLPright(rj)

(4)342

Similarly, for dependencies, we compute head343

and dependent representations:344

rhead
h = MLPhead(rh)

rmod
m = MLPmod(rm)

(5)345

Scores for constituency spans (i, j) and depen- 346

dency arcs (h,m) are computed using two separate 347

biaffine layers: 348

s(i, j) = BiAFFcon(rleft
i , r

right
j)

s(h,m) = BiAFFdep(rhead
h , rmod

m)
(6) 349

For headed spans (i, j, h) and linked spans 350

(i, j, p), we use the triaffine attention mecha- 351

nism (Wang et al., 2019) to compute the scores: 352

rhead/link
i = MLPhead/link(ri)

s(i, j, h) = TriAFFhead(rleft
i , r

right
j , rhead

h)

s(i, j, p) = TriAFFlink(rleft
i , r

right
j , rlink

p)

(7) 353

Additionally, semantic roles s(i, j, p, r) are 354

scored using a similar triaffine attention mecha- 355

nism. Notably, semantic roles are scored after de- 356

coding the optimal unlabeled tree (with the excep- 357

tion of predicate identification). This technique 358

reduces the computational cost to linear time by 359

only scoring the predicted linked spans. 360

4.3 Training 361

We optimize the model using a structured learn- 362

ing objective, i.e., maximizing the likelihood of 363

gold-standard trees. Given a lexicalized tree y, its 364

probability under CRF is defined as: 365

p(y|x) = exp(s(y))
Z(x) ≡

∑
y′∈Y exp(s(y′))

(8) 366

where Z(x) is the partition function, summing over 367

all possible trees Y for sentence x. 368

However, this probability cannot be directly used 369

to supervise the model because the headwords of 370

argument spans and non-argument spans are latent 371

variables (i.e., not yet realized). By enumerating all 372

possible headwords, a forest F can be constructed, 373

where each tree y∗ ∈ F is a realization of the latent 374

headwords. We then optimize over the forest F : 375

p(F|x) =
∑

y∗∈F exp(s(y∗))

Z(x)

Lskeleton(θ) = − log p(F|x)
(9) 376

The summation process is performed using a inside 377

version of Eisner-Satta algorithm (Eisner and Satta, 378

1999), as described in Algorithm 1 in Appendix. 379

For semantic roles, we use cross-entropy loss: 380

p(r|i, j, p) = exp(s(i, j, p, r))∑
r′∈R exp(s(i, j, p, r′))

Llabel(θ) = −
∑

(i,j,p)∈y

log p(r∗|i, j, p)
(10) 381

5

The final loss combines both objectives:382

L(θ) = Lskeleton(θ) + Llabel(θ) (11)383

4.4 Inference384

For a given sentence x, we first identify all predi-385

cates within it. A word is considered a predicate386

if it can be linked to the root token x0, determined387

by checking whether the role of the linked span388

satisfies r̂i,i,0 = PRD. Then, for each predicate p,389

we use the Eisner-Satta algorithm to decode the390

optimal lexicalized tree:391

ŷ = arg max
y:x0→p∈y

s(y) (12)392

By constraining the predicate to be attached to the393

root token, we ensure distinct optimal trees for dif-394

ferent predicates, eliminating the need for repeated395

scoring across multiple predicates.396

Finally, the optimal semantic role for each linked397

span (i, j, p) is predicted as:398

r̂i,j,p = argmax
r∈R

s(i, j, p, r) (13)399

The predicate-argument structures are then recov-400

ered following the steps outlined in Section 3.3.401

5 Experiments402

5.1 Setup403

Data The experiments are conducted on two404

widely used benchmarks for span-based SRL:405

CoNLL05 (Carreras and Màrquez, 2005) and406

CoNLL12 (Pradhan et al., 2012), with the standard407

splits. WSJ portion of the Penn Treebank (Marcus408

et al., 1993) is used for CoNLL05. To evaluate409

cross-domain generalization, we also test on the410

Brown corpus for CoNLL05.411

Evaluation Metrics We evaluate model perfor-412

mance using Precision (P), Recall (R), and F1-413

score, following the official CoNLL05 evaluation414

script 1. The results are averaged over three runs415

with different random seeds.416

Hyperparameters Following previous work, we417

use the bert-large-cased version of BERT2. Ad-418

ditional implementation details, including hyper-419

parameter settings, and optimization strategies are420

provided in Appendix A.1.421

1https://www.cs.upc.edu/ srlconll
2https://huggingface.co/bert-large-cased

5.2 Main Results 422

Span-based SRL is evaluated under two settings: 423

end-to-end and predicate-given. In the end-to-end 424

setting, the model is required to predict both predi- 425

cates and their arguments. In the predicate-given 426

setting, predicates are provided as input, and the 427

model is tasked with predicting the arguments. Ta- 428

ble 1 presents the main results of our model com- 429

pared to previous work. 430

End-to-End As shown in the upper part of Ta- 431

ble 1, our method achieves competitive perfor- 432

mance on CoNLL12, matching state-of-the-art 433

models. However, on CoNLL05, our model slightly 434

lags behind the best-performing model, with a 0.71 435

F1-score gap on the WSJ test set and a 0.8 F1-score 436

gap on the Brown corpus. Notably, our model ex- 437

hibits higher recall but lower precision, suggesting 438

a tendency to identify more argument spans at the 439

cost of some incorrect predictions. 440

Predicate-Given In the lower part of Table 1, we 441

observe that our model maintains its strong abil- 442

ity to recall arguments. While our model performs 443

slightly worse than Liu et al. (2023) on WSJ test set, 444

it outperforms previous state-of-the-art models on 445

both the Brown corpus and the CoNLL12 test set, 446

achieving improvements of 0.22 and 0.25 F1-score, 447

respectively. This demonstrates the robustness and 448

generalization capability of our approach, particu- 449

larly in cross-domain and large-scale settings. 450

5.3 Speed Efficiency 451

Table 2 compares the parsing speeds of different 452

models on the CoNLL05 test set under the end-to- 453

end setting. We adopt the speed benchmarks from 454

Zhou et al. (2022) and Zhang et al. (2022), which 455

were run on an Nvidia GTX 1080 Ti GPU. For He 456

et al. (2018a) and Li et al. (2019), the batch size 457

is set to approximately 2000 tokens, while other 458

models use a batch size of 5000 tokens. Note that 459

our model is run on a single Nvidia V100 GPU, 460

which may result in a slight increase in speed. 461

Earlier models achieve parsing speeds below 50 462

sentences per second due to either heavy network 463

architectures (Strubell et al., 2018) or large search 464

spaces. Zhou et al. (2022) reduce the search space 465

to O(n2) by using a word-based graph representa- 466

tion, leading to the fastest parsing speed. Zhang 467

et al. (2022) model span-based SRL as dependency 468

trees and use the Eisner algorithm (Eisner, 1996) 469

for inference, which has a complexity of O(n3). 470

6

https://www.cs.upc.edu/~srlconll
https://huggingface.co/bert-large-cased

Model

CoNLL05 CoNLL12

Dev WSJ Brown Dev Test

F1 P R F1 P R F1 F1 P R F1

End-to-End
He et al. (2017)† 80.3 80.2 82.3 81.2 67.6 69.6 68.5 75.5 78.6 75.1 76.8
He et al. (2018a)† 81.6 81.2 83.9 82.5 69.7 71.9 70.8 79.4 79.4 80.1 79.8
Li et al. (2019)† – – – 83.0 – – – – – – –
Jia et al. (2022) – – – 86.70 – – 78.58 – – – 84.22
Zhou et al. (2022) 86.79 87.15 88.44 87.79 79.44 80.85 80.14 84.74 83.91 85.61 84.75
Zhang et al. (2022) 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
Liu et al. (2023) – 88.05 88.61 88.33 81.13 81.58 81.36 – 84.95 85.85 85.40
Ours 87.00 86.59 88.68 87.62 78.68 82.54 80.56 84.99 84.00 86.34 85.15

Predicate-Given
He et al. (2017)† 81.6 83.1 83.0 83.1 72.9 71.4 72.1 81.5 81.7 81.6 81.7
Ouchi et al. (2018)† 82.5 84.7 82.3 83.5 76.0 70.4 73.1 82.9 84.4 81.7 83.0
Tan et al. (2018)† 83.1 84.5 85.2 84.8 73.5 74.6 74.1 82.9 81.9 83.6 82.7
Li et al. (2019)† – 87.9 87.5 87.7 80.6 80.4 80.5 – 85.7 86.3 86.0
Shi and Lin (2019) – 88.6 89.0 88.8 81.9 82.1 82.0 – 85.9 87.0 86.5
Jindal et al. (2020) – 88.7 88.0 87.9 80.3 80.1 80.2 – 86.3 86.8 86.6
Conia and Navigli (2020) – – – – – – – – 86.9 87.7 87.3
Blloshmi et al. (2021) – – – – – – – – 87.8 86.8 87.3
Liu et al. (2022) – – – – – – – – – – 87.5
Jia et al. (2022) – – – 88.25 – – 81.90 – – – 87.18
Zhou et al. (2022) 87.54 89.03 88.53 88.78 83.22 81.81 82.51 86.97 87.26 87.05 87.15
Zhang et al. (2022) 88.05 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.52 87.79 87.66
Liu et al. (2023) – 89.77 88.46 89.11 83.96 81.76 82.85 – 88.10 87.38 87.74
Ours 88.04 88.51 89.07 88.79 82.64 83.51 83.07 87.71 87.62 88.36 87.99

Table 1: Results on the CoNLL05 and CoNLL12 datasets. † indicates that no BERT-series models are used.

Model Type Sents/sec

Strubell et al. (2018) BIO 50
He et al. (2018a) GRAPH 49
Li et al. (2019) GRAPH 20
Zhou et al. (2022) GRAPH 252
Zhang et al. (2022) TREE 113

Ours TREE 116

Table 2: Speed comparison on CoNLL05-WSJ.

Our approach employs the Eisner-Satta algorithm471

with a complexity of O(n4). However, after apply-472

ing efficient batch processing on GPUs, both our473

algorithm and the Eisner algorithm operate at O(n)474

complexity in practice, resulting in no significant475

difference in speed.476

5.4 Analysis477

Ablation Study A simplified version (named 1O)478

of our model can be obtained by removing the head479

span and linked span components, which are re-480

sponsible for modeling predicate-argument struc-481

Model
CoNLL05 CoNLL12

WSJ Brown Test

1O 87.49 79.87 84.89
Ours 87.62 80.56 85.15

Table 3: Ablation study on the CoNLL05 and CoNLL12
datasets. Only the F1 scores are reported.

tures. As these components are crucial to capture 482

structural dependencies, we expect their removal 483

to negatively impact performance. Table 3 shows 484

the results of the ablation study under the end-to- 485

end setting. We observe a performance drop across 486

all datasets: a 0.13 F1-score reduction on WSJ, 487

0.69 F1-score on Brown, and 0.26 F1-score on 488

CoNLL12. These results confirm the effectiveness 489

of the full model. 490

Argument Width Figure 4a shows results bro- 491

ken down by argument width. Our model slightly 492

underperforms 1O on shorter arguments. However, 493

as the argument width increases, our model outper- 494

forms 1O more significantly. 495

7

1 2 3-6 ≥7

86

88

90

92

F 1
(%

)

1O

Ours

(a) Argument width
0 1 2-5 ≥6

80

85

90

95

(b) predicate-argument distance

Figure 4: F1 scores breakdown by argument width and
predicate-argument distance on CoNLL05-WSJ.

Predicate-Argument Distance Figure 4b496

presents results broken down by predicate-497

argument distance, defined as the number of words498

between the predicate and the argument. It is clear499

that the gap between 1O and our model is marginal,500

except for the distance of 1, where our model501

outperforms 1O by a large margin.502

6 Related Work503

6.1 Span-based SRL504

Span-based SRL is primarily approached through505

two paradigms: BIO-based and graph-based meth-506

ods. The BIO-based approach first predicts predi-507

cates, then identifies their arguments via sequence508

labeling (Zhou and Xu, 2015; Strubell et al., 2018;509

Shi and Lin, 2019). This approach requires en-510

coding the sentence multiple times for different511

predicates, as additional indicators (e.g., predicate512

embeddings) are used to locate them (Zhou and Xu,513

2015). In contrast, graph-based approaches predict514

relations between predicates and argument spans515

directly (He et al., 2018a; Li et al., 2019). How-516

ever, these models often suffer from two main chal-517

lenges: (1) the large search space (O(n3) predicate-518

argument pairs) due to n2 argument spans for519

each candidate predicate n, and (2) potential con-520

flicts in argument identification, as each predicate-521

argument pair is predicted independently. To ad-522

dress these issues, He et al. (2018a, 2019); Jia523

et al. (2022) employ pruning strategies to reduce524

the search space. Additionally, Zhou et al. (2022)525

introduce a word-based graph representation with526

a BIO tagging scheme to reduce the search space527

to O(n2).528

6.2 Syntax-aware SRL529

The connection between syntax parsing and SRL530

has led to numerous studies on syntax-aware SRL.531

Since Gildea and Jurafsky (2002), syntax has532

been considered essential for span-based SRL. Re- 533

searchers have explored various ways of integrating 534

syntactic trees into SRL, such as guiding argument 535

pruning (He et al., 2018b), using syntactic features 536

as additional inputs, and jointly learning syntax and 537

semantics through multi-task frameworks (Zhou 538

et al., 2020). Recent advancements include syntax- 539

enhanced self-attention mechanisms (Marcheg- 540

giani and Titov, 2017; Strubell et al., 2018), which 541

consistently improve SRL performance. Despite 542

these advancements, most syntax-aware SRL mod- 543

els rely on pre-existing syntactic resources rather 544

than directly modeling argument structures. 545

6.3 SRL as Structured Parsing 546

Structured parsing has been successfully applied 547

to various NLP tasks, including nested named en- 548

tity recognition and sentiment analysis. For ex- 549

ample, Fu et al. (2020) model nested entities as 550

constituency trees, while Lou et al. (2022) extend 551

this by introducing latent lexicalized tree structures. 552

Similarly, Zhou et al. (2023) treat structured senti- 553

ment analysis as a dependency parsing problem. 554

In the context of SRL, structured parsing has 555

also been explored. Liu et al. (2022, 2023) pro- 556

pose a constituency tree-based representation for 557

SRL. Closest to our work, Zhang et al. (2022) cast 558

span-based SRL as a dependency parsing task, rep- 559

resenting argument spans as latent subtrees. Our 560

approach integrates both constituency and depen- 561

dency structures, offering a more comprehensive 562

and structured perspective for SRL. 563

7 Conclusion 564

In this work, we introduce a novel lexicalized 565

tree representation for span-based SRL, which in- 566

tegrates constituency and dependency parsing to 567

model predicate-argument structures effectively. 568

By structurally representing predicates as roots and 569

arguments as subtrees explicitly linked to the predi- 570

cate, our approach bridges the gap between syntac- 571

tic and semantic representations. Experiments on 572

standard benchmarks (CoNLL05 and CoNLL12) 573

demonstrate that our model achieves competitive 574

performance, particularly excelling in predicate- 575

given settings. The ablation studies and analysis of 576

predicate-argument structures further validate the 577

effectiveness of our approach in capturing complex 578

semantic relationships. 579

8

Limitations580

Complexity The proposed lexicalized tree repre-581

sentation introduces additional complexity to the582

span-based SRL task. Constructing these trees583

requires integrating both constituency and depen-584

dency parsing. Training and inference rely on the585

Eisner-Satta algorithm to identify the optimal lexi-586

calized tree structure, which has a space complexity587

of O(n3) and a time complexity of O(n4). While588

GPU acceleration can reduce the time complex-589

ity to O(n), the model still demands significant590

memory resources, limiting its scalability to longer591

sentences.592

References593

Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and594
Roberto Navigli. 2021. Generating senses and roles:595
An end-to-end model for dependency- and span-596
based semantic role labeling. In Proceedings of the597
Thirtieth International Joint Conference on Artificial598
Intelligence, IJCAI-21, pages 3786–3793. Interna-599
tional Joint Conferences on Artificial Intelligence600
Organization. Main Track.601

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena602
Hwang, and Martha Palmer. 2010. Propbank annota-603
tion guidelines. Center for Computational Language604
and Education Research, CU-Boulder, 9:90.605

Xavier Carreras and Lluís Màrquez. 2005. Introduction606
to the CoNLL-2005 shared task: Semantic role la-607
beling. In Proceedings of the Ninth Conference on608
Computational Natural Language Learning (CoNLL-609
2005), pages 152–164, Ann Arbor, Michigan. Asso-610
ciation for Computational Linguistics.611

Simone Conia and Roberto Navigli. 2020. Bridging612
the gap in multilingual semantic role labeling: a613
language-agnostic approach. In Proceedings of the614
28th International Conference on Computational Lin-615
guistics, pages 1396–1410, Barcelona, Spain (On-616
line). International Committee on Computational Lin-617
guistics.618

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and619
Kristina Toutanova. 2019. BERT: Pre-training of620
deep bidirectional transformers for language under-621
standing. In Proceedings of the 2019 Conference of622
the North American Chapter of the Association for623
Computational Linguistics: Human Language Tech-624
nologies, Volume 1 (Long and Short Papers), pages625
4171–4186, Minneapolis, Minnesota. Association for626
Computational Linguistics.627

Timothy Dozat and Christopher D. Manning. 2017.628
Deep biaffine attention for neural dependency pars-629
ing. In 5th International Conference on Learning630
Representations, ICLR 2017, Toulon, France, April631
24-26, 2017, Conference Track Proceedings. Open-632
Review.net.633

Jason Eisner and Giorgio Satta. 1999. Efficient parsing 634
for bilexical context-free grammars and head automa- 635
ton grammars. In Proceedings of the 37th Annual 636
Meeting of the Association for Computational Lin- 637
guistics, pages 457–464, College Park, Maryland, 638
USA. Association for Computational Linguistics. 639

Jason M. Eisner. 1996. Three new probabilistic models 640
for dependency parsing: An exploration. In COLING 641
1996 Volume 1: The 16th International Conference 642
on Computational Linguistics. 643

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang, 644
and Fei Huang. 2020. Nested named entity recogni- 645
tion with partially-observed treecrfs. In AAAI Con- 646
ference on Artificial Intelligence. 647

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la- 648
beling of semantic roles. Computational Linguistics, 649
28(3):245–288. 650

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle- 651
moyer. 2018a. Jointly predicting predicates and argu- 652
ments in neural semantic role labeling. In Proceed- 653
ings of the 56th Annual Meeting of the Association for 654
Computational Linguistics (Volume 2: Short Papers), 655
pages 364–369, Melbourne, Australia. Association 656
for Computational Linguistics. 657

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle- 658
moyer. 2017. Deep semantic role labeling: What 659
works and what’s next. In Proceedings of the 55th 660
Annual Meeting of the Association for Computational 661
Linguistics (Volume 1: Long Papers), pages 473–483, 662
Vancouver, Canada. Association for Computational 663
Linguistics. 664

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax- 665
aware multilingual semantic role labeling. In Pro- 666
ceedings of the 2019 Conference on Empirical Meth- 667
ods in Natural Language Processing and the 9th In- 668
ternational Joint Conference on Natural Language 669
Processing (EMNLP-IJCNLP), pages 5350–5359, 670
Hong Kong, China. Association for Computational 671
Linguistics. 672

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai. 673
2018b. Syntax for semantic role labeling, to be, or 674
not to be. In Proceedings of the 56th Annual Meeting 675
of the Association for Computational Linguistics (Vol- 676
ume 1: Long Papers), pages 2061–2071, Melbourne, 677
Australia. Association for Computational Linguistics. 678

Zixia Jia, Zhaohui Yan, Haoyi Wu, and Kewei Tu. 2022. 679
Span-based semantic role labeling with argument 680
pruning and second-order inference. Proceedings 681
of the AAAI Conference on Artificial Intelligence, 682
36(10):10822–10830. 683

Ishan Jindal, Ranit Aharonov, Siddhartha Brahma, 684
Huaiyu Zhu, and Yunyao Li. 2020. Improved seman- 685
tic role labeling using parameterized neighborhood 686
memory adaptation. CoRR, abs/2011.14459. 687

9

https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
https://doi.org/10.24963/ijcai.2021/521
https://aclanthology.org/W05-0620
https://aclanthology.org/W05-0620
https://aclanthology.org/W05-0620
https://aclanthology.org/W05-0620
https://aclanthology.org/W05-0620
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.1609/aaai.v36i10.21328
https://doi.org/10.1609/aaai.v36i10.21328
https://doi.org/10.1609/aaai.v36i10.21328
http://arxiv.org/abs/2011.14459
http://arxiv.org/abs/2011.14459
http://arxiv.org/abs/2011.14459
http://arxiv.org/abs/2011.14459
http://arxiv.org/abs/2011.14459

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-688
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De-689
pendency or span, end-to-end uniform semantic role690
labeling. Proceedings of the AAAI Conference on691
Artificial Intelligence, 33(01):6730–6737.692

Tianyu Liu, Yuchen Jiang, Ryan Cotterell, and Mrin-693
maya Sachan. 2022. A structured span selector. In694
Proceedings of the 2022 Conference of the North695
American Chapter of the Association for Computa-696
tional Linguistics: Human Language Technologies,697
pages 2629–2641, Seattle, United States. Association698
for Computational Linguistics.699

Wei Liu, Songlin Yang, and Kewei Tu. 2023. Struc-700
tured mean-field variational inference for higher-701
order span-based semantic role labeling. In Find-702
ings of the Association for Computational Linguis-703
tics: ACL 2023, pages 918–931, Toronto, Canada.704
Association for Computational Linguistics.705

Chao Lou, Songlin Yang, and Kewei Tu. 2022. Nested706
named entity recognition as latent lexicalized con-707
stituency parsing. In Proceedings of the 60th Annual708
Meeting of the Association for Computational Lin-709
guistics (Volume 1: Long Papers), pages 6183–6198,710
Dublin, Ireland. Association for Computational Lin-711
guistics.712

Diego Marcheggiani and Ivan Titov. 2017. Encoding713
sentences with graph convolutional networks for se-714
mantic role labeling. In Proceedings of EMNLP,715
pages 1506–1515.716

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann717
Marcinkiewicz. 1993. Building a large annotated cor-718
pus of English: The Penn Treebank. Computational719
Linguistics, 19(2):313–330.720

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.721
2018. A span selection model for semantic role la-722
beling. In Proceedings of the 2018 Conference on723
Empirical Methods in Natural Language Processing,724
pages 1630–1642, Brussels, Belgium. Association725
for Computational Linguistics.726

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,727
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-728
2012 shared task: Modeling multilingual unrestricted729
coreference in OntoNotes. In Joint Conference on730
EMNLP and CoNLL - Shared Task, pages 1–40, Jeju731
Island, Korea. Association for Computational Lin-732
guistics.733

Peng Shi and Jimmy Lin. 2019. Simple BERT models734
for relation extraction and semantic role labeling.735
CoRR, abs/1904.05255.736

Emma Strubell, Patrick Verga, Daniel Andor, David737
Weiss, and Andrew McCallum. 2018. Linguistically-738
informed self-attention for semantic role labeling.739
In Proceedings of the 2018 Conference on Empiri-740
cal Methods in Natural Language Processing, pages741
5027–5038, Brussels, Belgium. Association for Com-742
putational Linguistics.743

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, 744
and Xiaodong Shi. 2018. Deep semantic role label- 745
ing with self-attention. In Proceedings of the AAAI 746
conference on artificial intelligence, volume 32. 747

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019. 748
Second-order semantic dependency parsing with end- 749
to-end neural networks. In Proceedings of the 57th 750
Annual Meeting of the Association for Computational 751
Linguistics, pages 4609–4618, Florence, Italy. Asso- 752
ciation for Computational Linguistics. 753

Qingrong Xia, Zhenghua Li, Min Zhang, Meishan 754
Zhang, Guohong Fu, Rui Wang, and Luo Si. 2019. 755
Syntax-aware neural semantic role labeling. Proceed- 756
ings of the AAAI Conference on Artificial Intelligence, 757
33(01):7305–7313. 758

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guo- 759
hong Fu, and Min Zhang. 2022. Semantic role la- 760
beling as dependency parsing: Exploring latent tree 761
structures inside arguments. In Proceedings of the 762
29th International Conference on Computational Lin- 763
guistics, pages 4212–4227, Gyeongju, Republic of 764
Korea. International Committee on Computational 765
Linguistics. 766

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast 767
and accurate neural CRF constituency parsing. In 768
Proceedings of the Twenty-Ninth International Joint 769
Conference on Artificial Intelligence, IJCAI 2020, 770
pages 4046–4053. ijcai.org. 771

Jie Zhou and Wei Xu. 2015. End-to-end learning of se- 772
mantic role labeling using recurrent neural networks. 773
In Proceedings of the 53rd Annual Meeting of the As- 774
sociation for Computational Linguistics and the 7th 775
International Joint Conference on Natural Language 776
Processing (Volume 1: Long Papers), pages 1127– 777
1137, Beijing, China. Association for Computational 778
Linguistics. 779

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Parsing 780
all: Syntax and semantics, dependencies and spans. 781
In Findings of the Association for Computational 782
Linguistics: EMNLP 2020, pages 4438–4449, Online. 783
Association for Computational Linguistics. 784

Shilin Zhou, Qingrong Xia, Zhenghua Li, Yu Zhang, 785
Yu Hong, and Min Zhang. 2022. Fast and accu- 786
rate end-to-end span-based semantic role labeling 787
as word-based graph parsing. In Proceedings of the 788
29th International Conference on Computational Lin- 789
guistics, pages 4160–4171, Gyeongju, Republic of 790
Korea. International Committee on Computational 791
Linguistics. 792

Yulin Zhou, Yiren Zhao, Ilia Shumailov, Robert Mullins, 793
and Yarin Gal. 2023. Revisiting automated prompt- 794
ing: Are we actually doing better? In Proceedings 795
of the 61st Annual Meeting of the Association for 796
Computational Linguistics (Volume 2: Short Papers), 797
pages 1822–1832, Toronto, Canada. Association for 798
Computational Linguistics. 799

10

https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.18653/v1/2022.naacl-main.189
https://doi.org/10.18653/v1/2023.findings-acl.58
https://doi.org/10.18653/v1/2023.findings-acl.58
https://doi.org/10.18653/v1/2023.findings-acl.58
https://doi.org/10.18653/v1/2023.findings-acl.58
https://doi.org/10.18653/v1/2023.findings-acl.58
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/D18-1191
https://doi.org/10.18653/v1/D18-1191
https://doi.org/10.18653/v1/D18-1191
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://aaai.org/papers/11928-deep-semantic-role-labeling-with-self-attention/
https://aaai.org/papers/11928-deep-semantic-role-labeling-with-self-attention/
https://aaai.org/papers/11928-deep-semantic-role-labeling-with-self-attention/
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.1609/aaai.v33i01.33017305
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://doi.org/10.24963/IJCAI.2020/560
https://doi.org/10.24963/IJCAI.2020/560
https://doi.org/10.24963/IJCAI.2020/560
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://aclanthology.org/2022.coling-1.365
https://aclanthology.org/2022.coling-1.365
https://aclanthology.org/2022.coling-1.365
https://aclanthology.org/2022.coling-1.365
https://aclanthology.org/2022.coling-1.365
https://doi.org/10.18653/v1/2023.acl-short.155
https://doi.org/10.18653/v1/2023.acl-short.155
https://doi.org/10.18653/v1/2023.acl-short.155

Algorithm 1 Eisner-Satta Algorithm

1: Input: scores of constituency spans s(i, j) and dependency arcs s(h → m)
2: Input: scores of linked spans s(i, j, p) and headed spans s(i, j, h)
3: Define: H,L ∈ Rn×n×(n+1)

4: Initialize: H:,:,: = 0,L:,:,: = 0
5: for w = 1, . . . , n do
6: for i = 1, . . . , n− w do
7: j = i+ w
8: for h = i, . . . , j do
9: Hi,j,h = s(i, j, h) + s(i, j) + maxi≤k≤j(Hi,k,h + Lk+1,j,h;Li,k,h + Hk+1,j,h)

10: end for
11: for p = 0, . . . , n do
12: Li,j,p = s(i, j, p) + maxi≤h≤j(Hi,j,h + s(p → h))
13: end for
14: end for
15: end for
16: return L1,n,0

Train Dev Test Brown

CoNLL05 39,832 1,346 2,416 2,399
CoNLL12 75,187 9,603 9,479 –

Table 4: Data statistics for CoNLL05 and CoNLL12
datasets.

A Appendix800

A.1 Implementation Details801

The BERT (bert-large-cased) model is fine-802

tuned to obtain word representations. The dimen-803

sions of attention layers are set to 500 for tree skele-804

tons and 100 for semantic roles. For training, the805

dropout rate is set to 0.1 for BERT and 0.33 for806

the other model components. The learning rate807

for BERT is set to 5 × 10−5, while the learning808

rate for the other layers is set to 1 × 10−3. We809

train the model for 10 epochs with a batch size of810

1000 tokens using the AdamW optimizer. A linear811

warmup scheduler is used for the first 10% of the812

training steps. All experiments are run on NVIDIA813

V100 GPUs.814

11

	Introduction
	Background
	Preliminaries and Notations
	The Connection between SRL and Syntax

	Proposed Method
	Lexicalized Tree Representation
	Converting SRL to Lexicalized Tree
	Recovering SRL from Lexicalized Tree

	Model
	Scoring Factorization
	Model Architecture
	Training
	Inference

	Experiments
	Setup
	Main Results
	Speed Efficiency
	Analysis

	Related Work
	Span-based SRL
	Syntax-aware SRL
	SRL as Structured Parsing

	Conclusion
	Appendix
	Implementation Details

