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Abstract

Semantic Role Labeling (SRL) is a critical task
that focuses on identifying predicate-argument
structures in sentences. Span-based SRL, a
prominent paradigm, is often tackled using
BIO-based or graph-based methods. However,
these approaches often fail to capture the in-
herent relationship between syntax and seman-
tics. While syntax-aware models have been pro-
posed to address this limitation, they heavily
rely on pre-existing syntactic resources, lim-
iting their general applicability. In this work,
we propose a lexicalized tree representation for
span-based SRL, which integrates constituency
and dependency parsing to explicitly model
predicate-argument structures. By structurally
representing predicates as roots and arguments
as subtrees directly linked to the predicate, our
approach bridges the gap between syntactic and
semantic representations. Experiments on stan-
dard benchmarks (CoNLLO5 and CoNLL12)
demonstrate that our model achieves competi-
tive performance, with particular improvement
in predicate-given settings.

1 Introduction

Semantic Role Labeling (SRL) is a fundamental
task in natural language processing, aiming to iden-
tify the arguments of predicates in a sentence and
assign them appropriate semantic roles. There
are two dominant paradigms in SRL: word-based
(dependency-based) SRL, which assigns roles to
individual words, and span-based SRL, which iden-
tifies multi-word argument spans. This paper fo-
cuses on span-based SRL.

Span-based SRL is typically approached through
two primary methods: BIO-based tagging and
(span-based) graph parsing. The BIO-based ap-
proach formulates SRL as a sequence labeling
task (Zhou and Xu, 2015; Strubell et al., 2018),
where each word in the sentence is assigned one of
three labels {B, 1, O}, denoting the beginning, in-
side, or outside of an argument span. To ensure the

coherence of argument spans, structural constraints,
such as linear-chain Conditional Random Fields
(CRFs), are applied. On the other hand, graph
parsing directly identifies predicate-argument pairs
by linking argument spans to predicates (He et al.,
2018a; Li et al., 2019). While this method excels
at capturing the full scope of predicate-argument
structures, it faces significant challenges, includ-
ing large search spaces (O(n?)) and potential con-
flicts between argument spans due to the absence
of structural constraints.

A long-standing hypothesis in SRL research is
that syntactic information plays a critical role in
accurate predicate-argument identification and clas-
sification (Gildea and Jurafsky, 2002). Syntac-
tic structures provide key insights into predicate-
argument structures, as evidenced in Propbank-
style SRL (Bonial et al., 2010), where arguments
are often syntactic constituents. Additionally, the
process of establishing semantic relationships be-
tween predicates and arguments mirrors the con-
struction of dependency relationships between
words. These observations have led to the devel-
opment of syntax-aware SRL models that leverage
syntactic information, such as dependency and con-
stituency trees, to improve SRL performance.

Syntax-aware models typically involve using
syntactic trees to guide argument pruning (He et al.,
2018b), integrating syntactic features derived from
these trees (Xia et al., 2019), or employing multi-
task learning frameworks to jointly learn syntax
and semantics (Zhou et al., 2020). These ap-
proaches consistently demonstrate that incorporat-
ing syntactic knowledge leads to improved SRL
performance. However, a significant limitation of
most existing syntax-aware SRL models is their
reliance on pre-existing syntactic resources, hinder-
ing their applicability to low-resource domains and
languages.

Recent advances in structured representations for
span-based SRL have sought to address this limita-



tion by directly modeling argument structures with
tree-based representations. Liu et al. (2022, 2023)
introduced a framework where argument structures
are represented as constituent trees, with each argu-
ment span corresponding to a tree node. Similarly,
Zhang et al. (2022) explored the internal structures
of argument spans, treating them as latent subtrees
in a dependency representation. These approaches
highlight the potential of structured representations
to effectively capture the hierarchical and relational
nature of predicate-argument structures.

In this work, we introduce a novel lexicalized
tree representation for span-based SRL, seam-
lessly integrating the strengths of constituency and
dependency parsing. A lexicalized tree captures
the local domain of a headword—in this case, the
predicate along with all its semantic arguments.
This allows predicate-argument structures to be
naturally modeled as (flat) lexicalized trees, where
the predicate serves as the root, arguments are or-
ganized as constituent subtrees, and dependencies
explicitly link arguments to the predicate. Our tree-
based representation preserves the full complexity
of predicate-argument structures, akin to graph-
based models, while maintaining the coherence of
argument spans, as seen in BIO-based models. Our
main contributions are as follows:

* We treat span-based SRL as lexicalized tree pars-
ing, combining the strengths of constituency and
dependency parsing into a more integrated and
interpretable framework.

* The tree-based modeling retains the global ex-
pressiveness needed to capture intricate predicate-
argument relationships, while simultaneously en-
forcing span-level structural constraints.

* The proposed model achieves competitive perfor-
mance on standard span-based SRL benchmarks
(CoNLLOS5 and CoNLL12), outperforming exist-
ing methods in predicate-given settings.

Our code will be released on GitHub.

2 Background

2.1 Preliminaries and Notations

Formally, an input sentence is defined as * =
o, T1,---,Ty, Where zg is a pseudo-root token
and x; is the ¢-th word in the sentence.

Semantic Role Labeling The span-based SRL
aims to identify the spans of words that corre-
spond to the arguments of predicates, and assign
semantic roles representing the relationships be-
tween predicates and their argument spans. The

predicate-argument structures are formally repre-
sented as: A = {(i,7,p,r) | 1 < i < j <
n,p ¢ [i,j],7 € R}, where (3, j,p,r) denotes
an argument span of predicate p from the ¢-th word
to the j-th word with semantic role r. For sim-
plicity, we represent each predicate p separately:
Ap = A{(,4,r) |1 <i < j < n,re R} Fig-
ure la shows an example sentence with a predicate
and its corresponding arguments.

Dependency Parsing Dependency parsing (d-
parsing) captures syntactic relationships between
words in a sentence by constructing a dependency
tree. A dependency tree is a directed graph where
nodes represent words, and edges represent syn-
tactic relations between them. A dependency tree
is defined as: d = {(h,m,r) |0 < h <n,1 <
m < n,r € R} where (h, m,r) denotes a depen-
dency arc from head word h to dependent word m
with dependency relation r. Figure 1b illustrates
an example of a dependency tree.

Constituency Parsing Constituency parsing (c-
parsing) produces a parse tree that captures the
hierarchical phrase structure of a sentence. In this
tree, internal nodes represent syntactic constituents,
while leaf nodes correspond to individual words.
A constituency tree is defined as: ¢ = {(4, 7, /) |
1<i<j<n,le L} where (i,],{) represents a
constituent spanning from the ¢-th word to the j-th
word with syntactic category £. Figure 1¢ provides
an example of a constituency tree.

2.2 The Connection between SRL and Syntax

SRL is closely tied to syntactic theory. For instance,
predicates are typically verbs, where the Agent
role often corresponds to the subject of the verb,
and the Patient role aligns with the object. From
a syntactic perspective, argument spans in SRL
frequently map to constituents in a constituency
tree, such as noun phrases or prepositional phrases.
Additionally, identifying predicate-argument rela-
tions is conceptually similar to establishing head-
dependent relations in a dependency tree.
Building on these insights, we propose a lexical-
ized tree representation for span-based SRL. This
representation integrates two fundamental types of
syntactic structures—constituency and dependency
structures—into a unified framework. By seam-
lessly modeling predicate-argument structures, the
lexicalized tree representation provides a more
structured and interpretable perspective for SRL.
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Figure 1: Semantic and syntactic representations for the sentence “The chef prepared the meal quickly”.
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Figure 2: Deduction rules for lexicalized tree (LINK and
HEAD). We show only left-rules, omitting the symmet-
ric right-rules as well as initial conditions for brevity.

3 Proposed Method

This section presents our proposed method for span-
based SRL using a lexicalized tree representation.
We begin by introducing the foundational concepts
of lexicalized trees, followed by detailing the con-
struction of lexicalized trees from span-based SRL
and their conversion into predicate-argument struc-
tures.

3.1 Lexicalized Tree Representation

A lexicalized tree is a specialized constituency tree
where each constituent is annotated with a head-
word, capturing the most important information
within the constituent. For example, in Figure 1d,
the headword of the “S” constituent is the word
“prepared”, which serves as the core of the sen-
tence. Headwords propagate from the leaves to
the root of the tree, and based on the dependency
relations between these headwords, a dependency
tree can be derived. Thus, a lexicalized tree y can
be viewed as a combination of a constituency tree
c and a dependency tree c: y = cU d.

While a lexicalized tree can be directly factor-
ized into constituency spans and dependency arcs,
its construction follows a specific process, as illus-
trated in Figure 2:

* A span (i, 7) can be linked by an external anchor
word p ¢ [i, 7] via a dependency arc, forming a
linked span (i, j, p). For simplicity, we omit the
semantic role here.

» Each word is headed by itself, forming a single-
word headed span (h, h, h).

* Linked spans can combine with sibling headed
spans to form larger headed spans (i, j, h), where
h € [i, 7] is the anchor word of the linked span.

* By recursively combining these spans, a com-
plete lexicalized tree is constructed.

These two types of spans—Ilinked spans and
headed spans—are closely related to predicate-
argument structures. A predicate-argument pair
can be viewed as a special case of linked spans,
where the predicate acts as the external anchor
word. Similarly, arguments can be represented by
single words, as in word-based SRL, making ar-
gument spans a specific instance of headed spans.
This connection makes it natural to use a lexical-
ized tree to represent predicate-argument structures.
In such a tree, the predicate serves as the root, with
each subtree corresponding to an argument span
attached to it.

For the remainder of this section, we demon-
strate how our method: (1) transforms span-based
SRL into a lexicalized tree, and (2) reconstructs the
resulting tree into predicate-argument structures.
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Figure 3: Illustration of our lexicalized tree representation. (a) A latent lexicalized tree derived from SRL, with the
symbol * indicating unrealized headwords. (b) The optimal lexicalized tree to be reconstructed into SRL.

3.2 Converting SRL to Lexicalized Tree

The lexicalized parsing method operates within a
two-stage framework, where predicate-argument
structure identification and semantic role classifi-
cation are addressed separately and then combined
to form the final result. To construct the lexical-
ized tree, we individually process each predicate.
Given a sentence x and the argument structure A,
for a predicate p, the (unlabeled) lexicalized tree is
constructed through the following steps:

1) Span Partition: The sentence is divided into
four types of spans: a) Predicate span: The pred-
icate itself. b) Argument span: Spans requir-
ing semantic role labeling. c¢) Non-argument
span: Spans between the predicate and argu-
ment spans, often representing complements or
adjuncts. d) Sentence span: The entire sentence.

2) Head Assignment: Each span is assigned a
head word: a) The head of the predicate span
and the sentence span is the predicate itself.
b) For argument spans and non-argument spans,
the head is treated as a latent variable and in-
ferred during training. Additionally, the internal
dependency structure of these spans is also la-
tent. Figure 3a provides an example.

3) Span Linking: Dependency relations are es-
tablished between spans. Argument spans and
non-argument spans are linked to the predicate
span via dependency arcs. The predicate span
is linked to the root token xg.

Notably, the constructed lexicalized tree is latent,

meaning its internal dependency structure is not

explicitly annotated. A latent lexicalized tree corre-
sponds to a forest of possible trees, each represent-
ing a realization of syntactic structure.

For semantic role classification, semantic roles
are assigned to linked spans (i, 7, p) rather than
to constituent spans (i, j) or head spans (i, j, h).
This is because semantic roles are inherently tied

to predicates and are meaningless without their
involvement. If the linked span is an argument, the
corresponding argument role is assigned. If the
linked span is a non-argument, the semantic role
is set to @. The linked predicate span is assigned
the special role PRD, which is used to identify the
predicate in the next stage. If the gold-standard
predicate is provided, this step can be skipped.

3.3 Recovering SRL from Lexicalized Tree

Assuming we have a trained parser that predicts
the (unlabeled) lexicalized tree, and a labeler that
assigns semantic roles to linked spans, the recovery
of predicate-argument structures can be achieved
through the following steps:

1) Predicate Identification: The predicate is iden-
tified as the (single-word) span directly linked
to the root token with the label PRD. If the
predicate is provided, this step is skipped.

2) Optimal Tree Prediction: For each predicate
p, the optimal lexicalized tree (as shown in Fig-
ure 3b) is predicted using Equation 12, which
ensures distinct results for different predicates.

3) Argument Recovery: All spans linked to the
predicate span are extracted and assigned their
optimal semantic roles. Non-argument spans
(labeled as @) are discarded, while argument
spans are retained with their semantic roles.
The final result contains all predicates and

their associated argument spans, fully recovering
the predicate-argument structures. Notably, our
method operates in an end-fo-end manner, meaning
that predicate identification and argument recovery
are seamlessly integrated within a single model,
trained jointly and decoded step by step.

4 Model

In this section, we describe the detailed implemen-
tation of our lexicalized parsing model. Our ap-



proach consists of four key components: (1) scor-
ing mechanism, (2) model architecture, (3) training,
and (4) inference.

4.1 Scoring Factorization

As mentioned earlier, we adopt a two-stage frame-
work for lexicalized parsing, following Dozat and
Manning (2017) and Zhang et al. (2020). The tree
skeletons and semantic roles are scored separately.
For a unlabeled lexicalized tree y, the basic (or
first-order, 10) score is the sum of the constituency
and dependency scores:

s'°(y) = s(cud)
= > s+ Y, sthm) (D
(i,5)€c (h,m)ed

where s(i,7) is the score of a constituent span
(,7) and s(h,m) is the score of a dependency arc
(h,m).

To account for additional structural features re-
lated to predicate-argument structures, we extend
the scoring factorization by including headed spans
(i, 4, h) and linked spans (i, 7, p):

s(y)=s"(w+ > s@i4h)
(4.,h)€y
(2)
+ > s(igp)
(4.4,p)€Y
4.2 Model Architecture
For an input sentence * = xg, x1, . . ., Tp, We first

obtain contextual representations for each word x;
using the BERT model (Devlin et al., 2019).

These representations are then used to compute
scores for constituent spans and dependency arcs
using biaffine attention mechanisms (Dozat and
Manning, 2017). For constituents, we use two sep-
arate MLPs to compute left and right boundary
representations:

left MLPleft (rl )

(4)
r1 ght right
riE" = MLPE" (r;)

Similarly, for dependencies, we compute head
and dependent representations:

head MLPhead ( )

5
mod MLPmod ( ) ( )

Scores for constituency spans (i, j) and depen-
dency arcs (h,m) are computed using two separate
biaffine layers:

N oY con . left _ right
s(i,j) = BIAFF®" (r;, 1;57) ©
S(h, m) BlAFFdep( head I,mod)

For headed spans (7,j,h) and linked spans

(i,7,p), we use the triaffine attention mecha-
nism (Wang et al., 2019) to compute the scores:
phead/ink _ p phead/ink (y. )
5(i,j, h) = TrAFF™4 (pleft pleh ghead) (7
s(i, j, p) = TriAFFnk (pleft plIeht plink)

Additionally, semantic roles s(i,j,p,r) are
scored using a similar triaffine attention mecha-
nism. Notably, semantic roles are scored after de-
coding the optimal unlabeled tree (with the excep-
tion of predicate identification). This technique
reduces the computational cost to linear time by
only scoring the predicted linked spans.

4.3 Training

We optimize the model using a structured learn-
ing objective, i.e., maximizing the likelihood of
gold-standard trees. Given a lexicalized tree y, its
probability under CRF is defined as:

exp(s(y))
> ey exp(s(y’))

where Z () is the partition function, summing over
all possible trees ) for sentence x.

However, this probability cannot be directly used
to supervise the model because the headwords of
argument spans and non-argument spans are latent
variables (i.e., not yet realized). By enumerating all
possible headwords, a forest F can be constructed,
where each tree y* € F is a realization of the latent
headwords. We then optimize over the forest F:

p(ylz) = (®)

Z(x) =

> yrerexp(s(y®))
p("r|m) = Z(a:) )
Lskeleton(9> = - Ing(F’:B)

The summation process is performed using a inside

version of Eisner-Satta algorithm (Eisner and Satta,

1999), as described in Algorithm 1 in Appendix.
For semantic roles, we use cross-entropy loss:

exp(s(i, j,p,7))
Z’I"G'R eXp(S(i’ j)p7 T/))

— > logp(r*i,j,p)

(4,4,P) €Y

p(rli, j,p) =
(10)
Liaber (0) =



The final loss combines both objectives:

L(0) = Lskeleton () + Liabet (0) (11

4.4 Inference

For a given sentence x, we first identify all predi-
cates within it. A word is considered a predicate
if it can be linked to the root token x(, determined
by checking whether the role of the linked span
satisfies 7; ; 0 = PRD. Then, for each predicate p,
we use the Eisner-Satta algorithm to decode the
optimal lexicalized tree:

s(y) (12)

Yy = arg max

Ym0 —PEY

By constraining the predicate to be attached to the
root token, we ensure distinct optimal trees for dif-
ferent predicates, eliminating the need for repeated
scoring across multiple predicates.

Finally, the optimal semantic role for each linked
span (4, j, p) is predicted as:
(13)

Tijp = arg 1;13&}( s(i,7,p,7)
re

The predicate-argument structures are then recov-
ered following the steps outlined in Section 3.3.

5 Experiments

5.1 Setup

Data The experiments are conducted on two
widely used benchmarks for span-based SRL:
CoNLLO5 (Carreras and Marquez, 2005) and
CoNLL12 (Pradhan et al., 2012), with the standard
splits. WSJ portion of the Penn Treebank (Marcus
et al., 1993) is used for CoNLLO5. To evaluate
cross-domain generalization, we also test on the
Brown corpus for CoNLLOS.

Evaluation Metrics We evaluate model perfor-
mance using Precision (P), Recall (R), and F1-
score, following the official CoNLLO05 evaluation
script !. The results are averaged over three runs
with different random seeds.

Hyperparameters Following previous work, we
use the bert-large-cased version of BERT?. Ad-
ditional implementation details, including hyper-
parameter settings, and optimization strategies are
provided in Appendix A.1.

'https://www.cs.upc.edu/ srlconll
*https://huggingface.co/bert-large-cased

5.2 Main Results

Span-based SRL is evaluated under two settings:
end-to-end and predicate-given. In the end-to-end
setting, the model is required to predict both predi-
cates and their arguments. In the predicate-given
setting, predicates are provided as input, and the
model is tasked with predicting the arguments. Ta-
ble 1 presents the main results of our model com-
pared to previous work.

End-to-End As shown in the upper part of Ta-
ble 1, our method achieves competitive perfor-
mance on CoNLL12, matching state-of-the-art
models. However, on CONLLOS, our model slightly
lags behind the best-performing model, with a 0.71
F1-score gap on the WSIJ test set and a 0.8 F1-score
gap on the Brown corpus. Notably, our model ex-
hibits higher recall but lower precision, suggesting
a tendency to identify more argument spans at the
cost of some incorrect predictions.

Predicate-Given In the lower part of Table 1, we
observe that our model maintains its strong abil-
ity to recall arguments. While our model performs
slightly worse than Liu et al. (2023) on WSI test set,
it outperforms previous state-of-the-art models on
both the Brown corpus and the CoNLL12 test set,
achieving improvements of 0.22 and 0.25 F1-score,
respectively. This demonstrates the robustness and
generalization capability of our approach, particu-
larly in cross-domain and large-scale settings.

5.3 Speed Efficiency

Table 2 compares the parsing speeds of different
models on the CoNLLOS test set under the end-to-
end setting. We adopt the speed benchmarks from
Zhou et al. (2022) and Zhang et al. (2022), which
were run on an Nvidia GTX 1080 Ti GPU. For He
et al. (2018a) and Li et al. (2019), the batch size
is set to approximately 2000 tokens, while other
models use a batch size of 5000 tokens. Note that
our model is run on a single Nvidia V100 GPU,
which may result in a slight increase in speed.
Earlier models achieve parsing speeds below 50
sentences per second due to either heavy network
architectures (Strubell et al., 2018) or large search
spaces. Zhou et al. (2022) reduce the search space
to O(n?) by using a word-based graph representa-
tion, leading to the fastest parsing speed. Zhang
et al. (2022) model span-based SRL as dependency
trees and use the Eisner algorithm (Eisner, 1996)
for inference, which has a complexity of O(n?).
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CoNLLO05 CoNLL12
Model Dev WSJ Brown Dev Test
Fy P R Fq P R Fq Fq P R Fq
End-to-End
He et al. (2017)1 803 802 823 812 676 696 685 755 786 751 76.8
He et al. (2018a)f 816 812 839 825 697 719 708 794 794  80.1 79.8
Li et al. (2019)f - - - 83.0 - - - - - - -
Jia et al. (2022) - - - 86.70 - - 78.58 - - - 84.22
Zhou et al. (2022) 86.79 87.15 8844 87.79 79.44 80.85 80.14 84.74 8391 8561 84.75
Zhang et al. (2022) 87.03 87.00 88.76 87.87 79.08 81.50 80.27 85.53 84.53 86.41 85.45
Liu et al. (2023) - 88.05 88.61 88.33 81.13 81.58 81.36 - 84.95 85.85 85.40
Ours 87.00 86.59 88.68 87.62 78.68 82.54 80.56 84.99 84.00 86.34 85.15
Predicate-Given

He et al. (2017)1 81.6 831 830 831 729 714 721 815 817 81.6 81.7
Ouchi et al. (2018)1 825 847 823 835 760 704 73.1 829 844 81.7 83.0
Tan et al. (2018)1 83.1 845 852 848 735 746 741 829 819 836 827
Liet al. (2019)f - 879 875 877 80.6 804 80.5 - 857 863  86.0
Shi and Lin (2019) - 88.6 890 88.8 81.9 821 82.0 - 859 870 86.5
Jindal et al. (2020) - 887 830 879 80.3 80.1 80.2 - 86.3 86.8 86.6
Conia and Navigli (2020) - - - - - - - - 86.9  87.7 87.3
Blloshmi et al. (2021) - - - - - - - - 87.8 86.8 87.3
Liu et al. (2022) - - - - - - - - - - 87.5
Jia et al. (2022) - - - 88.25 - - 81.90 - - - 87.18
Zhou et al. (2022) 87.54 89.03 8853 88.78 83.22 81.81 8251 86.97 87.26 87.05 87.15
Zhang et al. (2022) 88.05 89.00 89.03 89.02 82.81 8235 8258 87.52 87.52 87.79 87.66
Liu et al. (2023) - 89.77 88.46 89.11 83.96 81.76 82.85 - 88.10 87.38 87.74
Ours 88.04 88.51 89.07 88.79 82.64 83.51 83.07 87.71 87.62 88.36 87.99

Table 1: Results on the CONLLO5 and CoNLL12 datasets. T indicates that no BERT-series models are used.

Model Type Sents/sec
Strubell et al. (2018) BIO 50
He et al. (2018a) GRAPH 49
Liet al. (2019) GRAPH 20
Zhou et al. (2022) GRAPH 252
Zhang et al. (2022) TREE 113
Ours TREE 116

Table 2: Speed comparison on CoNLLO05-WSJ.

Our approach employs the Eisner-Satta algorithm
with a complexity of O(n*). However, after apply-
ing efficient batch processing on GPUs, both our
algorithm and the Eisner algorithm operate at O(n)
complexity in practice, resulting in no significant
difference in speed.

5.4 Analysis

Ablation Study A simplified version (named 10)
of our model can be obtained by removing the head
span and linked span components, which are re-
sponsible for modeling predicate-argument struc-

Model CoNLLO05 CoNLLI12
WSJ Brown Test

10 87.49 79.87 84.89

Ours 87.62 80.56 85.15

Table 3: Ablation study on the CoONLLOS5 and CoNLL12
datasets. Only the F; scores are reported.

tures. As these components are crucial to capture
structural dependencies, we expect their removal
to negatively impact performance. Table 3 shows
the results of the ablation study under the end-to-
end setting. We observe a performance drop across
all datasets: a 0.13 Fl-score reduction on WSJ,
0.69 Fl-score on Brown, and 0.26 F1-score on
CoNLL12. These results confirm the effectiveness
of the full model.

Argument Width Figure 4a shows results bro-
ken down by argument width. Our model slightly
underperforms 10 on shorter arguments. However,
as the argument width increases, our model outper-
forms 10 more significantly.
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Figure 4: F; scores breakdown by argument width and
predicate-argument distance on CoNLLO5-WSJ.

Predicate-Argument Distance Figure 4b
presents results broken down by predicate-
argument distance, defined as the number of words
between the predicate and the argument. It is clear
that the gap between 10 and our model is marginal,
except for the distance of 1, where our model
outperforms 10 by a large margin.

6 Related Work

6.1 Span-based SRL

Span-based SRL is primarily approached through
two paradigms: BIO-based and graph-based meth-
ods. The BIO-based approach first predicts predi-
cates, then identifies their arguments via sequence
labeling (Zhou and Xu, 2015; Strubell et al., 2018;
Shi and Lin, 2019). This approach requires en-
coding the sentence multiple times for different
predicates, as additional indicators (e.g., predicate
embeddings) are used to locate them (Zhou and Xu,
2015). In contrast, graph-based approaches predict
relations between predicates and argument spans
directly (He et al., 2018a; Li et al., 2019). How-
ever, these models often suffer from two main chal-
lenges: (1) the large search space (O(n?) predicate-
argument pairs) due to n? argument spans for
each candidate predicate n, and (2) potential con-
flicts in argument identification, as each predicate-
argument pair is predicted independently. To ad-
dress these issues, He et al. (2018a, 2019); Jia
et al. (2022) employ pruning strategies to reduce
the search space. Additionally, Zhou et al. (2022)
introduce a word-based graph representation with

a BIO tagging scheme to reduce the search space
to O(n?).

6.2 Syntax-aware SRL

The connection between syntax parsing and SRL
has led to numerous studies on syntax-aware SRL.
Since Gildea and Jurafsky (2002), syntax has

been considered essential for span-based SRL. Re-
searchers have explored various ways of integrating
syntactic trees into SRL, such as guiding argument
pruning (He et al., 2018b), using syntactic features
as additional inputs, and jointly learning syntax and
semantics through multi-task frameworks (Zhou
et al., 2020). Recent advancements include syntax-
enhanced self-attention mechanisms (Marcheg-
giani and Titov, 2017; Strubell et al., 2018), which
consistently improve SRL performance. Despite
these advancements, most syntax-aware SRL mod-
els rely on pre-existing syntactic resources rather
than directly modeling argument structures.

6.3 SRL as Structured Parsing

Structured parsing has been successfully applied
to various NLP tasks, including nested named en-
tity recognition and sentiment analysis. For ex-
ample, Fu et al. (2020) model nested entities as
constituency trees, while Lou et al. (2022) extend
this by introducing latent lexicalized tree structures.
Similarly, Zhou et al. (2023) treat structured senti-
ment analysis as a dependency parsing problem.

In the context of SRL, structured parsing has
also been explored. Liu et al. (2022, 2023) pro-
pose a constituency tree-based representation for
SRL. Closest to our work, Zhang et al. (2022) cast
span-based SRL as a dependency parsing task, rep-
resenting argument spans as latent subtrees. Our
approach integrates both constituency and depen-
dency structures, offering a more comprehensive
and structured perspective for SRL.

7 Conclusion

In this work, we introduce a novel lexicalized
tree representation for span-based SRL, which in-
tegrates constituency and dependency parsing to
model predicate-argument structures effectively.
By structurally representing predicates as roots and
arguments as subtrees explicitly linked to the predi-
cate, our approach bridges the gap between syntac-
tic and semantic representations. Experiments on
standard benchmarks (CoNLLO5 and CoNLL12)
demonstrate that our model achieves competitive
performance, particularly excelling in predicate-
given settings. The ablation studies and analysis of
predicate-argument structures further validate the
effectiveness of our approach in capturing complex
semantic relationships.



Limitations

Complexity The proposed lexicalized tree repre-
sentation introduces additional complexity to the
span-based SRL task. Constructing these trees
requires integrating both constituency and depen-
dency parsing. Training and inference rely on the
Eisner-Satta algorithm to identify the optimal lexi-
calized tree structure, which has a space complexity
of O(n?) and a time complexity of O(n*). While
GPU acceleration can reduce the time complex-
ity to O(n), the model still demands significant
memory resources, limiting its scalability to longer
sentences.
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Algorithm 1 Eisner-Satta Algorithm

1: Input: scores of constituency spans s(i, j) and dependency arcs s(h — m)
2: Input: scores of linked spans s(i, j, p) and headed spans s(i, j, h)

3: Define: H, L € R7*"x(n+1)

4: Initialize: H... = 0,L... =0

5: forw=1,..., ndo

6: fori=1,..., n—wdo

7: j=i+w

8: forh=14,..., jdo

% - Hijn = s(i,4,h) + s(i, ) + maxicp<;(Hign + L1, Likn + Her1gn)
10 end for
11: forp=0,..., ndo
12: - Lijp = s(i,4,p) + maxi<p<;(Hijn + s(p — h))
13: end for
14: end for
15: end for

16: return L ,, o

Train Dev Test Brown

CoNLLO5 39,832 1,346 2,416 2,399
CoNLLI12 75,187 9,603 9,479 -

Table 4: Data statistics for CoNLL0O5 and CoNLL12
datasets.

A Appendix

A.1 Implementation Details

The BERT (bert-large-cased) model is fine-
tuned to obtain word representations. The dimen-
sions of attention layers are set to 500 for tree skele-
tons and 100 for semantic roles. For training, the
dropout rate is set to 0.1 for BERT and 0.33 for
the other model components. The learning rate
for BERT is set to 5 x 10~°, while the learning
rate for the other layers is set to 1 x 1073. We
train the model for 10 epochs with a batch size of
1000 tokens using the AdamW optimizer. A linear
warmup scheduler is used for the first 10% of the
training steps. All experiments are run on NVIDIA
V100 GPUs.

11



	Introduction
	Background
	Preliminaries and Notations
	The Connection between SRL and Syntax

	Proposed Method
	Lexicalized Tree Representation
	Converting SRL to Lexicalized Tree
	Recovering SRL from Lexicalized Tree

	Model
	Scoring Factorization
	Model Architecture
	Training
	Inference

	Experiments
	Setup
	Main Results
	Speed Efficiency
	Analysis

	Related Work
	Span-based SRL
	Syntax-aware SRL
	SRL as Structured Parsing

	Conclusion
	Appendix
	Implementation Details


