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ABSTRACT

Predicting quantum operator matrices such as Hamiltonian, overlap, and density
matrices in the density functional theory (DFT) framework is crucial for material
science. Current methods often focus on individual operators and struggle with ef-
ficiency and scalability for large systems. Here we introduce a novel deep learning
model, SLEM (strictly localized equivariant message-passing) for predicting mul-
tiple quantum operators, that achieves state-of-the-art accuracy while dramatically
improving computational efficiency. SLEM’s key innovation is its strict locality-
based design for equivariant representations of quantum tensors while preserving
physical symmetries. This enables complex many-body dependency without ex-
panding the effective receptive field, leading to superior data efficiency and trans-
ferability. Using an innovative SO(2) convolution technique, SLEM reduces the
computational complexity of high-order tensor products and is therefore capable
of handling systems requiring the f and ¢ orbitals in their basis sets. We demon-
strate SLEM’s capabilities across diverse 2D and 3D materials, achieving high
accuracy even with limited training data. SLEM’s design facilitates efficient par-
allelization, potentially extending DFT simulations to systems with device-level
sizes, opening new possibilities for large-scale quantum simulations and high-
throughput materials discovery.

1 INTRODUCTION

Quantum operators, representing observables and the evolution of quantum systems, are the corner-
stone of describing the microscopic world. In modern quantum science, the advent of density func-
tional theory (DFT) Hohenberg & Kohn (1964); Kohn & Sham (1965) has elevated single-particle
quantum operators, such as the Kohn-Sham Hamiltonian, density matrix, and overlap matrix, to
paramount importance in solving complex problems Jones (2015). These operators play a crucial
role in unravelling electronic structures, predicting material properties, and advancing quantum tech-
nologies. However, as we tackle larger and more complex systems, these fundamental operators’
efficient and accurate representation has emerged as a pressing challenge in computation, demanding
new avenues for innovative methodologies.

Recent advances have incorporated machine learning (ML) techniques to accelerate DFT calcula-
tions by directly predicting DFT’s output of quantum operators, including charge density Unke et al.
(2021), overlapping matrix Yu et al. (2023); Unke et al. (2021), self-energy Dong et al. (2024),
wave function Unke et al. (2021), and Hamiltonian matrix Yin et al. (2024); Yu et al. (2023); Gong
et al. (2023); Nigam et al. (2022); Unke et al. (2021); Zhong et al. (2023). By circumventing self-
consistent DFT calculations, such methods have the potential to scale up the electronic structure
calculations. Some of the approaches utilize Gaussian regressions Nigam et al. (2022), kernel-based
models Nigam et al. (2022), and neural networks Li et al. (2022) to predict invariant Hamiltonian
matrix blocks on localized frames. Notably, powerful equivariant message-passing neural networks
(E-MPNNS5s) have demonstrated remarkable accuracy Han et al. (2024); Musaelian et al. (2023);
Batatia et al. (2022); Joshi et al. (2023); Liao & Smidt (2022); Liao et al. (2023); Simeon & De Fab-
ritiis (2024); Passaro & Zitnick (2023); Zitnick et al. (2022). These networks ensure the output
tensor blocks’ equivariance, respecting atomic systems’ physical priors. Typically, they use iterative
updates to build many-body interactions, achieving high accuracy while enlarging the receptive field.
This limits parallelization and, consequently, the model’s scalability. The storage-intensive quantum
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Figure 1: Local design of SLEM vs MPNN on 1D graph.(a) MPNN aggregation. (b) SLEM ag-
gregation. Balls: nodes, sticks: edges, arrows: aggregation direction. 7., predefined cutoff; r.s:
effective cutoff after 2 layer updates. L: layer index.

tensor prediction tasks exacerbate these limitations, posing considerable challenges for training such
models on large datasets or predicting quantum operators for extensive atomic structures .

Fortunately, the electrostatic screening counteracts the long-term dependency in a lot of material
systems Huckel & Debye (1923); Resta (1977); Ninno et al. (2006). Therefore, quantum operators
can be decomposed into elements dependent locally on atomic structures, which natrually prefers a
strictly local model that avoids expanding the receptive field. The Allegro model Musaelian et al.
(2023) applied this concept to build ML interatomic potentials (MLIPs), achieving high accuracy
and parallelizability. While MLIPs only concern scalars (energy) and vectors (forces) (angular mo-
mentum [ = 0 and 1) on each node, predicting quantum operators necessitates targeting both node
and edge features on high-order spherical tensors (even up to [ = 6 or 8). This requires locality and
representability for both node and edge. Another significant challenge is computational complex-
ity. To equivariantly mix the features of different angular momentum [, tensor products that scale
as O(1%) are required Passaro & Zitnick (2023). This makes model training, especially on heavy
atoms, extremely slow. This limitation hinders the development of a unified ML DFT model that
generalizes across the periodic table.

This work presents a novel method, the strictly localized equivariant message-passing model
(SLEM)), for efficient representations of quantum operators. SLEM employs a fully localized scheme
to construct high-order node and edge equivariant features for a general representation of quantum
operators, including the Hamiltonian and density matrix. As illustrated in Fig. 1, the model embeds
localized edge hidden states and utilize them to construct localized node and edge features without
including distant neighbours beyond a fixed cutoff range r.,. This design enables the SLEM model
to generalize better, parallelize easier, and scale to larger systems. Additionally, a fast and efficient
SO(2) convolution Passaro & Zitnick (2023) is implemented to reduce the O(I®) complexity, with
edge-specific training weights, thereby further enhancing the model’s accuracy. As for the over-
lap matrix, it is typically required for property calculations. Previous works have used another E-
MPNN that doubles the network sizes Zhong et al. (2023) or extracts it from DFT calculations Gong
et al. (2023); Yu et al. (2023), incurring additional costs or incorporating out-of-loop computation
steps that complicate inference. In contrast, we utilized the two-centre integrals and parameterized
the overlap matrix with spherical independent scalars (i.e., Slater-Koster (SK) parameters Slater &
Koster (1954)). This method, inspired by the work of DeePTB Gu et al. (2023), fits the overlap
operator representation with minimal additional cost.

2 RELATED WORKS

Message-passing Neural Networks Message-passing neural networks (MPNNs) Gilmer et al.
(2017) have been widely applied in the modelling of atomic systems due to their exceptional ac-
curacy in capturing the intricate relationships between atomic environments and physical proper-
ties Schiitt et al. (2020). Previous works have predominantly utilized this scheme, achieving remark-
ably high precision in reported systems Schiitt et al. (2018); Satorras et al. (2021); Han et al. (2024).
However, as the MPNNSs updates, the effective cutoff radius (ref = IV X r¢y) for each atom’s features
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grows linearly with the number of update steps (IV), as shown in Fig. 1. Consequently, the effective
neighbour list scales cubically with r.g, making parallelization intractable. Allegro Musaelian et al.
(2023) achieved locality modifies the updating rules by incorporating a hidden atom-pair state that
depends partially on the centre atom. While this framework works successfully for scalars and /=1
vectors in potential energy prediction, it requires further improvement for fitting more general edge
and node features. Other local methods avoid iterative updates that enlarge the receptive field, in-
stead creating manually designed descriptors of the local environment Behler & Parrinello (2007);
Bartok et al. (2010); Thompson et al. (2015); Zhang et al. (2018a); Wang et al. (2018); Zhang et al.
(2018b). These methods are generally local, but often balance locality and representation capacity.

Equivariant Message Passing Physical quantities, under the law of nature, should be invariant or
equivariant under the spatial and temporal symmetry operations. To model such quantities, a set of
neural network models has been developed utilizing equivariant operations. Thomas et al. (2018);
Weiler et al. (2018); Kondor et al. (2018); Kondor (2018) These neural networks possess physical
priors to ensure outputs transform in sync with inputs, making them more generalizable, accurate,
and data-efficient in predicting physical quantities. Formally, an equivariant operation from vector
space X to Y is defined such that:

f(Dxlglx) = Dylglf(x) VgeG,vxe X

where Dx[g] € GL(X) is the representation of group element g on vector space X. Here we
consider O(3) group, then x, y can be composed by irreducible representation (irreps for short) that
are the spherical tensors with angular and magnetic momentum index [, m, and parity p such that
|m| < I. Irreps with the same [ support addition/subtraction, while a generalized multiplication is
defined as tensor product (®):

ls (I3,m3) 1
(X@Y)m, = Z C(lf,mf)(lg,mg)xmlyWQ

my,msa

Where C3:73) ) are Clebsch-Gordan (CG) coefficients. Conventional tensor product has the

(I1,m2)(l2,m2
time and memory scales of O((8,,) Passaro & Zitnick (2023) where /i,y is the maximum angular
momentum in x and y. Such complexity poses great challenges for quantum tensor prediction. For
example, constructing blocks of f-f and g-g orbital pairs require irreps of maximum order [ = 6
and [ = 8. Such high costs make training for large-size systems nearly impossible.

3 MODEL ARCHITECURE

3.1 PARAMETERIZE EQUIVARIANT QUANTUM OPERATORS

The equivariant parameterization of quantum operators O, such as the Hamiltonian and density
matrix in the LCAO-based DFT framework, is illustrated in Fig. 2. The matrix element of operator
O can be expressed as:

0;1‘7’12,7‘”177”2 = <i7l13m1|0‘j7 l23m2> (1)
Here 7 and j denote atomic sites, while the angular and magnetic momentum index [, m label the
atomic orbitals of the site. We apply the Wigner-Eckart theorem to decomposes the operator indexed
by 1, [ into a single index I3 that satisfies |I1 — l3] < I3 < (1 + [3):

ij o _ (I3,m3) i
e = Do Gt taima) Ot g s )

li,m1,l2,m2

Here the edge (¢ # j) and node (i = j) features of’j are grouped by the index m into vectors

of o el 7 with ¢ accounting for multiple tensors for the same /. These features can be computed for
hoppmg (i # j) and onsite (i = j) elements of the quantum operators. Further, by leveraging
the Hermitian nature of quantum operators, the parameterized elements can be reduced to upper
diagonal blocks. This is almost half the demanding storage. Then, we standardised o, ’] to balance
the variance. Formally:
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Figure 2: Design of the SLEM model. (a) Hierarchical structure of the model. Starts with the atomic
number Z;, the radial and spherical part of the shift vector 7;; and YC] ;> the initialized hidden fea-
tures x*/, V¥, along with edge and node features €'/, n’, are generated. The two-body hidden fea-
tures predict the SK parameters constructing (off-)diagonal blocks for the overlap operator. Others
features are then iteratively updated using the designed strictly localized updating scheme. (b)-(d)
shows the hidden update (b), edge update (c), and node update (d). Node and edge features are used
to construct the diagonal blocks for quantum operators.

. . . Zi 7 Zi,Z; .
Here, Z;, Z; are the atom species of atom ¢ and j, o, ;""” and u’ ;""" are norm and bias value for
,

each atom and atom-pair. These values are derived from the dataset statistics and applied as weights
and biases in an atom/bond type-specific scaling layer. This step helps to resolve the unbalanced
norms across diagonal and off-diagonal elements of quantum operators while facilitating using a
ReLU-activated network to learn the normalized radial dependent decaying function from 1 to O.

After supervising on the normalized features G 0" l, inverse transform from Eq. 2 is applied to recon-
struct the predicted operator representations such as Hamiltonian and density matrix blocks:

1,3 _ (13,m3) i,j
Olhlz,mhmz - Z C(llaml)(l2»m2)0l37m3 4)

ls,m3
The whole procedure satisfies the rotational, transformational and reflectional symmetry.
3.2 PARAMETERIZE OF INVARIANT OVERLAP OPERATORS

The overlap matrix, analogous to other quantum operators, is defined as:

S s g = (11, Ml I, ma) = /W L (r) ¢l (r — ;) dr (5)

where ¢’ is the obital from LCAO bases. The overlap matrix also satisfies the equivariance relation.
Since the equivariant dependency comes fully from the bases, it is possible to rotate them to align
with the axis of r;;, reducing the angular dependence. Therefore, we can further simplify the matrix
elements into scalars via the relation Podolskiy & Vogl (2004):

/¢’L l1 ] l2 (r _ rl])dr Sﬁiiflml ‘ (rij)5m17m2 (6)

Here, the dependency changes to Z;, Z;, and r;;, indicating the two-center nature of the overlap in-
tegrals. Parameterizing these distance-dependent radial functions involves encoding atomic species



Under review as a conference paper at ICLR 2025

with radial information and a simple MLP to learn the mapping to target scalars.

75,2
fll,lz,lml(Zi7 Z TH) =S, l2,|m1\(rij)6m17m2 )

After getting these parameters, we use them to construct the overlap matrix aligned with the bond
axis, and then rotate it back to the original orientation.

3.3 THE SLEM MODEL

The SLEM model architecture is illustrated in Fig. 2. The model maintains a set of features, in-

cluding hidden features x*/-% vy l’L, node features nlclL and edge features e” L of hidden layer (L).
Specifically, the hidden features consist of a scalar channel x*** and a tensor channel V” L The
scalar channel is initialized as an embedded vector containing two-body information, 1nclud1ng the
atomic species and the radial distance of the atom pair. These initialized two-body radial features
are then mapped by an MLP to the invariant SK parameters for overlap. For equivariant quantum
operators, such as the Hamiltonian and density matrix, the scalar and tensor channels interact to
generate an ordered atom-pair representations, which are used to construct local node and edge rep-
resentations. After iterative updates, the representation is scaled by the statistical norm and biases,
thereby achieving the final prediction.

3.3.1 FEATURE INITIALIZATION

Firstly, the initial scalar hidden feature is computed from the two-body embeddings of atomic species
Z; and Z;, and the radial distance r;;, as follows:

xPE=0 = MLPypoay (1(Z:)|[1(Z;)|B(ri5)) - u(rij) )

Here, || stands for vector concatenation, atom species are embedded with one-hot vectors denoted as
1(Z), and a set of trainable Bessel bases B(r;;) is utilized to encode the distance r;; between atoms
iand j. u(r;;) are envelope functions Batzner et al. (2022) to add explicit radial dependence. Sub-
sequently, the edge and hidden features are initialized as weighted spherical harmonics of relative
edge vectors:
VI = weg (L (x9570)) YV
o ) ’ ©

el = we (X0 Y

Here, the weights are learned from the initialized scalar hidden features x*/**=%_ Layer normaliza-
tion Ly ensures that the hidden tensor features have a balanced amplitude of each edge. The initial
node features are then computed as linear transformations of the aggregated edge features:

’ZL:O = Linear Z ”’L 0 (10)

v avg JEN(3)

Here NV (i) and N,y are the neighbouring atoms and the average number of neighbours of atom—i.

3.3.2 SPEED UP TENSOR PRODUCT

To integrate the information from the equivariant features, the tensor product is employed in all
updating blocks of the SLEM model. Generally, the tensor product in SLEM is performed with the

concatenated equivariant features f'zjl and the weighted projection of the edge shift vector r;; =

T; — 7; on the spherical harmonics function Ylij . Formally:

15 ij ij ~1j (I3,m3) ij ij
f¢3 ls — f01 I ® wbz le Z Wey iy s Z C(h,ml)(lz,mz)fq,l17m1 Yizamz (11
c1,l1,l2 mi,m2
ij .
Here, wcl ils = Doy Wer,ea,lnlaWey 1, are edge-specific parameters for each tensor product oper-

ation. Performlng such tensor products on high-order features is computationally intensive. There-
fore, we applied the recently developed SO(2) Passaro & Zitnick (2023) convolution to reduce the
computation and storage complexity from O(I8,,) to O(I3,,,) which we refer to the appendix.
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3.3.3 HIDDEN UPDATES

To construct many-body interactions, as in Fig. 2(b), the node features n; ; and hidden tensor fea-
tures V? ; would be concatenated and doing tensor product with the projection coefficients of edge
shift vector r;; on the spherical harmonics functions. The operation is written formally as:

i L P L— i L—
g’lg _ (nqL 1||VL]L 1)

Cl,ll ® zi7l2Yl] (12)

Unlike most MPNN, the hidden states x*/ and V% by in SLEM depend only on the local environment

of centre atom 4, the shift vector 7;;, and the atomic type and coordinate informations of atom j.
Such a design excludes neighbours of j into hidden states.

After the tensor production, the output features V L i~ will be passed through the gated non-linearity
Batzner et al. (2022), and transformed by an “E311near” Geiger & Smidt (2022) layer to mix up the
information across different channels. The new hidden feature will be multiplied by the weights
learned from normalized scalar features to explicitly include the radial information and return as the

updated feature sz Z’L. The scalar hidden features are updated by mixing the Oth order information
from sziL with a latent MLP, which is:

= MLP (x5 VEE ) - ulrij) (13)
The scalar hidden states x*»” incorporate an explicit decaying envelope function u(r;;) and many-

body interactions of scalar and tensor features. This formulation effectively captures the decay
behavior of each edge irrep feature as a function of radial distance.

3.3.4 NODE UPDATES

The strict local node representation nij iL can be constructed naturally from the many-body interac-
tive tensor features Vij l’L. We follow the MPNN style to create the message from node j to node i.
Formally:

il = (V)

ij,L 77
c1,l1 ® wCz,be (14)

Here again, we exclude the neighbouring information of atom 5 in mzj ? via the partial updates
3503

of Vijl’L, while maintaining necessary interactions. Each message then is passed through a gated
activation and E3Linear layer, weighted separately by weights learnt from the hidden scalar features,
and aggregated to update the node feature by:

ij,L ij,L—l 1- 042 ij,L 1
Doty = @ Ny Z wC3,13mC3,l3 (15)
Navg JEN (i)

Here o ranged from O to 1. The weights here differ from those in hidden updates as they are directly
learnt from x*'L without normalization. Therefore, the absolute radial decay is enforced in the
weights, providing a strong prior that the messages from atoms at shorter distances are generally

more significant. Meanwhile, the update of x>, and consequently wC 15> depends on the features

Vil and n»L~1, as shown in Eq.13. This structure aligns with the equivariant graph attention
mechanism Liao & Smidt (2022); Liao et al. (2023) which has demonstrated powerful expres51b1hty
in various tasks. Here wc 1, corresponding to an attention score computed from Vil and nt 11,
Therefore, through this update the dependencies of node features are strictly local.

3.3.5 EDGE UPDATES

The locality of edge features eij_'iL can be naturally preserved as long as the node features are strictly

local. By mixing the information of node features on both sides, localized edge updates can be
formulated as follows:

L nnein .
Snty = (U ETHIVIE ) @l Y (16)
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Table 1: MAE (in meV) for Hamiltonian matrix predictions using SLEM and other methods on
materials with LCAO basis up to d orbitals. Numbers in parentheses indicate parameter count.

Systems with LCAO-basis up to d-orbitals

. SLEM DeepH-E3 HamGNN
Material
(0.7M) (4.5M) (1L.0M) (4.5M) (2.8M)
MoS, 0.34 0.14 0.46 0.55 1.20
Graphene 0.26 0.14 0.40 0.28 0.35
Si(300K) 0.10 0.07 0.16 0.10 0.19

Table 2: MAE (in meV) for Hamiltonian matrix predictions using SLEM and DeepH-E3 models
Gong et al. (2023) on materials with LCAO basis up to f and g orbitals. Numbers in parentheses
indicate parameter count. The MAE of HfO5 in DeepH-E3 is absent due to out-of-memory errors.

Systems with LCAO-basis up to f and g-orbitals

Material SLEM DeepH-E3
(1.7M) (1.9M)
GaN 0.21 0.87
HfO, 0.28 -

Similarly, the updated edge features are processed via a gated activation and an E3Linear layer, and
then multiplied with weights learnt from the hidden scalar features (without normalization) as:
ij,L
cs,ls

i, L—1
c3,l3

+vV1—a2 -w?, &L 17

=a-e cs3,lz Tes,ls
The following section focuses on validating the effectiveness of this framework via learning equiv-
ariant DFT Hamiltonians, density matrices and overlap.

4 RESULTS

4.1 BENCHMARK THE ACCURACY AND DATA-EFFICIENCY

We evaluate our model’s performance in fitting Hamiltonian, density matrix, and overlap matrix us-
ing diverse datasets. For Hamiltonian, we use systems with up to d orbitals, including 2D systems
of monolayer MoS, and graphene from existing datasets Li et al. (2022), as well as 3D bulk silicon
generated for this study. To test SLEM’s capability with high-order tensors, we also train the models
on generated datasets of bulk GaN and HfO5 systems, which include f and g orbitals. Structures in
the Si, GaN, and HfO, systems are sampled via molecular dynamics using neural network poten-
tials Wang et al. (2018). For density matrix and overlap matrix evaluations, we focus exclusively
on the datasets of Si, GaN, and HfO, datasets, as the reported datasets for MoS, and graphene lack
density and overlap matrix data.

Table 1 presents a comparison of mean absolute error (MAE) values in Hamiltonian prediction for
graphene, MoS,, and Si systems, whose LCAO basis extends up to d orbitals, among the SLEM,
DeepH-E3 Gong et al. (2023), and HamGNN Zhong et al. (2023) methods. Our SLEM model
achieves state-of-the-art accuracy, exhibiting the lowest MAE across all systems. Notably, this high
accuracy is achieved with a relatively small model size of only 0.7 million (M) trainable parameters.
Furthermore, we extended our comparison between the SLEM and DeepH-E3 methods to include
GaN and HfO, systems, where the LCAO basis extends up to f and g orbitals, respectively. As
shown in Table 2, the SLEM model consistently presents the lowest MAE, further demonstrating
its high accuracy and versatility across different orbital complexities. Fig. 3 illustrates the band
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Table 3: MAE for predicting density matrix using SLEM on materials with LCAO basis up to d, f,
and g orbitals. Model settings align with those in Table 1.
SLEM density matrix model
Materials Silicon GaN HfO,
MAE 8.9¢-5 2.3e-5 3.9e-5

Figure 3: Comparison of band structures for a Si MD trajectory snapshot: SLEM prediction vs.
DFT calculation. Predicted band structures are obtained from either diagonalization of the predicted
Hamiltonian or NSCF DFT calculation using predicted charge density, yielding indistinguishable
results. Inset: Visualization of charge density distribution for the same structure.

structure of silicon structures computed directly from the SLEM-predicted Hamiltonian, where the
eigenvalues are indistinguishable from those obtained using DFT. For the density matrix, fitting re-
sults are presented in Table 3. The results demonstrate very high accuracy (order of 1e-5), approach-
ing the machine precision limit of float32 numbers. In Fig. 3, we use the trained model to predict
the density matrix and visualize its real-space distribution. This capability is particularly important
for applications such as charge distribution analysis or tracking electron transfer. Furthermore, the
predicted density can be directly used for non-self-consistent field (NSCF) DFT calculations. The
resulting band structure for silicon, as an example, is highly accurate and matches the DFT output,
with a MAE of only 1.09 meV in eigenvalues compared to self-consistent DFT results. The overlap
matrix, represented by invariant SK parameters in our SLEM model, achieves exceptionally high
accuracy as demonstrated in Table 4, approaching the machine precision limit for float32 numbers.
Notably, our simplified parameterization enables this high accuracy with only a minimal increase
in model complexity. For instance, in a silicon model designed to fit only the Hamiltonian, our
typical parameter count is 0.7 M. The inclusion of overlap matrix prediction adds merely 0.01 M
parameters, which is about 1.4% in total model size.

Additionally, the strict localization scheme of our SLEM model confers superior data efficiency,
requiring fewer DFT-calculated data points for training. To quantify this efficiency, we conducted
an experiment using randomly split subsets of the original data, comprising 20%, 40%, 60%, and
80% of the full training set. We trained both the SLEM model and DeepH-E3 method on these
subsets and evaluated their performance on consistent validation sets. Results in table 5 demonstrate
SLEM’s high accuracy across all subsets, thus highlighting its remarkable data efficiency. This
data efficiency implies that SLEM users can generate smaller, more cost-effective training sets.
Moreover, SLEM’s excellent data efficiency and transferability make it particularly well-suited as a
backbone for developing universal DFT models, especially for systems involving heavy elements.
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Table 4: MAE for predicting overlap matrix using SLEM’s parameterization on materials with
LCAO basis up to d, f, and g orbitals. Model settings align with those in Table 1.

SLEM overlap prediction
Materials Silicon GaN HfOq
MAE 5.6e-5 4.7e-5 6.3e-5

Table 5: Comparison of validation MAE (in meV) for SLEM model and DeepH-E3 Gong et al.
(2023) method trained on randomly split datasets Li et al. (2022) with varying training ratios. Model
settings align with those in Table 1.

MoS2
Partition 100% 80% 60% 40% 20%
SLEM 0.34 0.37 0.39 0.37 0.37
DeePH-E3 0.46 0.72 0.84 1.03 1.46
Graphene

Partition 100% 80% 60% 40% 20%
SLEM 0.26 0.26 0.27 0.21 0.26
DeePH-E3 0.40 0.30 0.33 0.36 0.60

4.2 EFFICIENCY AND SCALABILITY

In materials science, chemistry, and biology, many significant properties emerge in systems con-
taining heavy atoms. These heavy atoms introduce high-order spherical tensors when representing
quantum operators. Scaling to such systems is challenging due to the computational complexity
of tensor products used to construct complex spherical tensors, which scales as O(I%). Conven-
tional tensor production methods struggle with training and inference on systems containing heavy
atoms, making it difficult to model these important phenomena efficiently. Moreover, inferring large
material systems while training with small structures is particularly valuable, which requires paral-
lelising the model inference by assigning partitions of the large atomic structure to multiple GPU
workers. However, most current models struggle with this task. As the receptive fields expand
through iterative graph updates, the minimum size of each partitioned subgraph increases, reducing
the effectiveness of such partitioning. The SLEM model addresses these challenges by efficiently
constructing high-order tensor products and assisting parallelization through its strict locality.

For efficiency, the implementation of SO(2) convolution reduces the tensor product computational
complexity from O(I%) to O(I®), which is then further reduced by the parallelization of matrix
operations to nearly O(l) benefiting from PyTorch. Figure 4 compares the wall time and GPU
memory consumed by tensor product operations using SO(2) convolution versus the conventional
method employed in DeepH-E3 Gong et al. (2023) and E3NN Geiger & Smidt (2022). The SO(2)
convolution approach demonstrates markedly superior efficiency, enabling our method to handle all
possible basis choices in LCAO DFT. We also evaluated memory usage and training time for typical
systems, comparing our model with DeepH-E3. The results, displayed in Fig. 5, show that our model
consistently outperforms in both metrics. Notably, the advantage becomes more pronounced as the
basis set size increases, highlighting our method’s scalability. Additionally, the SLEM model’s strict
locality design significantly enhances parallelization. This localized approach allows for the division
of the atomic graph into sub-graphs, enabling independent computation of node and edge features
on separate devices. This is extremely important when expanding DFT simulation to large systems.
In practice, for HfO, with 452p2d2 f1g basis, a typical model of 1.7M parameters can predict the
quantum operators for up to 10® atoms on devices with 32GB memory. Despite linear scaling,
the inference on a system with 10* ~ 107 would require over 300 GB of memory, necessitating
parallelization across multiple GPUs. Therefore, a strictly localized model such as SLEM holds
significant potential for expanding simulation system sizes.
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Figure 4: Comparison of time and memory consumption for different tensor-product implementa-
tions. (a) Time consumption vs. angular momentum ([) for different models, including the SO(2)-
based SLEM model (triangles) with and without radial part (), DeepH-E3 (cross) Gong et al.
(2023), and E3NN (square) Geiger & Smidt (2022) models. Inset: Log-scale fit with slopes of
1.2 for the SLEM model and 3.7 for the other two models. (b) Memory consumption vs. [. The
SLEM model demonstrates over two orders of magnitude improvement in both time and memory
efficiency compared to DeepH-E3 and E3NN.
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Figure 5: Comparison of training time per iteration and memory consumption with SLEM and
DeepH-E3 Gong et al. (2023) models.

5 CONCLUSION

This work presents SLEM (Strictly Local Equivariant Message-passing) model, a novel approach
for predicting quantum operator representations in materials science. By employing a strict locality
design and integrating SO(2) convolution, SLEM achieves state-of-the-art performance in predict-
ing Hamiltonians, density matrices, and overlap matrices for diverse materials, including systems
with heavy atoms. The model’s efficiency and scalability open new possibilities for large-scale
quantum simulations and high-throughput materials discovery. Notably, SLEM’s locality enables
efficient parallelization through atomic graph partitioning, potentially extending its applicability to
extremely large systems at device-level scales. SLEM’s intrinsic support for multiple quantum op-
erators, coupled with its novel overlap matrix parameterization, significantly reduces computational
costs and dependence on post-training DFT software. The model demonstrates superior data effi-
ciency and transferability, making it particularly well-suited for developing universal DFT models,
especially for systems involving heavy elements. These advancements position SLEM as a power-
ful tool for simulating complex systems in materials science and computational chemistry. Looking
ahead, future work will focus on developing robust sampling methodologies for active learning and
integrating SLEM with existing software ecosystems to fully leverage its capabilities in real-world
applications, further advancing the field of computational materials science.
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A COMPARISON OF SLEM wiTH MPNN

Message-passing Neural Networks In the message-passing scheme, atoms are treated as nodes in
graphs, with bonds to neighbouring atoms represented as connected edges within a specified cutoff
radius. The embedded atomic features are processed by trainable functions, generating messages
from each edge to update the embeddings of central atoms. Formally, the MPNN framework can be
summarized as follows:

el — N (ni,Lq’nj,Lq’eij,Lq)

mZ],L —_ ML (nz,Lfl,n],Lfl’ez],L)

nz,L _ UL nz,L717 E mlj,L

JEN ()

Here, e/-" represents the edge features, m*»* denotes the messages, and n** indicates the node
features at layer L. N, My, and Uy, are the trainable functions for the edge, message, and node
updates. N (i) = {j|rij < reu} indicates all the neighbour atoms for atom ¢, with ¢, being the
predefined cutoff. This updating framework allows for the construction of many-body interactions
and long-term dependencies, leading to strong performance across various applications. Here we
reframe the updating rules of SLEM with the MPNN framework, which looks like this:

Vil — 7 (ni,Lfl’Vij,Lfl)
eidl — N (ni,L—17Vij,L’ nj,L—17eij,L—1)

mL = My (ni,L—17Vij,L)

nz,L — UL nz,L—l’ § mz],L
JEN (@)

Here Vy, is the neural network for hidden feature construction. This update scheme constructs many-
body interactions to build equivariant edge and node features while preserving the absolute locality
by excluding atoms outside the constant cutoff radius. Such a scheme, in principle, would have
much better transferability, data efficiency, as well as scalability when we have a strong prior that
the input and output are dependent spatially local.
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B MORE ON TENSOR PRODUCT

To integrate the information from the equivariant features, the tensor product is employed in all
updating blocks of the SLEM model. Generally, the tensor product in SLEM is performed with the

concatenated equivariant features f’éjl and the weighted projection of the edge shift vector r;; =
r; — 7; on the spherical harmonics function ij . Formally:

y s y y » laum iy

£, = owl YT = 3 @l Y O f by Vi (18)
c,la,l2 mi,mso

Here, @) | | = D", Wey,e,01,1,W,, 5, are edge-specific parameters for each tensor product oper-

ation. Performing such tensor products on high-order features is computationally intensive. There-

fore, we applied the recently developed SO(2) Passaro & Zitnick (2023) convolution to simplify,

reducing the computation and storage complexity from O(S,,) to O(I3,,). The simplification idea

o max
is intuitive. Yllg m, are sparse tensors if rotated to align with the edge 7j, which is nonzero only
for mg = 0. Therefore, it is easier to compute the tensor production in the direction of edge ¢7,
and rotate inversely the output afterwards. This step removes the mo index from the summation

in Eq. 18. Furthermore, considering the Clebsch-Gordan coefficients with my = 0, we find that
(I3,m3)
(l1,m1)
by replacing ==m; with a single index m. Then the operations can be reformulated formally as:

féil,m _ Z < We, e 1'm — We,e! I/,—m ) . -f;il’,m

fcl,]l,—m o1 We,e' I’,—m  We,e! I/ /m fcl/j7l,7_m
This represents a linear operation on ff? 1/~ By employing this method, high-order tensor products
for ! = 8,9 and even 10 can be efﬁciel{tly calculated, which is essential for heavy element systems
where the f, g or even higher orbitals are used in the LCAO basis for DFT calculations. Finally, the
weights for the new SO(2) tensor product method are multiplied by edge-specific parameters, where
w!? ,, are mapped by an MLP from hidden scalar features "% as @' , |, = we, e 1 mw?) ;. This
pov{/erful and efficient tensor product layer facilitates the construction of local interactive upaates of
the features.

(12,0) = 0 except for mg = £m;. This allows further reduction of the summation in Eq. 18

C LIMITATION

The SLEM model, benefiting from the Strictly localized design, performs better in accuracy and
transferability as demonstrated in various datasets. We acknowledge that such a localized hypothesis
is most suitable for describing periodic systems, which is commonly adopted in physics, chemistry
and material science research. For confined systems such as molecules, the absence of screening
effect could lead to long-term dependency that is uncovered within prefixed cutoff. In these cases,
the SLEM model wouldn’t perform as well as in periodic cases. For generality, we also proposed
a semilocal model called LEM (Localized Equivarient Message-Passing), where the interaction be-
tween distant atoms is included but decays exponentially with their distance, with a trainable decay
factor. All the designed models are ready to use in our GitHub repository.

D FUTURE INVESTIGATION

While SLEM demonstrates efficacy across various applications, several areas warrant further inves-
tigation:

» Sampling Methodology for Active Learning: Scientific computation tasks require high con-
fidence in calculated results, which can be challenging for data-driven approaches. Devel-
oping a robust sampling workflow for active learning is essential for reliability. While
techniques like uncertainty-driven sampling with Gaussian regression Vandermause et al.
(2020) or model ensembles Zhang et al. (2020) have addressed confidence issues in ma-
chine learning force fields, designing a sampling workflow specifically for quantum opera-
tor models remains an open question.
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» Software Integration for Post-Processing: Integrating the model with existing software is
vital, especially for high-throughput calculations and large atomic systems beyond conven-
tional DFT capabilities. An efficient, parallelizable solver for extracting physical quantities
from the model’s predictions is highly beneficial. While some software based on stochas-
tic techniques Li et al. (2023); Jodo et al. (2020) shows promise, an open-sourced and
highly-optimized solution for non-orthogonal bases remains unavailable.

Future research addressing these challenges will further enhance the applicability and reliability of
SLEM and similar quantum operator models in computational materials science and chemistry.
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