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Abstract

Graph Neural Networks (GNNs) excel at jointly modeling node features and topol-
ogy, yet their black-box nature limits their adoption in real-world applications
where interpretability is desired. Inspired by the success of interpretable Neural
Additive Models (NAM) for tabular data, Graph Neural Additive Network (GNAN)
extends the additive modeling approach to graph data to overcome limitations
of GNNs. While being interpretable, GNAN representation learning overlooks the
importance of local aggregation and more importantly suffers from parameter
complexity. To mitigate the above challenges, we introduce Graph Neural Additive
Model with Random Fourier Features (G-NAMRFF), a lightweight, self-interpretable
graph additive architecture. G-NAMRFF represents each node embedding as the
sum of feature-wise contributions where contributions are modeled via a Gaussian
process (GP) with a graph- and feature-aware kernel. Specifically, we construct a
kernel using Radial Basis Function (RBF) with graph structure induced by Lapla-
cian and learnable Finite Impulse Response (FIR) filter. We approximate the kernel
using Random Fourier Features (RFFs) which transforms the GP prior to a Bayesian
formulation, which are subsequently learnt using a single layer neural network
with size equal to number of RFF features. G-NAMRFF is light weight with 168×
fewer parameters compared to GNAN. Despite its compact size, G-NAMRFF matches
or outperforms state-of-the-art GNNs and GNAN on node and graph classification
tasks, delivering real-time interpretability without sacrificing accuracy 1.

1 Introduction

Graph Neural Networks (GNNs) are powerful and topology-aware deep representation learning
architectures that leverage the structure of graphs as an inductive bias [12, 20, 32]. While GNNs
have demonstrated impressive performance on various downstream machine learning tasks such as
node and graph classification, they remain largely as a black-box models [5, 3]. As a result, the
learned representations often lack interpretability which limits their adoption in regulated domains
like healthcare, finance, and defense [31, 5]. Interpretability in machine learning focuses on designing
models whose representations directly reveal how each feature contributes to the output [28]. This
stands in contrast to post hoc explainable models which seeks to generate explanations for the model
inference after the model has been trained [3, 13].

Additive models are the cornerstone for interpretable representation learning for tabular data. Notable
examples of such models includes Neural Additive Model (NAM) [2], Neural Basis Model (NBM)
[24] and Gaussian Process Additive Model (GPAM) [41]. The key innovation of this additive model
lies in its ability to handle each feature independently by learning a separate univariate function
for every feature and then summing these contributions to obtain the final prediction. Although
all these models share a common trait i.e., additive structure, they differ in how each feature’s

1Code to reproduce the results is available at https://github.com/FujitsuResearch/GNAM-RFF
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univariate function is represented and learned. For example, NAM approximates each feature’s effect
with a dedicated deep neural network (DNN), yielding high flexibility but also posing significant
computational overhead. In contrast, NBM and GPAM represent each feature using a fixed dictionary of
basis functions (e.g., splines, Fourier bases, or Gaussian process kernels) and learn only the linear
combination of weights, thereby retaining interpretability while dramatically reducing training time.

Figure 1: Parameter complexity.

Building on the success of additive models for tabular data,
efforts have been made to extend it to graph data. GNAN is
the first graph neural additive model that incorporates graph
structure as an inductive bias into a neural additive models
[5], thus making it a self-interpretable glass-box model by
design, in contrast to the conventional and well-studied post-
hoc models designed to explain black-box GNNs outputs [31,
3, 37, 22, 17]. GNAN disentangles feature effects and graph
topology by learning separate univariate functions, one per
each feature and one for neighborhood weighting via DNNs,
respectively. The neighborhood weighting is done through a
distance measure that spans the entire graph. However, this
design has two key drawbacks. Firstly, modeling each feature
and neighbourhood with separate neural networks with multiple
layers leads to a large trainable parameters with a significant
training time. Secondly, for a graph with N nodes and E-edges,
GNAN aggregation over all nodes requires O(N + E) distance computations per node, leading to
quadratic scaling of the neighbourhood weighting function with graph size. Additionally, distant,
non-neighbouring nodes influence the embeddings through the weighting function in a non-trivial
way, introducing opacity to the interpretation unlike localized aggregation.

In this work, we introduce the Graph-aware Neural Additive Model with Random Fourier Features
(G-NAMRFF), a lightweight and inherently interpretable glass-box model designed for representation
learning with graphs. Similar to NAM, G-NAMRFF represents each node prediction as the sum of
individual feature contributions; however, it replaces deep neural networks with a Gaussian Pro-
cess (GP) prior characterized by a kernel explicitly designed to be both graph- and feature-aware.
Specifically, we propose a smoothness-promoting kernel that encourages neighboring nodes with
similar attributes to yield similar outputs. In particular, the proposed kernel can be expressed as a
Radial Basis Function (RBF) where inputs are projected features that capture one-hop neighbourhood
in the graphs. Based on Bochner’s theorem, we approximate the kernel effectively using RFFs,
transforming the GP priors into a linear Bayesian formulation. To effectively capture multi-hop graph
information, we embed the node features using Finite Impulse Response (FIR) filters with trainable
coefficients. These coefficients, trained jointly with univariate functions help uncover critical graph
structural information by highlighting which hops significantly influence the node predictions. With
the equivalent Bayesian linear model established, we learn the model parameters using a single-layer
network whose complexity depends solely on the number of RFFs, thereby ensuring G-NAMRFF’s
computational efficiency and lightweight nature. Figure 1, illustrates the parameter complexity
comparison between our proposed model and existing method, clearly demonstrating the reduced
parameter requirements of our approach. More importantly, by feeding RFFs with structure-aware
features computed via learnable filter coefficients, our model seamlessly integrates graph topology
and feature mapping into a single module unlike GNAN.

We summarize the main contributions of this paper as follows:

• We propose G-NAMRFF, a light-weight, interpretable graph neural additive model with RFFs
and minimal parameter overhead. G-NAMRFF is a unified approach that seamlessly inte-
grates topology and feature learning in one framework providing feature level interpretability
through univariate functions and clear hop-level interpretability through the learned FIR
coefficients.

• We provide theoretical guarantees that establish the robustness and permutation equivariance
properties of G-NAMRFF.

• The proposed G-NAMRFF is parameter-efficient with 168× fewer parameters compared to
GNAN and consistently outperforms it on both node- and graph-classification tasks, and also
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matches or outperforms state-of-the-art black-box GNNs, demonstrating its suitability for
sensitive and performance critical applications.

Notation: Throughout this paper, we represent matrices and vectors as X (boldface capital letters)
and x (boldface lowercase letters), respectively. The (i, j)-th element of a matrix is indexed by xi,j .
Identity matrix of dimension M is denoted by IM .

2 Preliminaries

In this section, we set up the mathematical background required for the development of the proposed
model.

2.1 Graph Neural Additive Network

Consider a graph G with N nodes, with the feature vector associated with each node being x ∈ RD;
the feature matrix as X ∈ RN×D.The GNAN models each feature independently using a DNN and
weights it with a learnable function that captures underlying graph topology. Formally, the embedding
of k-th component of node i is given by,

zi,k =

N∑
j=1

1

|disti(j, i)|
ρ(dist(i, j))fk(xj,k), (1)

Here f(.), ρ(.) are the learnable non-linear functions. dist(i, j) captures the distance between the
nodes and |disti(i, j)| is the number of nodes at dist(i, j) from node i. From (1), it is clear that
embedding of the i-th node requires computing the distance of the i-th node to all the nodes of G,
which makes (1) ineffective to handle large graphs.

2.2 Gaussian Process

A Gaussian Process (GP) [26] is a probabilistic framework that defines a distribution over functions,
where any finite set of function values follows a multivariate Gaussian distribution. It is completely
specified by a mean function, m(x) and a covariance kernel Kθ(x,x

′), where x and x′ are data
points on RD. We denote the GP prior as f(x) ∼ GP (m(x),Kθ(x,x

′)), where Kθ(x,x
′) =

exp
(
−∥x−x′∥2

2θ2

)
with θ being the bandwidth.

2.3 Kernel Approximation with Random Fourier Features

Random Fourier Features (RFFs) based kernel approximation is a popular technique for addressing
the scalability of kernel-based methods such as Gaussian Processes [25]. The key idea behind RFFs
is to approximate a shift-invariant kernel by expressing it as an inner product of low-dimensional
feature mappings and is built on Bochner’s theorem:
Theorem 2.1 (Bochner’s Theorem and RFF Approximation [25] ). Let Kθ ∈ RN×N denote a
bounded, shift-invariant and positive definite kernel (i.e., Kθ is a Fourier transform of non negative
measure). Kθ when properly scaled can be approximated using RFF as

Kθ(x,x
′) ≈ ΦT

a (x)Φa(x
′), Φa(x) =

{√
2

M
cos(2πaTmx+ bm)

}M

m=1

, (2)

where Φa is a feature map termed as random Fourier features with M being the number of RFF
features, am ∼ N (0, ID) and bm ∈ Unif(0, 2π) are drawn from normal and uniform distributions.

This approximation enables a scalable reformulation of the GP prior into linear Bayesian model.
Specifically, prior can be modeled as f(x) = ΦT

a (x)w, where w ∈ RM×1 ∼ N (0, IM ).

3 Graph-aware Neural Additive Model with Random Fourier Features

In this section, we present G-NAMRFF, a lightweight, self-interpretable graph neural additive model
that integrates graph topology through GP priors and RFF.
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Let G = (V, E) be weighted and undirected graph with N nodes and the associated graph Laplacian
as LG ∈ RN×N . We assume that each node i ∈ V is associated with a D dimensional feature
xi ∈ RD×1 and represent the feature matrix as X ∈ RN×D.

Given X and LG , G-NAMRFF models each feature contribution fk : R → R through a Gaussian
process whose covariance kernel enforces smoothness with respect to both the feature values and the
underlying graph topology. In particular, G-NAMRFF obtains the contribution of each feature to node
prediction yi as

yi =

D∑
k=1

fk
(
xi,k

)
, fk ∼ GP(0,KG(xi,k, xj,k)) (3)

where KG(., .) is a graph covariance kernel. The embedding of node i i.e., zi ∈ RD is obtained
by stacking [f1(xi,1), f2(xi,2), . . . , fD(xi,D)]. In what follows, we first define the graph covariance
kernels that enforce smoothness assumption, which are shift invariant and can be approximated using
RFFs. Then, leveraging this approximation we propose the light-weight model.

3.1 Gaussian Process Priors with Graph-aware Kernel

To encode the prior knowledge that adjacent nodes with similar feature values should output similar
function values i.e., function should vary smoothly across the nodes, we impose the GP prior with the
graph aware covariance kernel as

KG(xi,k, xj,k) = exp

(
−ai,j(xi,k − xj,k)

2

2Θ2

)
, (4)

where Θ > 0 is the hyperparameter that controls the width of the function and ai,j > 0 corresponds
to i, j-element of weight matrix A with weights assigned based on the distance/similarity between the
nodes. Observe that if the nodes are close in the graph and features are similar the kernel outputs high
covariance, whereas for distant nodes with features being dissimilar KG yields low covariance. Thus,
the proposed kernel KG is both feature and graph-aware. Imposing such a prior enforces fk(xi,k) to
vary smoothly across the connected nodes. Note that for a fixed ai,j , kernel defined in (4) is shift

invariant with respect to nodes i, j locally, i.e., KG(x, y) = GG(x− y), with GG(t) = exp(−ai,jt
2

2Θ2 ).
Shift invariance of the kernel (Stationarity is required for the approximation of kernels by Bochner’s
Theorem (see Theorem 2.1) which in turn aids in formulating the light-weight model.

Observe that Eq.(4) can be equivalently expressed as KG(xi,k, xj,k) =

exp
(

−(
√
ai,jxi,k−

√
ai,jxj,k)

2

2Θ2

)
. Let us call projected features as x̃i,k =

√
ai,jxi,k and

x̃j,k =
√
ai,jxj,k. By rewriting, we obtain kernel function with graph-aware inputs

KG(xi,k, xj,k) = exp

(
−(x̃i,k − x̃j,k)

2

2Θ2

)
, (5)

In other words, the KG is modified RBF with inputs as filtered features based on one-hop
neighbourhood since the projected variables use weighted graph Adjacency. From Theorem 2.1, we
can approximate KG as KG(xi,k, xj,k) = ΦT

a (x̃i,k)Φa(x̃j,k).

Remarks:

• Although the proposed kernel function KG is shift invariant and graph-aware, it is apparent
that it only captures the information from one hop and may fail to capture the information
from larger depths (see the importance in section 6).

• More importantly, to study the interpretability, it is also important to analyze for a fixed
node i which neighbors are influencing the predictions.

To address the aforementioned challenges, we reformulate the kernel to incorporate information from
deeper neighborhoods. Specifically, we make the kernel inputs topology-aware by replacing the
original features with graph-filtered representations. This yields an RBF kernel whose inputs are
graph-aware feature embeddings. Notably, this formulation preserves both stationarity globally and
positive definiteness, ensuring that the resulting covariance function remains valid under the Gaussian
process framework and RFF approximation.
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Figure 2: Architecture of G-NAMRFF.

3.1.1 Topology-Aware Random Fourier Features with Learnable FIR Filters

We aggregate multi-hop information through learnable FIR filters, represented as polynomial func-
tions of the graph shift operator-either the adjacency matrix or the graph Laplacian. Specifically,
when employing the graph Laplacian as the shift operator, the formulation is given by:

H =
R∑

h=0

αhL̃
h
G , (6)

where L̃G = I−D−1/2AD−1/2 is the normalized graph Laplacian and R is the filter order which is
a hyperparameter that controls how multi-hop information is aggregated. In our framework, we set
the filter parameters as learnable. We emphasize that instead of fixing the filter parameters, making
them learnable enhances the interpretability (see Section 6). In particular, one can inspect the filter
coefficients and infer information such as the hops that are contributing to the node embedding. Using
Eq.(6), the filtered response is given by X̃ = HX ∈ RN×D, with X̃ is now the smoothened graph
features encoding much richer neighborhood beyond one-hop. Note that modifying the kernel input
by the filtered response transforms KG to be structure aware RBF that is shift invariant and also non
negative. Following earlier discussion, it can be expressed as KG(xi,k, xj,k) = ΦT

a (x̃i,k)Φa(x̃j,k),
where x̃i,k corresponds to (i, k)-th element of X̃.

Leveraging the kernel approximation technique (Bochner’s theorem), the GP prior defined in 3 can be
equivalently expressed in linear Bayesian formulation as

fk(xi,k) = ΦT
a (x̃i,k)wk, wk ∼ N (0, IM ) (7)

where Φa(x̃i,k) =
{√

2
M cos(2πamx̃i,k + bm)

}M

m=1
with Φa(.) is a feature map, which we refer to

as graph-aware Random Fourier Features (G-RFFs), am ∼ N (0, 1) and bm ∈ Unif(0, 2π) are drawn
from normal and uniform distributions. To summarize, G-NAMRFF, learns contribution of features to
node-i prediction as

yi =

D∑
k=1

ΦT
a (x̃i,k)wk, wk ∼ N (0, IM ). (8)

RFF Linear Layer
Note that under modified prior, each fk is a linear transformation whose weights can be obtained
by single-layer neural network with exactly M learnable parameters per feature. Also, embedding
the structural information into features and representing the univariate function using graph-aware
RFFs results in a light-weight model with number of trainable parameters dependent on number of
RFFs and filter order (more discussion in section 4). We conclude this section with some important
observations: (a) for R = 1 and α0 = 0, the present approach resembles the first approach where
features are transformed based on one-hop neighbourhood. (b) The filter order and number of
RFF features required are less compared to hidden units for all the graph datasets (more details in
Appendix C.3).

3.2 Implementation Details

In Fig. 2, we present end to end architecture of G-NAMRFF for obtaining the prediction of i-th node
as a summation of univariate function outputs. Considering X ∈ RN×D, we pass each feature
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Algorithm 1 Algorithm for G-NAMRFF

1: Inputs: Feature matrix X ∈ RN×D, normalized Laplacian L̃G , RFF dimension M , bandwidth
Θ, filter order R.

2: Trainable parameters: {αh}Rh=0, weight vectors {wk ∈ RM}Dk=1.
3: Output: Node predictions {yi}Ni=1.
4: Filtering: Compute filtered features X̃ =

∑R
h=0 αh L̃

h
G X.

5: RFF computation: Sample frequencies {ak,m}Mm=1 ∼ N (0, 1) and phases {bk,m}Mm=1 ∼
Uniform(0, 2π) for each k. RFF map: Φa(x) =

√
2
M

[
cos(ak,1x + bk,1), . . . , cos(ak,Mx +

bk,M )
]⊤

6: for each node i = 1, . . . , N do
7: for each feature k = 1, . . . , D do
8: Obtain feature embedding: fk(xi,k) = Φ⊤

a (x̃i,k)wk.

9: Prediction: yi ←
∑D

k=1 fk(xi,k).
10: return {yi}Ni=1.

column through the graph filter parameterized by shared filter coefficients. The magnitude of the
filter coefficients reflects the importance of the neighbourhood. In other words, they explain which
hop information plays a key role in the prediction. We also emphasize that sharing filter parameters
reduces the complexity without compromising the accuracy (more details in Section 6). In the
following step, for the target node i, we extract D-features and feed them to RFF layer where it
undergoes the cosine transformation with the sampling parameters {am, bm}Mm=1 shared across the
features. The output of the RFF layer is the M -dimension RFF vector (Φa) for each feature. Each of
these undergoes a linear transformation using a single layer NN with size as number of RFF features.
The final predictions are obtained depending on the downstream tasks:
For node classification: For node classification task, the predictions obtained following (8) are
passed through activation function (for ex., sigmoid or softmax).
For graph classification: We obtain the representation for the complete graph by sum pooling as
zG =

∑N
i=1 zi. Then the prediction follows by passing representation through an activation function.

Handling multi-class datasets: If the dataset contains C-classes, we project the weights of a single
layer RFF to the number of classes thereby enabling class-wise interpretability (more details in
Section 6 ). We present detailed step by step process in Algorithm 1.

4 Theoretical Characterization and Learnable Parameters Computation

In this section, we discuss some important properties of G-NAMRFF i.e., permutation equivariance and
robustness to the perturbations, and then discuss parameter complexity.

Theorem 4.1 (Permutation Equivariance). Let P = {P ∈ {0, 1}N×N : P⊤P = PP⊤ = IN} be
the set of all N ×N permutation matrices. Then under the permutation of the graph Laplacian LG
and node-feature matrix X by any P ∈ P , the outputs from G-NAMRFF also modifies as yperm = Py,
where y ∈ RN is the predictions across all the nodes.

The proof for Theorem 4.1 is relegated to Appendix A. Observe that Theorem 4.1 guarantees any
simultaneous permutation of node indices in the Laplacian and feature matrix results in the same
permutation of the learned embeddings. This symmetry is essential for ensuring that the model’s
predictions depend only on the graph’s structure, not on an arbitrary ordering of its nodes.

Theorem 4.2 (Robustness to perturbation of graph Laplacian). Let L̂G = LG + ∆LG be the
Laplacian of the perturbed graph, with ∥∆LG∥2 ≤ ϵ, and assume that the RFF map Φa(.) is
CRFF-Lipschitz continuous. Then each node prediction satisfies |ŷi − yi| ≤ C K ϵD ∥X∥2,, where

C = CRFF

(
maxk ∥wk∥2

)
,K = 1

4∥α∥1 (R
2 − 1)

(
R−1
R+1

)R

are constants.

The proof for Theorem 4.2 is relegated to Appendix A. It emphasizes the error i.e, difference between
the predictions from G-NAMRFF is bounded linearly with the norm of the error term ∆LG . Hence, the
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node predictions are robust to small changes in the graph structure. The proof follows by leveraging
the perturbation bounds on FIR filters and then invoking the Lipschitz continuity of RFF features.

4.1 Parameter Complexity

Recall, GNAN employs a deep network fk for each of D features plus an additional DNN for ρ to encode
the graph structure. If each of these D+ 1 is an L layer feed forward neural network with Hu hidden
units, the total number of parameters to be learnt are (D+1)× (H2

u× (L− 1)+ (L+2)×Hu +1).

For G-NAMRFF, the only learnable parameters are filter coefficients and weights of dimension M .
Therefore, total number of learnable parameters are D ×M +R+ 1, where R is the filter order. For
numerical comparison, considering the values given in GNAN [5] with Hu = 64, L = 5 and D = 100,
for the proposed method with M = 100 and R = 5, the number of parameters are approximately
168× fewer. This reduction in model size, translates to arguably smaller run times of G-NAMRFF (see
discussion on run times in Appendix C.2).

5 Related Works

The existing works that are closely related to ours can be broadly classified into 3 categories as
follows:

Black-box GNN Architectures: Graph representation learning with GNNs has become ubiquitous
across a wide range of applications. Broadly speaking, existing black-box GNNs can be categorized
into two types: (a): Message–passing models, which iteratively aggregate and update node features
via learned message functions [12, 35, 11]. (b): Spectral-convolutional architectures, which perform
graph filtering in the Fourier domain to capture global structure [40, 6, 20, 42, 34]. Additionally,
to better weigh the influence of individual neighbors while aggregating messages, attention-based
extensions such as Graph Attention Networks (GAT) [32], and more recently, graph transformer
variants [39, 33] have been proposed. [33, 39, 32]. Finally, several works employ Gaussian processes
over graphs to capture predictive uncertainty directly [7, 10]. [7, 10]. Despite these advances, all
these approaches model a black-box function, and their learned embeddings must be supplemented
by separate interpretability techniques.

Interpretable Additive Models: Additive modeling is the workhorse principle of interpretable
architectures for tabular data since the inception of Generalized Additive Models (GAMs) [14] to
recent methods such as GPAM [41] [15, 2, 24, 8]. However, these methods were developed primarily
for tabular inputs, and naive application of them to graph-structured data fails to exploit the relational
inductive biases inherent in the graph topology. To address this gap, [5] extends generalized additive
modeling to graphs by learning node-wise contributions aggregated across neighborhoods. As
discussed earlier, this approach suffers with high parameter complexity and employs aggregation
schemes that do not fully capture the influence of local graph structure.

Post-hoc GNN Explainers: Explainable models for graph data are mostly post-hoc methods that
interpret pretrained GNNs by identifying critical substructures or features after model training. For
instance, models like GNN-Explainer [37], PG-Explainer [22] uncover the important subgraphs
and corresponding node features for explaining the feature predictions, whereas Graph-LIME [17]
extends LIME [27] to GNN architectures to quantify each feature contribution to a node-level decision.
Recently, GRAPHTRAIL[4] enhances GNN interpretability by translating learned representations into
concise, human-readable Boolean formulas. A comprehensive study of post-hoc explainable models
is detailed in [31, 38].

6 Numerical Experiments and Discussion on Interpretability

In this section, we evaluate G-NAMRFF performance and demonstrate its ability to learn interpretable
representations on node and graph classification tasks.

6.1 Interpretability on Node Classification Task

To begin with, we analyze the univariate functions learnt on PubMed [29] dataset with node-
classification task. PubMed is a multiclass citation-network dataset where nodes are research articles
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categorized into three diabetes classes: Type 1, Type 2 and gestational [5]. To reveal how individual
features influence the model’s predictions, we plot each learned function against its corresponding
raw input values. In particular, as G-NAMRFF produces three outputs per feature (one score for each
class), we plot three separate curves for each feature as shown in Fig. 3. At any given feature value,
the curve with the highest output indicates the class that the feature most strongly supports.

In Fig 3(a), we show the influence of feature “children” on model output. It can be observed that model
learnt a stronger contribution toward Type 1 diabetes, indicating that the presence of this term in an
article increases the likelihood of it being classified under this category. This observation aligns with
clinical understanding, as Type 1 diabetes is autoimmune in nature with children being susceptible[30],
leading to increased mention of pediatric-related terms in relevant literature. Similarly, in Fig. 3(c), we
show the influence of BMI (Body Mass Index), where it is clear that model associates predominantly
with Type 2 diabetes. This clearly aligns with the clinical findings that elevated BMI is a major risk
factor for Type 2 diabetes [1]. In Fig. 3(b), we show the influence of “sex (gender),” where model
shows relatively lower contributions to both Type 1 and Type 2 diabetes, which is consistent with the
fact that sex plays a mere role for diagnosis of Type 1 and Type 2 diabetes. However, in the case of
gestational diabetes, which by definition is diagnosed during pregnancy, the model attributes higher
importance.

Although these explanations merely match model prediction and interpretation with ground truth,
for more challenging and high-stakes scenarios, a subject matter expert would better assess the
correctness of such plots. Doing so, we can truly utilize the transparency of the model to increase the
belief in such predictions and also use the feedback to improve the model further.

Figure 3: PubMed dataset: Univariate function outputs on different features.

6.2 Empirical Results on Node Classification Task

Having demonstrated G-NAMRFF’s ability to learn interpretable representations, we empirically
evaluate its performance on medium-scale and large scale datasets namely Cora, Citeseer, PubMed
[36], Cornell[23], ogbn-arxiv and ogbn-products [16]. In Table 1, we report mean classification
accuracy along with the standard deviation over five independent runs with different random seeds.
Hyperparameter details (e.g., number of RFFs (M ), scale (Θ), filter order (R), and optimizer settings)
are provided in the Appendix C.1.

Across all six datasets, G-NAMRFF matches or exceeds the performance of state-of-the-art black-box
GNNs, confirming that interpretability need not come at the cost of accuracy. We also observe that in-
corporating information from multiple hops (G-NAMRFF) outperforms the one-hop variant (G-NAMRFF
(R = 1)), highlighting the value of deeper neighborhood aggregation. Finally, among interpretable
models, G-NAMRFF outperforms the state-of-the-art models in addition to scaling effectively. In par-
ticular, on ogbn-products, both NAM and GNAN encounter out-of-memory errors, whereas G-NAMRFF
trains successfully. A comprehensive study on hyperparameters is presented in the Appendix C.3.

6.3 Interpretability on Graph Classification Task

In this section, we discuss the interpretability on the graph classification task with the widely studied
Mutagenicity dataset [18, 9]. The dataset includes 4,337 molecules represented as graphs and each
graph is associated with binary labels. In contrast to node classification, here we present both global
level and local level interpretations. Recall that we obtain the graph-level embeddings by sum pooling
node embeddings. To begin with, we discuss the feature level importance.
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Table 1: Performance comparison on node classification task.
Model Cora Citeseer Pubmed Cornell ogbn-arxiv ogbn-products
GCN [20] 81.23± 1.1 71.20± 1.7 78.50± 1.3 65.90± 0.5 71.74± 0.3 75.64± 0.3
GAT [32] 80.32± 2.3 70.26± 2.3 77.12± 2.4 72.50± 0.7 71.95± 0.6 79.45± 0.5
GraphSAGE [12] 79.94± 3.4 65.12± 1.9 78.25± 1.2 75.90± 5.0 71.49± 0.2 75.63± 0.3
Graph Transformer [39] 80.70± 0.5 76.00± 0.9 78.80± 1.4 70.50± 1.7 70.13± 0.5 74.74± 0.5
NAM [2] 51.35± 2.3 55.40± 1.9 58.16± 2.3 59.15± 2.6 56.12± 3.4 OOM
GPAM [41] 59.96± 3.2 60.30± 3.9 62.30± 3.7 60.12± 3.6 62.35± 4.2 60.13± 3.9
GNAN [5] 77.89± 5.1 65.23± 3.7 75.13± 2.4 71.76± 4.2 69.56± 0.9 OOM
G-NAMRFF (R = 1) 75.32± 1.8 67.12± 1.1 75.12± 3.8 64.12± 2.9 66.94± 1.6 55.73± 1.8
G-NAMRFF 79.84± 1.7 69.45± 2.5 77.30± 1.4 73.54± 4.9 70.02± 3.9 72.13± 0.4

Figure 4: (a). Feature level explanation on Mutagenicity dataset. (b). Local structure level explanation
on Mutagenicity dataset. (c). Learnt FIR filter coefficients.

Focusing on mutagenic class, we obtain the feature level scores globally by taking the sum of each
atom’s contribution across the graphs. In Fig. 4(a), we present per-atom importance for the mutagenic
class. Notably, Nitrogen, Oxygen, and Lithium atoms exhibit the highest positive contributions
towards predicting mutagenicity. This interpretability not only helps us understand why the model
makes a given prediction, but also directs domain experts to inspect and, if necessary, adjust the
features or model. For example, if the model misclassifies a molecule, one can review the atom
importance scores to assess which atomic features drove the error and representation learning can be
modified accordingly.

Although feature-level importance gives insight into individual atom contributions, understanding
which substructures are responsible for mutagenicity is crucial for molecular datasets. Using our
model, we obtain local explanations by aggregating the feature-level attributions along the neighbor-
hood to highlight the subgraph responsible for a prediction.

In Fig. 4(b), we visualize these extracted substructures for two representative molecules classified as
mutagenic. In the first molecule, the nitro (NO2) and amino (NH2) groups emerge as the dominant
substructures each exhibiting strong positive attribution toward the mutagenic label. In the second,
the aromatic carbon ring itself drives the mutagenicity score. These findings align closely with prior
toxicology studies [9, 37], which identify NH2, NO2, and polyaromatic rings as key mutagenic
motifs. Importantly, our model reveals that hydrogen and oxygen atoms directly bonded to nitrogen
also carry a significant contribution towards a mutagenic class, whereas isolated hydrogens on carbon
rings do not play that significant role. This observation supports the global atom-importance ranking
in Fig. 4(a), where nitrogen outranks hydrogen. The study presented again emphasizes the G-NAMRFF
ability in global-level and local-level attributions. Recall that each FIR filter coefficient αh quantifies
how much the model weights information from its h-hop neighborhood. To demonstrate this on the
Mutagenicity dataset, in Fig. 4(c), we plot the filter coefficients for a fixed filter order. It can be
observed that there is a clear decay in magnitude as h increases, confirming that our model naturally
prioritizes close neighbors and progressively down-weights more distant nodes. As explained earlier,
these learned coefficients thus offer direct, interpretable insight into the receptive field of each atom.

6.4 Empirical Evaluation on Graph Classification Task

In this section, we report G-NAMRFF performance on several standard graph-classification benchmarks:
Proteins, NCI1, Mutagenicity, MUTAG, and PTC [16]. We compare the proposed model against
both black-box GNNs and interpretable models. In Table 2, we present the mean graph classifica-
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Table 2: Performance comparison on graph classification task.
Model Proteins Mutag Mutagenicity NCI1 PTC
GCN [20] 70.97±4.6 68.07±6.3 75.69±0.9 66.35±1.3 56.98±5.8
GAT [32] 69.92±4.0 67.20±3.4 69.40±1.2 66.12±2.1 55.60±11.1
GraphSAGE [12] 67.35±2.3 64.12±2.4 69.25±3.9 65.56±3.9 57.12±4.9
Graph Transformer [39] 69.76±3.2 66.30±5.3 73.10±0.9 68.24±3.4 55.90±3.5
NAM [2] 62.45±4.2 63.12±9.1 67.35±2.5 57.15±1.2 54.97±7.5
GPAM [41] 65.68±4.1 64.30±8.4 65.46±2.2 53.80±2.7 52.65±8.1
GNAN [5] 59.64±2.4 67.35±3.9 66.64±4.7 50.87±1.4 55.07±5.2
G-NAMRFF (R=1) 67.83±4.4 71.20±6.7 68.98±3.4 63.65±2.8 55.65±5.6
G-NAMRFF 69.94±3.7 79.81±5.3 71.70±2.0 66.10±1.7 61.91±3.4

tion accuracies from 10-fold cross-validation, each repeated over three random seeds. The results
highlights the strength of proposed model in obtaining the interpretable graph embeddings without
compromising the accuracy. Detailed hyperparameter settings and ablation studies are provided in
Appendix C.1 and C.3.

7 Limitations and Future Directions

While G-NAMRFF models the prediction output as a sum of independent feature-wise contributions,
this formulation overlooks potential correlations among features. A straightforward extension that
explicitly models both individual and pairwise feature interactions would substantially increase
the parameter count, compromising the model efficiency. Hence designing a parameter-efficient
formulation that can capture feature dependencies and higher-order correlations without sacrificing
interpretability remains an important direction for future research. Further, recall that the smoothness
prior imposed on the function limits its effectiveness on heterophilic graphs, where connected nodes
often have dissimilar labels. Therefore, extending the current approach to better handle heterophilic
data presents an interesting and promising direction for future research.

8 Conclusions

In this work, we introduced G-NAMRFF, a self-interpretable, lightweight additive model for graphs. We
proposed a unified interpretable architecture that integrates both graph topology and node features into
univariate functions via Random Fourier Features. Further, we provided theoretical guarantees
showing that G-NAMRFF is robust to graph perturbations and permutational equivariant. Our analysis
on parameter complexity revealed that G-NAMRFF requires 168× fewer parameters than GNAN. Finally,
through experiments on node and graph classification benchmarks, we demonstrated that although
being light-weight and interpretable, G-NAMRFF does not compromise predictive performance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our two key contributions: (1) a
lightweight model with far fewer parameters than the state of the art interpretable GNN
model, and (2) unified self-interpretable structure via graph-aware Random Fourier Features
and learnable FIR filters. These two contributions are strongly supported by the emphasis
on parameter-complexity analysis.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper acknowledges that the proposed model obtains predictions by assum-
ing feature-wise independence, thereby overlooking potential correlations among features.
This design choice is intentional, as the primary objective is to develop a lightweight and
interpretable model without compromising predictive performance. Extending the current
framework to efficiently capture feature correlations while maintaining interpretability is
identified as an important direction for future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The outline of proofs and assumptions are discussed in the main paper whereas,
complete proof for the Theorems are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed hyperparameter analysis and step by step process followed to
generate the results are detailed in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included the repository link in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have followed the standard splits available from the open benchmark
graph datasets and wherever they are not available we have given detailed explanation in the
Appendix. Detailed hyperparameter analysis is given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Mean accuracies along with standard deviations are reported. We clearly
mentioned the factors of variablity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details regarding the compute workers and runtime plots are mentioned
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Experimentation is mostly performed on open benchmark datasets which are
widely acceptable.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no direct societal impact of the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper doesnot have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Properly acknowledged the assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper doesnot release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The current work doesnot involve any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Current work doesnot involve any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for formatting the tables.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Appendix

We organize the content in the Appendix as follows: In section A, we present proofs that supports
permutation equivariance and robustness properties of G-NAMRFF. In section B, we include an
additional discussion on interpretability with node and graph classification tasks. In section C, we
present an ablation studies with respect to the hyperparameters.

A Proofs for the Theoretical Characterization of G-NAMRFF

In this section, we present the proofs for the permutation equivariance and robustness properties of
G-NAMRFF.

Theorem. 4.1. (Permutation Equivariance) Let P = {P ∈ {0, 1}N×N : P⊤P = PP⊤ = IN} be
the set of all N ×N permutation matrices. Then under the permutation of the graph Laplacian LG
and node-feature matrix X by any P ∈ P , the output from G-NAMRFF also modifies as yperm = Py,
where y ∈ RN is the predictions across all the nodes.

Proof. Let P ∈ P be the permutation matrix acting on the graph G. Under this permutation, the
graph Laplacian and feature matrix transforms as L̃G,perm = PL̃GP

T and Xperm = PX. Let us call
the prediction of the node i under the permutation as yi,perm, whereas yperm is obtained by stacking
yi,perm.

Under the permutations, filter output modifies as

X̃perm =

R∑
h=0

αhL̃
h
G,permXperm =

R∑
h=0

αhPL̃h
GP

TPX

(a)
=

R∑
h=0

αhPL̃h
GX,

(b)
= PX̃,

(9)

where (9)(a), follows from the property of permutation matrix i.e., PTP = I. Observe that from
(9)(b) under the permutation, filtered outputs also gets permuted. Leveraging this, we now evaluate
the prediction of G-NAMRFF under permutation as

yperm = [y1,perm; . . . ; yN,perm] ,

=

D∑
k=1

[
ΦT

a (x̃1,k,perm); . . . ;Φ
T
a (x̃N,k,perm)

]︸ ︷︷ ︸
Ψk,perm

wk,

(a)
= P

D∑
k=1

[
ΦT

a (x̃1,k); . . . ;Φ
T
a (x̃N,k)

]
wk,

= Py,

(10)

where (10)(a), follows from (9)(b) where it can be observed that for a fixed feature k i.e., x̃k,perm ∈
RN×1 = Px̃k, therefore mappings gets reordered with Ψk,perm ∈ RN×M = PΨk. Also it can be
observed that zk,perm = [fk(x1,k), fk(x2,k), . . . , fk(xN,k)] ∈ RN×1 = Pzk from the permutational
equivariance of Ψk. 2

Theorem. 4.2. (Robustness to perturbation of graph Laplacian) Let L̂G = LG + ∆LG be the
Laplacian of the perturbed graph, with ∥∆LG∥2 ≤ ϵ, and assume that the RFF map Φa(.) is
CRFF-Lipschitz continuous. Then each node prediction satisfies |ŷi − yi| ≤ C K ϵD ∥X∥2,, where

C = CRFF

(
maxk ∥wk∥2

)
,K = 1

4∥α∥1 (R
2 − 1)

(
R−1
R+1

)R

are constants.
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Proof. Before proceeding to the proof, we state the following Lemma that bounds the error between
the FIR filters built with LG and L̂G . With slight abuse of notation from here on we represent
normalized Laplacian with LG instead of L̃G .

Lemma A.1. [19] Consider a polynomial filter H(LG) =
∑R

h=0 αhL
h
G , and perturbed Laplacian

as L̂G = LG +∆LG with ∥∆LG∥2 ≤ ϵ then

∥H(LG)−H(L̂G)∥2 ≤
1

4
∥α∥1(R2 − 1)

(
R−1
R+1

)R

ϵ, (11)

where ∥α∥1 = [α0, . . . , αR] ∈ RR+1.

Lemma A.1 shows that the error between the outputs of two filters fed with true and perturbed
Laplacian is bounded and scales linearly with the error norm. We leverage the above Lemma to
bound the difference between the prediction obtained from G-NAMRFF under perturbations.

Assume that the prediction of node i under the graph perturbation as ŷi. To begin with we evaluate
the difference between the filter outputs. Considering the filter outputs with and without perturbation
of graph as X̃ and X̃per. We have

X̃ = H(LG)X,

X̃per = H(L̂G)X. (12)

Then the difference between the filtered outputs are bounded as

∥X̃per − X̃∥2 = ∥H(L̂G)X−H(LG)X∥2
(a)

≤ ∥H(L̂G)−H(LG)∥2∥X∥2
(b)

≤ 1

4
∥α∥1(R2 − 1)

(
R−1
R+1

)R

ϵ∥X∥2,

(13)

where (13)(a) follows from a norm inequality and (13)(b) follows from (11). From (13)(b) it is clear
that the difference of filter outputs is bounded linearly with the energy in the error term. Leveraging
this we now evaluate the difference in the prediction output. We index the i, k element of X̃per with
x̃i,k,per. Then,

|ŷi − yi| = |
D∑

k=1

ΦT
a (x̃i,k,per)wk −

D∑
k=1

ΦT
a (x̃i,k)wk|

≤
D∑

k=1

∥ΦT
a (x̃i,k,per)−ΦT

a (x̃i,k)∥2∥wk∥2

(a)

≤ CRFF

D∑
k=1

|x̃i,k,per − x̃i,k|∥wk∥2

(b)

≤
D∑

k=1

CRFFmaxk{∥wk∥2}
1

4
∥α∥1(R2 − 1)

(
R−1
R+1

)R

︸ ︷︷ ︸
K

ϵ∥X∥2

(c)

≤ CKϵD∥X∥2,

(14)

where (14)(a) follows from Lipschitz continuity of Φa, (14)(b), follows from (13)(b). Whereas,
(14)(c) follows by considering the C = CRFFmaxk∥wk∥2. From (14)(c), it is clear that difference in
the node predictions scales linearly with the norm of the error term ∆LG . 2

B Additional Discussion on Interpretability

B.1 Interpretability on Node Classification Task

In this section, we present additional examples of the learned univariate functions on the PubMed
dataset for the node classification task. Specifically, in Fig. 5, we illustrate the univariate function
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outputs for the features i.e., keywords as insulin, fat, liver, and diet. Recall that at any given feature
value, the curve with the highest output indicates the class that the feature most strongly supports.

In Fig. 5a, we examine the influence of the presence of diet keyword in the document on the
model’s predictions. It can be observed that the model associates higher output with type 2 diabetes,
suggesting that diet is a strong predictor for this class. This observation aligns well with existing
medical literature, which indicates that type 2 diabetes is heavily influenced by dietary factors,
whereas type 1 diabetes, being an autoimmune condition is less affected by diet [21]. Consistent
with this, the model assigns less importance to type 1 diabetes for this feature. In Fig. 5b, we plot
the influence of fat keyword in the document where it is clear that it contributes less significantly to
the prediction of type 1 diabetes, further supporting the model’s ability to capture medically relevant
patterns. Similarly, in Fig. 5c and Fig. 5d we plot the impact of these features on model prediction
where it is clear that presence of this word aligns prediction towards type 2 and gestational diabetes.
Although for illustration purposes we have presented few examples one can follow a similar procedure
to obtain the contribution of different features on different datasets.

(a) (b)

(c) (d)

Figure 5: PubMed dataset: Univariate function outputs on features.

B.2 Interpretability on Graph Classification Task

In this section, we include more discussion on interpretability on the mutagenicity dataset. Here
the main target is to give local level (structural) explanations and also compare them with the
GNN-Explainer [37] which is a post-hoc explainer.
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With the focus on mutagenic class, we give structure level explanations for the model prediction. In
Figs. 6a, 6c and 6e we present three example molecules that are predicted as mutagenic and highlight
predicted substructures responsible for the mutagenic prediction. It is clear that the NH2, NO2 and
aromatic rings act as key contributors to mutagenic class. These explanations align with the existing
studies which advocate the presence of these substructures highly influences the mutagenicity [9].
For a fair comparison we present the substructures revealed from GNN-Explainer in Fig. 6b, 6d
and 6f. It can be observed that compared to GNN-Explainer, our proposed model identifies NH2,
NO2 and aromatic rings more precisely.

(a) (b)

(c) (d)

(e) (f)
Figure 6: Mutagenicity dataset: Local level explanations.
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C Hyperparameter Details and Ablation Studies

In this section, we first present the hyperparameter details used in our node and graph classification
tasks. Then we analyze how each of these hyperparameters affects G-NAMRFF performance across
datasets.

C.1 Hyperparameter Details

We have conducted all the experiments using an NVIDIA A30 GPU. In particular, we set the tuning
range as follows: Number of RFFs (M )- {20, 40, 50, 100, 200}, filter order (R) - [1, 7], kernel width
(Θ)- [1.0, 4.0], learning rate (Lr)- [1e− 4, 2e− 1] and weight decay (Wd)- [1e− 5, 1e− 2]. The
hyperparameter configurations that yielded the best validation performance are detailed in Table 3.
For node classification tasks, we follow the standard dataset splits as specified in [16, 20, 23]. In
the case of graph classification tasks, where no standard splits are available, we employ 10-fold
cross-validation. All models are trained for 1000 epochs using the AdamW optimizer with randomly
initialized parameters. The specific learning rates and weight decay values used across different
experiments are also reported in Table 3. For node classification, we report the mean classification
accuracy computed over five independent random seeds. For graph classification, we report the mean
classification accuracy across 10 folds, with each fold averaged over three random seeds.

Figure 7: Run time comparison.

C.2 Run time analysis

In this section, we compare the runtime performance of G-NAMRFF, against GNAN, which is the only
existing glass-box GNN architecture. In Fig. 7, we present the per-epoch runtime comparison on both
node and graph classification tasks. Notably, it can be observed that even when GNAN is configured

Dataset Number of RFFs
(M)

Filter Order
(R)

Kernel width
(Θ)

Learning rate
(Lr)

Weight Decay
(Wd)

Cora 100 7 2.2 1.8e-2 2.4e-4
Citeseer 100 5 2.5 5.1e-2 3.1e-4
Pubmed 100 5 3.8 2.7e-3 4e-4
Cornell 100 6 2.9 7.3e-2 3.7e-4

ogbn-arxiv 100 4 3.4 5.2e-2 1.3e-4
ogbn-products 40 5 2.3 2.9e-2 5e-4

Proteins 50 5 1.9 3.2e-3 5e-3
Mutag 200 7 1.2 3.7e-2 5e-3

Mutagenicity 200 6 1.4 1.1e-2 5e-4
NCI1 50 7 3.7 1.6e-2 5e-4
PTC 50 5 1.7 2.9e-3 2.5e-5

Table 3: Hyperparameter details.
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(a) Mutagenicity (b) Pubmed
Figure 8: Classification accuracy against filter order.

with a relatively small hidden dimension of 32, it still requires 10 to 100 times more runtime per
epoch compared to G-NAMRFF.

Furthermore, it is worth emphasizing that on small-scale datasets such as Citeseer and Pubmed,
increasing the hidden dimension to 64 can already result in out-of-memory (OOM) errors when
training GNAN. On large-scale datasets like ogbn-products, training GNAN becomes entirely infeasible
due to excessive memory requirements.

C.3 Ablation studies

In this section, we analyze the impact of hyperparameters on the model performance. Recall the key
hyperparameters in G-NAMRFF includes the filter order (R) and number of RFF (M ).
Filter Order: In Fig. 8, we illustrate the effect of the filter order on classification accuracy for two
tasks: node classification on the Pubmed dataset and graph classification on the Mutagenicity dataset.
Recall that a filter of order R aggregates information from R-hop neighborhoods in the graph. It
can be observed that as the filter order increases, the model is able to incorporate information from
larger receptive fields, leading to an initial improvement in classification accuracy. However, beyond
a certain point, further increasing the filter order causes the accuracy to saturate or decline, likely due
to oversmoothing. Notably, we observe that using higher-order filters (R > 1) significantly improves
performance compared to R = 1, highlighting the benefit of aggregating information from larger
graph neighborhoods.

To further highlight the relative importance of different node neighborhoods, we present the magni-
tudes of the learned filter coefficients for a fixed filter order in Fig. 9, using the Mutagenicity and
Cornell datasets. It can be observed that the model assigns higher weights to closer neighborhoods,
emphasizing the greater importance of immediate node interactions in the classification task.

(a) Mutag (b) Cornell
Figure 9: Filter coefficients magnitude against filter order.
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Random Fourier Features:

We analyze the effect of the number of RFFs on classification accuracy. Figures. 10a, 10b, and 10c
show the performance variation on the Cornell, PubMed, and NCI1 datasets, respectively. As the
number of random Fourier features (M ) increases, the classification accuracy initially improves
due to better kernel approximation. However, beyond a certain point, performance drops as the
model may begin to overfit with larger M . Across all datasets, we observe that good performance
can be achieved with relatively small values of M , which translates to a lower number of learnable
parameters. Recall that the total number of parameters in G-NAMRFF is D×M +R+1. As observed
M being small the model remains lightweight while being effective.

(a) Cornell (b) Pubmed (c) NCI1
Figure 10: Classification accuracy vs number of RFFs.
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