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Abstract

Developing datasets that cover comprehensive sensors, annotations and out-of-1

distribution data is important for innovating robust multi-sensor multi-task percep-2

tion systems in autonomous driving. Though many datasets have been released,3

they target for different use-cases such as 3D segmentation (SemanticKITTI), radar4

data (nuScenes), large-scale training and evaluation (Waymo). As a result, we are5

still in need of a dataset that forms a union of various strengths of existing datasets.6

To address this challenge, we present the AIODrive dataset, a synthetic large-scale7

dataset that provides comprehensive sensors, annotations and environmental varia-8

tions. Specifically, we provide (1) eight sensor modalities (RGB, Stereo, Depth,9

LiDAR, SPAD-LiDAR, Radar, IMU, GPS), (2) annotations for all mainstream10

perception tasks (e.g., detection, tracking, prediction, segmentation, depth estima-11

tion, etc), and (3) out-of-distribution driving scenarios such as adverse weather and12

lighting, crowded scenes, high-speed driving, violation of traffic rules, and vehicle13

crash. In addition to comprehensive data, long-range perception is also important to14

perception systems as early detection of faraway objects can help prevent collision15

in high-speed driving scenarios. However, due to the sparsity and limited range of16

point cloud data in prior datasets, developing and evaluating long-range perception17

algorithms is not feasible. To address the issue, we provide high-density long-range18

point clouds for LiDAR and SPAD-LiDAR sensors (10× than Velodyne-64), to19

enable research in long-range perception. Our dataset is released and free to use20

for both research and commercial purpose: http://www.aiodrive.org/.21

1 Introduction22

The present surge towards building autonomous vehicles has undoubtedly advanced computer vision23

research by generating large diverse datasets acquired from hundreds of hours of data, thousands24

of hours of manual annotation, and billions of dollars towards the development of a customized25

sensing platform – the autonomous vehicle. As a result of these investments, large driving datasets26

[53, 7, 38, 1, 17, 65, 67, 41] have been released to the research community. It is important to note that27

while these datasets helped to advance perception systems, each dataset has different focuses as shown28

in Figure 1 (Left). For example, Waymo [53] dataset provides large-scale data for training 3D object29

detection and tracking algorithms but does not support other perception tasks such as point cloud30

segmentation. Likewise, Argoverse [8] dataset provides map annotation for improving perception31

algorithms but cannot be used for algorithms requiring Radar data as provided by nuScenes [7]. To32

innovate perception systems that require diverse sensor modalities or methods that integrate multiple33

perception tasks, existing datasets might not be applicable. Also, merging a few existing datasets34

together is non-trivial because sensor configurations are significantly different across datasets.35

As a community, we are in need of a dataset that forms a union of strengths of existing datasets to36

innovate multi-sensor multi-task perception systems. Also, the perception systems need to be trained37

and tested against out-of-distribution data to ensure safety. However, building a real-world dataset that38

combines the strengths of multiple datasets and includes large mount of out-of-distribution data (e.g.,39
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Figure 1: (Left) AIODrive dataset forms a union of various strength of existing datasets, including
comprehensive sensors, annotations and out-of-distribution data. (Right) We compare point clouds
from Velodyne-64 [26] (about 100k points and a range of 120m) with point clouds from our sensor
(about 1M points and a range of 1km), which can be used to innovate long-range perception systems.

car crash) is significantly more challenging and dangerous than building a single-strength dataset40

without much out-of-distribution data, beyond the capacity of a single research group or university.41

One solution that we propose in this work is the use of a simulator, Carla [11], to generate a42

comprehensive perception dataset, which we call All-In-One Drive (AIODrive) dataset. Synthetic43

data generation is able to meet the challenges of creating a comprehensive perception dataset because:44

(1) a large amount of out-of-distribution data can be safely generated in simulation as the Carla45

simulator can change the density of traffic, velocity of agents, generate violations of traffic rules, car46

crashes and change weather and lighting; (2) large amounts of annotation for a multitude of tasks can47

be automatically generated by combining and post-processing Carla outputs. For example, we can48

project 2D semantic annotation to 3D given the depth image, resulting in 3D semantic annotation for49

point clouds. Then, combining with 3D bounding box annotation, 3D semantic annotation can be50

converted to 3D instance and panoptic segmentation; (3) A ‘physical’ yet affordable sensing platform51

can be constructed in simulation to change sensor configuration and even create sensors that are not52

yet available in public datasets, e.g., long-range high-density LiDAR and SPAD-LiDAR as shown in53

Figure. 1 (Right), which are only available as early prototype in industry. These powerful sensors can54

help advance early research in long-range perception before the prototype sensors have been made in55

product and used in public datasets. To summarize, our AIODrive dataset provides:56

(1) 8 sensor modalities: 5× RGB cameras (1 stereo pair); 5× depth cameras, 4× Radar, 3× 1km-57

range LiDAR at multiple levels of density (up to 1M points), 1km-range SPAD-LiDAR, IMU, and58

GPS. 4 of the sensors have 360◦ horizontal coverage (camera, LiDAR, SPAD-LiDAR, Radar);59

(2) Annotations for all mainstream perception tasks: 2D/3D semantic, instance and panoptic segmen-60

tation, 2D/3D bounding boxes, object categories, goals, trajectories, velocity and acceleration;61

(3) Diverse environmental variations: adverse weather and lighting, crowded scenes, people running,62

high-speed driving, violations of the traffic rule, and car crash.63

Domain gap issue. Though synthetic data generation can be used to create a comprehensive dataset,64

one might argue that the domain gap between synthetic and real data is a weakness. First, we65

agree this is the limitation of our dataset. However, we argue that our dataset can still be useful66

even with this domain gap issue. This argument has been firmly predicated on a body of prior67

work [46, 34, 44, 18] that has shown, when synthetic data is used correctly, it can be used to68

enhance perception performance on real data. For example, [34] showed that using synthetic data for69

augmentation can improve performance for depth prediction on real NYU [50] and SUN RGB-D70

[51] datasets. [44] showed that using synthetic data created from Unity with free annotation of71

semantic segmentation can improve segmentation performance on real-world datasets such as KITTI72

[12], CamVid [5], LabelMe [45], CBCL [2]. Also, [46] showed that augmenting with LiDAR point73

clouds generated from Carla simulator can improve bird’s eye view 2D detection performance on the74

real-world KITTI dataset. [18] showed that using GTA-V [43] to synthesize LiDAR point clouds for75

pre-training 3D object detectors can improve 5% average precision on the KITTI dataset. Similar to76

the success of prior synthetic datasets, we believe that the usefulness of our dataset is also undoubted,77

as validated by our experiments on real datasets. Again, we emphasize that the role of our dataset78

is not to replace real datasets. Instead, it can be used in concert with real data, such as using our79

data to pre-train detectors to improve performance on real data or using our rare driving data as80

out-of-distribution test data.81
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The broader impact of our AIODrive dataset is its comprehensive nature allowing for development82

and evaluation of multi-sensor multi-task perception systems that are not possible with existing83

datasets. Our dataset includes a super-set of sensors, annotations and environmental variations needed84

to develop novel perception systems. To provide researchers with various levels of resources access,85

we have released our dataset for free use. On the other hand, the potential negative impact of our86

dataset is safety concern. If the data is improperly used, perception systems deployed on real vehicles87

can cause accidents. To mitigate the potential issue, we provide detailed instructions on our website88

about how to use the data properly to improve or innovate perception systems.89

2 Related work90

Perception dataset. Sensors, environmental variations and annotations are keys to perception91

datasets. In terms of the annotation, KITTI [12] provides 2D/3D box trajectories, enabling object92

detection and tracking. To enable image segmentation research, Cityscape [9], Mapillary [35],93

Apolloscape [55], SYNTHIA [44] datasets are proposed, each having an increased number of94

annotated frames. For 3D segmentation, SemanticKITTI [1] released point-wise semantic labels95

on point clouds. As map information such as drivable area is useful in perception, Argoverse [8]96

manually annotates map semantics to innovate perception algorithm levaring map data.97

In addition to annotations, perception datasets also need diverse environmental variations to capture98

rare driving situations. As prior datasets such as KITTI usually have a small number (<10) of agents99

per frame without complex interactions, H3D [38] was released, with an average of 37 agents per100

frame to include highly-crowded scenarios with complex agent-agent interactions. To deal with101

adverse weather and lighting, recent datasets such as CADC [41], nuScenes [7], A*3D[40], Waymo102

[53] collected data under rainy, snowy, foggy, dusky and night conditions. As prior datasets usually103

acquired data at a low driving speed (e.g., about 16 km/h in nuScenes), A*3D dataset [40] was104

proposed to collect data at a much higher speed (e.g., 40-70 km/h).105

Regarding the sensing modalities, nuScenes [7] collected the first dataset with Radar data, in addition106

to standard RGB camera, LiDAR, IMU, and GPS sensors. As earlier datasets collected data in the107

frontal direction only, ignoring objects to the sides or rear that are also important to decision-making108

in driving, Argoverse [8], Audi [13], and nuScenes [7] equip their vehicles with multiple LiDAR and109

camera sensors for 360◦ data capturing.110

In comparison to existing datasets with a subset of sensors, annotations and environmental variations,111

AIODrive provides a super-set of sensors, annotations and environmental variations. Also, beyond112

standard LiDAR such as Velodyne-64 [26] used in prior datasets for data collection, we provide113

LiDAR sensors with 10× larger sensing range and 4 levels of point densities, with the highest level114

having 10× higher point density than Velodyne-64. Importantly, the design of our long-range LiDAR115

sensors is not imaginary but based on active developments in new LiDAR sensors such as AlphaPrime116

[27], Ouster [36] and Panasonic [37], which are developed with higher-resolution and longer-range117

(e.g., 300m) depth sensing. In addition to providing LiDAR sensors, also referred to as APD-LiDAR118

(avalanche photodiodes), our dataset also provides SPAD-LiDAR (single photon avalanche diode)119

sensor which records photon counts over space and time. This type of SPAD-LiDAR sensor, although120

available in industry [47, 6], is not found in public perception datasets for research purpose.121

Synthetic data generation. Though many existing simulators (e.g., Sim4CV [33], Nvidia Drive122

[3]) can be used for synthetic data generation, most of these simulators are not open-source (not123

easy to make modifications) and free-to-use license is not available (i.e., derivative products are not124

allowed). For the open-sourced simulators, AirSim [48] and Carla [11] are popular due to detailed125

documentation and diverse sensors. However, AirSim does not allow low-level control over every126

agent in the way that Carla allows, though AirSim has advantages in aerial data capture. In addition127

to simulators, commercial video games such as GTA-V [43] can also be used for synthetic data128

generation but they do not allow low-level control of scene elements. Accordingly, we have selected129

to use Carla for data generation as it affords the most flexibility and customization.130

Long-range perception. Increasing the maximum sensing range of perception systems is important131

for safety in high-speed driving scenarios. However, LiDAR used in existing datasets has limited132

range, e.g., 120m in KITTI [12], 70m in nuScenes [7], 75m in Waymo [53]. Even with perfect133

detection accuracy and zero algorithmic latency, a car moving at a speed of 120km/h will only134

have 3.6 seconds to respond to a detected obstacle with a 120m-range LiDAR. Naturally, enabling135

perception at a longer-range is preferred for increased safety. To the best of our knowledge, [67] is136
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Table 1: Comparison of size and sensor modalities. Our dataset has the most comprehensive sensors.
Dataset # cities # hours # sequences # annotated images Stereo Depth LiDAR Radar SPAD-LiDAR IMU/GPS All 360◦

KITTI [12] 1 1.5 22 15k 3 3 3 3
Cityscape [9] 27 2.5 0 5k 3 3
Mapillary Vistas [35] 30 - - 25k
ApolloScape [17, 55] 4 - - 140k 3 3 3
SYNTHIA [44] 1 2.2 4 200k 3 3
H3D [38] 4 0.8 160 27k 3 3
SemanticKITTI [1] 1 1.2 22 43k 3
DrivingStereo [52] - 5 42 180k 3 3 3 3
Argoverse [8] 2 0.6 113 22k 3 3 3 3
EuroCity [4] 31 0.4 - 47k
CADC [41] 1 0.6 75 7k 3 3
Audi [13] 3 0.3 3 12k 3 3 3 3 3
nuScenes [7] 2 5.5 1k 40k 3 3 3
A*3D [40] 1 55 - 39k 3 3
Waymo Open [53] 3 6.4 1150 230k 3

Ours (AIODrive) 8 2.8 100 100k 3 3 3 3 3 3 3

Table 2: Sensor description.
Sensor Brief Description

5× RGB Camera 10Hz frequency, two face forward stereo cam-
era, the others are for left, right and back direc-
tions, each with a FoV of 120◦, 1920 × 720

5× Depth Camera same as the above RGB cameras
3× LiDAR 64/800/1200 channels, 100k/600k/1M points

per frame, 360◦ horizontal FoV, −90◦ to 90◦

vertical FoV, 10Hz frequency, ≤1000m range
1× SPAD-LiDAR −17◦ to 18◦ vertical FoV, 1M points per frame
4× Radar 10Hz frequency, 360◦ horizontal FoV with 4

views (left, right, front, back), 150k points per
second, ≤1000m range

1× IMU/GPS 10Hz frequency

X-axis
Y-axis
Z-axis

Camera (Front
Left), Radar

Camera (Front Right)

Camera (Back), Radar

Camera (Left), Radar

Camera (Right), Radar

LiDAR, IMU, GPS 
SPAD-LiDAR (Top)

Downward from ground

Upward from ground

Figure 2: Sensor layout and coordinate systems.

the only work exploring a scenario with up to 300m of depth sensing using three high-resolution137

RGB cameras. In contrast, our work uses a simulator to collect long-range high-density point clouds.138

We believe that our data can help aid in the development of long-range perception algorithms before139

data from real-world long-range sensors become widely available to the research community.140

3 The AIODrive dataset141

3.1 Comprehensive sensor suite142

To increase robustness to sensor failure, multi-sensor perception approaches [24, 42, 61, 56, 62, 25,143

20] are often more favorable than single-sensor approaches [49, 57, 64, 58]. To innovate multi-sensor144

approach, it is crucial that datasets can provide comprehensive sensing modalities. To that end, we145

provide common sensors such as RGB, Depth, Stereo camera, LiDAR, IMU and GPS, as well as146

the Radar and SPAD-LiDAR sensors, which are often not available in prior work as shown in Table147

1 (except for nuScenes providing the Radar data). To the best of our knowledge, we are the first to148

provide the SPAD-LiDAR data in public perception datasets. Also, our camera, LiDAR, Radar and149

SPAD sensors all have 360◦ horizontal field of view (FoV).150

Sensor specifications. We show sensor descriptions in Table 2. Our sensor suite contains five (four151

for 360◦ sensing and one for stereo) RGB and five depth cameras, as well as three LiDAR, four Radar,152

one SPAD-LiDAR and IMU/GPS sensors. All sensors are synchronized with a frequency of 10Hz.153

Sensor layout and coordinate system. We follow KITTI and use the right-hand rule for coordinate154

systems. Specifically, for camera/Radar coordinate, we use x axis for the right, y axis pointing155

downward and z axis for the front direction. For LiDAR and IMU/GPS coordinate, we use x axis for156

the front, y axis for the left and z axis pointing upward. We summarize sensor layout and coordinate157

systems in Figure 2. To avoid transforming the coordinate between LiDAR, IMU and GPS sensors,158

we place these sensors at the same location (on top of the ego-vehicle) in simulator.159

High-density long-range point cloud. To ensure safety in high-speed driving scenarios, long-range160

perception [67] is critical. To innovate long-range perception systems, we as a community need public161

datasets that collect data using longer-range LiDAR sensors than standard 120m-range Velodyne-64162

[26]. In anticipation of new high-density long-range LiDAR sensors such as AlphaPrime [27], OS2163

[36] and Panasonic [37], we simulate LiDAR sensors with similar specifications to help aid in the164

development of long-range perception systems. Specifically, we provide three LiDAR sensors, each165

with a resolution (density) of 100k, 600k, 1M points per frame. Each point in the cloud is a tuple166

of (x, y, z, r), where (x, y, z) is the 3D location. Also, r is the simulated reflectance (also called167

intensity) value, which depends on many factors such as the sensor’s attenuation factor, distance of168

the point, and color of the reflection surface. The first LiDAR with 100k points and a range of 120m169

is to mimic the Velodyne-64, and the other two high-density long-range LiDARs are provided to170
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Table 3: Comparison of annotation availability. We provide the most complete annotations.
Dataset # 2D boxes # 3D boxes Trajectory Image seg. Point cloud seg. Motion dynamics F.g. object class Map

KITTI [12] 80k 80k 3
Cityscape [9] 65k - 3
Mapillary Vistas [35] 200k - 3
ApolloScape [17, 55] 2.5M 70k 3 3
SYNTHIA [44] - - 3
H3D [38] - 1M 3
SemanticKITTI [1] - - 3
DrivingStereo [52] - -
Argoverse [8] - 993k 3 3
EuroCity [4] 238k -
CADC [41] - 344k
Audi [13] - 42k 3 3
nuScenes [7] - 1.4M 3 3
A*3D [40] - 230k
Waymo Open [53] 9.9M 12M 3

Ours (AIODrive) 10M 10M 3 3 3 3 3 3

Car at ~130m

Car at ~80m

Velodyne-64 point cloud

Car at ~130m

Car at ~80m

Our dense depth point cloud
Figure 3: Comparison of point density between Velodyne-64 (left) and our point cloud (right).
Our point cloud with higher density provides potential for detecting objects at a large distance.

innovate long-range perception systems. All LiDARs are spinning and collecting point clouds via171

ray-casting. To increase the realism of the LiDAR point clouds, two augmentation mechanisms are172

used: (1) we randomly drop a small portion of points based on their intensity values, i.e., the lower173

the intensity is, the higher probability to be dropped; (2) we randomly perturb a small portion of174

points along the direction of the laser ray, creating noisy distance measurements.175

In addition to LiDAR, we generate depth point clouds by projecting five depth images to 3D and then176

fusion (see supp. for details). Our full-surround depth point cloud has 4M points and 1km range. We177

show a comparison of Velodyne-64 and depth point cloud in Figure 3. For a car at 130 meters, depth178

point cloud can capture a decent number of points while Velodyne-64 can not capture any point.179

SPAD-LiDAR is useful in tasks such as depth sensing [30], non-line-of-sight imaging [31, 16]. In180

anticipation of next generation SPAD-LiDAR (e.g., ON Semiconductor [47], Leica SPL100 [6]), we181

simulate SPAD-LiDAR to mimic the configurations of new SPAD-LiDAR sensors that are actively182

being developed in industry. In comparison to LiDAR (or APD-LiDAR) which requires hundreds183

of photons received in a short period to trigger an avalanche (i.e., a valid return point), SPAD is184

designed to measure every single photon. Meanwhile, SPAD-LiDAR is designed to have a higher185

spatial coverage rate (fill factor), allowing a single laser to get reflected by multiple objects along186

its propagation path, resulting in multi-echo point clouds. The multi-echo point cloud generated by187

our SPAD-LiDAR has about 1M points with a sensing range of 1km. Please refer to our supp. for188

detailed multi-echo SPAD-LiDAR simulation process. Again, we emphasize that our dataset is the189

first providing SPAD-LiDAR. Please refer to supp. for other sensors such as Radar and depth camera.190

3.2 Diverse annotations191

Annotation availability to various tasks is important to perception datasets. As shown in Table 3,192

we provide the most comprehensive annotations, which includes 2D-3D box trajectories, image and193

point cloud segmentation, motion dynamics, fine-grained object class as well as map.194

Bounding box trajectories. To support 2D-3D detection [57] and re-identification [23], 2D-3D195

tracking [58], trajectory forecasting [60], we provide 2D-3D box annotations and object identities196

as shown in Figure 4. Following KITTI [12], we use (x1, y1, x2, y2) to represent a 2D box, where197

the (x1, y1) and (x2, y2) denotes coordinates of the top left and bottom right corners. Truncation and198

occlusion measurements are also provided. To represent 3D box, we use (x, y, z, l, w, h, θ), where199

(x, y, z) is the object center, (l, w, h) denotes the box size and θ is the heading orientation.200

2D-3D segmentation. To innovate pixel-level perception algorithms, we provide 2D-3D semantic,201

instance and panoptic segmentation labels as shown in Figure 5. The 2D segmentation labels are202
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Figure 4: 2D-3D Box Trajectory Annotation. For each agent, we provide both 2D (left) and 3D
(right) tight box annotation, along with a unique ID (visualized with different colors).

Figure 5: 2D-3D Segmentation Annotation. We provide both 2D image (top) and point cloud
(bottom) segmentation. From left to right, we show semantic, instance and panoptic segmentation.

defined for each pixel in the image while the 3D segmentation provides point-wise labels on the point203

cloud. We provide segmentation labels on 23 classes such as vehicle, pedestrian, vegetation, building,204

road, sidewalk, wall, traffic sign, pole and fence. Our segmentation labels can support a range of205

tasks such as image segmentation, video object segmentation, point cloud segmentation, multi-object206

tracking and segmentation (MOTS) [54] and multi-object panoptic tracking (MOPT) [19].207

Other labels. In addition to above mainstream annotations, we also provide: (1) motion data for all208

agents including linear velocity, acceleration, and angular velocity. These motion data can be useful209

to ego-motion estimation, velocity estimation, tracking; (2) Fine-grained object class labels such as210

vehicle model class of Audi A2, Toyota Prius and Tesla Model 3; (3) Vehicle control signals such as211

throttle, steer, brake, and reverse; (4) City map and road structure, which is useful to localization,212

odometry and trajectory forecasting. Also, our dataset with point clouds and depth images can be used213

for point cloud forecasting [59] and depth estimation [32]. See supp. for details of other annotations.214

3.3 High environmental variations215 Table 4: Comparison of environmental variations.
Dataset Adv. wea./light. Crowded High-speed Vio. of rule Crash

KITTI [12]
Cityscape [9]
Mapillary Vistas [35] 3
ApolloScape [17, 55] 3
SYNTHIA [44] 3
H3D [38] 3
SemanticKITTI [1]
DrivingStereo [52] 3
Argoverse [8] 3
EuroCity [4] 3
CADC [41] 3 3
Audi [13] 3
nuScenes [7] 3 3
A*3D [40] 3 3
Waymo Open [53] 3 3

Ours (AIODrive) 3 3 3 3 3

To learn perception systems robust to rare216

driving scenarios, it is important to first in-217

clude lots of out-of-distribution data in the218

dataset for training and evaluation. How-219

ever, collecting such data is difficult in the220

real world because they rarely happen and221

can be dangerous or at a high cost, espe-222

cially for car crash. We leverage the simula-223

tor to intentionally generate such rare data224

and increase our environmental variations.225

We compare the environmental variations226

between datasets in Table 4. Though recent datasets often have adverse weather/lighting conditions,227

some are limited by having too few number of agents. Also, existing datasets often collect data with228

ego-car driving at a low speed and barely have data of violation of traffic rules, let alone car crash.229

Instead, our dataset contains these rare data and has the highest environmental variations.230

Crowded scenes. To learn perception systems robust to crowd, datasets with highly crowded scenes231

are needed. To that end, we collect many scenes with a high agent density. On average, we have 104232

agents per frame within the sensing range. We show comparison of agents per frame and total labeled233

instances between datasets in Figure 6 (a). Note that some datasets such as KITTI and Cityscape have234

a relatively lower number of labeled instances because only objects in front are labeled.235

High-speed driving. To mimic our daily driving speed, i.e., 20 to 60km/h on local road and 80 to236

120km/h on highway, we collect data by driving our ego-vehicle at a higher speed as shown in Figure237

6 (b). Specifically, our driving speed has a wider distribution, ranging from 0 to 130 km/h.238
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Figure 6: Data Statistics: (a) We compare agents density, which shows that our dataset has more
crowded scenes; (b)(c) We compare the speed of ego-vehicle and pedestrians, showing that our data
has wider distribution of speed including highway driving, person jogging and running.

Figure 7: Other Rare Data. (Left): Car crash and piled up on highway. (Right): Driving at night.

Other rare data. We also provide adverse weather and lighting (e.g., rainy, foggy and night. See Fig.239

7 right for night), car crash (Fig. 7 left), vehicles that run over the red light, speed over the limit and240

aggressive lane changing, children and adults jogging and running. Though these data happens in the241

real world, they barely exist in existing datasets. To build robust perception systems, it is important to242

include these rare scenarios in the dataset. As an example, we show the pedestrian speed in Figure 6243

(c), which contains jogging and running people. See supp. for details of other variations.244

4 Experiments245

To enable comparison with future work, we benchmarked baselines for a range of tasks including 2D246

detection, 3D detection, trajectory forecasting and point cloud forecasting1. Benchmarking for other247

tasks will be added. For fair comparison, annotation on the test set remains private while sensor data248

on train/val/test and annotation on train/val have been released. Please refer to supp. for data split.249

4.1 2D object detection250

We use FPN [28] with a ResNet50 [15] backbone as the baseline, where the backbone is pre-trained251

on ImageNet [10] and COCO [29]. We then fine-tune the baseline on AIODrive. The results are252

shown in the 1st row of Table 5, measured by the mean Average Precision (mAP) metric. Please refer253

to supp. for detailed detection evaluation protocol. We can see that FPN’s performance is reasonable254

but lower than its performance on KITTI, e.g., 93.53/89.35/79.35 for car in the easy/moderate/hard255

level. We believe this is because: (1) our evaluation requires detection at a larger range (more difficult)256

than KITTI, e.g., our ‘hard’ level requires detection of objects up to 120 meters while KITTI ‘hard’257

level requires detection up to 70 meters; (2) AIODrive has a much higher object density than KITTI.258

As a result, there will be more occluded objects in the images which are hard to detect. With the259

challenges of long-range detection and detection in crowded scenes, we hope that our dataset can260

encourage future work to further push performance.261

4.2 3D object detection262

Baselines. We use LiDAR-based 3D object detection methods such as PointRCNN [49], PointPillars263

[21], SECOND [63] as baselines. See supp. for implementation details.264

Results on AIODrive with depth point clouds. To reach the best performance, we first use our265

densest depth point cloud as inputs to baselines. As our point clouds have a longer range than prior266

datasets such as KITTI, we change the input point cloud range of detectors from 0-70m in frontal267

direction used in KITTI to 120m for all directions, to enable perception at a larger range.268

Results are summarized in Table 5, where 3D detection performance is measured by mAP. Please269

refer to supp. for detection evaluation protocol. We can see that all 3D detection baselines achieve270

1The baseline and evaluation code have been released at https://github.com/xinshuoweng/AIODrive
for users to reproduce baseline results and evaluate future methods.
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Table 5: Quantitative results of 2D/3D object detection baselines on the AIODrive test set.
Method Input Data Output Modalities Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

FPN [28] RGB from 5 cameras 2D 89.45 78.66 69.51 92.88 87.28 75.50 94.15 90.80 72.10

PointRCNN [49] Depth point cloud 3D 78.13 77.99 73.63 58.73 53.71 44.74 59.03 53.85 49.36
PointPillars [21] 80.86 77.39 69.77 55.37 47.79 40.94 60.72 50.20 46.35
SECOND [63] 81.35 79.38 70.57 62.32 59.23 54.34 61.45 58.49 52.86

Table 6: 3D detection results using point cloud with different densities in our AIODrive dataset.
Method Point Density (# of points) Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN [49] 100,000 (Velodyne-64 LiDAR p.c.) 74.98 72.73 53.85 45.31 37.37 34.66 56.95 50.70 42.96
600,000 (Long-range LiDAR p.c.) 76.74 75.17 69.76 56.39 50.14 40.38 58.71 52.37 46.83
1,000,000 (Long-range LiDAR p.c.) 77.71 77.26 71.17 58.16 51.92 43.81 59.64 52.61 47.73
4,000,000 (Depth p.c.) 78.13 77.99 73.63 58.73 53.71 44.74 59.03 53.85 49.36

1,000,000 (SPAD-LiDAR p.c.) 77.83 71.41 63.30 59.88 53.43 44.79 61.10 55.69 48.80

reasonable performance on our AIODrive dataset. Also, performance tends to decrease significantly271

from the ‘easy’ to the ‘moderate’ and then to the ‘hard’ level where the required detection range is272

increasing (see supp. for detailed evaluation protocol). Again, this shows that detection at a longer273

range is harder than detection of nearby objects. We hope that our high-density long-range point274

clouds can be used to encourage future research towards improving long-range 3D object detection.275

Effect of point cloud density. To show usefulness of our high-density point clouds, now we evaluate276

the same detector using point clouds with different density levels. Also, we adapt PointRCNN and277

show the first 3D detection baseline that works with SPAD-LiDAR point cloud inputs. We summarize278

the results in Table 6. We can see that, using (LiDAR and depth) point clouds with a higher density279

as input generally achieves higher performance, especially in the ‘hard’ level which includes faraway280

objects up to 120m. This suggests that high-density long-range point clouds could be helpful for281

improving 3D detection at a longer range. Also, for LiDAR and depth point clouds with different282

densities, we found that the differences of performance in the ‘easy’ level are not significant (except283

for pedestrians). This shows that, for cars and cyclists, the main performance bottleneck of 3D284

detection at nearby range (up to 40 meters in the ‘easy’ level) may not be point cloud density but285

other factors such as model capacity. In contrast, detection for nearby pedestrians can be significantly286

improved using point clouds with a higher density.287

We also observed a different performance pattern when using SPAD-LiDAR (the last row in Table288

6), which tends to achieve higher performance for pedestrians and cyclists (small objects) and289

lower performance for cars (large objects). We hypothesize that the higher performance for small290

objects may be due to the larger fill factor of the SPAD-LiDAR compared to APD-LiDAR (see supp.291

for details about fill factor). However, it is not fully clear why performance drops for cars. We292

hypothesize that it is because our method of using SPAD-LiDAR by merging multiple point cloud293

returns (see supp. for implementation details) does not fully exploit multi-echo information in the294

raw 3D tensor data. Future work is needed to fully leverage the SPAD-LiDAR data for 3D detection.295

Results on real-world KITTI data. Lastly but also importantly, we investigate if using our dataset296

can improve performance on the real data. To that end, we augment the KITTI training data with297

the data from our dataset to train PointRCNN [49]. This data augmentation is achieved by equally298

(same number of frames) combining data from two datasets in every batch of training. In the case we299

have a total of more frames from AIODrive than KITTI, we randomly sample frames from AIODrive300

and still maintain an equal number of frames from two datasets in every batch. We follow the KITTI301

evaluation on the test set and summarize the results in Table 7. We can see that PointRCNN trained302

with only KITTI data (the 2nd row) achieves similar performance for car as reported in [49]. Also,303

PointRCNN trained with only synthetic AIODrive data (the 1st row) achieves lower performance304

on KITTI compared to trained with the KITTI data. This suggests that domain gap exists between305

two datasets. Importantly, when we augment training data by combining data from two datasets (the306

3rd and 4th rows), we observed clear performance improvements. This proves that our AIODrive307

data can be used in concert with real data to improve performance on the real data. Moreover, higher308

performance is achieved if more augmented frames (e.g., all frames vs. 10k frames) are used. The309

best performance is achieved when both KITTI and all data from AIODrive are used for training.310

4.3 Trajectory forecasting311

Baselines. In addition to benchmark 2D and 3D object detection, which depend on only the object312

box annotation, we also benchmark trajectory forecasting to understand how challenging the trajectory313
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Table 7: 3D detection results on the KITTI dataset when training is augmented with AIODrive data.
Method Training Data Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN [49] AIODrive 65.32 46.21 39.38 24.57 19.04 18.32 40.93 30.41 26.68
KITTI 85.02 75.16 68.14 46.53 38.76 33.96 73.40 56.73 51.87
KITTI + AIODrive 10k frames 87.24 76.83 70.53 46.97 40.78 36.03 74.19 59.31 52.93
KITTI + AIODrive all frames 88.10 77.03 72.41 51.03 42.18 37.26 78.01 60.14 52.89

Table 8: Quantitative results of trajectory forecasting baselines on the AIODrive test set.

Method Pred. 20 frames (2s) Pred. 50 frames (5s)

ADE↓ FDE↓ SADE↓ SFDE↓ APD↑ FPD↑ ADE↓ FDE↓ SADE↓ SFDE↓ APD↑ FPD↑
Social-GAN, Car 1.263 2.293 1.727 3.475 5.074 10.971 4.304 6.564 5.600 9.464 10.546 19.942
Social-GAN, Pedestrian 1.258 2.172 1.826 3.534 2.070 4.135 3.308 5.448 4.602 8.276 4.275 8.849
Social-GAN, Cyclist 1.420 2.656 1.619 3.292 9.571 21.122 4.393 7.284 4.895 9.006 13.005 25.851
Social-GAN, Motorcycle 1.828 3.310 2.223 4.402 7.218 15.225 5.375 8.415 6.525 10.902 19.721 37.772
Social-GAN, Average 1.442 2.608 1.858 3.676 5.983 12.863 4.345 6.928 5.405 9.412 11.887 23.104

AgentFormer, Car 0.876 1.408 1.549 3.071 4.976 10.818 2.349 3.094 4.311 7.835 10.913 20.170
AgentFormer, Pedestrian 0.798 1.167 1.708 3.268 3.455 6.908 1.893 2.565 4.314 7.983 8.648 16.776
AgentFormer, Cyclist 1.302 2.177 1.515 3.065 4.280 7.531 2.621 3.952 2.918 5.539 5.598 11.609
AgentFormer, Motorcycle 1.730 2.603 2.709 5.024 7.388 13.492 3.547 4.580 5.061 8.311 8.374 16.551
AgentFormer, Average 1.176 1.839 1.885 3.607 5.025 9.687 2.602 3.547 4.151 7.417 8.383 16.277

data is in the AIODrive dataset. We use the most popular method Social-GAN [14] as our baseline.314

Also, as Social-GAN is relatively outdated so we benchmark another recent state-of-the-art approach315

AgentFormer [66]. Please refer to instruction page for detailed evaluation protocol.316

Metrics. We use standard ADE/FDE (Average/Final Displacement Error), and also SADE/SFDE317

(Scene-specific ADE/FDE), APD/FPD (Average/Final Pairwise Distance). Please refer to instruction318

page for detailed explanation of each metric. In brief, ADE/FDE are used to measure prediction319

accuracy for each agent individually while SADE/SFDE are used to measure prediction accuracy for320

all agents in the scene jointly. Also, APD/FPD are used to measure diversity of generated trajectories.321

Results. We summarize the results in Table 8. Overall, both methods perform reasonably consid-322

ering challenging out-of-distribution trajectories are present in the AIODrive dataset, e.g., complex323

interaction, car crash. Moreover, AgentFormer consistently outperforms Social-GAN in terms of324

accuracy (for each object category or on average), similar to the performance trend of two methods325

on other datasets (e.g., ETH/UCY [39, 22], nuScenes [7]).326

4.4 Point cloud forecasting327

Baselines. As a new task in autonomous driving, we currently do not have many publicly available328

baselines except for SPFNet [60]. Also, we create one variant as a stronger baseline for benchmarking329

in addition to the original SPFNet. Specifically, we replace the 1D-LSTM used in SPFNet with330

Conv-LSTM for better feature learning. We use 100k-point LiDAR data for both baselines.331

Metrics. Following the evaluation protocol in [60], we use standard Chamfer distance (CD) and332

Earth mover’s distance (EMD) to measure accuracy of predicted point clouds compared to ground333

truth point clouds. Also, we evaluate prediction horizon of 1 and 3 seconds.334

Table 9: Point cloud forecasting benchmarking.

Method Pred. 10 frames (1s) Pred. 30 frames (3s)

CD↓ EMD↓ CD↓ EMD↓
SPFNet [60] 0.838 438.499 0.852 446.593
SPFNet-ConvLSTM 0.507 366.985 0.554 376.208

Results are summarized in Table 9. We found that335

performance of both baselines is in the reasonable336

range of CD and EMD, although EMD are higher337

than in KITTI as reported in [60]. We believe this is338

because AIODrive dataset has much higher object339

density compared to KITTI so it is more challenging for point cloud forecasting methods to deal with340

complex object motions and predict correct object locations. We hope that this high object density341

challenge can encourage future research. Meanwhile, as CD are generally dominated by global point342

cloud structures (e.g., road, building) and AIODrive 100k-point LiDAR is designed to be similar to343

KITTI velodyne-64, CD errors are at a similar level in AIODrive and KITTI.344

5 Conclusion345

We proposed a dataset with the most diverse annotations, environmental variations and sensors. Our346

dataset can support all mainstream perception tasks and innovate multi-task multi-sensor perception347

systems. Also, we confirmed that our high-density long-range point clouds can be used to improve348

long-range perception. To enable public comparison and encourage future research in long-range349

perception, our full dataset and accompanying code will be released.350
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