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ABSTRACT

Genes don’t operate in a vacuum - they operate in the form of complex net-
works. Traditional gene expression data analysis often includes the analysis of
co-expression patterns to understand these interactions; however, most machine
learning methodologies don’t properly account for context-dependent relation-
ships between input features. Here, we propose a novel latent graph learning
framework, titled Learnable Graph Interaction Module (LGIM), that employs a
differentiable graph module to learn interactions between genes. We conduct a
pilot study of our model on seven TCGA cancer datasets, where it either outper-
forms or performs comparably to the baseline models while learning meaningful
gene representations. Conducting an interpretability analysis on the learned gene
interaction graph for breast cancer, we notice that the extracted nodes and edges
of higher importance correspond to being more predictive, and to known protein-
protein interactions respectively. Furthermore, the clusters in the learned graph
corroborate with relevant biological pathways.

1 INTRODUCTION

1.1 GENES IN CONTEXT - LEARNING CO-EXPRESSION GRAPHS

Bulk RNA sequencing is one of the most abundant types of biological data, where transcriptomic
changes between conditions (e.g. healthy vs disease) are used to identify perturbation-related genes.
While approaches such as differential expression analysis seek to isolate individual genes, comple-
mentary functional analysis methods try to detect consistent patterns in the transcriptomic landscape
Conesa et al. (2016). The aim of this is to uncover the underlying network through which the gene
functions are exerted; implying that expression alterations can spread through the links to neighbor-
ing components Barabási et al. (2011). Data-driven methods group genes with similar co-expression
patterns into gene modules, with the underlying assumption that functionally-related genes have
more similar expression profiles than unrelated ones Li et al. (2022). The widespread application
of co-expression network analysis methods, such as WGCNA Zhang & Horvath (2005), has led to
the identification of potential prognostic genes across different cancer types Yang et al. (2014); Tang
et al. (2018).

1.2 GRAPH NEURAL NETWORKS FOR EXPRESSION DATA

Unlike traditional models that treat data points independently, graph neural networks (GNNs) ex-
plicitly incorporate topological information into the training process. In the case of gene expression,
gene connectivity is often interpreted as a network of interactions between the gene products. While
different sources have been used in the literature - ConsensusPath DB in Schulte-Sasse et al. (2019),
OmniPath in Hwang et al. (2020), the Human Protein Reference Database Chereda et al. (2021), Re-
actome Liang et al. (2022), and, most often STRING, as in Zhuang et al. (2023), the use of signaling
pathways or Protein-Protein Interaction (PPI) networks as adjacency matrices is very common in
GNN models. However, these are not context-specific, and may fail to capture all gene regulatory
relationships. We note in Ramirez et al. (2021), that a Graph Convolutional Neural Network (GCN)
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that uses a co-expression based input graph performed better at cancer type prediction compared to
the same model using a PPI based graph, which could imply that the co-expression based graphs are
better at capturing complex gene-to-gene relationships. In addition to gene co-expression, matrix
factorization Han et al. (2019), and topological analysis Mandal et al. (2020); Nicolau et al. (2011)
methods have been used directly on the expression data to extract meaningful relations.

1.3 LEARNING CONNECTIONS FOR EXPRESSION DATA

We hypothesize that learning the underlying latent graph of gene interactions would help us build
better predictive models using gene expression data, in addition to uncovering novel interactions
between genes. Considering that gene interactions take the form of a graph, we can employ a variety
of algorithms for learning them. These algorithms can be broadly divided into three categories,
attention based, dynamic graph based, and graph learning based. Attention based algorithms involve
learning an attention vector pertaining to the edges and the nodes, which can be used to reconstruct
the latent graph Liu et al. (2018); Zhang et al. (2018); Abu-El-Haija et al. (2018). The primary
drawback of these methods is that they require an initial interaction matrix, which is often absent,
or potentially quite sparse in the case of gene interactions making them difficult to implement. The
dynamic graph based algorithms such as the Dynamic Graph CNNs (DGCNNs) Wang et al. (2018),
and the PGC-DGCNN Tran et al. (2018) can be employed without a-priori knowledge about the
connections, but these methods use the k-Nearest Neighbors (kNN) operation to design the graph
which is neither optimal nor differentiable. The third category of graph learning-based algorithms
design the graph in different ways such as modeling the connectivities as a learnable hyperparameter
Franceschi et al. (2019), or by implementing differentiable graph pooling modules Ying et al. (2018).
Recent advancements implement graph kernel neural networks Cosmo et al. (2021) that utilize local
filters on the graph to learn the connections.

1.4 LEARNABLE GENE INTERACTION MODULE

The outlined methods for graph learning have been scarcely used to study gene interaction networks,
and in our study, we implement and modify the state-of-the-art Differentiable Graph Module (DGM)
Kazi et al. (2023) algorithm to learn gene interactions in various cancers. The DGM algorithm was
chosen because of the end-to-end nature of its training, in addition to being able to learn larger
graphs more efficiently. The proposed model, titled Learnable Gene Interactions Module (LGIM),
modifies the DGM to perform graph-level classification of patients for clinical metadata in different
cancer datasets available in TCGA. In addition to this, the graph generation process is modified to
allow for adjacency matrices with unequal node degree distribution. We give an overview of the
contributions of our study below:

Novel latent graph learning for gene interactions. To the best of our knowledge, we are the first
to apply a latent graph learning approach to learn gene interactions from gene expression data. We
conduct a pilot study where we apply the proposed LGIM model to seven different cancer datasets,
and compare it to five baseline models where it has either better or comparable performance.

Ablations to design an optimal graph learning setting. We conduct three different ablation stud-
ies to identify the best adjacency matrix initialization method, and graph message passing algorithm.
For the LGIM, we test four initialization methods (Spearman, Full, Empty, and Random) with dif-
ferent edge probability binarization thresholds, and two message-passing algorithms (GCN, and
SAGE). Additionally, for the GNN baseline models we test two initialization methods (Spearman,
and PPI). Although these initialization methods have been compared in previous studies, the best
approach remains inconclusive. Here, we test different methods, and provide implementation de-
tails.

Interpretability studies on the learned gene interaction graph. The proposed LGIM model learns
a latent graph that represents the predicted interactions between the different genes in the input
dataset. The learned connectivity matrix for the biggest cancer dataset, BRCA, was studied using
standard gradient-based interpretability methods to identify genes and interactions that are consid-
ered by the model to be important. Through this analysis, we corroborate that the identified genes
are more predictive in nature, and that the identified edges relate to known PPIs. Additionally, we
conduct a preliminary clustering analysis which highlights that the final adjacency matrix contains
genes placed in biologically meaningful groups.
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The repository with the code for the data processing, model training, and interpretability analysis
can be found here 1.

Figure 1: LGIM model overview. To generate the input graph, the genes are assigned as nodes and
the gene expression values are assigned as node features. The edges are either initialized using a
transformation of the input data (Spearman) or without additional information (Empty, Full, and
Random). Using a convolution-based GNN, the input genes are embedded on a latent space, that is
subsequently used to update the node features and learn new graph edges, which are used to build
the adjacency matrix for the next training step. The model training is conducted end-to-end and
the new node features and edge connections are learned from the patient classification task. The
final learned graph can be used for further downstream analysis to learn more about the interactions
between different genes.

2 METHODS

2.1 DATASET PROCESSING

Datasets generated by the TCGA Research Network 2 with sufficient sample sizes (> 300 pa-
tients) were obtained via the Firebrowse 3 portal (accessed 21.06.2024) for the breast invasive car-
cinoma (BRCA), colorectal adenocarcinoma (COADREAD), glioblastoma multiforme and lower
grade glioma (GBMLGG), head and neck squamous cell carcinoma (HNSC), pan-kidney carcinoma
(KIPAN), lung adenocarcinoma (LUAD), and stomach and esophageal carcinoma (STES) cohorts.
The clinical metadata, specifically patient vital status at the latest time of follow-up (alive or dead),
and RNA-Seq data from tumor sites were filtered for patients that have both types of information
available. The downloaded Illumina HiSeq RNA-Seq expression data was normalized at the gene
level, and processed by the RSEM pipeline Li & Dewey (2011). Subsequently, we filtered out genes
absent in less than 10% of the patients, genes with little variance across samples (threshold set at
0.1), as well as non-protein coding genes using the gene product names in the STRING database as
reference Szklarczyk et al. (2023), and then the expression values were log2(x+ 1) transformed to

1https://github.com/mariaboulougouri/Gene_gr_inf/tree/main
2https://www.cancer.gov/tcga/
3http://firebrowse.org/
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re-scale them. This pre-processed dataset was divided into training, and testing sets with an 80-20
stratified split, and 10% of the training set was separated randomly to compile the validation set used
for training. The dataset statistics for all the seven cancers can be found in table A1.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are a variant of neural networks designed to better process graph-
based inputs. A graph (G) is defined by a node set (V ) consisting of n nodes, and edge set (E) con-
sisting of m edges. The connectivity of the graph is represented by the adjacency matrix A ∈ Rn×n,
and the node features by X ∈ Rn×d, where d represents the size of the node embedding. Message
Passing Neural Networks (MPNNs) utilize A and X to learn new node-level features by applying a
combination of aggregator (AGG) and combination (COM) functions. The node feature update af-
ter the kth pass (refer to eq. (1)) is conducted by aggregating features from the neighborhood nodes,
and combining them with the features of the current node. Here, (AGG(k)), and (COM (k)) refer
to the aggregation and combination functions of the lth layer, whereas xk

i refers to the node features
of the node i obtained from layer l.
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2.3 MODEL & BASELINES

The proposed Learnable Graph-Interaction Module (LGIM) uses the processed bulk RNA-
sequencing data from each patient sample as a graph input, where the nodes are represented by
the genes, and the edges are represented by their interactions. This model builds upon the algorithm
presented by Kazi et al. (2023), which consists of two components: the Differentiable Graph Mod-
ule (DGM), and the Diffusion Module. The DGM learns an optimal underlying latent graph from
the input data for a given classification task, whereas the Diffusion Module uses the connectivity
matrix learned by the DGM and the node features to obtain the new set of node features. This entire
pipeline is trained in an end-to-end fashion, with the edge probability between the nodes defined by
the relationship between their features. The probability that an edge exists between nodes i and j
is explained in eq. (2), where t is a tunable parameter, ∆(., .) is the euclidean distance, and fΘ is
the parametric function to obtain the node features. Two versions of this model have been presented
and their differences lie in the way that the edges of the latent graph are sampled, either in a discrete
or continuous fashion which results in the discrete DGM (dDGM), and continuous DGM (cDGM)
models. The LGIM model builds on top of the dDGM model, and was modified to better fit to the
task at hand. The Gumbel Top-K trick Kool et al. (2019) that was used for the discrete sampling
of the edges was replaced by a global percentage threshold applied to the euclidian distances of the
latent space to retain only the most important edges, resulting in a binary unweighted adjacency
matrix. Furthermore, it was modified to conduct the classification at a graph-level instead of the
node-level, thus allowing for sample-wise classification.

pij(X; Θ, t) = e−t∆(x̂i,x̂j)
2

= e−t∆(fΘ(xi),fΘ(xj))
2

(2)

For the LGIM model to learn the edge connectivity of the input graph, one could optionally provide
an initial adjacency matrix. The training was conducted with four different initial adjacency matri-
ces, which were the zero matrix, ones matrix, random matrix, and a matrix designed from Spearman
correlations between genes; these are referred to as the Empty, Full, Random, and Spearman ini-
tializations respectively. We note that the initial adjacency matrix is shared across all patients. In
the case of the Spearman initialization, the correlation matrix was binarized by setting all the values
between the (mean ± std * coef) to zeros, and the rest to ones. The value of “coef” is designed to
be a tunable hyperparameter. The random matrix was generated in a similar fashion, where an array
was populated by values randomly sampled from a normal distribution (mean = 0.0, std = 1).
For each comparison, the same “coef” was used to binarize the Spearman and Random initialized
matrices, to ensure the same sparsity. This LGIM model was tested with the GCNConv Kipf &
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Welling (2017) and SAGEConv Hamilton et al. (2017) message-passing algorithms (referred to as
LGIM-GCN, and LGIM-SAGE hereafter respectively) to decide on the ideal framework.

The performance of the proposed model was compared against four simple baselines, the Logistic
Regression (LogReg), Linear Support Vector Classifier (LSVC), XGBoost Chen & Guestrin (2016),
and Multi-Layer Perceptron (MLP), in addition to an out-of-the-box Graph Neural Network (GNN)
model. We tested the GNN benchmark with the GCN, and SAGE algorithms (referred to as GCN,
and SAGE models hereafter). For the two GNN models, we tested two different input adjacency
matrices, one based on the Spearman correlation, and the other designed using the PPI co-expression
scores from the STRING database. All of these models were trained with a stratified k-fold (k = 5)
pipeline, and to compare their performances we used the weighted F1 (WF1) score and the balanced
accuracy (BAcc) metrics.

2.4 INTERPRETABILITY ANALYSIS

The proposed LGIM model uses information from the learned gene features, in conjunction with
the learned interactions between the genes to conduct the classification task. To identify which
of the genes and the interactions are the most important for the classification task in the context
of different cancers, we have employed a standard gradient based interpretability technique called
“Integrated Gradients” Sundararajan et al. (2017) using the implementation provided by Captum
Kokhlikyan et al. (2020). Using this algorithm, we perturbed all the genes, and the interactions in
the learned graph to obtain node and edge level attributions for each of the samples in the datasets.
These attributions would highlight the importance that LGIM ascribes to individual genes and their
interactions during training.

For the best performing model, the final adjacency matrix was combined with the edge attribu-
tions, and the resulting matrix was hierarchically clustered using the maximum cluster number as
criterion. The maximum cluster number was estimated using matrix factorization on the Lapla-
cian of the matrix; we included the minimum number of eigenvectors after which the eigenvalues
plateau. Overrepresentation analysis Subramanian et al. (2005) was performed on each cluster us-
ing the GSEApy package Fang et al. (2022), with the total number of genes used for training set
as background. The genesets tested were GO Biological Process 2021 Ashburner et al. (2000);
The Gene Ontology Consortium et al. (2023), KEGG 2021 Human Kanehisa et al. (2025), Reac-
tome Pathways 2024 Milacic et al. (2024), WikiPathways 2024 Human Agrawal et al. (2024), Hu-
man Phenotype Ontology Gargano et al. (2024), MSigDB Hallmark 2020 Liberzon et al. (2015),
MSigDB Oncogenic Signatures Liberzon et al. (2015), Transcription Factor PPIs Xie et al. (2021).
Adjusted p values below 0.1 were considered significant.

3 RESULTS

3.1 LGIM INITIALIZED WITH PRIOR KNOWLEDGE ATTAINS COMPARABLE PERFORMANCE
AGAINST THE BASELINES ACROSS ALL CANCERS

The Learnable Gene Interaction Module (LGIM) was designed to use gene expression data for
patient-level classification tasks. In this study, we build an initial graph considering the genes to
be nodes, and the interactions between them to be the edges. We use this graph to predict the vital
status of the patient across seven different cancers. We test the LGIM-GCN model with different
initializations, such as full, empty, and random matrices, as well as a Spearman correlation-based
matrix, whose optimal sparsity was tuned as a hyperparameter (refer table A2). We noticed that the
model with the Spearman correlation-based initialization matrix consistently resulted in better per-
formances (refer tables A3 and A4), and the final adjacency matrices from this model were among
the most similar to each other across the different training folds (refer fig. 2 (H)). The model with
the random initialization was just as stable across the folds, but the full and empty initialized models
have reduced stability. All of these were compared with a set of random matrices as negative con-
trol. The higher performance in the models with Spearman initialization highlights the importance
of using prior information in order to help LGIM-GCN to attain a greater performance.

Additionally, we tested two variants of the proposed model with the Spearman initialization, LGIM-
GCN, and LGIM-SAGE, to understand which message-passing algorithm is ideal for this use-case.
We noticed that LGIM-GCN has comparable performance as that of LGIM-SAGE in terms of the F1
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Figure 2: Model performance and interpretability. (A-G) Performance comparisons of LGIM and
baselines for BRCA, KIPAN, GBMLGG, STES, HNSC, LUAD, and COADREAD respectively. (H)
Comparison of the edge stability across the 5 training folds for the LGIM models with four adjacency
matrix initializations (Spearman, Full, Empty, and Random) with Random matrices provided for
control. (I-J) Distributions of integrated gradients based on graph attributions extracted for the
LGIM model for all the nodes and the edges respectively.

score and the balanced accuracy, but throughout the training the LGIM-GCN model is consistently
more stable, which is reflected in the standard deviations for the performances (refer tables A5
and A6). Considering these two ablation studies, we chose the proposed model to be the LGIM
variant that uses the Spearman initialization, and the GCN message passing algorithm. This would
hereafter be referred to simply as LGIM.

The proposed LGIM model was compared against five different baselines which were LogReg,
LSVC, XGBoost, MLP, and a GNN. To choose the best GNN baseline, we compared GCN and
SAGE models with a Spearman and PPI co-expression adjacency matrix. Between the GCN and
SAGE models, we noticed that they have comparable performance, although the GCN is more sta-
ble during the different training folds, similar to what we notice with LGIM. Considering the two
initializations, the models based on the Spearman initialization consistently attained a good perfor-
mance, and were more stable across the folds (refer tables A7 and A8). Hence, we chose the GCN
model with the Spearman initialization to be the GNN baseline; we further tune this model to adjust
the Spearman correlation threshold (refer table A2). Among the six models trained in this study,
we noticed that LGIM outperforms all the baselines in terms of the balanced accuracy for HNSC,
LUAD, and COADREAD, whereas on BRCA, KIPAN, GBMLGG, and STES it attains a compa-
rable performance (refer table A10 and fig. 2 (A-G)). Also in terms of the F1 score, LGIM either
outperforms some baselines or reaches a comparable performance on all seven cancer datasets (refer
table A9 and fig. 2 (A-G)).
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3.2 LGIM LEARNS POTENTIAL GENE INTERACTION NETWORKS PRESENT IN BREAST
CANCER

We conducted an interpretability study on the BRCA dataset, considering that this is the biggest
among the seven cancer datasets. We chose the best performing LGIM model (WF1: 74.06±13.87,
& BAcc: 55.77 ± 2.99) and studied the learned latent graph of gene connections from fold 1 of its
training, as it was the best performing one. We employed an “Integrated Gradients”-based graph
explanation method to extract the node and edge attributions. These indicated the importance that
the model assigns to each of the genes and the connections during training. Applying the knee
locator method Satopaa et al. (2011), we identified a cutoff that extracted 77 of the most important
genes from the node attribution distribution (refer fig. 2 (I)). Similarly, we extracted 77 of the least
important genes using the node attribution distribution. In order to understand, if the genes with
the higher attribution values are more predictive, we implemented a simple LogReg model that
predicted the vital status in BRCA using only the expression values of the genes with high or low
attributions. We noticed that the LogReg model using only the high attribution genes had about 6%
higher performance in terms of balanced accuracy compared to the LogReg model that used only the
low attribution genes (BAcc: 55.28± 4.13 vs. BAcc: 49.22± 3.3). In order to corroborate this even
further, we obtained the mutual information values for all genes using the gene expression data and
vital status metadata as the label, we then binarized the scores into high and low mutual information.
We conducted a Fisher’s exact test which confirmed our hypothesis that high attribution genes also
have high mutual information (p-value: 0.015). We corroborated our findings with previous studies
conducted on the TCGA BRCA dataset Center (2016) which identify differentially expressed marker
genes for seven expression-based subtypes that significantly correlate with clinical phenotypes. 75
out of the 77 high attribution genes, and none of the low attribution genes were present in this set
of marker genes. These analyses highlighted that LGIM is capable of picking up on genes that are
more relevant to clinical metadata.

Furthermore, we analyzed the edge attributions in conjunction with the PPI co-expression values to
study if the genes connected by our model are known to have similar co-expression profiles, and
therefore a predicted interaction of their gene products. We conducted two tests, one on the global
level and the other only on the highest and lowest attribution edges. The highest attribution edges
were chosen in a similar fashion as we did for the nodes using the knee locator method, and were
6612 in number (refer fig. 2 (J)). The 6612 lowest attribution edges were then also isolated. We
observed that there isn’t a clear correlation on the global level between the edge attributions, and the
corresponding PPI co-expression values, however, we noticed that there is a mild difference between
the frequency of the presence of co-expression values for the highest and the lowest attribution edges
(198 vs. 168). These tests indicated that LGIM may be capable of assigning relative importance
values in accordance with known interactions for the genes.

This final connectivity matrix of the best performing model (fold 1, WF1: 86.4, BAcc: 51.62) was
supplemented with the edge attributions. The Laplacian of this matrix was calculated and the opti-
mal number of clusters was estimated at 14, after which the eigenvalues of the Laplacian eigenvec-
tors plateau. After hierarchical clustering of this matrix, we performed overrepresentation analysis
on each cluster to identify associated functionalities. We find cluster 7 to be significantly associated
with transcriptomic signatures related to immune response, both in terms of B cell receptor signaling
pathways (KEGG, Reactome, WikiPathways) and phenotypic aberrations of the lymphoid lineage
(Human Phenotype Ontology). Interestingly, it is also significantly associated with the transcrip-
tion factors TP63 Bankhead et al. (2020) and EP300 Gronkowska & Robaszkiewicz (2024) which
have been associated with immune regulatory gene expression in breast cancer, as well as with other
transcription factors that have separate known roles in breast cancer and immunity, namely ELF1
Gerloff et al. (2011); Seifert et al. (2019), CHD1 Zhao et al. (2017; 2020), and JUNB Ren et al.
(2023). Additional significant associations are found with transcription factors with known roles in
tumor prognosis ZNF263 Zhou et al. (2018), HNF4G Chen et al. (2022), TAF7 Zhang et al. (2025),
and IRF3 Tian et al. (2020). Other examples of clusters with consistent biological patterns include
cluster 8, which contains genes associated with Notch signaling and lipid metabolism (Hallmarks,
Reactome), and cluster 12, which contains genes associated with apoptosis (Hallmarks, GO Bio-
logical Processes, KEGG). The findings for clusters 7, 8, and 12 have been mentioned in detail in
tables A11 to A13 respectively.
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4 DISCUSSION

In this study, we present LGIM, which is to the best of our knowledge, the first end-to-end trained
latent graph learning algorithm to learn gene interactions from gene expression data. The aim of this
study was to set up a pipeline that goes beyond static gene connectivity matrices and learns more
about gene networks as a whole. We compare our proposed model against 5 baselines, including
simple models and more complex graph neural networks on seven different cancer datasets. We
either outperform the baselines or attain a comparable performance on all the benchmarks. We con-
duct an optimization study to discover the optimal adjacency matrix for initialization and message-
passing algorithm to employ, in an effort to standardize the application of graph learning algorithms
on gene expression data.

The learned graph from the LGIM model can be studied to learn more about specific genes, their
interactions, and their role. We conduct one such analysis on the learned graph from the BRCA vital
status classification task, where we used a gradient based interpretability method to extract important
nodes and edges. The important nodes correlated strongly with having higher predictive capabilities,
higher mutual information, and were indicated to be highly differentially expressed. Additionally,
the learned edges seem to overlap with known PPIs. In terms of the learned graph, we identified
gene clusters that seem to reflect biologically meaningful processes in breast cancer. These findings
highlight the exploratory potential of the learned gene connectivity matrix to discover more about
the task at hand.

The LGIM model was trained on several datasets obtained from the TCGA database, with sample
sizes ranging from 377 (COADREAD) to 1, 093 (BRCA). This small number of patient samples in
each of the datasets presents a wall in terms of the complexity of the models that can be employed.
This results in higher instability during the training process, which can be reflected in the stan-
dard deviations for the performance of all the trained models. Further approaches could potentially
focus on designing more parameter-efficient models that can work robustly in a low data setting.
These could also be augmented with data from other modalities such as epigenetics, and genetics.
Although, a potential challenge for such a task would be the fact that not all patients would be as-
sociated with all modalities. Overcoming these limitations could help us learn a more reliable latent
graph of gene interactions, even for cancers where the data is sparse. Future studies could include
the expansion of the datasets to include additional clinical metadata, such as neoplasm for binary
classification, and pathological staging for multi-class classification.

Overall, we exploit the potential of gene expression data and propose a standardized approach to
learn novel gene interactions for different cancers. Our preliminary analyses of the model findings
indicate its ability to pick up on essential information regarding the breast cancer dataset. Still, we
acknowledge that further validation on the clinical implications of this work, including exploration
of potential novel biomarkers compared to current approaches in the field, should be explored in fu-
ture work. Nonetheless, we believe that the proposed model is, through learning of the latent graph,
offering a previously-unexplored approach to provide a holistic view of the biological processes in
different tumors that drive each clinical outcome.

5 MEANINGFULNESS STATEMENT

Genes in our body interact in complex, context-specific networks, which have been widely studied as
meaningful representations of the molecular mechanisms behind our phenotypic variations, such as
predisposition to disease, or response to different therapeutic treatments. In this study, we propose
a novel interpretable graph learning pipeline, titled Learnable Gene-Interaction Module (LGIM),
designed to learn such networks. We report preliminary results on seven different cancer types, and
illustrate that we are able to extract relevant biological patterns related to breast carcinoma, that we
corroborate with findings from previous studies.
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Auer, Frank Kramer, Andreas Leha, and Tim Beißbarth. Explaining decisions of graph con-
volutional neural networks: Patient-specific molecular subnetworks responsible for metastasis
prediction in breast cancer. Genome Medicine, 13(1):42, March 2021. ISSN 1756-994X. doi:
10.1186/s13073-021-00845-7.

Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera, Andrew
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Luca Rossi, and Andrea Torsello. Graph kernel neural networks. IEEE Transactions on Neu-
ral Networks and Learning Systems, pp. 1–14, 2021. ISSN 2162-2388. doi: 10.1109/tnnls.2024.
3400850. URL http://dx.doi.org/10.1109/TNNLS.2024.3400850.

Zhuoqing Fang, Xinyuan Liu, and Gary Peltz. Gseapy: a comprehensive package for perform-
ing gene set enrichment analysis in python. Bioinformatics, 39(1):btac757, 11 2022. ISSN
1367-4811. doi: 10.1093/bioinformatics/btac757. URL https://doi.org/10.1093/
bioinformatics/btac757.

9

https://proceedings.neurips.cc/paper_files/paper/2018/file/8a94ecfa54dcb88a2fa993bfa6388f9e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8a94ecfa54dcb88a2fa993bfa6388f9e-Paper.pdf
https://www.nature.com/articles/nrg2918
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/BRCA-TP/mRNAseq_Clustering_CNMF/nozzle.html
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/BRCA-TP/mRNAseq_Clustering_CNMF/nozzle.html
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/BRCA-TP/mRNAseq_Clustering_CNMF/nozzle.html
http://dx.doi.org/10.1109/TNNLS.2024.3400850
https://doi.org/10.1093/bioinformatics/btac757
https://doi.org/10.1093/bioinformatics/btac757


Published at LMRL Workshop at ICLR 2025

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1972–1982. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/franceschi19a.html.

Michael A. Gargano, Nicolas Matentzoglu, Ben Coleman, Eunice B. Addo-Lartey, Anna V. Anag-
nostopoulos, Joel Anderton, Paul Avillach, Anita M. Bagley, Eduard Bakštein, James P. Balhoff,
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A APPENDIX

Statistic BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
No. of patients 1093 889 666 599 520 515 377
No. of genes 2527 2725 2051 3042 2621 2461 2356

Table A1: Statistics regarding the number of patient samples, and the genes for the seven TCGA
cancer datasets after conducting the data processing pipeline.
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Dataset Hyperparameter Value
Spearman Correlation Threshold [0.25, 0.5, 0.75,1.0, 1.25, 1.5]
Global Edge Threshold [6.25, 12.5, 25,37.5, 50, 75]

BRCA Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75, 1.0,1.25, 1.5]
Global Edge Threshold [6.25, 12.5,25, 37.5, 50, 75]

KIPAN Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75, 1.0,1.25, 1.5]
Global Edge Threshold [6.25,12.5, 25, 37.5, 50, 75]

GBMLGG Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75, 1.0,1.25, 1.5]
Global Edge Threshold [6.25, 12.5, 25,37.5, 50, 75]

STES Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75,1.0, 1.25, 1.5]
Global Edge Threshold [6.25, 12.5, 25,37.5, 50, 75]

HNSC Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75,1.0, 1.25, 1.5]
Global Edge Threshold [6.25, 12.5,25, 37.5, 50, 75]

LUAD Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]
Spearman Correlation Threshold [0.25, 0.5, 0.75, 1.0,1.25, 1.5]
Global Edge Threshold [6.25, 12.5,25, 37.5, 50, 75]

COADREAD Batch Size [1, 2,4, 8, 16]
Number of Nodes [4, 8, 16, 32,64]
Learning Rate [1e− 3,1e− 4, 1e− 5]

Table A2: Hyperparameter tuning for the proposed LGIM model conducted for the seven cancer
datasets.

Init BRCA KIPAN HNSC LUAD GBMLGG STES COADREAD
Spearman 74.06 ± 13.87 73.9 ± 4.57 63.22 ± 3.86 60.57 ± 8.89 76.82 ± 2.58 67.56 ± 8.69 79.97 ± 1.85
Full 57.04 ± 9.71 73.84 ± 4.64 52.31 ± 14.89 64.57 ± 3.64 69.84 ± 11.06 59.6 ± 13.22 70.25 ± 11.13
Empty 58.1 ± 16.07 75.12 ± 2.23 61.47 ± 8.58 54.77 ± 13.47 68.69 ± 5.73 59.47 ± 12.2 69.81 ± 24.29
Random 55.43 ± 18.99 69.09 ±10.51 56.51 ± 9.08 57.10 ± 14.39 72.13 ± 5.52 66.03 ± 12.09 62.15 ± 16.71

Table A3: Ablation study to understand the effect of four different adjacency matrix initializa-
tions, Spearman, Full, Empty and Random, on the LGIM model. Performances reported are for the
weighted F1 score.

Init BRCA KIPAN HNSC LUAD GBMLGG STES COADREAD
Spearman 55.77 ± 2.99 67.04 ± 2.08 60.13 ± 1.67 62.21 ± 3.82 73.14 ± 2.23 57.95 ± 3.36 59.44 ± 2.76
Full 58.59 ± 2.52 67.8 ± 4.52 57.2 ± 4.3 58.9 ± 2.44 66.77 ± 3.63 58.48 ± 2.73 61.21 ± 3.98
Empty 59.03 ± 1.73 68.46 ± 3.07 61.08 ± 3.53 59.6 ± 2.69 70.94 ± 4.68 55.75 ± 3.05 65.28 ± 7.46
Random 58.36 ± 1.55 67.33 ± 2.60 58.09 ± 1.38 56.48 ± 1.35 67.56 ± 5.42 56.25 ± 1.29 60.89 ± 5.23

Table A4: Ablation study to understand the effect of four different adjacency matrix initializations,
Spearman, Full, Empty and Random, on the LGIM model. Performances reported are for the bal-
anced accuracy score.
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Model BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
GCN 72.8 ± 11.42 75.88 ± 4.66 76.91 ± 2.57 67.34 ± 7.81 52.48 ± 13.98 58.35 ± 9.35 72.61 ± 8.42
SAGE 61.9 ± 19.74 77.93 ± 1.35 78.94 ± 1.31 71.32 ± 6.50 63.12 ± 5.79 68.36 ± 2.39 77.37 ± 4.9
LGIM 74.06 ± 13.87 73.9 ± 4.57 76.82 ± 2.58 67.56 ± 8.69 63.22 ± 3.86 60.57 ± 8.89 79.97 ± 1.85
LGIM-SAGE 72.28 ± 9.65 74.98 ± 3.65 77.42 ± 3.32 65.4 ± 5.94 65.14 ± 2.94 68.56 ± 11.96 76.69 ± 5.04

Table A5: Ablation study to understand the effect of GCN, and SAGE message passing algorithms
on the GNN baseline, and the LGIM model. Performances reported are for the weighted F1 score.

Model BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
GCN 57.01 ± 2.99 71.33 ± 1.76 74.46 ± 2.99 60.46 ± 4.10 57.31 ± 2.49 54.87 ± 2.01 57.82 ± 4.65
SAGE 61.48 ± 2.84 73.39 ± 1.85 75.44 ± 2.93 65.21 ± 2.16 64.18 ± 1.89 62.16 ± 3.82 66.95 ± 4.28
LGIM 55.77 ± 2.99 67.04 ± 2.08 73.14 ± 2.23 57.95 ± 3.36 60.13 ± 1.67 62.21 ± 3.82 59.44 ± 2.76
LGIM-SAGE 55.89 ± 3.44 73.86 ± 2.38 75.18 ± 4.21 58.89 ± 4.72 62.39 ± 3.84 61.12 ± 4.15 64.74 ± 3.99

Table A6: Ablation study to understand the effect of GCN, and SAGE message passing algorithms
on the GNN baseline, and the LGIM model. Performances reported are for the balanced accuracy
score.

Model Init BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
GCN Spearman 72.8 ± 11.42 75.88 ± 4.66 76.91 ± 2.57 67.34 ± 7.81 52.48 ± 13.98 58.35 ± 9.35 72.61 ± 8.42
GCN PPI 66.61 ± 8.47 76.6 ± 4.83 77.82 ± 3.6 63.71 ± 6.1 52.52 ± 7.35 58.33 ± 5.26 73.41 ± 11.39
SAGE Spearman 61.9 ± 19.74 77.93 ± 1.35 78.94 ± 1.31 71.32 ± 6.50 63.12 ± 5.79 68.36 ± 2.39 77.37 ± 4.9
SAGE PPI 64.12 ± 12.87 76.25 ± 2.64 77.95 ± 3.18 65.98 ± 8.22 63.08 ± 4.61 65.94 ± 4.96 77.09 ± 4.68

Table A7: Ablation study to understand the effect of two different adjacency matrix initializations,
Spearman and PPI, on the GCN and SAGE models. Performances reported are for the weighted F1
score.

Model Init BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
GCN Spearman 57.01 ± 2.99 71.33 ± 1.76 74.46 ± 2.99 60.46 ± 4.10 57.31 ± 2.49 54.87 ± 2.01 57.82 ± 4.65
GCN PPI 59.2 ± 3.65 72.19 ± 1.83 75.17 ± 4.35 62.86 ± 5.16 58.7 ± 2.49 60.69 ± 2.81 65.25 ± 7.92
SAGE Spearman 61.48 ± 2.84 73.39 ± 1.85 75.44 ± 2.93 65.21 ± 2.16 64.18 ± 1.89 62.16 ± 3.82 66.95 ± 4.28
SAGE PPI 61.52 ± 3.59 73.25 ± 2.21 75.75 ± 2.83 64.62 ± 2.13 65.38 ± 2.39 63.21 ± 3.96 68.20 ± 5.7

Table A8: Ablation study to understand the effect of two different adjacency matrix initializations,
Spearman and PPI, on the GCN and SAGE models. Performances reported are for the balanced
accuracy score.

Model BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
LogReg 84.39 ± 0.92 77.43 ± 1.94 77.48 ± 1.41 73.09 ± 2.13 65.09 ± 2.63 69.86 ± 4.44 80.61 ± 2.46
LSVC 82.17 ± 0.89 77.12 ± 3.39 75.67 ± 2.60 72.76 ± 2.29 64.02 ± 2.38 66.76 ± 1.71 77.90 ± 5.35
XGB 63.26 ± 3.34 40.72 ± 3.97 52.87 ± 1.87 34.85 ± 7.85 39.07 ± 2.09 40.90 ± 5.76 72.05 ± 5.56
MLP 85.18 ± 0.38 78.81 ± 2.27 74.60 ± 1.98 71.92 ± 2.10 62.04 ± 4.05 70.63 ± 2.50 84.30 ± 2.06
GCN 72.8 ± 11.42 75.88 ± 4.66 76.91 ± 2.57 67.34 ± 7.81 52.48 ± 13.98 58.35 ± 9.35 72.61 ± 8.42
LGIM 74.06 ± 13.87 73.9 ± 4.57 76.82 ± 2.58 67.56 ± 8.69 63.22 ± 3.86 60.57 ± 8.89 79.97 ± 1.85

Table A9: Performance of the 5 baseline models, and the proposed LGIM model on the seven cancer
datasets in terms of the weighted F1 score.

Model BRCA KIPAN GBMLGG STES HNSC LUAD COADREAD
LogReg 52.62 ± 1.91 67.95 ± 3.01 73.15 ± 2.39 59.46 ± 2.27 59.72 ± 3.04 57.67 ± 5.49 52.87 ± 4.48
LSVC 50.97 ± 1.83 69.49 ± 3.57 71.83 ± 2.89 63.01 ± 1.54 59.68 ± 3.31 56.18 ± 1.34 57.87 ± 8.14
XGB 53.93 ± 5.38 55.29 ± 2.88 63.86 ± 2.74 52.45 ± 7.05 53.26 ± 0.99 53.07 ± 5.75 52.68 ± 8.00
MLP 49.41 ± 1.00 66.79 ± 3.40 68.19 ± 2.52 56.32 ± 1.84 55.18 ± 4.83 57.19 ± 3.00 58.66 ± 3.81
GCN 57.01 ± 2.99 71.33 ± 1.76 74.46 ± 2.99 60.46 ± 4.10 57.31 ± 2.49 54.87 ± 2.01 57.82 ± 4.65
LGIM 55.77 ± 2.99 67.04 ± 2.08 73.14 ± 2.23 57.95 ± 3.36 60.13 ± 1.67 62.21 ± 3.82 59.44 ± 2.76

Table A10: Performance of the 5 baseline models, and the proposed LGIM model on the seven
cancer datasets in terms of the balanced accuracy score.
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Term Geneset Adj P Val
Lymphoma (HP:0002665) Human Phenotype Ontology 0.022
Abnormality of cells of the lymphoid lineage (HP:0012140) Human Phenotype Ontology 0.032
Lymphopenia (HP:0001888) Human Phenotype Ontology 0.032
Leukopenia (HP:0001882) Human Phenotype Ontology 0.032
B Cell Receptor Signaling WP23 WikiPathways 2024 Human 0.001
B cell receptor signaling pathway KEGG 2021 Human 0.078
Antigen Activates B Cell Receptor (BCR) Leading to Generation of Second Messengers Reactome Pathways 2024 0.035
Signaling by the B Cell Receptor (BCR) Reactome Pathways 2024 0.035
TP63 Transcription Factor PPIs 0.075
EP300 Transcription Factor PPIs 0.075
ELF1 Transcription Factor PPIs 0.075
CHD1 Transcription Factor PPIs 0.075
JUNB Transcription Factor PPIs 0.075
ZNF263 Transcription Factor PPIs 0.075
HNF4G Transcription Factor PPIs 0.099
TAF7 Transcription Factor PPIs 0.099
IRF3 Transcription Factor PPIs 0.099

Table A11: Overrepresentation analysis for cluster 7 from the best performing LGIM model fold on
the BRCA dataset. Selected terms are shown.

Term Geneset Adj P Val
Adipogenesis MSigDB Hallmark 2020 0.088
Pperoxisome MSigDB Hallmark 2020 0.088
Drug ADME Reactome Pathways 2024 0.047
Biological Oxidations Reactome Pathways 2024 0.051
Metabolism Reactome Pathways 2024 0.051
Metabolism of Lipids Reactome Pathways 2024 0.051
NOTCH3 Intracellular Domain Regulates Transcription Reactome Pathways 2024 0.051
Signaling by NOTCH3 Reactome Pathways 2024 0.051
Triglyceride Metabolism Reactome Pathways 2024 0.075
Fatty Acids Reactome Pathways 2024 0.085
Metabolism of Steroid Hormones Reactome Pathways 2024 0.085

Table A12: Overrepresentation analysis for cluster 8 from the best performing LGIM model fold on
the BRCA dataset. Selected terms are shown.

Term Geneset Adj P Val
TNF-alpha Signaling via NF-kB MSigDB Hallmark 2020 0.014
Inflammatory Response MSigDB Hallmark 2020 0.014
negative regulation of intrinsic apoptotic signaling pathway (GO:2001243) GO Biological Process 2021 0.087
negative regulation of apoptotic signaling pathway (GO:2001234) GO Biological Process 2021 0.087
TBX5 GO Biological Process 2021 0.041
JARID2 GO Biological Process 2021 0.041
ESR1 GO Biological Process 2021 0.060
GATA4 GO Biological Process 2021 0.060
NF-kappa B signaling pathway KEGG 2021 Human 0.070
IL-17 signaling pathway KEGG 2021 Human 0.070
Apoptosis KEGG 2021 Human 0.078

Table A13: Overrepresentation analysis for cluster 12 from the best performing LGIM model fold
on the BRCA dataset. Selected terms are shown.
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