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ABSTRACT

In this work, we undertake both theoretical and empirical analysis of noise
scheduling strategies within the scope of denoising diffusion generative models.
We investigate the training noise schedule through the lens of power spectrum and
introduce a novel metric, weighted signal-noise-ratio (WSNR), to uniformly rep-
resent the noise level in both RGB and latent spaces, enhancing the performance
of high-resolution models in these spaces with WSNR-Equivalent training noise
schedules. Further, we examine the reverse sampling process using the frame-
work of Ordinary Differential Equations (ODEs), elucidating the concept of the
optimal denoiser and providing insights into data-driven sampling noise sched-
ules. We explore the correlation between the number of evaluation points and
the generation quality to optimize the acceleration of the ODE solver in the dif-
fusion model. Based on practical considerations of evaluation point effects, we
propose an adaptive scheme to choose numerical methods within computational
constraints, balancing efficacy and efficiency. Our approach, requiring no ad-
ditional training, refines the FID of pre-trained CIFAR-10 and FFHQ-64 models
from 1.92 and 2.45 to 1.89 and 2.25, respectively, utilizing 35 network evaluations
per image.

1 INTRODUCTION

Denoising diffusion generative models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020b;
Karras et al., 2022; Meng et al., 2023; Xue et al., 2023; Song et al., 2023) have become crucial
in developing state-of-the-art generative models due to their ability to generate new, unseen data
samples after training on an existing dataset. They have demonstrated unprecedented success in the
synthesis of text-to-image (Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022), 3D objects
(Poole et al., 2022; Lin et al., 2022; Shue et al., 2022; Bautista et al., 2022), audio (Kong et al., 2020),
time series (Tashiro et al., 2021; Biloš et al., 2022), and molecules (Wu et al., 2022; Qiao et al., 2022;
Xu et al., 2022). Among these, denoising diffusion generative models have garnered considerable
attention due to their exceptional ability to generate high-quality synthetic data. However, current
noise scheduling strategies remains handcrafting for each dataset, such as VP (Ho et al., 2020), VE
(Song et al., 2020b), Cosine (Nichol & Dhariwal, 2021) and EDM (Karras et al., 2022). These noise
schedules perform well in low-resolution RGB spaces but yield poorer results in higher resolutions
(Dhariwal & Nichol, 2021; Hoogeboom et al., 2023). Additionally, we observe that the sampling
efficiency of diffusion models can be enhanced by employing different sampling noise schedules
for various datasets. These observations lead us to rethink the noise schedule of diffusion-based
generative models.

We first analyze and quantify the noise level in data during the forward process of diffusion models.
As illustrated in Fig. 2, a notable variance in noise levels across images of different resolutions when
subjected to Gaussian noise with identical standard deviations. Specifically, high-resolution images
display lower noise levels, while lower-resolution images exhibit higher noise levels. Inspired by
this observation, we conduct frequency domain analysis on power spectrum, where we notice a
uniform average power spectrum of isotropic Gaussian noise across all frequencies. Delving deeper,
we propose a novel metric, weighted signal-noise-ratio (WSNR), weighting SNR for each frequency
component, and observe that WSNR is consistent across different resolutions at the same noise level.
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For the sampling process of the diffusion model (Song et al., 2020b), an ODE solver is typically
employed for simplicity. Under the framework of probability flow ODE, the diffusion model predicts
a clean image, x0, at each step based on the current noisy data xt, which can be viewed as a denoiser,
D(xt). Given a finite dataset, an ideal solution for the denoiser D(xt) can be found as the weighted
sum of all clean data in the dataset. This weight is normalized by a softmax function, related to the
distance between the noisy data xt and each clean data point. Building on this ideal solution, we
delve into the relationship between the probability distribution of the generated data and the initial
noise distribution at the start point. We discover that the diversity of the generated data is jointly
influenced by the initial Gaussian distribution at the start point and the Euclidean distance from the
data points in the dataset (as illustrated in Fig. 4 and elaborately explained in Sec. 5). Drawing
from this analysis, we propose a data-driven sampling noise schedule to determine the integration
interval of the ODE for the balance of the efficiency and generation quality.

Additionally, as shown in Tab. 4, we examine the number of evaluation points, specifically the
unique time steps at which the diffusion model makes predictions, and analyze its impact on the
generation quality. Our study reveals that an increased number of evaluation points leads to better
results when the step size is relatively large. Conversely, with smaller step sizes, the advantage of
adding more evaluation points becomes less significant. Drawing on these findings, we propose a
strategy for dynamically selecting numerical methods according to computational constraints, aim-
ing to optimize generation quality. Our approach, requiring no additional training, refines the FID
of pre-trained CIFAR-10 and FFHQ-64 models from 1.92 and 2.45 to 1.89 and 2.25, respectively,
utilizing 35 network evaluations per image.

Our contributions are listed as follows: (1) We propose a novel metric, WSNR, to consistently
quantifies the noise level of the training data in both the RGB space and latent space. A WSNR-
Equivalent training noise schedule is proposed to improve the performance of diffusion model in the
RGB space and latent space. (2) In theory, we analyze that the ODE sampling noise schedule should
be data-driven. Consequently, we propose estimating the integration interval based on the average
data distance, which achieves the trade-off between the quality of generated data and computational
cost. (3) We empirically explore the relationship between the number of evaluation points and
the generation quality. Our findings lead us to develop a Number of Function Evaluations (NFE)-
guided sampling noise schedule, which enables dynamic switching of numerical methods based on
the allocated NFE budget. (4) Our approach refines the FID of pre-trained CIFAR-10 and FFHQ-
64 models from 1.92 and 2.45 to 1.89 and 2.25, respectively, utilizing 35 network evaluations per
image.

2 RELATED WORK

Score-based diffusion models (Song et al., 2020b; Ho et al., 2020) are a generative model that
perturbes data with Gaussian noise through a diffusion process for training, and the reverse process
is learned to transform the Gaussian distribution back to the data distribution. Perturbing data points
with noise populates low data density regions to improve the accuracy of estimated scores, resulting
in stable training and image sampling. The forward process is controlled by the handcrafted noise
schedule. Recent works (Chen, 2023; Hoogeboom et al., 2023) propose the carefully designed noise
schedule and demonstrate the schedule is superior to the VP, VE and Cosine schedule on the RGB
space. Different from the previous works, our method is based on the analysis of power spectrum
and quantifies the noise level numerically. Besides, the WSNR-Equivalent noise schedule is valid
on both the latent space and RGB space, which has not been discussed in the previous works. The
SNR concept is first proposed in (Kingma et al., 2021). Different from SNR, WSNR is consistent
across different resolutions and even in latent space.

The probability flow ODE is first introduced by (Song et al., 2020b). Under the ODE framework,
DDIM (Song et al., 2020a) is identical to the explicit Euler method. Jolicoeur-Martineau et al.
(2021) uses a standard higher-order adaptive SDE solver to accelerate the sampling process. (Lu
et al., 2022) proposes to use the high-order ODE solver in log (σ) space to greatly accelerate the
sampling of diffusion models while keep considerable generation quality. (Zhang & Chen, 2022)
is a concurrent work with (Lu et al., 2022), which leverages a semilinear structure of the learned
diffusion process to reduce the discretization error. Different from the previous works, our analysis
aims at exploring the relationship between the sampling noise schedule and dataset, rather than the
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Figure 1: Left: Representation of the training noise schedule in the log(σ) space, expressed in
probability density format. Right: The sampling noise schedule represented in the time t space.

acceleration of ODE solver. The ideal denoiser is first introduced in (Karras et al., 2022), which is
to simplify the design space of diffusion-based generative models. Our analysis is further extend
the solution of ideal denoiser to analyze the integration interval of sampling process. Our dynamic
schedule only includes the explicit Runge-Kutta methods, such as Heun’s method, Midpoint method
and 3rd-order method, which targets at exploring of the relationship between the number of evalua-
tion points and the generation quality.

3 SIMPLE EXPRESSION OF DIFFUSION MODEL

The forward diffusion process commences with a clean image y ∼ pdata(y). This process intro-
duces isotropic Gaussian noise σn ∼ N (0, σ2I) into the clean image y, with the goal of populating
low data density regions. This action is designed to enhance the accuracy of estimated gradient
scores ∇xlog p(x), where x = y + σn. The forward diffusion process is described by a stochastic
differential equation (SDE), which maintains the desired distribution p as sample x evolves over
time (Song et al., 2020b). The corresponding probability flow ordinary differential equation (ODE)
enables a deterministic process whose trajectories share the same marginal probability densities.
The forward SDE and reverse ODE are formulated as:

Forward SDE: dx =
√
2σdw

Reverse ODE: dx =
(x−D(x;σ))

σ
dσ,

(1)

where D(x;σ) is a denoiser function. Pioneering diffusion models (Ho et al., 2020; Song et al.,
2020b; Kingma et al., 2021) characterize a noise schedule, σ(t), and sample from a distribution
t ∼ U(tmin, tmax). According to “Method of Jacobians”, the conventional noise schedule rooted in
variable t can be cast as a probability density function (PDF): p(σ) = pt(t

−1(σ))|dt/dσ(t)|, where
pt signifies the PDF associated with the time variable t, illustrated in Fig. 1. The sampling approach
leans on the advanced ODE numerical methods, enabling discretization of the time variable t at
uniform intervals. As highlighted by (Karras et al., 2022), it’s noteworthy that the noise schedule
during sampling, σsample(t), can differ from the training noise schedule, σ(t).

4 UNDERSTANDING DIFFUSION MODEL FROM POWER SPECTRUM

Typically, the same noise schedule σ(t) is applied across many image datasets. Nevertheless, the
noise level in the noisy image x relative to the original clean image y demonstrates variability de-
pending on the image size, as illustrated in Fig. 2. This variability arises due to the noise schedule
overlooking a prior knowledge embedded in images, including valuable information from neigh-
boring pixels. We introduce a novel metric, the Weighted Signal-to-Noise Ratio (WSNR), which
facilitates a coherent portrayal of the noise level, irrespective of image resolution variations. WSNR
hinges on the expected power spectrum across distinct frequency components. More precisely, the
WSNR of a noisy image y + σn with dimensions (C,H,W ) is defined as:

WSNR(Py, σ) =

C−1∑
c=0

H−1∑
u=0

W−1∑
v=0

Py,c(u, v)∑H−1
u=0

∑W−1
v=0 Py,c(u, v)

Py,c(u, v)

E[Pσn,c(u, v)]
, (2)
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Figure 2: Comparison of noisy images with the same σ, SNR and WSNR. The top row reveals that
higher-resolution images exhibit lower noise levels when additional Gaussian noise with σ = 0.5 is
applied. The bottom row demonstrates similar noise levels in noisy images with the same WSNR.

(a) (b) (c)

Figure 3: (a) The power spectrum of CIFAR-10 dataset, suggesting that natural scenes are dominated
by low-frequency components with a sharp decline as move to high-frequency components. (b) The
expected power spectrum of the isotropic Gaussian noise σn. Within this spectrum, each frequency
component maintains a consistent power, σ2. (c) The expected power spectrum of the noisy images.
As the images and the Gaussian noise are independent, the expected power spectrum is simply equal
to the summation of (a) and (b).

where P·,c(u, v) is the power of the frequency component at (u, v) within the c-th channel. The
first term signifies the proportion of power contributed by each frequency component to the total
power, while the second term represents the signal-to-noise ratio at that particular frequency compo-
nent. For isotropic Gaussian noise σn, the expected power spectrum of each frequency component
remains constant at σ2, as illustrated in Fig. 3. This can be formulated as follows:

E[Pσn(u, v)] = σ2E[Fn(u, v)F
∗
n(u, v)] =

σ2

HW

H−1∑
k=0

W−1∑
l=0

E[n(k, l)2] = σ2. (3)

For simplicity, the channel index c is ignored in Eq. 3. See Appendix for the detailed derivation.

In the right plot of Fig. 2, a notable differentiation in the WSNR curves is evident among images
with diverse resolutions. Employing a constant training noise schedule, illustrated in the left plot
of Fig. 1 is inappropriate across multiple resolutions in RGB space and latent space data. We pro-
pose WSNR-Equivalent training noise schedule aimed at maintaining consistency in the PDF of
WSNR, p(WSNR(Ey∼pdata(y)[Py], σ)), across assorted resolutions or within latent spaces. Here,
the averaged power spectrum across the entire training dataset is used as a proxy.

4.1 EXPERIMENTS WITH WSNR-EQUIVALENT TRAINING NOISE SCHEDULE

We elucidate the experiments conducted to validate the effectiveness of the WSNR-Equivalent Train-
ing Noise Schedule in advancing the performance of diffusion models. We show that the WSNR-
Equivalent Training Noise Schedule can benefit both the generation in RGB space and latent space.
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Table 1: FID on FFHQ dataset at different res-
olutions. p(WSNR) is our WSNR-Equivalent
training noise schedule. p(σ) means the EDM
training noise schedule.

Resolution 64×64 128×128 256×256

p(WSNR) 3.70 6.15 7.89
p(σ) 3.70 7.13 11.49

Table 2: FID on ImageNet 256×256 dataset.
Both the models are trained in the 32×32 la-
tent space, which show that our training noise
schedule benefits the latent diffusion model.

Network Params(↓) FID(↓)
UViT-M, p(WSNR) 131M 3.38

UViT-M, p(σ) 131M 4.80
UViT-L, p(σ) 287M 3.40

Training details. We first train diffusion models with WSNR-Equivalent training noise schedule
across multiple scales on FFHQ dataset (Karras et al., 2019) in the RGB space and ImageNet (Deng
et al., 2009) in the latent space (Rombach et al., 2022). All the training noise schedules are aligned
with the p(WSNR) of the ImageNet dataset at 64x64 resolution in the RGB space under the EDM
noise schedule (Karras et al., 2022). For a fair comparison, the models on FFHQ dataset share the
same network architecture with the baseline models. For FFHQ-64×64, the network is identical to
(Karras et al., 2022). For FFHQ-128×128 and FFHQ-256×256, we further increase the number of
stage by 1 and 2, respectively, to ensure the resolution of mid block feature maps in U-Net is the
same as that in FFHQ-64×64. All the models are trained for 780k iterations, with the batch size of
256 and no weight decay. The learning rate is set as 0.002 with 40000 iteration for linear warmup.
The exponential moving average rate is 0.9996.

For ImageNet dataset experiment, UViT-M (Bao et al., 2023) is adopted as backbone for efficient
training. We keep the same hyperparameter with the original implementation (Bao et al., 2023). The
training objective function is replaced with the EDM precondition (Karras et al., 2022). We follow
latent diffusion models (Rombach et al., 2022) to convert images in 256×256×3 shape to latent
representations at 32×32×4 shape, using the pre-trained image autoencoder provided by (Rombach
et al., 2022).

As shown in Tab. 1, there is a parity between the FID scores obtained under both noise schedules,
with each exhibiting a score of 3.70, for the 64×64 resolution. However, as the resolution increases,
a noticeable divergence in the FID scores is observed between the two noise schedules. In the case
of 128×128 resolution, the WSNR-Equivalent noise schedule manifests a lower FID score of 6.15,
implying superior image quality and diversity compared to the EDM schedule, which posts a score
of 7.13. The divergence is more pronounced at the 256×256 resolution, where the FID score under
the WSNR-Equivalent schedule is 7.89, significantly better than the FID score of 11.49 under the
EDM noise schedule. As delineated in Tab. 2, UViT-M, leveraging our WSNR-Equivalent noise
schedule, attains a superior FID score compared to the UViT-L model, whose parameter count is
more than double that of UViT-M.

The EDM noise schedule is proposed to improve the training efforts at the intermediate noise levels
at the low resolution, which is depicted by the standard deviation σ of the additional Gaussian noise.
The results in Tab. 1 demonstrate that our proposed WSNR is a better metric to quantize the noise
level in the forward diffusion process. Tab. 2 manifests that WSNR serves as a valid metric to
illustrate the noise level in the latent space.

5 UNDERSTANDING DIFFUSION MODEL FROM ODE PROBABILITY FLOW

Suppose that the noisy image xi = yi + σn and the distance between clean images dij = yi − yj ,
then we can derive the ideal output of the denoiser as following:

D(x;σ) =

∑
j N (x;yj , σ

2I)yj∑
j N (x;yj , σ2I)

=
∑
j

softmax(
||dij + σn||2

−2σ2
)yj =

∑
j

pjyj (4)

The result shows that the ideal output is the weighted average of clean image and the weights are
the normalized by the softmax function. The weight pi can be further derived as:

pi =
exp( ||dii||2+2σ⟨dii,n⟩+||σn||2

−2σ2 )∑
j exp(

||dij ||2+2σ⟨dij ,n⟩+||σn||2
−2σ2 )

=
1

1 +
∑

j j ̸=i exp(
||dij ||2+2σ⟨dij ,n⟩

−2σ2 )
, (5)
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(a) Probability of Synthesized Data. (b) ODE Trajectory. (c) Ideal Normalized Weight.

Figure 4: Analysis of ODE Probability Flow on a toy 1D dataset, where pdata is four Dirac peaks
at x = 1, 0.5, 0,−2. (a) The probability of the synthesized data from Gaussian noise. As the
σ increases, the distribution of the generated data progressively converges to the true underlying
distribution. (b) A sketch of ODE curvature in 1D, where the color of the bolded curves corresponds
to the color of the curves in (c). (c) The softmax weight of the source data point. As shown in Eq. 4,
the ideal denoiser outputs the weighted average of the clean dataset. The softmax weight approaches
1
N as σ increases. At low noise level, the ideal prediction is the clean source data.
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Figure 6: Left: The distribution of the average Euclidean dis-
tance ||d⋆||2 in Eq. 6 on CIFAR-10, FFHQ-64 and ImageNet-
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pass over 98% of the samples, exceeding the theoretical upper
bounds provided by Eq. 7. Right: The softmax weight curve
of upper-bound proxies. The x-axis represents log(σ). At the
proxy point, the softmax weight is small enough to achieve the
trade-off between the image quality and sampling efficiency.

where dii = 0 and ⟨dij ,n⟩ represents the dot product between the distance dij and the standard
Gaussian noise n.

Probability of the synthesized data. In the reverse ODE, the source of randomness is the initial
point, following a Gaussian distribution. The probability of the synthesized data depends on the
solution trajectory and standard deviation of the initial distribution. In the context of data generation,
the desired outcome is often a broad variety in the generated samples, implying that the distribution
of these samples should approximate a uniform distribution. We observed that as the normalized
weight pi approaches 1

N , where N is the size of dataset, the data generated from Gaussian noise
tends to have a nearly uniform distribution, the actual data distribution pdata, as demonstrated in
Fig. 4a. Fig. 4b and 4c indicate that the normalized weight pi approaches 1

N as σ increases.

Data-driven sampling noise schedule. To ensure the diversity of generated data, the initial distribu-
tion is required to have a large standard deviation, denoted by σmax, implying a lengthy integration
range for ODE. In practice, while the solution of ODEs is difficult to ascertain analytically, we
resort to numerical methods for approximation. However, the ODE solver introduces truncation er-
ror which is accumulated throughout the integration interval, spanning from σmax to 0. Typically,
the number of step is proportional to the integration range to achieve the same accuracy, which is
demonstrated by the results in Fig. 5. To achieve the same FID score on CIFAR-10 dataset, the larger
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Table 3: FID score across CIFAR-10, FFHQ-64, and ImageNet-64 datasets under varied initial
distributions, evaluated using three distinct ODE solvers: 2nd-order Heun’s method, 3rd-order DPM
Solver and our 3rd-order solver.

Methods CIFAR-10 (NFE=35) FFHQ-64 (NFE=35) ImageNet-64 (NFE=79)

Heun DPM-Solver Our 3rd Heun DPM-Solver Our 3rd Heun DPM-Solver Our 3rd

Our σmax 1.95 1.99 1.89 2.42 2.45 2.25 2.30 2.27 2.25
EDM σmax 1.97 2.00 1.97 2.43 2.49 2.30 2.36 2.33 2.31
VP σmax 1.98 2.05 2.00 2.45 2.50 2.31 2.35 2.29 2.28

Table 4: FID and NEP (Number of Evaluation Point) on
CIFAR-10 dataset. In midpoint method, an additional pre-
dictive point is inserted in the middle of each interval, allow-
ing it to outperform the second-order Heun’s method when
the step size is large. However, as the step size decreases,
the performance of Heun’s method proves superior.

Steps 4 6 8 10 12 14 16 18

Midpoint FID 22.44 3.85 2.30 2.12 2.06 2.04 2.03 2.02
Midpoint NEP 7 11 15 19 23 27 31 35

Heun FID 80.2 11.3 3.73 2.41 2.08 1.98 1.96 1.95
Midpoint NEP 4 6 8 10 12 14 16 18

3rd-Order FID 147.3 22.6 3.31 2.03 1.90 1.89 1.90 1.89
3rd-Order NEP 7 11 15 19 23 27 31 35

Figure 7: FID on CIFAR-10 of dy-
namic numerical method and NFE-
guided sampling noise schedule.
Our dynamic scheme outperforms
the classical ODE methods.
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integration interval requires more neural function evaluations (NFE). For the trade-off between the
quality of generated data and NFE, it’s crucial to identify an appropriate value of σmax such that the
normalized weight pi approaches 1

N .

Based on Eq. 5, the normalized weight pi depends on the set {dij |j ∈ {0, 1, ..., N − 1} ∧ j ̸= i}.
The real-world data distance relationship is intricate and poses analytical challenges. Given that the
function f(x) = exp(−x) is convex and nonnegative, we can determine the upper bound of the
normalized weight pi via Jensen’s inequality, which can be formulated as:

pi ≤
1

1 + (N − 1)exp( ||di||2+2σ⟨di,n⟩
−2σ2 )

, (6)

where the ||di||2 = 1
N−1

∑
j j ̸=i ||dij ||2 and di =

1
N−1

∑
j j ̸=i dij . Given the dataset where each

data point has a distance measure ||di||2, we can utilize Chebyshev’s inequality to determine an
upper bound proxy that encompasses the majority of the points in the dataset. Specifically, we
designate the upper bound proxy for the entire dataset as: ||d||2 = µd + ασd, where µd represents
the mean square distance of the data points and σd represents their standard deviation.

Pr(|||di||2 − µd| ≥ ασd) ≤
1

α2
(7)

Eq. 7 indicates that the fraction of data points, whose square distance is greater than α times the
standard deviation away from the mean, does not exceed 1

α2 . Therefore, this upper bound proxy
offers a high coverage rate, which is further verified by real data as shown in Fig. 6. For simplic-
ity, we approximate the bound by eliminating the dot product term because the expectation is 0,
E[⟨di,n⟩] = 0. The dataset upper bound is:

pub ≈
1

1 + (N − 1)exp(− ||d||2
2σ2 )

(8)

As shown in Fig. 6, as σ increases, the decrease in pub becomes progressively slower. Typically,
the image dataset size N is large, so we choose σmax = ||d|| to achieve the trade-off between the
quality of generated data and NFE.
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NFE-guided sampling noise schedule. The efficacy of a given numerical method is intimately
tied to the chosen step size, which determines the resolution at which the ODE is approximated.
Specifically, the local error of numerical methods is composed mostly from the truncation error and
prediction error of the neural network Dθ(x;σ).

Leveraging this insight, we investigate the relationship between the number of evaluation points
(NEP) and the final performance. Tab. 4 shows that in the context of large step sizes, the second-
order midpoint method often becomes preferable, given its capacity to provide a more representative
perspective of the derivative (x−Dθ(x;σ))

σ across the entire interval. Conversely, when operating
with smaller step sizes, Heun’s second-order method demonstrates superior performance. This can
be attributed to its predictor-corrector approach, which effectively ensembles network predictions,
mitigating the errors from the neural network Dθ(x;σ). Notably, with an increasing NFE budget,
opting for a third-order method, in lieu of further reducing the step size, emerges as a more optimal
strategy to concurrently diminish truncation error and neural network error. The results demonstrate
that the number of evaluation point is essential for fast ODE sampling of diffusion model.

Motivated by the observation, we propose a dynamic scheme for the hybrid numerical method and
sampling noise schedule, σsample(t), based on the NFE budget.

Algorithm 1 Sampling process with dynamic numerical method and noise schedule guided by NFE.

1: procedure NFESAMPLER(Dθ, NFE, σmax, σmin, hτ , ρ)
2: T ← ⌊(NFE + 1)/2⌋, λmax ← log σmax, λmin ← log σmin

3: h← (λmax − λmin)/(T − 1) ▷ Step size intended for 2nd-order method.
4: if h >= hτ then
5: isMidpoint← True, TOde3← 0 ▷ Midpoint method.
6: else
7: T ← ⌊(λmax − λmin)/hτ + 1⌋ ▷ Step num intended for hτ .
8: TOde3← NFE − 2 ∗ T + 1 ▷ 3rd-order step num in hybrid mode.
9: if TOde3 > T − 1 then

10: T ← ⌊(NFE + 2)/3⌋ ▷ 3rd-order step num in pure mode.
11: TOde3← T − 1
12: end if
13: isMidpoint← False ▷ Heun’s method and 3rd-order method.
14: end if
15: x0 ← HYBRIDODESAMPLER(Dθ, T, σmax, σmin, ρ, isMidpoint, TOde3)
16: return x0

Here, hτ represents the threshold for the step size. When the intended step size h exceeds hτ the
2nd-order midpoint method is employed. Conversely, the sampling noise schedule is adjusted for
the hybrid approach utilizing both Heun’s 2nd-order method and the 3rd-order method is adopted.

Algorithm 2 Hybrid ODE Sampler

1: procedure HYBRIDODESAMPLER(Dθ, T, σmax, σmin, ρ, isMidpoint, numOde3)
2: σi>0 ← (σmin

1
ρ + i−1

N−1 (σmax
1
ρ − σmin

1
ρ ))ρ, σ0 ← 0, sample xN ∼ N (0, σ2

maxI)

3: for i ∈ {T, ..., 1} do
4: if i = 1 then
5: xi−1 ← ODESTEP(Dθ,xi, σi, σi−1,Euler) ▷ The final step is Euler step.
6: else if isMidpoint then
7: xi−1 ← ODESTEP(Dθ,xi, σi, σi−1,Midpoint) ▷ Midpoint step for h >= hτ .
8: else if i < N − numOde3 + 1 then
9: xi−1 ← ODESTEP(Dθ,xi, σi, σi−1,Heun) ▷ Heun’s step in hybrid mode.

10: else
11: xi−1 ← ODESTEP(Dθ,xi, σi, σi−1,Ode3) ▷ 3rd-order step: Large σ first.
12: end if
13: end for
14: return x0

8
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In this context, ρ controls the interpolation mode between σmax and σmin, and the Euler method is
invariably utilized in the final step. We prioritize allocating the NFE of the 3rd-order method to the
steps where σ is comparatively larger, as the first-order derivatives exhibit more rapid variations in
those regions.

We assess the efficacy of the NFE-guided sampling noise schedule on the CIFAR-10 dataset. Given
that our proposed sampling noise schedule necessitates no additional training, we opt to employ
previously established, state-of-the-art pre-trained diffusion models (Karras et al., 2022). The initial
noise distribution is determined by our Data-driven sampling noise schedule. As shown in Fig. 7,
our Data-Driven NFE-Guided sampling noise schedule can greatly speed up the sampling of existing
pre-trained diffusion models by adjusting step size and the order of ODE solver based on the NFE
budget.

Comparison of different ODEs. One main source of errors introduced by the ODE numerical
methods is discretization error, which is the difference between the true solution and the discrete
approximation at each step. The step size of the mainstream sampling noise schedules is measured in
log(σ) space, rather than σ space, as shown in Fig. 1. The Reverse ODE in Eq. 1 can be reformulated
as:

λ-space: dx = ϵθ(x;λ)exp(λ)dλ

σ-space: dx = ϵθ(x; log σ)dσ,
(9)

where λ = log σ and ϵθ(x; log σ) = (x−Dθ(x;σ))
σ , which is the ϵ-prediction function in (Ho et al.,

2020). In theory, the two ODEs are equivalent. In practice, the local truncation error varies in
different spaces. Specifically, the Taylor expansion of the integration for a step is:

λ-space: xt − xs =

n∑
k=0

hk
λ

k!
(ϵθ(xs;λs)exp(λs))

(k) +
hn+1
λ

(n+ 1)!
(ϵθ(xm;λm)exp(λm))(n+1)

σ-space: xt − xs =

n∑
k=0

hk
σ

k!
ϵ
(k)
θ (xs; log σs) +

hn+1
σ

(n+ 1)!
ϵ
(n+1)
θ (xc; log σc),

(10)

where ·(k) is the k-th derivative, hλ and hσ are the step size in λ-space and σ-space. The Lagrange
remainder in the λ-space contains the exp(λ) term, which involves the ϵθ(x) in high-order deriva-
tives, making the truncation error remains even when the ϵ

(n+1)
θ (x) is 0. As shown in Tab. 3, the

results of 3rd-order λ-space ODE solver (Lu et al., 2022), DPM-Solver, are inferior to our σ-space
3rd-order ODE solver in the small step size scenario, i.e. the NFE is large.

6 CONCLUSION AND LIMITS

In conclusion, our explorations and findings have demonstrated substantial disparities in noise lev-
els across images of different resolutions, significantly affecting the performance of the diffusion
model. Motivated by these discrepancies, we develop the novel metric Weighted Signal-Noise-Ratio
(WSNR) to proficiently quantify noise levels in the RGB space and successfully extend WSNR to the
latent space. The proposed WSNR-Equivalent training noise schedule has been shown to improve
the generative performance of diffusion models in both high-resolution RGB and latent spaces, set-
ting a precedent in quantifying noise levels in the forward process of the diffusion model. Moreover,
by leveraging an ODE solver under the probability flow ODE framework and conducting detailed
analysis, we proposed a data-driven sampling noise schedule, which allows us to optimize the in-
tegration interval of the ODE, balancing efficiency and generation quality. Besides, we find the
number of evaluation points to be crucial, necessitating dynamic selection strategies according to
computational constraints to optimize generation quality, especially when dealing with diverse step
sizes.

Limits: Our dynamic schedule only includes the explicit Runge-Kutta methods, such as Heun’s
method, Midpoint method and 3rd-order method. More advanced ODE solvers, such as DPM-Solver
and DEIS Solver, are not involved in. We leave this for future work.
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A APPENDIX

A.1 THE DERIVATION OF EXPECTED POWER SPECTRUM OF GAUSSIAN NOISE

We use the definition of orthogonal power spectrum to proof the expected power spectrum of
isotropic 2D Gaussian noise σn is constant σ2 at each frequency component.

E[Pσn(u, v)] = σ2E[Fn(u, v)F
∗
n(u, v)]

=
σ2

HW
E[(

H−1∑
k=0

W−1∑
l=0

n(k, l)e−j2π( ku
H + lv

W ))(

H−1∑
k′=0

W−1∑
l′=0

n(k′, l′)e
j2π

(
k′u
H + l′v

W

)
)]

=
σ2

HW

H−1∑
k=0

W−1∑
l=0

E[n(k, l)2]︸ ︷︷ ︸
=1

+
σ2

HW

H−1∑
k=0

W−1∑
l=0

H−1∑
k′=0,k′ ̸=k

W−1∑
l′=0,l′ ̸=l

E[n(k, l)n(k′, l′)]︸ ︷︷ ︸
=0

e−j2π( ku
H + lv

W )ej2π(
k′u
H + l′v

W )

= σ2,
(11)

where Fn is the 2D Discrete Fourier Transform.

A.2 THE DERIVATION OF IDEAL SOLUTION AS WEIGHTED SUM OF CLEAN DATA POINT

Given the noisy data x with additional Gaussion noise σn, the probability of the noisy data p(x;σ)
can be expressed as:

p(x;σ) = pdata ∗ N (0, σ2I)

=

∫
Rd

pdata(x0)N (x;x0, σ
2I)dx0

=

∫
Rd

[
1

Y

Y∑
i=1

δ(x0 − yi)

]
N (x;x0, σ

2I)dx0

=
1

Y

Y∑
i=1

∫
Rd

N (x;x0, σ
2I)δ(x0 − yi)dx0

=
1

Y

Y∑
i=1

N (x;yi, σ
2I),

(12)

where the clean data probability distribution pdata(x) =
1
Y

∑Y
i=1 δ(x − yi) and the number of data

points is Y . Since the denoiser D(x;σ) aims to restore the clean image, the loss is expressed as:

L(D;σ) = Ey∼pdataEn∼N (0,σ2I)∥D(y + n;σ)− y∥22
= Ey∼pdataEx∼N (y,σ2I)∥D(x;σ)− y∥22

= Ey∼pdata

∫
Rd

N (x;y, σ2I)∥D(x;σ)− y∥22 dx

=
1

Y

Y∑
i=1

∫
Rd

N (x;yi, σ
2I)∥D(x;σ)− yi∥22 dx

=

∫
Rd

1

Y

Y∑
i=1

N (x;yi, σ
2I)∥D(x;σ)− yi∥22 dx

(13)
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The solution is obtained by setting the gradient w.r.t D(x;σ) to zero:

0 = ∇D(x;σ)L(D;x, σ)

0 = ∇D(x;σ)

[
1

Y

Y∑
i=1

N (x;yi, σ
2I)∥D(x;σ)− yi∥22

]

0 =

Y∑
i=1

N (x;yi, σ
2I)∇D(x;σ)

[
∥D(x;σ)− yi∥22

]
0 =

Y∑
i=1

N (x;yi, σ
2I) [2D(x;σ)− 2yi]

0 =

[
Y∑
i=1

N (x;yi, σ
2I)D(x;σ)

]
−

[
Y∑
i=1

N (x;yi, σ
2I)yi

]

D(x;σ) =

∑Y
i=1N (x;yi, σ

2I)yi∑Y
i=1N (x;yi, σ2I)

D(x;σ) =

∑Y
i=1 exp(

||x−yi||2
−2σ2 )yi∑Y

i=1 exp(
||x−yi||2
−2σ2 )

D(x;σ) =

Y∑
i=1

softmax(
||x− yi||2

−2σ2
)yi

(14)

As shown in Eq. 14, the ideal solution for the denoiser D(x;σ) can be found as the weighted sum
of all clean data in the dataset.

A.3 THE DETAILED IMPLEMENTATION OF OUR ODE STEP

To provide a clear depiction of our applied ODE method, we present the pseudo code in Algo 3 and
the Butcher tableau in Tab. 5. The Butcher tableau is instrumental in detailing the numerical inte-
grators used for solving the ODEs and offers a concise representation of the Runge-Kutta methods
applied in our experiments. In relation to step size determination, we introduce a nuanced approach,
where the step size exists in the log (σ) space. The transition to log (σ) space ensures that efficiency
of sampling.

Algorithm 3 ODE Step

1: procedure ODESTEP(Dθ,xi, σi, σi−1, algo)
2: c,b,A← butcherTable[algo]
3: kList← [], nOrder ← len(c)
4: for u = 1 to nOrder do
5: σ ← exp(λi + cu(λi−1 − λi)),k← 0
6: for v = 1 to u− 1 do
7: k← k+ kList[v] ∗ Au,v

cu

8: end for
9: x← xi + k(σ − σi)

10: Append x−Dθ(x,σ)
σ to kList

11: end for
12: xi−1 ← xi + (σi−1 − σi)

∑nOrder
u=1 kList[u] ∗ bu

13: return xi−1
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Table 5: Butcher Tableau for ODE Numerical Methods

Euler Midpoint Heun Ode3

0
1

0
1/2 1/2

0 1

0
1 1

1/2 1/2

0
1 1
1/2 1/4 1/4

1/6 1/6 2/3

A.4 IS EQUATION 1 COMPATIBLE WITH VARIANCE PRESERVING?

Our ODE (Eq. 1) is compatible with Variance Preserving (VP) case. As discussed in Eq.7 of (Karras
et al., 2022), we can write the denoiser D(x;σ) in the following form:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)) (15)

For VP case, the corresponding config is cskip(σ) = 1, cout(σ) = −σ, cin(σ) =
1√

σ2+1
, cnoise(σ) = (M − 1)σ−1(σ). This implies that our Eq.1 is compatible with the VP

case and our sampling noise schedule can be evaluated with the pre-trained VP model. As for the
training process, we follow the training loss in (Karras et al., 2022), setting the training target as:

L = Eσ,y,n


effective weight︷ ︸︸ ︷
λ(σ)cout(σ)

2

∥∥∥∥∥∥∥∥
network output︷ ︸︸ ︷

Fθ (cin(σ) · (y + n); cnoise(σ))−

effective training target︷ ︸︸ ︷
1

cout(σ)
(y − cskip(σ) · (y + n))

∥∥∥∥∥∥∥∥
2
(16)

where the λ(σ) is the loss weight for each noise level. Therefore, we believe that our training process
is compatible with interpreting the VP case.
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