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Abstract

Self-supervised pre-training and instruction001
fine-tuning demonstrate the potential of large002
language models (LLMs) for domain adap-003
tation (DA). In pursuit of superhuman per-004
formance, LLMs have demonstrated signifi-005
cant potential in math and coding through self-006
improvement algorithms that rely on iterative007
training with self-generated data. This success008
stems from the clear reward signals in these en-009
vironments, which provide a solid foundation010
for self-improvement. However, when it comes011
to general DA scenarios, two main challenges012
emerge: 1) ambiguous self-improvement re-013
ward signals and 2) lack of high-quality in-014
struction fine-tuning datasets. This motivates015
this paper addresses how LLMs can adapt au-016
tonomously to new domains using only a large017
amount of unlabeled target corpora. Inspired018
by the human practice of self-reflection through019
open- and closed-book exercises to achieve do-020
main generalization, we propose autonomous021
learning, which creates a self-improvement022
learning environment for DA. Here, the model023
generates questions from documents and con-024
ducts two explorations—one with the original025
document and one with a masked version. By026
comparing these explorations, the LLMs can in-027
dependently identify and enhance its policy for028
reducing knowledge gaps. Experiments across029
various DA tasks demonstrate that autonomous030
learning enhances the DA performance of ex-031
isting models, outperforming traditional fine-032
tuning and self-improvement methods.033

1 Introduction034

Due to the success of self-supervised and in-035

struction tuning methods, Large language models036

(LLMs) could learn from unsupervised corpora037

(Kenton and Toutanova, 2019; Qiu et al., 2020;038

Han et al., 2021), supervised human-annotated in-039

struction data (Ganin and Lempitsky, 2015; Long040

et al., 2016; Touvron et al., 2023b).041

Recently, a series of self-improvement meth- 042

ods (Yuan et al., 2024; Chen et al., 2024b) are 043

proposed to enable LLMs to be trained based on its 044

self-generated data, Burns et al. (2023) highlights 045

the challenges of further aligning superhuman mod- 046

els, as their complex behaviors are difficult for hu- 047

mans to effectively supervise. Since the quality of 048

the chain of thought (CoT) can be assessed by the 049

correctness of the final answer (Bai et al., 2022; 050

Wang et al., 2023), a series of self-training meth- 051

ods (Singh et al., 2023; Hosseini et al., 2024; Yang 052

et al., 2024) have been proposed to significantly 053

improve LLMs’ performance in math and code. 054

However, when we try to deploy these ap- 055

proaches on general DA scenarios, there are two 056

main challenges that limit the advancement of this 057

field. 1) Ambiguous self-improvement reward 058

signals: In general DA problems, the signal used 059

to compare the quality of two responses is implicit. 060

2) Lack of high-quality instruction fine-tuning 061

datasets: The requirement of previous methods 062

for high-quality data further limits the potential of 063

model self-improvement. 064

It motivates us to study Autonomous Learning in 065

a more practical DA setting, where LLMs adapt to 066

a new domain using only a large amount of target 067

domain unlabeled corpora. In real-world scenarios, 068

humans demonstrate the capacity for Autonomous 069

Learning, such as self-education through reading 070

books or independent research of scientific papers. 071

Most human learning processes are subjective and 072

require minimal guidance, exhibiting strong au- 073

tonomous characteristics. 074

To mimic human learning, it reminds us to use 075

Autonomous Learning, an ideal approach to hu- 076

man education. According to (Little, 2002), it is 077

not merely a teaching method; hence, it does not 078

involve teachers dictating behaviors for students 079

to replicate. In (Holec, 1979), the authors define 080

Autonomous Learning as the capacity of learners to 081

direct their own learning, implying their responsi- 082
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bility in shaping various aspects of the learning pro-083

cess. This includes critical thinking, planning, eval-084

uating, and reflecting on learning, with learners ac-085

tively monitoring the entire process (Benson, 2013).086

Therefore, autonomous learners are reflective in-087

dividuals who consciously strive to comprehend088

what, why, and how they learning (Little, 1996).089

Consequently, while Autonomous Learning is con-090

sidered an ideal approach, modern LLM training091

methods emphasize reliance on human-annotated092

data and predefined objectives when meet new093

downstream domain or knowledge, hindering learn-094

ers’ ability to monitor their learning process.095

This inspirs us to adopt AUTONOMOUS LEARN-096

ING for LLMs. The core idea is to enable LLMs to097

learn autonomously, without human involvement.098

Autonomous Learning framework provide a self-099

improvement environment for DA, therefore, the100

only prerequisites are the LLMs itself and the learn-101

ing resources, such as books or documents. The102

process mimics how a person learns from a book:103

reading to understand and closing the book to re-104

call and identify areas that require further study to105

reinforce knowledge. This approach boasts several106

unique advantages:107

1. Self-improvement environment in DA. Un-108

like passive methods, Autonomous Learning109

involves the model actively engaging with and110

understanding the material, identifying areas111

for improvement, and reinforcing its knowl-112

edge—emulating the human process of self-113

improvement through learning.114

2. No need for external annotations. As the115

model undertakes its own learning journey, hu-116

man intervention becomes unnecessary. The117

model is fed learning materials such as books,118

papers, or large corpora—and it dynamically119

improves itself without the need for annotated120

data from human, GPT-4 and others.121

To assess the efficacy of this learning method,122

we have set up experiments with learning mate-123

rials of varying scales, such as books (10K para-124

graphs), domain-specific documents (100K para-125

graphs), and Wikipedia (1000K paragraphs), along126

with corresponding public quizzes to evaluate the127

learning outcomes. Our experiments demonstrate128

that Autonomous Learning significantly outper-129

forms pre-training and human-annotated SFT meth-130

ods, suggesting that a model that has diligently131

’studied’ could outperform one that has ’open-book’132

access but no review. We also introduce recent self- 133

improvement methods for comparison, and the ex- 134

periments demonstrate the superiority of our AL’s 135

“document in the self-improvement loop." Our find- 136

ings confirm that Autonomous Learning is a more 137

effective learning method, and its independence 138

from annotations and human involvement signifi- 139

cantly reduces the complexity and effort involved 140

in model training. 141

The main contributions of this paper are listed 142

as follows: 143

• We introduce Autonomous Learning for 144

LLMs’ DA, a novel training paradigm 145

that introduce a DA self-rewarding environ- 146

ment. This enables LLMs to perform self- 147

improvement DA without human intervention 148

or other stronger AI, mirroring the natural 149

learning processes of humans. 150

• We demonstrate that Autonomous Learning 151

eliminates the need for human-annotated data, 152

allowing models to actively engage with and 153

understand learning materials, thereby foster- 154

ing self-improving learning process. 155

• Through rigorous experimentation using var- 156

ied learning materials and corresponding pub- 157

lic quizzes, we provide empirical evidence 158

that Autonomous Learning outperforms tradi- 159

tional pre-training, SFT methods, RAG, and 160

self-improvement method. 161

2 Related Work 162

In this section, we list some research directions 163

related to this paper. It is important to emphasize 164

that this paper focuses on how to leverage the pow- 165

erful knowledge and instruction-following capa- 166

bilities obtained through pre-training and SFT for 167

self-learning within the document to continuously 168

enhance domain adaptability, rather than replac- 169

ing these techniques. At the end of each part, we 170

will discuss the limitations of each section in the 171

context of further autonomous learning. 172

2.1 Unsupervised Domain Adaptation 173

Traditional UDA methodologies encompass 174

Pseudo-labeling (Ye et al., 2020), the Pivot-based 175

approach (Pan et al., 2010), and adversarial neural 176

networks (Ganin et al., 2016). Due to success 177

of self-supervised learning paradigm’s ability 178

to utilize large-scale unlabeled data, pre-trained 179

language models (Kenton and Toutanova, 2019; 180
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Qiu et al., 2020; Han et al., 2021; Radford et al.,181

2019) based on self-supervision have become the182

standard paradigm in unsupervised DA.183

Although protocol is concise, such methods face184

limitations in effectively completing downstream185

domain adaptation during continuous domain adap-186

tation, because of the lack of differentiated learning187

strategies for various types of knowledge.188

2.2 Supervised Fine-Tuning Domain189

Adaptation190

It has been demonstrated that SFT language models191

on a collection of datasets expressed in instruction192

form (Longpre et al., 2023; Touvron et al., 2023b;193

Yang et al., 2023a) can improve model general-194

ization to unseen tasks, resulting many instruction-195

based supervised fine-tuning methods (Chung et al.,196

2024; Touvron et al., 2023a,b) have been intro-197

duced. Additionally, a serious of work are proposed198

to adapt LLMs to structured domain (Ji et al., 2023,199

2024) or specific vertical domain such as Chat-200

law (Cui et al., 2023), Investlm (Yang et al., 2023b),201

Chatharuhi (Li et al., 2023) and HuotuoGPT se-202

ries (Chen et al., 2023, 2024a).203

Although exciting, the SFT method relies heav-204

ily on a large amount of high-quality annotations205

from humans, GPT-4 (OpenAI, 2023), or other206

sources, posing a formidable barrier to the scalabil-207

ity of instruction tuning practices for larger corpora208

in the future.209

2.3 Self-Training and Self-Improvement210

Currently, the methods for self-training and self-211

improvement are mainly developed in the fields of212

math and code. Starting with STaR (Zelikman et al.,213

2022), reinforced self-training (Gulcehre et al.,214

2023; Zhang et al., 2024), self-rewarding (Yuan215

et al., 2024; Chen et al., 2024b), focuses on lever-216

aging solutions generated by the LLM to enhance217

its own performance. These methods involve fine-218

tuning the model on solutions that lead to correct219

answers. ReSTEM (Singh et al., 2023) interprets220

this fine-tuning as expectation-maximization based221

reinforcement learning for a solution-generating222

agent. Discovering successful solutions and how to223

design the critiquing signal for selecting high qual-224

ity LLM responses given input queries for further225

model training are the most challenging problems226

in self-improvement methods. Early research (Bai227

et al., 2022; Wang et al., 2023) uses a set of manu-228

ally created principles or heuristic rules to eliminate229

low-quality or redundant data. Additionally, Luong230

et al. (2024) demonstrate that RL-based fine-tuning 231

of an LLM is difficult without initial supervised 232

fine-tuning steps. 233

The success of these methods is mainly due 234

to the clearly defined reward signals in their self- 235

improvement loops, which makes them easier to 236

model. In contrast, DA scenarios usually involve 237

numerous unlabeled documents in the target do- 238

main, lacking supervisory signals. Even with ex- 239

tensive instruction fine-tuning datasets, the reward 240

signals for self-improvement in general domain 241

adaptation are implicit. Besides, this makes it dif- 242

ficult to apply a unified set of standards to defini- 243

tively determine whether a knowledge description 244

is True or False. 245

Unlike previous work, this paper introduces Au- 246

tonomous Learning (AL) to address the most chal- 247

lenging area of implicit reward signals in the self- 248

improvement loop for DA. AL introduces doc- 249

ument in the self-improvement loop. By con- 250

tinuously incorporating external real documents, 251

AL enables the model to access domain-specific 252

knowledge and convert it into trainable data, thus 253

avoiding reliance on self-generated data and pre- 254

venting model collapse (Shumailov et al., 2024). 255

3 Preliminary 256

We define a straightforward learning objective: 257

Given a corpus D = {d1, d2, . . . , dn} consisting 258

of n documents, and a LLM Φθ with parameters θ, 259

the goal is to enable Φθ to effectively learn from 260

this corpus. The effectiveness of this learning can 261

be evaluated using benchmarks related to D. This 262

process is akin to a person studying a textbook for 263

a course and then being assessed through course 264

exams to gauge their understanding. In our settings, 265

AL only utilizes the source-trained model and un- 266

labeled target data to adapt to the target domain. 267

4 Methodology: Autonomous Learning 268

In this section, we provide a detailed implementa- 269

tion of our proposed Autonomous Learning. The 270

overview of our Autonomous Learning framework 271

is shown in Figure 1. This process consists of two 272

stages: Stage 1. Open-book learning (Warm- 273

up): The model comprehends and absorbs the tex- 274

tual information. Stage 2. Closed-book learning 275

(Self-Improvement): The model recalls the con- 276

tent from the first stage, reinforcing and consolidat- 277

ing the learned material. The entire algorithm flow 278

of Autonomous Learning is shown in Algorithm 1. 279
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Train the model with 

Unlabeled Corpora

Web CorpusBooks

PapersWikipedia

Open-Book Answer

Document (d):  Earth orbiting the Sun causes seasons to
change...

Unlabeled Corpora

Web CorpusBooks

PapersWikipedia

Question (q): What causes the change in seasons on Earth?
Answer (ao):  The change in seasons on Earth is caused  by
its orbit around the Sun...

Self-understanding

Closed-book Answer

 Self-reinforcement

Stage 1. Open-Book Learning

Stage 2. Closed-book Learning

Figure 1: An ideal learning system should learn autonomously to determine what to learn, how to learn and why to
learn. AL allows for a “document in the self-improvement loop", which allows the model to continuously learn
domain corpus autonomously.

The prompt for document comprehension

Please create a question that closely
aligns with the provided article. Ensure
that the <question> does not explicitly
reference the text. You may incorporate
specific scenarios or contexts in the
<question>, allowing the <text> to serve as
a comprehensive and precise answer, at the
same time, you need to generate an <answer>
for the generated <question>. You can refer
to the content of the article to answer,
but your answer cannot reveal that you have
referred to this article. Please output
according to the template: ’<question>: ...
<answer>: ...’
<document>: [domain-specific document]

<question>:
<answer>:

Figure 2: The prompt for document comprehension.
[domain-specific document] indicates the document d

to be learned.

4.1 Stage 1. Open-Book Learning280

Open-book learning simulates the process of study-281

ing a book, where we comprehend and absorb its282

content. The initialization model for Autonomous283

Learning is a LLM with comprehension abilities,284

denoted as Φθ0 . Given a document d to be learned,285

Φθ0 first comprehends d before learning it. This286

comprehension process can be seen as reading the287

document and converting it into questions and an-288

swers (QA), which can be formalized as:289

(q, ao) = Φθ0(Prompt(d)) (1)290

Here, q and ao represent the questions and an- 291

swers generated from the document d„ and Prompt 292

refers to the prompt used, as illustrated in Figure 2. 293

For LLMs that cannot follow the prompts, we pro- 294

vide few-shot examples to enable Φ0
θ to have com- 295

prehension abilities, as shown in . In AL, Φ0
θ first 296

learns from all documents d ∈ D. For documents 297

that are too long, we split them into multiple para- 298

graphs for learning. The objective of open-book 299

learning is: 300

LOpenBook(d) = − logP (ao|q; θ1) (2) 301

Thus, we obtain the model Φ1
θ after the first stage 302

of learning. 303

4.2 Stage 2. Closed-book Learning 304

The model Φθ1 from the first stage can be thought 305

of as a person who has warm-up a book once. In 306

this process, we usually close the book and recall 307

previously learned content to enhance memory. For 308

the LLM, the second stage involves having the 309

model Φθ1 recall the learned content without re- 310

ferring to the document, thereby reinforcing the 311

knowledge. We obtain model-generated QA pairs 312

based on d: 313

(q, ao) = Φθ1(Prompt(d)) (3) 314

Note that the questions q generated for the same 315

d vary. For the abstracted questions q from d, Au- 316

tonomous Learning has the model answer them 317

with the book closed: 318

ac = Φθ1(q) (4) 319
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Algorithm 1 The algorithm of Autonomous Learn-
ing
Input: Φθ0 , D
Output: Φθ2

1: // Stage 1. Open-Book Learning
2: θ1 ← θ0

3: for document d in D do
4: (q, ao)← Φθ0(Prompt(d)) // Comprehending doc-

ument
5: ℓ1 ← − logP (ao|q; θ1)
6: θ1 ← UpdateParameters(ℓ1, θ1) // Absorbing doc-

ument
7: end for
8: // Stage 2. Close-Book Learning
9: θ2 ← θ1

10: for document d in D do
11: (q, ao)← Φθ1(Prompt(d))
12: ac ← Φθ1(q)x

13: ℓ2 ← − log σ
(
β log

π
θ2

(ao|q)
π
θ1

(ao|q) − β log
π
θ2

(ac|q)
π
θ1

(ac|q)

)
// Self-reinforcement

14: θ2 ← UpdateParameters(ℓ2, θ2)
15: end for
16: return Φθ2

where ac represents the closed-book answers. This320

gives us a pair (ao, ac). To further explore the321

online iterative generation of ac, we conduct exper-322

iments in Appendix G. We aim to have the model’s323

closed-book answers Φθ1(q) approximate ao as324

closely as possible. To achieve this, we use a Direct325

Preference Optimization (DPO) strategy to help the326

LLM improve the review process. The advantage327

of DPO is its ability to quickly approximate the328

correct answers in the presence of biased data. The329

DPO learning strategy is as follows:330

LCloseBook(d) =− log σ

(
β log

πθ2(ao | q)
πθ1(ao | q)

331

− β log
πθ2(ac | q)
πθ1(ac | q)

)
(5)332

where πθ1(ac | q) represents the probability of333

model Φθ1 generating ac given q. In this process,334

Autonomous Learning treats the open-book answer335

ao as the positive answer and the closed-book an-336

swer ac as the negative answer, achieving a self-337

reinforcing process. See Appendix E for a com-338

plete derivation.339

5 Experiments340

We evaluate our Autonomous Learning (AL) frame-341

work across various domains, including common-342

sense reasoning and domain-specific QA. We com-343

pare AL to traditional knowledge injection meth-344

ods, assess its scalability with different dataset345

sizes, and its efficacy in specialized fields like 346

medicine. We also analyze the impact of Open- 347

Book and Closed-Book learning on performance, 348

and evaluate AL’s ability of data-efficiency under 349

different low-resource settings. 350

5.1 Target Domain With Various Scales and 351

Downstream Tasks 352

To highlight the superiority of our method, we con- 353

sider the size of the knowledge corpus included 354

in each dataset when selecting them, which varies 355

from 1K to 1M. We train on knowledge corpus and 356

test on multiple downstream tasks corresponding 357

to these specific corpus. The details of our used 358

benchmark is shown in Appendix B. 359

In all instances, we adopt a prompted zero- 360

shot setup, wherein models are directed to address 361

each task using natural language instructions with- 362

out any accompanying contextual examples. We 363

choose the more challenging zero-shot setup as 364

we are interested in seeing whether Autonomous 365

Learning works in precisely those cases where a 366

AI system does not specify in advance which in- 367

struction should be used in which way for solving a 368

specific problem. In fact, we let the model directly 369

complete downstream tasks to test the model’s abil- 370

ity to master knowledge in a specific domain. We 371

use standard greedy decoding. The statistics of 372

these datasets can be found in Table 1. All tasks 373

are measured by accuracy. For tasks under Wiki, 374

we use the reference answers after minor normal- 375

ization operations mentioned in (Chen et al., 2017; 376

Lee et al., 2019). 377

5.2 Experiments Setup 378

Experimental settings. Our research concen- 379

trates on unsupervised adaptation scenarios, uti- 380

lizing Autonomous Learning on an unlabeled tar- 381

get domain corpus to train and enhance an initial 382

model. We hypothesize that a robust model will 383

demonstrate effective generalization and high per- 384

formance on the target domain’s test sets. Our ulti- 385

mate aim is to transform this model into a domain- 386

specific expert and an instruction model for chat 387

applications, thereby demonstrating the potential 388

of Autonomous Learning in model enhancement 389

and domain-specific adaptation. 390

Base Model. We use the meta-llama/Llama-2-7b- 391

chat-hf for experiments, which we call it as initial 392

model in our experiments. This model originate 393
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Dataset Commonsense Medical Wiki

OpenBookQA CNPLE MedQA-en MedQA-cn NQ TriviaQA WebQA TREC SQuAD

Train 4957 - 10178 27400 78168 78785 3417 1353 78713
Dev 500 - 1272 3425 8757 8837 361 133 8886
Test 500 960 1273 3426 3610 11313 2032 694 10570

Number of documents for each dataset, ranging from 1K to 1M
Documents 1326 87096 156960 163843 1M

Table 1: The statistical information of the used benchmark.

from HuggingFace 1.394

5.3 Baselines.395

To compare with other baselines broadly, we repli-396

cate the setups used by prior work and reuse their397

reported numbers whenever possible. We note that398

for most tasks, our goal is not to compete with the399

state-of-the-art (SOTA) because: 1) for tasks like400

multi-choice and open domain question answering,401

SOTA models are trained specifically for the corre-402

sponding training sets; and 2) SOTA methods often403

use additional corpora for pretraining that may lead404

to data contamination, which could confound our405

domain adaptation studies. We consider the fol-406

lowing baselines for our experiments and divide407

these baselines into two lines: passive methods and408

autonomous methods.409

For passive methods, we have:410

1) Pre-training: Following the traditional pre-411

training paradigms proposed in Kenton and412

Toutanova (2019); Radford et al.; Tay et al. (2022),413

we implement a vanilla pre-training method that414

adopts conventional autoregressive language mod-415

eling on given corpora.416

2) Supervised Fine-tuning (SFT): We implement417

a SFT (Ouyang et al., 2022) method named Instruct-418

GPT to perform SFT, which utilizes a substantial419

amount of manually annotated data, which incurs420

significant costs. To avoid hallucinations, we use421

a stronger model to build instructions for a subset422

of the documents to equip the models with specific423

instruction following abilities, while we use the424

tuned model itself to build instructions for the re-425

maining documents.426

3) Retrieval Augmented Generation (RAG):427

RAG (Ram et al., 2023) first performs a retrieval428

step to identify the most relevant document frag-429

ments and then fed these documents into the LLMs430

to serve as the context for generating responses.431

We retrieve 4 documents for each question.432

1https://huggingface.co/

4) Imbalanced Learning (IL): We implement ac- 433

tive bias (Chang et al., 2017), a widely used IL 434

method that directly adjust the weights of exam- 435

ples based on the predictive distributions variance. 436

We perform IL on pre-training and supervised fine- 437

tuning, and get ’pre-training + IL’ and ’supervised 438

fine-tuning + IL’. 439

For autonomous methods, we have: 440

1) Self-Tuning: We implement this method (Zhang 441

et al., 2024), in which the model completes data 442

synthesis through self-teaching, and we also use the 443

same amount of the data generated by the stronger 444

model for the warm-up step of instruction follow- 445

ing for a fair comparison. 446

2) SPIN: By automatically generating its own train- 447

ing data and learning from it, SPIN (Chen et al., 448

2024b) can effectively utilize human-annotated ex- 449

amples for supervised fine-tuning, transforming a 450

weak language model into a powerful one. How- 451

ever, compared to our more rigorous experimental 452

setting, SPIN requires initial annotated data. There- 453

fore, to implement SPIN, we use the self-generated 454

data used for Open-Book learning as the initial real 455

instruction fine-tuning data of SPIN. 456

For all used LLMs, we use GPT-4 of version 457

gpt-4-0125-preview. Meanwhile, for all meth- 458

ods that require warm-up datas, we construct 1,000 459

datas using GPT-4 for the commonsense domain 460

and 10,000 datas for others. 461

5.4 Scaling Laws Across Multi-Magnitude 462

Corpora 463

As training in deep learning and LLMs becomes 464

increasingly expensive, neural scaling laws can en- 465

sure performance. Before training LLMs with hun- 466

dreds of millions of parameters on massive corpora, 467

we initially train models on smaller-scale corpora 468

and fit scaling laws for training on larger corpora. 469

Unlike previous work (Henighan et al., 2020; 470

Yang et al., 2023a), which typically fix the size of 471

the corpus and vary the scale of model parameters 472

to observe the effects on error, this paper’s scal- 473
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Model Commonsense Medcical Wiki Avg Acc.
OBQA MedQA-cn MedQA-en CNPLE Wiki-5Datasets

initial model 35.0 26.2 30.5 19.3 38.4 29.9
Passive methods
Pre-training 37.0 42.6 31.4 30.4 40.2 36.3
Pre-training+IL 38.4 41.8 30.5 27.6 40.2 35.7
RAG 38.4 28.4 26.2 26.0 43.2 32.4
Supervised Fine-Tuning 42.0 52.4 33.2 41.8 42.4 42.4
Supervised Fine-Tuning+IL 41.4 53.3 33.6 42.4 42.5 42.6
Autonomous methods
Self-Tuning 46.0 54.4 35.1 44.7 43.7 44.8
SPIN 48.4 56.1 36.3 43.1 43.3 45.4
Autonomous Learning (Ours) 53.0 58.2 37.5 46.4 44.6 47.9

Table 2: Results on Common sense, Medical corpora and Wiki corpora. The number of documents has increased
from 1,000 to 1,000,000, representing a three-order-of-magnitude growth from the commonsense domain to the
Wiki domain. The best performances are highlighted in bold, while sub-optimal ones are marked with underline.

ing laws focus more on the corpus. The aim is to474

demonstrate through experiments on scaling laws475

of corpora size that our method is universally effec-476

tive across various scales of corpora. As shown in477

Table 2, the benchmark results demonstrate that the478

Autonomous Learning outperforms all the currently479

most popular knowledge learning paradigms across480

various document scales. In specific domains such481

as Medical, the method described in this paper still482

shows significant improvements.483

Model/Method MedQA-en OBQA CNPLE

Llama-3.1-8B-Instruct
- initial model 0.386 0.786 0.310
- SFT 0.405 0.804 0.442
- SPIN 0.416 0.817 0.456
- Ours 0.431 0.829 0.481

Qwen2.5-7B-Instruct
- initial model 0.335 0.368 0.560
- SFT 0.366 0.431 0.614
- SPIN 0.375 0.503 0.631
- Ours 0.391 0.548 0.678

Table 3: Experiment of deploying AL on various LLMs
as our initial models.

5.5 Effects on Various Models484

To highlight the scalability of our method, we de-485

ploy our experiments using modern powerful mod-486

els like Llama-3.1-8B-Instruct and Qwen2.5-7B-487

Instruct in Table 3 Compared to the initial mod-488

els and other enhancement methods such as SFT489

and SPIN, our approach consistently achieved the490

best scores on all testset, demonstrating its abil-491

ity to enhance model generalization and perfor-492

mance. The consistent performance improvements493

observed across different models, indicating the494

strong generalizability of our AL. 495

5.6 Ablation Study 496

To better explore the impact of each part of our 497

model, we conducted ablation studies and the re- 498

sults are shown in Table 4. By analyzing the com- 499

prehensive ablation experiment settings, we can 500

draw the following conclusions: 1) All ablation 501

models can improve the capabilities of the initial 502

model. 2) Closed-book learning is better than open- 503

book only (ablation model I). 504

Furthermore, we find that ablation model IV 505

yield results as expected, even lower than the 506

initial model. One possible explanation is that 507

when removing all terms related to the closed-book 508

answer ac from the learning objective Formula 5 509

during the closed-book learning phase, the learn- 510

ing objective of closed-book learning approximates 511

open-book learning. Consequently, training for 512

more epochs leads to overfitting, thereby reducing 513

effectiveness. This finding highlights the effec- 514

tiveness of AL, wherein self-reflective knowledge 515

contrast further strengthens the model’s ability to 516

generalize knowledge. The more detailed experi- 517

mental results regarding the generalization perfor- 518

mance of the Autonomous Learning in two stages 519

are presented in Appendix D. The experimental re- 520

sults indicate that, without the need for additional 521

external annotations, Closed-Book learning can fur- 522

ther enhance the domain adaptation performance 523

of existing fine-tuning paradigms. 524

Interestingly, when we directly perform closed- 525

book learning (the ablation model III), the perfor- 526

mance has certain advantages compared to open- 527

book learning, but this effect is still far lower than 528

the complete Autonomous Learning model. The 529
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Ablation model OBQA MedQA-cn MedQA-en CNPLE

- initial model 35.0 26.2 30.5 19.3

I open-book only 40.0 51.4 32.4 40.5
II closed-book only 44.4 52.6 33.7 42.3
III closed-book→ open-book 48.4 54.3 35.2 44.1
IV AL w/o ac in closed-book 33.6 25.4 28.3 19.6

VI open-book→ closed-book (AL) 53.0 58.2 37.5 46.4

Table 4: Ablation study. Ablation model III represents training first with the closed-book method, followed by the
open-book method.

OBQA MedQA-cn MedQA-en CNPLE
initial model 35.0 26.4 30.5 19.3
SFT 42.0 50.3 33.0 40.8
AL
- full Doc. 53.0 58.2 37.5 46.4
- fewer Doc.

# 30% 50.2 56.9 36.6 45.6
# 15% 44.2 52.4 35.3 43.3
# 5% 38.6 51.6 34.2 39.5

Table 5: Low-resource settings where it adopts fewer
documents in Autonomous Learning (AL).

reason may be due to the lack of learning of all530

documents by the model in the open-book learn-531

ing stage. As a result, when closed-book learning532

is performed directly, although the model’s learn-533

ing method based on self-knowledge comparison534

can learn a certain amount of knowledge, it is still535

under-fitting.536

To demonstrate that AL is not dependent on537

warm-up data, we use few-shot prompting to enable538

the llama-2 model to generate D->QA instruction539

fine-tuning data independently. We then conducted540

experiments based on the model’s self-synthesized541

warm-up data. Table 6 show that AL can consis-542

tently output all baseline models.543

Model/Method MedQA-en OBQA CNPLE

Llama-2-7b-chat
- initial model 30.5 0.350 19.3
- SFT 31.4. 0.420 41.8
- SPIN 36.3 0.484 43.1
- AL 37.5 0.530 46.4
- AL w/o warm-up 36.7 0.514 44.7

Table 6: Performance without warm-up dataset. We still
provide the necessary warm-up data to baselines.

5.7 Competitive Performance Achieved by544

Fewer Documents545

The Closed-Book phase of our approach aims to en-546

hance the model’s generalization of learned knowl-547

edge and can be seamlessly integrated into any548

model that has undergone the Open-Book learning 549

phase to further enhance its learning effectiveness. 550

To investigate the knowledge enhancement effects 551

of our approach in the Closed-Book learning phase, 552

we conducted an in-depth exploration of the rela- 553

tionship between model performance and the quan- 554

tity of documents used for reinforced knowledge 555

learning in this phase. 556

Table 5 illustrates the experimental results of 557

our approach in the Closed-Book phase under dif- 558

ferent scales of document subsets. It can be ob- 559

served that our approach in the Closed-Book phase 560

demonstrates performance comparable to the full 561

dataset when based on only 30% of the documents. 562

Additionally, when only 5% of the documents 563

are available, our approach rapidly enhances the 564

model’s generalization of knowledge, achieving 565

performance on par with SFT. 566

This highlights the efficient utilization of doc- 567

uments by our approach, which can extract rich 568

knowledge through self-learning even with a small 569

number of documents, thereby enhancing the 570

model’s generalization of knowledge. 571

6 Conclusion 572

In this paper, we explore the significant challenges 573

associated with enabling LLMs to autonomously 574

adapt to new domains by leveraging extensive un- 575

labeled target corpora. We propose and validate 576

Autonomous Learning, which innovatively intro- 577

duces a self-improvement environment for DA. By 578

enabling LLMs to self-educate through direct inter- 579

action with diverse textual materials, this approach 580

not only mimics human learning processes but also 581

significantly enhances the capabilities of LLMs be- 582

yond the constraints of traditional training methods 583

reliant on human-annotated data. With the help of 584

sufficient pre-training and SFT, our results show 585

that AL outperforms all baselines without any ad- 586

ditional human annotations. 587
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Limitations588

Despite its promising performance in three domain589

adaptation tasks, AL has several limitations that590

must be considered:591

• Limited Autonomous Learning Data For-592

mat: AL focuses on the most practically sig-593

nificant domain adaptation setting, where the594

target domain has a large amount of unlabeled595

data. It explores how to use these datas for do-596

main adaptation through a self-improvement597

paradigm. However, current AL methods only598

focus on text modality and its unlabeled cor-599

pora. In future work, AL should support more600

diverse multimodal domain adaptation scenar-601

ios.602

• Additional Computational Cost: Although603

AL can further push the boundaries of domain604

adaptation beyond existing methods, it re-605

quires two inferences per step in closed-book606

learning, which increases the overall train-607

ing time. This suffers from the same short-608

comings as recent self-training-based meth-609

ods, such as ReST (Gulcehre et al., 2023),self-610

rewarding (Yuan et al., 2024), self-play (Chen611

et al., 2024b). In future research, simpler AL612

methods need to be explored to improve the613

training efficiency of the AL framework.614

• Limited to Models with Instruction-615

Following Capabilities: The method of this616

paper starts directly from an initial model,617

which needs to have sufficient instruction-618

following capabilities to complete both open-619

book and closed-book answers. However, for620

models that do not possess this instruction-621

following capability like GPT-2 (Radford622

et al., 2019), we can use chat models like623

Llama-2-7b-chat-hf (Touvron et al., 2023b),624

Baichuan 2-Chat-7b (Yang et al., 2023a),625

ChatGPT (OpenAI, 2022) to simply construct626

instruction fine-tuning datasets to enable them627

to master the instruction-following required628

for Autonomous Learning.629
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A Ethics Statement907

The datasets used in this study are all derived from908

publicly available resources on the internet and are909

freely accessible. And the backbone models we910

use are also publicly available. Therefore, there is911

no need for ethics concern.912

B Target Domain With Various Scales913

and Downstream Tasks914

Below we describe each domains and its corre-915

sponding downstream tasks.916

Commonsense: We choose a small-scale corpus917

dataset in the domain of common sense, Open-918

BookQA, which contains a corpus of 1,326 com-919

mon sense entries to serve as reference knowledge920

for test data.921

• OpenBookQA (OBQA) (Mihaylov et al.,922

2018) comprises 5,957 multiple-choice ques-923

tions, each offering four possible answers.924

The dataset is combined with external funda-925

mental scientific facts. To successfully answer926

these questions, one must have a comprehen-927

sive understanding of these fundamental sci-928

entific facts. and its applications.929

Medical: We pick three widely used datasets in930

Medical domain. Each dataset is accompanied by931

a medical textbook, which contains the knowledge932

required to answer the questions in the dataset. We933

split the textbook corpus into multiple documents,934

each containing no more than 512 tokens. After935

dividing the textbooks, the CNPLE, MedQA-en,936

and MedQA-cn datasets contain 87,096, 156,960,937

and 163,843 documents, respectively. Please note938

that MedQA-cn and CNPLE are written in Chinese.939

• MedQA-en (Jin et al., 2021) gathers ques-940

tions from the National Medical Board Ex-941

aminations of the USA. MedQA presents a942

demanding benchmark because it incorpo-943

rates diverse medical knowledge—including944

patient profiles, disease symptoms, and drug945

dosage requirements. This variety requires946

contextual understanding for accurately an-947

swering the questions posed.948

• MedQA-cn (Jin et al., 2021) is also col-949

lected from the National Medical Board Ex-950

aminations of the Mainland China. For both951

MedQA-en and MedQA-cn, we test them on952

the 4-option questions.953

• The 2023 Chinese National Pharmacist Li- 954

censure Examination (CNPLE) (Chen et al., 955

2023) is a fresh medical exams. Addressing 956

data contamination in the training of Large 957

Language Models (LLMs) is challenging, par- 958

ticularly when dealing with complex and vast 959

datasets (Huang et al., 2023). To mitigate this 960

issue, we use the 2023 Chinese National Phar- 961

macist Licensure Examination, conducted on 962

October 21, 2023, as our benchmark. The re- 963

lease date of this dataset is later than all the 964

base and chat models we used, therefore it 965

can prevent data leakage and ensure reliable 966

evaluations. 967

Wiki: We use the same five QA datasets and 968

training/dev/testing splitting method as in previ- 969

ous work (Lee et al., 2019). For datasets under 970

this part, we train on the documents in Wiki corpus 971

as their common corpus. Here, we select a sub- 972

set of the Wikipedia corpus that contains 1 million 973

documents. 974

• Natural Questions (NQ) (Kwiatkowski et al., 975

2019) was designed for end-to-end question 976

answering. The questions were mined from 977

real Google search queries and the answers 978

were spans in Wikipedia articles identified by 979

annotators. 980

• TriviaQA (Joshi et al., 2017) contains a set of 981

trivia questions with answers that were origi- 982

nally scraped from the Web. 983

• WebQuestions (WQ) (Berant et al., 2013) 984

consists of questions selected using Google 985

Suggest API, where the answers are entities 986

in Freebase. 987

• CuratedTREC (TREC) (Baudiš and Šedivỳ, 988

2015) sources questions from TREC QA 989

tracks as well as various Web sources and is 990

intended for open-domain QA from unstruc- 991

tured corpora. 992

• SQuAD v1.1 (Rajpurkar et al., 2016) is a pop- 993

ular benchmark dataset for reading compre- 994

hension. Annotators were presented with a 995

Wikipedia paragraph, and asked to write ques- 996

tions that could be answered from the given 997

text. 998

We collectively refer to these datasets as Wiki- 999

5Datasets in out experiments. 1000
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Hyperparameters OpenBookQA CNPLE MedQA-en MedQA-en wiki

Optimizer AdamW
Warmup Ratio 0.1
Learning Rate 2e-5

Open-Book Stage LR Schedule cosine
Batch Size 8
Max Length 2048
# Epoch 3

Optimizer Rmsprop
Warmup Ratio 0.2
Learning Rate 5e-7
LR Schedule Linear

Closed-Book Stage Batch Size 8
Max Length 2048
DPO beta 0.01
# Epoch 3

Table 7: The hyperparameters used for Our Autonomous Learning on all benchmark.

C Hyperparameters of Autonomous1001

Learning1002

The training hyperparameters of Autonomous1003

Learning on different datasets are reported in Ta-1004

ble 7. For all of the hyperparameters, we directly1005

use the same value across all datasets. The training1006

was conducted on a GPU server with 8 NVIDIA1007

A100 GPU cards.1008

D Naive Empirical Risk Minimization is1009

Not Enough1010

In this section, we emphasize the point of this pa-1011

per, that Naive Naive Empirical Risk Minimization1012

(EMR) is not enough, through trend charts on var-1013

ious datasets. In Figures 3, it can be observed1014

that all Naive EMR methods exhibit clear plateaus,1015

and additional epoch training does not yield higher1016

performance but rather leads to overfitting. The1017

closed-book learning method introduced in the sec-1018

ond stage of this paper further enhances the model’s1019

domain adaptation, resulting in improved accuracy1020

for the corresponding tasks, indicating the effective-1021

ness of the knowledge-contrasting approach pro-1022

posed in this paper.1023

E Mathematical Derivations of AL1024

In this appendix, we will clarify that our approach1025

is a process of autonomously enhancing domain1026

adaptation based on knowledge comparison, rather1027

than simply praising or criticizing. We propose the1028

advantages of RL methods in two ways.1029

First, by (Rafailov et al., 2023) Section 4, the1030

gradient of DPO loss is: 1031

∇θLDPO = −βE(x,yw,yl)∼D[σ(r̂θ(x, yl)− 1032

r̂θ(x, yw))(∇θ log πθ(yw|x)−∇θ log πθ(yl|x))]
(6)

1033

where (x, yw) and (x, yl) are the chosen and re- 1034

jected responses, respectively. The updated parame- 1035

ters of the model will move in the direction making 1036

the difference ∇θ log πθ(yw|x) − ∇θ log πθ(yl|x) 1037

become larger with a weight function σ(r̂θ(x, yl)− 1038

r̂θ(x, yw)), not just increase the log probability of 1039

the chosen one and decrease the log probability 1040

of the rejected one. Actually in (Rafailov et al., 1041

2023), it has been shown that if we just increase 1042

the chosen probability and decrease the rejected 1043

probability, the language model will degenerate. 1044

Our experiment (Figure 5) shows that the rewards 1045

of chosen and rejected responses can be increase 1046

or decrease simultaneously. 1047

Second, by Equation (4) in (Rafailov et al., 1048

2023), the optimal solution of the KL-constrained 1049

reward maximization objective is: 1050

π(y|x) = 1

Z(x)
πref (y|x) exp(

1

β
r(x, y)) (7) 1051

for the given reference model πref and reward r, 1052

where Z(x) is the normalization factor independent 1053

of the responses. Hence we can see that the optimal 1054

solution is not just choose the best response and ig- 1055

nore all other ones, it is distributed to all responses 1056

with the probability determined by the reward func- 1057

tion and β, higher reward leads to higher probabil- 1058

ity. It can be seen that for two different responses 1059

y1, y2, although there is a better one, but if they are 1060

both good enough, that means r(x, y1) and r(x, y2) 1061
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Figure 3: The performance gap between open-book learning and closed-book learning. Epoch 0 stands for the
performance of initial model. Epochs 4 to 6 represent the 1st, 2nd, and 3rd epochs of closed-book learning,
respectively.

are closed with each other, there probabilities in1062

the optimal distribution will be closed. So the RL1063

methods for the LLM training is not just praising1064

or criticizing, but only depends on their actually1065

rewards. Responses with high reward values will1066

have high probabilities in the end.1067

F Demonstrating How Autonomous1068

Learning Works Through Examples1069

In this appendix, we demonstrate how Autonomous1070

Learning works through some examples. As shown1071

in Figure 6, we observe that after one epoch of1072

closed-book learning, the closed-Book answer in1073

Epoch 2 aligns better with the learned documents1074

and questions that the closed-book answer in Epoch1075

1.1076

G Impact of Online Iterative Data1077

Generation1078

To explore the online iterative generation of ac, we1079

designed an experiment where, after training the1080

model with k samples, we regenerate ac and ao for1081

subsequent training based on the updated model.1082

We tested various values of k in (4096, 16,384,1083

65,536, and 131,072) to observe the performance1084

trends. The experiment was conducted using the 1085

llama-2-7b-chat-hf model. 1086

We observe that when the update frequency is 1087

high (i.e. when k is 4096), the model’s perfor- 1088

mance actually deteriorates. Conversely, the model 1089

performs best when k is set to 65,536. However, 1090

increasing k to 131,072 does not lead to further im- 1091

provements. The possible reason for this is that a 1092

high update frequency implies the model uses rela- 1093

tively less data for training in each iteration, which 1094

may cause it to over-fit the most recently observed 1095

data, thus affecting its generalization ability and 1096

leading to unstable learning. As we gradually re-

Model/Method MedQA_en CNPLE

initial model 0.305 0.193
offline AL (Ours) 0.375 0.464

online AL
- k=4096 0.352 0.446
- k=16384 0.369 0.463
- k=65536 0.383 0.479
- k=131072 0.364 0.456

Table 8: The impact of online iterative data generation

1097
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(a) Logits for the open-book answer. (b) Logits for the closed-book answer.

Figure 4: The trend of logits variation for open-book answers and closed-book answers on the MedQA-cn dataset.

(a) Reward accuracy (b) Reward chosen (c) Reward rejected (d) Reward margins

Figure 5: Reward performance on MedQA-cn dataset.

duce the update frequency, we find a performance1098

inflection point that surpasses offline AL. This ob-1099

servation suggests that finding the optimal balance1100

between data efficiency and learning stability is1101

crucial. Future research should focus on designing1102

a more effective online AL strategy to achieve this1103

balance.1104

<|system|>
You are KnowledgeGPT, equipped with in-depth knowl-
edge. Your task is to directly answer the user’s question.
<|user|>
[question] What is an example of a film that combines
comedy with a critique of human vices through interwoven
stories, highlighting the impact of greed among others?
<|assistant|>
[answer] An example of a film that skillfully combines
comedy with a critique of human vices, specifically focus-
ing on the theme of greed among others...

Table 9: An example of our QA instruction tuning data.
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Epoch 1

{Reference document}

An example of hunting is an otter cracking
open clams with a rock

{Question}

What is an example of how otters use tools
in their dietary habits?

{Open-book answer}

An example of how otters use tools in
their dietary habits is by using rocks
to crack open clams. This behavior
demonstrates their ability to adapt and
manipulate their environment to access
food, showcasing their intelligence and
problem-solving skills.

{Closed-book answer}

Otters are known to use tools in their
dietary habits by using rocks to crack open
clams and other shellfish. They have been
observed holding the shells in their paws
and then slamming them on rocks to break
them open. This behavior demonstrates their
problem-solving skills and adaptability in
their dietary habits.

Epoch 2

{Reference document}

An example of hunting is an otter cracking
open clams with a rock

{Question}

What is an example of a hunting technique
utilized by otters?

{Open-book answer}

An example of a hunting technique utilized
by otters is using rocks to crack open
clams.
{Closed-book answer}

An example of a hunting technique employed
by otters is using rocks to trap prey. They
will often place a fish on a rock, which
then serves as a makeshift platform for
the otter to drain the water from the fish
before consuming it. This strategy is a
clever and efficient method of hunting in
their aquatic environment.

Figure 6: An example to show how Autonomous Learn-
ing works.

Please create a question that closely aligns with the pro-
vided article. Ensure that the <question>does not ex-
plicitly reference the text. You may incorporate specific
scenarios or contexts in the <question>, allowing the
<text>to serve as a comprehensive and precise answer, at
the same time, you need to generate an <answer>for the
generated <question>. You can refer to the content of
the article to answer, but your answer cannot reveal that
you have referred to this article. Please output according
to the template ’
<question>:...
<answer>:....’
<document>: [domain-specific document]
<question>:
<answer>:

Figure 7: The prompt for question generation.
[domain-specific document] refers to a document in

the domain-specific pre-training corpora.

You are KnowledgeGPT, equipped with in-depth knowledge. Your task
is to directly answer the user’s question.
<question>: [question generated by LLM]
<answer>:

Figure 8: The prompt for the answer generation of QA.
[question generated by LLM]] is the previously text-

derived query in Figure 7.
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