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Abstract

Self-supervised pre-training and instruction
fine-tuning demonstrate the potential of large
language models (LLMs) for domain adap-
tation (DA). In pursuit of superhuman per-
formance, LLLMs have demonstrated signifi-
cant potential in math and coding through self-
improvement algorithms that rely on iterative
training with self-generated data. This success
stems from the clear reward signals in these en-
vironments, which provide a solid foundation
for self-improvement. However, when it comes
to general DA scenarios, two main challenges
emerge: 1) ambiguous self-improvement re-
ward signals and 2) lack of high-quality in-
struction fine-tuning datasets. This motivates
this paper addresses how LLMs can adapt au-
tonomously to new domains using only a large
amount of unlabeled target corpora. Inspired
by the human practice of self-reflection through
open- and closed-book exercises to achieve do-
main generalization, we propose autonomous
learning, which creates a self-improvement
learning environment for DA. Here, the model
generates questions from documents and con-
ducts two explorations—one with the original
document and one with a masked version. By
comparing these explorations, the LLMs can in-
dependently identify and enhance its policy for
reducing knowledge gaps. Experiments across
various DA tasks demonstrate that autonomous
learning enhances the DA performance of ex-
isting models, outperforming traditional fine-
tuning and self-improvement methods.

1 Introduction

Due to the success of self-supervised and in-
struction tuning methods, Large language models
(LLMs) could learn from unsupervised corpora
(Kenton and Toutanova, 2019; Qiu et al., 2020;
Han et al., 2021), supervised human-annotated in-
struction data (Ganin and Lempitsky, 2015; Long
et al., 2016; Touvron et al., 2023b).

Recently, a series of self-improvement meth-
ods (Yuan et al., 2024; Chen et al., 2024b) are
proposed to enable LLMs to be trained based on its
self-generated data, Burns et al. (2023) highlights
the challenges of further aligning superhuman mod-
els, as their complex behaviors are difficult for hu-
mans to effectively supervise. Since the quality of
the chain of thought (CoT) can be assessed by the
correctness of the final answer (Bai et al., 2022;
Wang et al., 2023), a series of self-training meth-
ods (Singh et al., 2023; Hosseini et al., 2024; Yang
et al., 2024) have been proposed to significantly
improve LLMs’ performance in math and code.

However, when we try to deploy these ap-
proaches on general DA scenarios, there are two
main challenges that limit the advancement of this
field. 1) Ambiguous self-improvement reward
signals: In general DA problems, the signal used
to compare the quality of two responses is implicit.
2) Lack of high-quality instruction fine-tuning
datasets: The requirement of previous methods
for high-quality data further limits the potential of
model self-improvement.

It motivates us to study Autonomous Learning in
a more practical DA setting, where LL.Ms adapt to
a new domain using only a large amount of target
domain unlabeled corpora. In real-world scenarios,
humans demonstrate the capacity for Autonomous
Learning, such as self-education through reading
books or independent research of scientific papers.
Most human learning processes are subjective and
require minimal guidance, exhibiting strong au-
tonomous characteristics.

To mimic human learning, it reminds us to use
Autonomous Learning, an ideal approach to hu-
man education. According to (Little, 2002), it is
not merely a teaching method; hence, it does not
involve teachers dictating behaviors for students
to replicate. In (Holec, 1979), the authors define
Autonomous Learning as the capacity of learners to
direct their own learning, implying their responsi-



bility in shaping various aspects of the learning pro-
cess. This includes critical thinking, planning, eval-
uating, and reflecting on learning, with learners ac-
tively monitoring the entire process (Benson, 2013).
Therefore, autonomous learners are reflective in-
dividuals who consciously strive to comprehend
what, why, and how they learning (Little, 1996).
Consequently, while Autonomous Learning is con-
sidered an ideal approach, modern LLM training
methods emphasize reliance on human-annotated
data and predefined objectives when meet new
downstream domain or knowledge, hindering learn-
ers’ ability to monitor their learning process.

This inspirs us to adopt AUTONOMOUS LEARN-
ING for LLMs. The core idea is to enable LLMs to
learn autonomously, without human involvement.
Autonomous Learning framework provide a self-
improvement environment for DA, therefore, the
only prerequisites are the LLMs itself and the learn-
ing resources, such as books or documents. The
process mimics how a person learns from a book:
reading to understand and closing the book to re-
call and identify areas that require further study to
reinforce knowledge. This approach boasts several
unique advantages:

1. Self-improvement environment in DA. Un-
like passive methods, Autonomous Learning
involves the model actively engaging with and
understanding the material, identifying areas
for improvement, and reinforcing its knowl-
edge—emulating the human process of self-
improvement through learning.

2. No need for external annotations. As the
model undertakes its own learning journey, hu-
man intervention becomes unnecessary. The
model is fed learning materials such as books,
papers, or large corpora—and it dynamically
improves itself without the need for annotated
data from human, GPT-4 and others.

To assess the efficacy of this learning method,
we have set up experiments with learning mate-
rials of varying scales, such as books (10K para-
graphs), domain-specific documents (100K para-
graphs), and Wikipedia (1000K paragraphs), along
with corresponding public quizzes to evaluate the
learning outcomes. Our experiments demonstrate
that Autonomous Learning significantly outper-
forms pre-training and human-annotated SFT meth-
ods, suggesting that a model that has diligently
“studied’ could outperform one that has ’open-book’

access but no review. We also introduce recent self-
improvement methods for comparison, and the ex-
periments demonstrate the superiority of our AL’s
“document in the self-improvement loop." Our find-
ings confirm that Autonomous Learning is a more
effective learning method, and its independence
from annotations and human involvement signifi-
cantly reduces the complexity and effort involved
in model training.

The main contributions of this paper are listed
as follows:

* We introduce Autonomous Learning for
LLMs’ DA, a novel training paradigm
that introduce a DA self-rewarding environ-
ment. This enables LLMs to perform self-
improvement DA without human intervention
or other stronger Al, mirroring the natural
learning processes of humans.

* We demonstrate that Autonomous Learning
eliminates the need for human-annotated data,
allowing models to actively engage with and
understand learning materials, thereby foster-
ing self-improving learning process.

* Through rigorous experimentation using var-
ied learning materials and corresponding pub-
lic quizzes, we provide empirical evidence
that Autonomous Learning outperforms tradi-
tional pre-training, SFT methods, RAG, and
self-improvement method.

2 Related Work

In this section, we list some research directions
related to this paper. It is important to emphasize
that this paper focuses on how to leverage the pow-
erful knowledge and instruction-following capa-
bilities obtained through pre-training and SFT for
self-learning within the document to continuously
enhance domain adaptability, rather than replac-
ing these techniques. At the end of each part, we
will discuss the limitations of each section in the
context of further autonomous learning.

2.1 Unsupervised Domain Adaptation

Traditional UDA methodologies encompass
Pseudo-labeling (Ye et al., 2020), the Pivot-based
approach (Pan et al., 2010), and adversarial neural
networks (Ganin et al., 2016). Due to success
of self-supervised learning paradigm’s ability
to utilize large-scale unlabeled data, pre-trained
language models (Kenton and Toutanova, 2019;



Qiu et al., 2020; Han et al., 2021; Radford et al.,
2019) based on self-supervision have become the
standard paradigm in unsupervised DA.

Although protocol is concise, such methods face
limitations in effectively completing downstream
domain adaptation during continuous domain adap-
tation, because of the lack of differentiated learning
strategies for various types of knowledge.

2.2 Supervised Fine-Tuning Domain
Adaptation

It has been demonstrated that SFT language models
on a collection of datasets expressed in instruction
form (Longpre et al., 2023; Touvron et al., 2023b;
Yang et al., 2023a) can improve model general-
ization to unseen tasks, resulting many instruction-
based supervised fine-tuning methods (Chung et al.,
2024; Touvron et al., 2023a,b) have been intro-
duced. Additionally, a serious of work are proposed
to adapt LLMs to structured domain (Ji et al., 2023,
2024) or specific vertical domain such as Chat-
law (Cui et al., 2023), Investlm (Yang et al., 2023b),
Chatharuhi (Li et al., 2023) and HuotuoGPT se-
ries (Chen et al., 2023, 2024a).

Although exciting, the SFT method relies heav-
ily on a large amount of high-quality annotations
from humans, GPT-4 (OpenAl, 2023), or other
sources, posing a formidable barrier to the scalabil-
ity of instruction tuning practices for larger corpora
in the future.

2.3 Self-Training and Self-Improvement

Currently, the methods for self-training and self-
improvement are mainly developed in the fields of
math and code. Starting with STaR (Zelikman et al.,
2022), reinforced self-training (Gulcehre et al.,
2023; Zhang et al., 2024), self-rewarding (Yuan
et al., 2024; Chen et al., 2024b), focuses on lever-
aging solutions generated by the LLM to enhance
its own performance. These methods involve fine-
tuning the model on solutions that lead to correct
answers. ReSTFM (Singh et al., 2023) interprets
this fine-tuning as expectation-maximization based
reinforcement learning for a solution-generating
agent. Discovering successful solutions and how to
design the critiquing signal for selecting high qual-
ity LLM responses given input queries for further
model training are the most challenging problems
in self-improvement methods. Early research (Bai
et al., 2022; Wang et al., 2023) uses a set of manu-
ally created principles or heuristic rules to eliminate
low-quality or redundant data. Additionally, Luong

et al. (2024) demonstrate that RL-based fine-tuning
of an LLM is difficult without initial supervised
fine-tuning steps.

The success of these methods is mainly due
to the clearly defined reward signals in their self-
improvement loops, which makes them easier to
model. In contrast, DA scenarios usually involve
numerous unlabeled documents in the target do-
main, lacking supervisory signals. Even with ex-
tensive instruction fine-tuning datasets, the reward
signals for self-improvement in general domain
adaptation are implicit. Besides, this makes it dif-
ficult to apply a unified set of standards to defini-
tively determine whether a knowledge description
is True or False.

Unlike previous work, this paper introduces Au-
tonomous Learning (AL) to address the most chal-
lenging area of implicit reward signals in the self-
improvement loop for DA. AL introduces doc-
ument in the self-improvement loop. By con-
tinuously incorporating external real documents,
AL enables the model to access domain-specific
knowledge and convert it into trainable data, thus
avoiding reliance on self-generated data and pre-
venting model collapse (Shumailov et al., 2024).

3 Preliminary

We define a straightforward learning objective:
Given a corpus D = {d1,ds,...,d,} consisting
of n documents, and a LLM ®4 with parameters 6,
the goal is to enable ®y to effectively learn from
this corpus. The effectiveness of this learning can
be evaluated using benchmarks related to D. This
process is akin to a person studying a textbook for
a course and then being assessed through course
exams to gauge their understanding. In our settings,
AL only utilizes the source-trained model and un-
labeled target data to adapt to the target domain.

4 Methodology: Autonomous Learning

In this section, we provide a detailed implementa-
tion of our proposed Autonomous Learning. The
overview of our Autonomous Learning framework
is shown in Figure 1. This process consists of two
stages: Stage 1. Open-book learning (Warm-
up): The model comprehends and absorbs the tex-
tual information. Stage 2. Closed-book learning
(Self-Improvement): The model recalls the con-
tent from the first stage, reinforcing and consolidat-
ing the learned material. The entire algorithm flow
of Autonomous Learning is shown in Algorithm 1.



Stage 1. Open-Book Learning

Unlabeled Corpora

1

Document (d): Earth orbiting the Sun causes seasons to
change...

ﬂ Self-understanding

Books Web Corpus
¥\\ b Question (q): What causes the change in seasons on Earth?
) \\) 0.9 Answer (a,): The change in seasons on Earth is caused by
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wd¥ 90 G its orbit around the Sun...
Wikipedia Papers t 9° — ! J
Train the model with £ = —log P(a, | q)

Stage 2. Closed-book Learning
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Open-Book Answer
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a, s better than a.

Closed-book Answer

Figure 1: An ideal learning system should learn autonomously to determine what to learn, how to learn and why to
learn. AL allows for a “document in the self-improvement loop", which allows the model to continuously learn

domain corpus autonomously.

The prompt for document comprehension

Please create a question that closely
aligns with the provided article. Ensure
that the <question> does not explicitly
reference the text. You may incorporate
specific scenarios or contexts in the
<question>, allowing the <text> to serve as
a comprehensive and precise answer, at the
same time, you need to generate an <answer>
for the generated <question>. You can refer
to the content of the article to answer,
but your answer cannot reveal that you have
referred to this article. Please output
according to the template: ’<question>:
<answer>: ...’

<document>: [domain-specific document]
<question>:

<answer>:

Figure 2: The prompt for document comprehension.
[domain-specific document] indicates the document d
to be learned.

4.1 Stage 1. Open-Book Learning

Open-book learning simulates the process of study-
ing a book, where we comprehend and absorb its
content. The initialization model for Autonomous
Learning is a LLM with comprehension abilities,
denoted as ®yo. Given a document d to be learned,
®yo first comprehends d before learning it. This
comprehension process can be seen as reading the
document and converting it into questions and an-
swers (QA), which can be formalized as:

(¢, a0) = ®go (Prompt(d)) (1)

Here, ¢ and a, represent the questions and an-
swers generated from the document d,, and Prompt
refers to the prompt used, as illustrated in Figure 2.
For LLMs that cannot follow the prompts, we pro-
vide few-shot examples to enable <I>8 to have com-
prehension abilities, as shown in . In AL, fl?g first
learns from all documents d € D. For documents
that are too long, we split them into multiple para-
graphs for learning. The objective of open-book
learning is:

EOpenBook(d) = —log P(ao‘Q; 01) (2)

Thus, we obtain the model @é after the first stage
of learning.

4.2 Stage 2. Closed-book Learning

The model ®4:1 from the first stage can be thought
of as a person who has warm-up a book once. In
this process, we usually close the book and recall
previously learned content to enhance memory. For
the LLM, the second stage involves having the
model ®y1 recall the learned content without re-
ferring to the document, thereby reinforcing the
knowledge. We obtain model-generated QA pairs
based on d:

(¢, a0) = g1 (Prompt(d)) 3)

Note that the questions g generated for the same
d vary. For the abstracted questions ¢ from d, Au-
tonomous Learning has the model answer them
with the book closed:

ac = Pg1(q) S



Algorithm 1 The algorithm of Autonomous Learn-
ing
Input: ®40, D
Output: @42
1:  // Stage 1. Open-Book Learning
2: 0"+ ¢°
3: for document d in D do
4. (q,a0) + Pgo(Prompt(d))
ument
5: 4y + —log P(ao|q;0")
6:  0' + UpdateParameters(¢1, 6")

/I Comprehending doc-

/I Absorbing doc-

ument
7: end for
8: /I Stage 2. Close-Book Learning
9: 6% « ¢

10: for document d in D do
11:  (g,a0) < Pg1 (Prompt(d))
12: ac + Pei(g)x

13: ly « —loga(ﬁlog 72 (@0]9) Blo

o1 (aolq)

w(ac\q))

g1 (aclq)
/I Self-reinforcement

14: 6 < UpdateParameters ({2, %)

15: end for

16: return ®,2

where a. represents the closed-book answers. This
gives us a pair (a,,a.). To further explore the
online iterative generation of a., we conduct exper-
iments in Appendix G. We aim to have the model’s
closed-book answers ®41(q) approximate a, as
closely as possible. To achieve this, we use a Direct
Preference Optimization (DPO) strategy to help the
LLM improve the review process. The advantage
of DPO is its ability to quickly approximate the
correct answers in the presence of biased data. The
DPO learning strategy is as follows:

7p2(a,
ECloseBook(d> = — log o 6 10g M
To1 (ao ’ Q)

~ o T210e | 0) q)> 0

Trg1 (ac | Q)

where g1 (a. | q) represents the probability of
model ®41 generating a, given q. In this process,
Autonomous Learning treats the open-book answer
a, as the positive answer and the closed-book an-
swer a. as the negative answer, achieving a self-
reinforcing process. See Appendix E for a com-
plete derivation.

5 Experiments

We evaluate our Autonomous Learning (AL) frame-
work across various domains, including common-
sense reasoning and domain-specific QA. We com-
pare AL to traditional knowledge injection meth-
ods, assess its scalability with different dataset

sizes, and its efficacy in specialized fields like
medicine. We also analyze the impact of Open-
Book and Closed-Book learning on performance,
and evaluate AL’s ability of data-efficiency under
different low-resource settings.

5.1 Target Domain With Various Scales and
Downstream Tasks

To highlight the superiority of our method, we con-
sider the size of the knowledge corpus included
in each dataset when selecting them, which varies
from 1K to 1M. We train on knowledge corpus and
test on multiple downstream tasks corresponding
to these specific corpus. The details of our used
benchmark is shown in Appendix B.

In all instances, we adopt a prompted zero-
shot setup, wherein models are directed to address
each task using natural language instructions with-
out any accompanying contextual examples. We
choose the more challenging zero-shot setup as
we are interested in seeing whether Autonomous
Learning works in precisely those cases where a
Al system does not specify in advance which in-
struction should be used in which way for solving a
specific problem. In fact, we let the model directly
complete downstream tasks to test the model’s abil-
ity to master knowledge in a specific domain. We
use standard greedy decoding. The statistics of
these datasets can be found in Table 1. All tasks
are measured by accuracy. For tasks under Wiki,
we use the reference answers after minor normal-
ization operations mentioned in (Chen et al., 2017;
Lee et al., 2019).

5.2 Experiments Setup

Experimental settings. Our research concen-
trates on unsupervised adaptation scenarios, uti-
lizing Autonomous Learning on an unlabeled tar-
get domain corpus to train and enhance an initial
model. We hypothesize that a robust model will
demonstrate effective generalization and high per-
formance on the target domain’s test sets. Our ulti-
mate aim is to transform this model into a domain-
specific expert and an instruction model for chat
applications, thereby demonstrating the potential
of Autonomous Learning in model enhancement
and domain-specific adaptation.

Base Model. We use the meta-llama/Llama-2-7b-
chat-hf for experiments, which we call it as initial
model in our experiments. This model originate



Dataset Commonsense Medical Wiki
OpenBookQA CNPLE MedQA-en MedQA-cn NQ TriviaQA WebQA TREC SQuAD
Train 4957 - 10178 27400 | 78168 78785 3417 1353 78713
Dev 500 - 1272 3425 8757 8837 361 133 8886
Test 500 960 1273 3426 3610 11313 2032 694 10570
Number of documents for each dataset, ranging from 1K to 1M
Documents 1326 \ 87096 156960 163843 \ M

Table 1: The statistical information of the used benchmark.

from HuggingFace !.

5.3 Baselines.

To compare with other baselines broadly, we repli-
cate the setups used by prior work and reuse their
reported numbers whenever possible. We note that
for most tasks, our goal is not to compete with the
state-of-the-art (SOTA) because: 1) for tasks like
multi-choice and open domain question answering,
SOTA models are trained specifically for the corre-
sponding training sets; and 2) SOTA methods often
use additional corpora for pretraining that may lead
to data contamination, which could confound our
domain adaptation studies. We consider the fol-
lowing baselines for our experiments and divide
these baselines into two lines: passive methods and
autonomous methods.

For passive methods, we have:
1) Pre-training: Following the traditional pre-
training paradigms proposed in Kenton and
Toutanova (2019); Radford et al.; Tay et al. (2022),
we implement a vanilla pre-training method that
adopts conventional autoregressive language mod-
eling on given corpora.
2) Supervised Fine-tuning (SFT): We implement
a SFT (Ouyang et al., 2022) method named Instruct-
GPT to perform SFT, which utilizes a substantial
amount of manually annotated data, which incurs
significant costs. To avoid hallucinations, we use
a stronger model to build instructions for a subset
of the documents to equip the models with specific
instruction following abilities, while we use the
tuned model itself to build instructions for the re-
maining documents.
3) Retrieval Augmented Generation (RAG):
RAG (Ram et al., 2023) first performs a retrieval
step to identify the most relevant document frag-
ments and then fed these documents into the LLMs
to serve as the context for generating responses.
We retrieve 4 documents for each question.

"https://huggingface.co/

4) Imbalanced Learning (IL): We implement ac-
tive bias (Chang et al., 2017), a widely used IL
method that directly adjust the weights of exam-
ples based on the predictive distributions variance.
We perform IL on pre-training and supervised fine-
tuning, and get *pre-training + IL’ and ’supervised
fine-tuning + IL.

For autonomous methods, we have:

1) Self-Tuning: We implement this method (Zhang
et al., 2024), in which the model completes data
synthesis through self-teaching, and we also use the
same amount of the data generated by the stronger
model for the warm-up step of instruction follow-
ing for a fair comparison.

2) SPIN: By automatically generating its own train-
ing data and learning from it, SPIN (Chen et al.,
2024b) can effectively utilize human-annotated ex-
amples for supervised fine-tuning, transforming a
weak language model into a powerful one. How-
ever, compared to our more rigorous experimental
setting, SPIN requires initial annotated data. There-
fore, to implement SPIN, we use the self-generated
data used for Open-Book learning as the initial real
instruction fine-tuning data of SPIN.

For all used LLMs, we use GPT-4 of version
gpt-4-0125-preview. Meanwhile, for all meth-
ods that require warm-up datas, we construct 1,000
datas using GPT-4 for the commonsense domain
and 10,000 datas for others.

5.4 Scaling Laws Across Multi-Magnitude
Corpora

As training in deep learning and LL.Ms becomes
increasingly expensive, neural scaling laws can en-
sure performance. Before training LLMs with hun-
dreds of millions of parameters on massive corpora,
we initially train models on smaller-scale corpora
and fit scaling laws for training on larger corpora.
Unlike previous work (Henighan et al., 2020;
Yang et al., 2023a), which typically fix the size of
the corpus and vary the scale of model parameters
to observe the effects on error, this paper’s scal-
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Commonsense

Medcical Wiki

Model Avg Acc.
OBQA MedQA-cn  MedQA-en CNPLE  Wiki-5Datasets

initial model 35.0 26.2 30.5 19.3 38.4 29.9

Passive methods

Pre-training 37.0 42.6 314 30.4 40.2 36.3

Pre-training+IL 38.4 41.8 30.5 27.6 40.2 35.7

RAG 38.4 28.4 26.2 26.0 43.2 324

Supervised Fine-Tuning 42.0 52.4 33.2 41.8 42.4 42.4

Supervised Fine-Tuning+IL 41.4 53.3 33.6 42.4 42.5 42.6

Autonomous methods

Self-Tuning 46.0 54.4 35.1 44.7 437 44.8

SPIN 48.4 56.1 36.3 43.1 433 454

Autonomous Learning (Ours) 53.0 58.2 37.5 46.4 44.6 47.9

Table 2: Results on Common sense, Medical corpora and Wiki corpora. The number of documents has increased
from 1,000 to 1,000,000, representing a three-order-of-magnitude growth from the commonsense domain to the
Wiki domain. The best performances are highlighted in bold, while sub-optimal ones are marked with underline.

ing laws focus more on the corpus. The aim is to
demonstrate through experiments on scaling laws
of corpora size that our method is universally effec-
tive across various scales of corpora. As shown in
Table 2, the benchmark results demonstrate that the
Autonomous Learning outperforms all the currently
most popular knowledge learning paradigms across
various document scales. In specific domains such
as Medical, the method described in this paper still
shows significant improvements.

Model/Method MedQA-en
Llama-3.1-8B-Instruct

OBQA CNPLE

- initial model 0.386 0.786 0.310
- SFT 0.405 0.804 0.442
- SPIN 0.416 0.817 0.456
- Ours 0.431 0.829 0.481
QOwen2.5-7B-Instruct

- initial model 0.335 0.368 0.560
- SFT 0.366 0.431 0.614
- SPIN 0.375 0.503 0.631
- Ours 0.391 0.548 0.678

Table 3: Experiment of deploying AL on various LLMs
as our initial models.

5.5 Effects on Various Models

To highlight the scalability of our method, we de-
ploy our experiments using modern powerful mod-
els like Llama-3.1-8B-Instruct and Qwen2.5-7B-
Instruct in Table 3 Compared to the initial mod-
els and other enhancement methods such as SFT
and SPIN, our approach consistently achieved the
best scores on all testset, demonstrating its abil-
ity to enhance model generalization and perfor-
mance. The consistent performance improvements
observed across different models, indicating the

strong generalizability of our AL.

5.6 Ablation Study

To better explore the impact of each part of our
model, we conducted ablation studies and the re-
sults are shown in Table 4. By analyzing the com-
prehensive ablation experiment settings, we can
draw the following conclusions: 1) All ablation
models can improve the capabilities of the initial
model. 2) Closed-book learning is better than open-
book only (ablation model I).

Furthermore, we find that ablation model IV
yield results as expected, even lower than the
initial model. One possible explanation is that
when removing all terms related to the closed-book
answer a. from the learning objective Formula 5
during the closed-book learning phase, the learn-
ing objective of closed-book learning approximates
open-book learning. Consequently, training for
more epochs leads to overfitting, thereby reducing
effectiveness. This finding highlights the effec-
tiveness of AL, wherein self-reflective knowledge
contrast further strengthens the model’s ability to
generalize knowledge. The more detailed experi-
mental results regarding the generalization perfor-
mance of the Autonomous Learning in two stages
are presented in Appendix D. The experimental re-
sults indicate that, without the need for additional
external annotations, Closed-Book learning can fur-
ther enhance the domain adaptation performance
of existing fine-tuning paradigms.

Interestingly, when we directly perform closed-
book learning (the ablation model III), the perfor-
mance has certain advantages compared to open-
book learning, but this effect is still far lower than
the complete Autonomous Learning model. The



| Ablation model OBQA MedQA-cn MedQA-en CNPLE
- | initial model 35.0 26.2 30.5 19.3
I | open-book only 40.0 51.4 324 40.5
IT | closed-book only 444 52.6 33.7 423
I | closed-book — open-book 48.4 54.3 352 44.1
IV | AL w/o a. in closed-book 33.6 25.4 28.3 19.6
VI \ open-book — closed-book (AL) 53.0 58.2 37.5 46.4

Table 4: Ablation study. Ablation model III represents training first with the closed-book method, followed by the

open-book method.

OBQA MedQA-cn MedQA-en CNPLE

initial model ~ 35.0 26.4 30.5 19.3
SFT 42.0 50.3 33.0 40.8
AL
- full Doc. 53.0 58.2 37.5 46.4
- fewer Doc.

#30% 50.2 56.9 36.6 45.6

#15% 44.2 52.4 353 433

#5% 38.6 51.6 342 39.5

Table 5: Low-resource settings where it adopts fewer
documents in Autonomous Learning (AL).

reason may be due to the lack of learning of all
documents by the model in the open-book learn-
ing stage. As a result, when closed-book learning
is performed directly, although the model’s learn-
ing method based on self-knowledge comparison
can learn a certain amount of knowledge, it is still
under-fitting.

To demonstrate that AL is not dependent on
warm-up data, we use few-shot prompting to enable
the llama-2 model to generate D->QA instruction
fine-tuning data independently. We then conducted
experiments based on the model’s self-synthesized
warm-up data. Table 6 show that AL can consis-
tently output all baseline models.

Model/Method MedQA-en OBQA CNPLE
Llama-2-7b-chat

- initial model 30.5 0.350 19.3

- SFT 31.4. 0.420 41.8

- SPIN 36.3 0.484 43.1

- AL 37.5 0.530 46.4

- AL w/o warm-up 36.7 0.514 44.7

Table 6: Performance without warm-up dataset. We still
provide the necessary warm-up data to baselines.

5.7 Competitive Performance Achieved by
Fewer Documents

The Closed-Book phase of our approach aims to en-
hance the model’s generalization of learned knowl-
edge and can be seamlessly integrated into any

model that has undergone the Open-Book learning
phase to further enhance its learning effectiveness.
To investigate the knowledge enhancement effects
of our approach in the Closed-Book learning phase,
we conducted an in-depth exploration of the rela-
tionship between model performance and the quan-
tity of documents used for reinforced knowledge
learning in this phase.

Table 5 illustrates the experimental results of
our approach in the Closed-Book phase under dif-
ferent scales of document subsets. It can be ob-
served that our approach in the Closed-Book phase
demonstrates performance comparable to the full
dataset when based on only 30% of the documents.
Additionally, when only 5% of the documents
are available, our approach rapidly enhances the
model’s generalization of knowledge, achieving
performance on par with SFT.

This highlights the efficient utilization of doc-
uments by our approach, which can extract rich
knowledge through self-learning even with a small
number of documents, thereby enhancing the
model’s generalization of knowledge.

6 Conclusion

In this paper, we explore the significant challenges
associated with enabling LLMs to autonomously
adapt to new domains by leveraging extensive un-
labeled target corpora. We propose and validate
Autonomous Learning, which innovatively intro-
duces a self-improvement environment for DA. By
enabling LLMs to self-educate through direct inter-
action with diverse textual materials, this approach
not only mimics human learning processes but also
significantly enhances the capabilities of LLMs be-
yond the constraints of traditional training methods
reliant on human-annotated data. With the help of
sufficient pre-training and SFT, our results show
that AL outperforms all baselines without any ad-
ditional human annotations.



Limitations

Despite its promising performance in three domain
adaptation tasks, AL has several limitations that
must be considered:

¢ Limited Autonomous Learning Data For-
mat: AL focuses on the most practically sig-
nificant domain adaptation setting, where the
target domain has a large amount of unlabeled
data. It explores how to use these datas for do-
main adaptation through a self-improvement
paradigm. However, current AL methods only
focus on text modality and its unlabeled cor-
pora. In future work, AL should support more
diverse multimodal domain adaptation scenar-
ios.

* Additional Computational Cost: Although
AL can further push the boundaries of domain
adaptation beyond existing methods, it re-
quires two inferences per step in closed-book
learning, which increases the overall train-
ing time. This suffers from the same short-
comings as recent self-training-based meth-
ods, such as ReST (Gulcehre et al., 2023),self-
rewarding (Yuan et al., 2024), self-play (Chen
et al., 2024b). In future research, simpler AL
methods need to be explored to improve the
training efficiency of the AL framework.

* Limited to Models with Instruction-
Following Capabilities: The method of this
paper starts directly from an initial model,
which needs to have sufficient instruction-
following capabilities to complete both open-
book and closed-book answers. However, for
models that do not possess this instruction-
following capability like GPT-2 (Radford
et al., 2019), we can use chat models like
Llama-2-7b-chat-hf (Touvron et al., 2023b),
Baichuan 2-Chat-7b (Yang et al., 2023a),
ChatGPT (OpenAl, 2022) to simply construct
instruction fine-tuning datasets to enable them
to master the instruction-following required
for Autonomous Learning.
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A Ethics Statement

The datasets used in this study are all derived from
publicly available resources on the internet and are
freely accessible. And the backbone models we
use are also publicly available. Therefore, there is
no need for ethics concern.

B Target Domain With Various Scales
and Downstream Tasks

Below we describe each domains and its corre-
sponding downstream tasks.

Commonsense: We choose a small-scale corpus
dataset in the domain of common sense, Open-
BookQA, which contains a corpus of 1,326 com-
mon sense entries to serve as reference knowledge
for test data.

* OpenBookQA (OBQA) (Mihaylov et al.,
2018) comprises 5,957 multiple-choice ques-
tions, each offering four possible answers.
The dataset is combined with external funda-
mental scientific facts. To successfully answer
these questions, one must have a comprehen-
sive understanding of these fundamental sci-
entific facts. and its applications.

Medical: We pick three widely used datasets in
Medical domain. Each dataset is accompanied by
a medical textbook, which contains the knowledge
required to answer the questions in the dataset. We
split the textbook corpus into multiple documents,
each containing no more than 512 tokens. After
dividing the textbooks, the CNPLE, MedQA-en,
and MedQA-cn datasets contain 87,096, 156,960,
and 163,843 documents, respectively. Please note
that MedQA-cn and CNPLE are written in Chinese.

* MedQA-en (Jin et al., 2021) gathers ques-
tions from the National Medical Board Ex-
aminations of the USA. MedQA presents a
demanding benchmark because it incorpo-
rates diverse medical knowledge—including
patient profiles, disease symptoms, and drug
dosage requirements. This variety requires
contextual understanding for accurately an-
swering the questions posed.

e MedQA-cn (Jin et al., 2021) is also col-
lected from the National Medical Board Ex-
aminations of the Mainland China. For both
MedQA-en and MedQA-cn, we test them on
the 4-option questions.

* The 2023 Chinese National Pharmacist Li-
censure Examination (CNPLE) (Chen et al.,
2023) is a fresh medical exams. Addressing
data contamination in the training of Large
Language Models (LLMs) is challenging, par-
ticularly when dealing with complex and vast
datasets (Huang et al., 2023). To mitigate this
issue, we use the 2023 Chinese National Phar-
macist Licensure Examination, conducted on
October 21, 2023, as our benchmark. The re-
lease date of this dataset is later than all the
base and chat models we used, therefore it
can prevent data leakage and ensure reliable
evaluations.

Wiki: We use the same five QA datasets and
training/dev/testing splitting method as in previ-
ous work (Lee et al., 2019). For datasets under
this part, we train on the documents in Wiki corpus
as their common corpus. Here, we select a sub-
set of the Wikipedia corpus that contains 1 million
documents.

¢ Natural Questions (NQ) (Kwiatkowski et al.,
2019) was designed for end-to-end question
answering. The questions were mined from
real Google search queries and the answers
were spans in Wikipedia articles identified by
annotators.

TriviaQA (Joshi et al., 2017) contains a set of
trivia questions with answers that were origi-
nally scraped from the Web.

* WebQuestions (WQ) (Berant et al., 2013)
consists of questions selected using Google
Suggest API, where the answers are entities
in Freebase.

+ CuratedTREC (TREC) (Baudi§ and Sedivy,
2015) sources questions from TREC QA
tracks as well as various Web sources and is
intended for open-domain QA from unstruc-
tured corpora.

* SQuAD v1.1 (Rajpurkar et al., 2016) is a pop-
ular benchmark dataset for reading compre-
hension. Annotators were presented with a
Wikipedia paragraph, and asked to write ques-
tions that could be answered from the given
text.

We collectively refer to these datasets as Wiki-
S5Datasets in out experiments.



| Hyperparameters | OpenBookQA CNPLE MedQA-en MedQA-en  wiki
Optimizer AdamW
Warmup Ratio 0.1
Learning Rate 2e-5
Open-Book Stage LR Schedule cosine
Batch Size 8
Max Length 2048
# Epoch 3
Optimizer Rmsprop
Warmup Ratio 0.2
Learning Rate Se-7
LR Schedule Linear
Closed-Book Stage | Batch Size 8
Max Length 2048
DPO beta 0.01
# Epoch 3

Table 7: The hyperparameters used for Our Autonomous Learning on all benchmark.

C Hyperparameters of Autonomous
Learning

The training hyperparameters of Autonomous
Learning on different datasets are reported in Ta-
ble 7. For all of the hyperparameters, we directly
use the same value across all datasets. The training
was conducted on a GPU server with § NVIDIA
A100 GPU cards.

D Naive Empirical Risk Minimization is
Not Enough

In this section, we emphasize the point of this pa-
per, that Naive Naive Empirical Risk Minimization
(EMR) is not enough, through trend charts on var-
ious datasets. In Figures 3, it can be observed
that all Naive EMR methods exhibit clear plateaus,
and additional epoch training does not yield higher
performance but rather leads to overfitting. The
closed-book learning method introduced in the sec-
ond stage of this paper further enhances the model’s
domain adaptation, resulting in improved accuracy
for the corresponding tasks, indicating the effective-
ness of the knowledge-contrasting approach pro-
posed in this paper.

E Mathematical Derivations of AL

In this appendix, we will clarify that our approach
is a process of autonomously enhancing domain
adaptation based on knowledge comparison, rather
than simply praising or criticizing. We propose the
advantages of RL methods in two ways.

First, by (Rafailov et al., 2023) Section 4, the
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gradient of DPO loss is:

VoLpro = —BE gy, y)~plo(Fa(x, y1)—

7o(2, Yuw)) (Vo log mg (yw|z) — Vg log mg(yi]x))]
(6)

where (x,y,,) and (z,y;) are the chosen and re-
jected responses, respectively. The updated parame-
ters of the model will move in the direction making
the difference Vg log mg(yw|x) — Vg log e (yi|x)
become larger with a weight function o (79 (z, y;) —
7o(x, Yw)), not just increase the log probability of
the chosen one and decrease the log probability
of the rejected one. Actually in (Rafailov et al.,
2023), it has been shown that if we just increase
the chosen probability and decrease the rejected
probability, the language model will degenerate.
Our experiment (Figure 5) shows that the rewards
of chosen and rejected responses can be increase
or decrease simultaneously.

Second, by Equation (4) in (Rafailov et al.,
2023), the optimal solution of the KL-constrained
reward maximization objective is:

r(yle) = Z(lx)w@m exp<;r<x,y>> ™

for the given reference model 7.y and reward r,
where Z () is the normalization factor independent
of the responses. Hence we can see that the optimal
solution is not just choose the best response and ig-
nore all other ones, it is distributed to all responses
with the probability determined by the reward func-
tion and S, higher reward leads to higher probabil-
ity. It can be seen that for two different responses
Y1, Y2, although there is a better one, but if they are
both good enough, that means r(z, y1 ) and r(z, y2)
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Figure 3: The performance gap between open-book learning and closed-book learning. Epoch 0 stands for the
performance of initial model. Epochs 4 to 6 represent the 1st, 2nd, and 3rd epochs of closed-book learning,

respectively.

are closed with each other, there probabilities in
the optimal distribution will be closed. So the RL
methods for the LLM training is not just praising
or criticizing, but only depends on their actually
rewards. Responses with high reward values will
have high probabilities in the end.

F Demonstrating How Autonomous
Learning Works Through Examples

In this appendix, we demonstrate how Autonomous
Learning works through some examples. As shown
in Figure 6, we observe that after one epoch of
closed-book learning, the closed-Book answer in
Epoch 2 aligns better with the learned documents
and questions that the closed-book answer in Epoch
1.

G Impact of Online Iterative Data
Generation

To explore the online iterative generation of a., we
designed an experiment where, after training the
model with k£ samples, we regenerate a. and a, for
subsequent training based on the updated model.
We tested various values of k in (4096, 16,384,
65,536, and 131,072) to observe the performance
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trends. The experiment was conducted using the
llama-2-7b-chat-hf model.

We observe that when the update frequency is
high (i.e. when k is 4096), the model’s perfor-
mance actually deteriorates. Conversely, the model
performs best when k is set to 65,536. However,
increasing k to 131,072 does not lead to further im-
provements. The possible reason for this is that a
high update frequency implies the model uses rela-
tively less data for training in each iteration, which
may cause it to over-fit the most recently observed
data, thus affecting its generalization ability and
leading to unstable learning. As we gradually re-

Model/Method MedQA_en CNPLE
initial model 0.305 0.193
offline AL (Ours) 0.375 0.464
online AL

- k=4096 0.352 0.446
-k=16384 0.369 0.463

- k=65536 0.383 0.479
-k=131072 0.364 0.456

Table 8: The impact of online iterative data generation
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Figure 4: The trend of logits variation for open-book answers and closed-book answers on the MedQA-cn dataset.
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Figure 5: Reward performance on MedQA-cn dataset.

duce the update frequency, we find a performance
inflection point that surpasses offline AL. This ob-
servation suggests that finding the optimal balance
between data efficiency and learning stability is
crucial. Future research should focus on designing
a more effective online AL strategy to achieve this
balance.

<|system|>

You are KnowledgeGPT, equipped with in-depth knowl-
edge. Your task is to directly answer the user’s question.
<|user|>

[question] What is an example of a film that combines
comedy with a critique of human vices through interwoven
stories, highlighting the impact of greed among others?
<|assistant|>

[answer] An example of a film that skillfully combines
comedy with a critique of human vices, specifically focus-
ing on the theme of greed among others...

Table 9: An example of our QA instruction tuning data.
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Epoch 1

{Reference document}

An example of hunting is an otter cracking
open clams with a rock

{Question}

What is an example of how otters use tools
in their dietary habits?

{Open-book answer}

An example of how otters use tools in
their dietary habits is by using rocks
to crack open clams. This behavior
demonstrates their ability to adapt and
manipulate their environment to access
food, showcasing their intelligence and
problem-solving skills.

{Closed-book answer}

Otters are known to use tools in their
dietary habits by using rocks to crack open
clams and other shellfish. They have been
observed holding the shells in their paws
and then slamming them on rocks to break
them open. This behavior demonstrates their
problem-solving skills and adaptability in
their dietary habits.

Epoch 2

{Reference document}
An example of hunting is an otter cracking
open clams with a rock
{Question}
What is an example of a hunting technique
utilized by otters?
{Open-book answer}
An example of a hunting technique utilized
by otters is using rocks to crack open
clams.
{Closed-book answer}
An example of a hunting technique employed
by otters is using rocks to trap prey. They
will often place a fish on a rock, which
then serves as a makeshift platform for
the otter to drain the water from the fish
before consuming it. This strategy is a
clever and efficient method of hunting in
their aquatic environment.

.

Figure 6: An example to show how Autonomous Learn-

ing works.
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Please create a question that closely aligns with the pro-

vided article. Ensure that the <question>does not ex-
plicitly reference the text. You may incorporate specific
scenarios or contexts in the <question>, allowing the
<text>to serve as a comprehensive and precise answer, at
the same time, you need to generate an <answer>for the
generated <question>. You can refer to the content of
the article to answer, but your answer cannot reveal that
you have referred to this article. Please output according
to the template ’

<question>:...

<document>: [domain-specific document]

<question>:
<answer>:

Figure 7: The prompt for question generation.

[domain-specific document] refers to a document in
the domain-specific pre-training corpora.

You are KnowledgeGPT, equipped with in-depth knowledge. Your task
is to directly answer the user’s question.

<question>: [question generated by LLM]

<answer>:

Figure 8: The prompt for the answer generation of Q.A.
[question generated by LLM]] is the previously text-
derived query in Figure 7.
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