
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RESTRUCTURING VECTOR QUANTIZATION WITH THE
ROTATION TRICK

Anonymous authors
Paper under double-blind review

ABSTRACT

Vector Quantized Variational AutoEncoders (VQ-VAEs) are designed to compress
a continuous input to a discrete latent space and reconstruct it with minimal
distortion. They operate by maintaining a set of vectors—often referred to as
the codebook—and quantizing each encoder output to the nearest vector in the
codebook. However, as vector quantization is non-differentiable, the gradient to
the encoder flows around the vector quantization layer rather than through it in
a straight-through approximation. This approximation may be undesirable as all
information from the vector quantization operation is lost. In this work, we propose
a way to propagate gradients through the vector quantization layer of VQ-VAEs.
We smoothly transform each encoder output into its corresponding codebook vector
via a rotation and rescaling linear transformation that is treated as a constant during
backpropagation. As a result, the relative magnitude and angle between encoder
output and codebook vector becomes encoded into the gradient as it propagates
through the vector quantization layer and back to the encoder. Across 11 different
VQ-VAE training paradigms, we find this restructuring improves reconstruction
metrics, codebook utilization, and quantization error.

1 INTRODUCTION

Vector quantization (Gray, 1984) is an approach to discretize a continuous vector space. It defines a
finite set of vectors—referred to as the codebook—and maps any vector in the continuous vector space
to the closest vector in the codebook. However, deep learning paradigms that use vector quantization
are often difficult to train because replacing a vector with its closest codebook counterpart is a non-
differentiable operation (Huh et al., 2023). This characteristic was not an issue at its creation during
the Renaissance of Information Theory for applications like noisy channel communication (Cover,
1999); however in the era deep learning, it presents a challenge as gradients cannot directly flow
through layers that use vector quantization during backpropagation.

In deep learning, vector quantization is largely used in the eponymous Vector Quantized-Variational
AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017). A VQ-VAE is an AutoEncoder with a
vector quantization layer between the encoder’s output and decoder’s input, thereby quantizing the
learned representation at the bottleneck. While VQ-VAEs are ubiquitous in state-of-the-art generative
modeling (Rombach et al., 2022; Dhariwal et al., 2020; Brooks et al., 2024), their gradients cannot
flow from the decoder to the encoder uninterrupted as they must pass through a non-differentiable
vector quantization layer.

A solution to the non-differentiability problem is to approximate gradients via a “straight-through
estimator” (STE) (Bengio et al., 2013). During backpropagation, the STE copies and pastes the
gradients from the decoder’s input to the encoder’s output, thereby skipping the quantization operation
altogether. However, this approximation can lead to poor-performing models and codebook collapse:
a phenomena where a large percentage of the codebook converge to zero norm and are unused by
the model (Mentzer et al., 2023). Even if codebook collapse does not occur, the codebook is often
under-utilized, thereby limiting the information capacity of the VQ-VAEs’s bottleneck (Dhariwal
et al., 2020).

In this work, we propose an alternate way to propagate gradients through the vector quantization layer
in VQ-VAEs. For a given encoder output e and nearest codebook vector q, we smoothly transform e
to q via a rotation and rescaling linear transformation and then send this output—rather than the direct

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Encoder Decoder

Codebook Lookup

Rotate and Rescale to Codebook Vectors

Backward Pass

Rotation
Trick

STE

Gradient Update Codebook Regions before Update Codebook Regions after Update

Figure 1: Illustration of the rotation trick. In the forward pass, encoder output e is rotated and rescaled to q1.
Not shown is the rotation of the other encoder outputs to their corresponding codebook vectors. In the backward
pass, the gradient at q1 moves to e so that the angle between ∇q1L and q1 is preserved. Now, points within
the same codebook region receive different gradients depending on their relative angle and magnitude to the
codebook vector. For example, points with high angular distance can be pushed into new codebook regions,
thereby increasing codebook utilization.

Algorithm 1 VQ-VAE with the Rotation Trick

Require: input example x
e← Encoder(x)
q ← nearest codebook vector to e
R← rotation matrix that aligns e to q

q̃ ← stop-gradient
[
∥q∥
∥e∥R

]
e

x̃← Decoder(q̃)
loss← L(x, x̃)
return loss

result of the codebook lookup—to the decoder.
As the input to the decoder, q̃, is now treated
as a smooth linear transformation of e, gradi-
ents flow back from the decoder to the encoder
unimpeded. To avoid differentiating through
the rotation and rescaling, we treat both as con-
stants with respect to e and q. We explain why
this choice is necessary in Appendix A.8. Fol-
lowing the convention of Kingma & Welling
(2013), we call this restructuring “the rotation
trick.” It is illustrated in Figure 3 and described
in Algorithm 1.

The rotation trick does not change the output of the VQ-VAE in the forward pass. However, during
the backward pass, it transports the gradient ∇qL at q to become the gradient ∇eL at e so that the
angle between q and ∇qL after the vector quantization layer equals the angle between e and ∇eL
before the vector quantization layer. Preserving this angle encodes relative angular distances and
magnitudes into the gradient and changes how points within the same codebook region are updated.

The STE applies the same update to all points within the same codebook region, maintaining their
relative distances. However as we will show in Section 4.3, the rotation trick can push points within
the same codebook region farther apart—or pull them closer together—depending on the direction of
the gradient vector. The former capability can correspond to increased codebook usage while the
latter to lower quantization error. In the context of lossy compression, both capabilities are desirable
for reducing the distortion and increasing the information capacity of the vector quantization layer.

When applied to several open-source VQ-VAE repositories, we find the rotation trick substantively
improves reconstruction performance, increases codebook usage, and decreases the distance between
encoder outputs and their corresponding codebook vectors. For instance, training the VQGAN from
Rombach et al. (2022) on ImageNet (Deng et al., 2009) with the rotation trick improves reconstruction
FID from 5.0 to 1.1, reconstruction IS from 141.5 to 200.2, increases codebook usage from 2% to
27%, and decreases quantization error by two orders of magnitude.

2 RELATED WORK

Many researchers have built upon the seminal work of Van Den Oord et al. (2017) to improve
VQ-VAE performance. While non-exhaustive, our review focuses on methods that address training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

instabilities caused by the vector quantization layer. We partition these efforts into two categories: (1)
methods that sidestep the STE and (2) methods that improve codebook-model interactions.

Sidestepping the STE. Several prior works have sought to fix the problems caused by the STE
by avoiding deterministic vector quantization. Baevski et al. (2019) employ the Gumbel-Softmax
trick (Jang et al., 2016) to fit a categorical distribution over codebook vectors that converges to
a one-hot distribution towards the end of training, Gautam et al. (2023) quantize using a convex
combination of codebook vectors, and Takida et al. (2022) employ stochastic quantization. Unlike
the above that cast vector quantization as a distribution over codebook vectors, Huh et al. (2023)
propose an alternating optimization where the encoder is optimized to output representations close to
the codebook vectors while the decoder minimizes reconstruction loss from a fixed set of codebook
vector inputs. While these approaches sidestep the training instabilities caused by the STE, they can
introduce their own set of problems and complexities such as low codebook utilization at inference
and the tuning of a temperature schedule (Zhang et al., 2023). As a result, many applications and
research papers continue to employ VQ-VAEs that are trained using the STE (Rombach et al., 2022;
Chang et al., 2022; Huang et al., 2023; Zhu et al., 2023; Dong et al., 2023).

Codebook-Model Improvements. Another way to attack codebook collapse or under-utilization is
to change the codebook lookup. Rather than use Euclidean distance, Yu et al. (2021) employ a cosine
similarity measure, Goswami et al. (2024) a hyperbolic metric, and Lee et al. (2022) stochastically
sample codes as a function of the distance between the encoder output and codebook vectors. Another
perspective examines the learning of the codebook. Kolesnikov et al. (2022) split high-usage codebook
vectors, Dhariwal et al. (2020); Łańcucki et al. (2020); Zheng & Vedaldi (2023) resurrect low-usage
codebook vectors throughout training, Chen et al. (2024) dynamically selects one of m codebooks
for each datapoint, and Mentzer et al. (2023); Zhao et al. (2024); Yu et al. (2023); Chiu et al. (2022)
fix the codebook vectors to an a priori geometry and train the model without learning the codebook
at all. Other works propose loss penalties to encourage codebook utilization. Zhang et al. (2023)
add a KL-divergence penalty between codebook utilization and a uniform distribution while Yu et al.
(2023) add an entropy loss term to penalize low codebook utilization. While effective at targeting
specific training difficulties, as each of these methods continue to use the STE, the training instability
caused by this estimator persist. Most of our experiments in Section 5 implement a subset of these
approaches, and we find that replacing the STE with the rotation trick further improves performance.

3 STRAIGHT THROUGH ESTIMATOR (STE)

In this section, we review the Straight-Through Estimator (STE) and visualize its effect on the gradi-
ents. We then explore two STE alternatives that—at first glance—appear to correct the approximation
made by the STE.

For notation, we define a sample space X over the input data with probability distribution p. For input
x ∈ X , we define the encoder as a deterministic mapping that parameterizes a posterior distribution
pE(e|x). The vector quantization layer, Q(·), is a function that selects the codebook vector q ∈ C
nearest to the encoder output e. Under Euclidean distance, it has the form:

Q(q = i|e) =
{
1 if i = argmin1≤j≤|C| ∥e− qj∥2
0 otherwise

The decoder is similarly defined as a deterministic mapping that parameterizes the conditional
distribution over reconstructions pD(x̃|q). As in the VAE (Kingma & Welling, 2013), the loss function
follows from the ELBO with the KL-divergence term zeroing out as pE(e|x) is deterministic and the
utilization over codebook vectors is assumed to be uniform. Van Den Oord et al. (2017) additionally
add a “codebook loss” term ∥sg(e)− q∥22 to learn the codebook vectors and a “commitment loss”
term β∥e− sg(q)∥22 to pull the encoder’s output towards the codebook vectors. sg stands for stop-
gradient and β is a hyperparameter, typically set to a value in [0.25, 2]. For predicted reconstruction
x̃, the optimization objective becomes:

L(x̃) = ∥x− x̃∥22 + ∥sg(e)− q∥22 + β∥e− sg(q)∥22

In the subsequent analysis, we focus only on the ∥x− x̃∥22 term as the other two are not functions of
the decoder. During backpropagation, the model must differentiate through the vector quantization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Gradient Field STE Gradient Field

Figure 2: Visualization of how the straight-through estimator (STE) transforms the gradient field for 16
codebook vectors for (top) f(x, y) = x2 + y2 and (bottom) f(x, y) = log

(
| 1
2
x+ tanh(y)|

)
. The STE takes

the gradient at the codebook vector (qx, qy) and “copies-and-pastes” it to all other locations within the same
codebook region, forming a “checker-board” pattern in the gradient field.

function Q(·). We can break down the backward pass into three terms:

∂L
∂x

=
∂L
∂q

∂q

∂e

∂e

∂x

where ∂L
∂q represents backpropagation through the decoder, ∂q

∂e represents backpropagation through
the vector quantization layer, and ∂e

∂x represents backpropagation through the encoder. As vector
quantization is not a smooth transformation, ∂q

∂e cannot be computed and gradients cannot flow
through this term to update the encoder in backpropagation.

To solve the issue of non-differentiability, the STE copies the gradients from q to e, bypassing vector
quantization entirely. Simply, the STE sets ∂q

∂e to the identity matrix I in the backward pass:

∂L
∂x

=
∂L
∂q

I
∂e

∂x

The first two terms ∂L
∂q

∂q
∂e combine to ∂L

∂e which, somewhat misleadingly, does not actually depend
on e. As a consequence, the location of e within the Voronoi partition generated by codebook vector
q—be it close to q or at the boundary of the region—has no impact on the gradient update to the
encoder.

An example of this effect is visualized in Figure 2 for two example functions. In the STE approxi-
mation, the “exact” gradient at the encoder output is replaced by the gradient at the corresponding
codebook vector for each Voronoi partition, irrespective of where in that region the encoder output e
lies. As a result, the exact gradient field becomes “partitioned” into 16 different regions—all with the
same gradient update to the encoder—for the 16 vectors in the codebook.

Returning to our question, is there a better way to propagate gradients through the vector quantization
layer? At first glance, one may be tempted to estimate the curvature at q and use this information to
transform ∂q

∂e as q moves to e. This is accomplished by taking a second order expansion around q to
approximate the value of the loss at e:

Le ≈ Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Then we can compute the gradient at the point e instead of q up to second order approximation with:

∂L
∂e
≈ ∂

∂e

[
Lq + (∇qL)T (e− q) +

1

2
(e− q)T (∇2

qL)(e− q)

]
= ∇qL+ (∇2

qL)(e− q)

While computing Hessians with respect to model parameters are typically prohibitive in modern deep
learning architectures, computing them with respect to only the codebook is feasible. Moreover as
we must only compute (∇2

qL)(e− q), one may take advantage of efficient Hessian-Vector products
implementations in deep learning frameworks (Dagréou et al., 2024) and avoid computing the full
Hessian matrix.

Extending this idea a step further, we can compute the exact gradient ∂L
∂e at e by making two passes

through the network. Let Lq be the loss with the vector quantization layer and Le be the loss without
vector quantization, i.e. q = e rather than q = Q(e). Then one may form the total loss L = Lq+λLe,
where λ is a small constant like 10−6, to scale down the effect of Le on the decoder’s parameters and
use a gradient scaling multiplier of λ−1 to reweigh the effect of Le on the encoder’s parameters to 1.
As ∂q

∂e is non-differentiable, gradients from Lq will not flow to the encoder.

While seeming to correct the encoder’s gradients, replacing the STE with either approach will
likely result in worse performance. This is because computing the exact gradient with respect
to e is actually the AutoEncoder (Hinton & Zemel, 1993) gradient, the model that VAEs (Kingma
& Welling, 2013) and VQ-VAEs (Van Den Oord et al., 2017) were designed to replace given the
AutoEncoder’s propensity to overfit and difficultly generalizing. Accordingly using either Hessian
approximation or exact gradients via a double forward pass will cause the encoder to be trained
like an AutoEncoder and the decoder to be trained like a VQ-VAE. This mis-match in optimization
objectives is likely another contributing factor to the poor performance we observe for both methods
in Table 1.

4 THE ROTATION TRICK

As discussed in Section 3, updating the encoder’s parameters by approximating, or exactly, computing
the gradient at the encoder’s output is undesirable. Similarly, the STE appears to lose information:
the location of e within the quantized region—be it close to q or far away at the boundary—has no
impact on the gradient update to the encoder. Capturing this information, i.e. using the location of e
in relation to q to transform the gradients through ∂q

∂e , could be beneficial to the encoder’s gradient
updates and an improvement over the STE.

Viewed geometrically, we ask how to move the gradient∇qL from q to e, and what characteristics
of ∇qL and q should be preserved during this movement. The STE offers one possible answer:
move the gradient from q to e so that its direction and magnitude are preserved. However, this paper
supplies a different answer: move the gradient so that the angle between ∇qL and q is preserved
as ∇qL moves to e. We term this approach “the rotation trick”, and in Section 4.3 we show that
preserving the angle between q and ∇qL conveys desirable properties to how points move within the
same quantized region.

4.1 THE ROTATION TRICK PRESERVES ANGLES

In this section, we formally define the rotation trick. For encoder output e, let q = Q(e) represent the
corresponding codebook vector. Q(·) is non-differentiable so gradients cannot flow through this layer
during the backward pass. The STE solves this problem—maintaining the direction and magnitude
of the gradient∇qL—as∇qL moves from q to e with some clever hacking of the backpropagation
function in deep learning frameworks:

q̃ = e− (q − e)︸ ︷︷ ︸
constant

which is a parameterization of vector quantization that sets the gradient at the encoder
output to the gradient at the decoder’s input. The rotation trick offers a different pa-
rameterization: casting the forward pass as a rotation and rescaling that aligns e with q:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Gradient at Rotation TrickSTE

Figure 3: Illustration of how the gradient at q
moves to e via the STE (middle) and rotation trick
(right). The STE “copies-and-pastes” the gradient
to preserve its direction while the rotation trick
moves the gradient so the angle between q and
∇qL is preserved.

q̃ =

[
∥q∥
∥e∥

R

]
︸ ︷︷ ︸

constant

e

R is the rotation1 transformation that aligns e with
q and ∥q∥

∥e∥ rescales e to have the same magnitude

as q. Note that both R and ∥q∥
∥e∥ are functions of e.

To avoid differentiating through this dependency, we
treat them as fixed constants—or detached from the
computational graph in deep learning frameworks—
when differentiating. This choice is explained in
Appendix A.8.

While the rotation trick does not change the output of
the forward pass, the backward pass changes. Rather
than set ∂q

∂e = I as in the STE, the rotation trick sets
∂q
∂e to be a rotation and rescaling transformation:

∂q̃

∂e
=
∥q∥
∥e∥

R

As a result, ∂q
∂e changes based on the position of e in

the codebook partition of q, and notably, the angle
between∇qL and q is preserved as∇qL moves to e. This effect is visualized in Figure 3. While the
STE translates the gradient from q to e, the rotation trick rotates it so that the angle between ∇qL
and q is preserved. In a sense, the rotation trick and the STE are sibilings. They choose different
characteristics of the gradient as desiderata and then preserve those characteristics as the gradient
flows around the non-differentiable vector quantization operation to the encoder.

4.2 EFFICIENT ROTATION COMPUTATION

The rotation transformation R that rotates e to q can be efficiently computed with Householder matrix
reflections. We define ê = e

∥e∥ , q̂ = q
∥q∥ , λ = ∥q∥

∥e∥ , and r = ê+q̂
∥ê+q̂∥ . Then the rotation and rescaling

that aligns e to q is simply:

q̃ = λRe

= λ(I − 2rrT + 2q̂êT)e

= λ[e− 2rrT e+ 2q̂êT e]

Due to space constraints, we leave the derivation of this formula to Appendix A.6. Parameterizing
the rotation in this fashion avoids computing outer products and therefore consumes minimal GPU
VRAM. Further, we did not detect a difference in wall-clock time between VQ-VAEs trained with
the STE and VQ-VAEs trained with the rotation trick for our experiments in Section 5.

4.3 VORONOI PARTITION ANALYSIS

In the context of lossy compression, vector quantization works well when the distortion, or equiv-
alently quantization error ∥e− q∥22, is low and the information capacity—equivalently codebook
utilization—is high (Cover, 1999). Later in Section 5, we will see that VQ-VAEs trained with the
rotation trick have this desiderata—often reducing quantization error by an order of magnitude
and substantially increasing codebook usage—when compared to VQ-VAEs trained with the STE.
However, the underlying reason why this occurs is less clear.

1A rotation is defined as a linear transformation so that RRT = I , R−1 = RT , and det(R) = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Voronoi Partition STE Updates Rotation Trick Updates

Figure 4: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle). The STE applies the same update to each point in the same region. The
rotation trick modifies the update based on the location of each point with respect to the codebook vector.

Change in Distance Between
and After an Update

Figure 5: With the STE, the dis-
tances among points within the
same region do not change. How-
ever with the rotation trick, the
distances among points do change.
When ϕ < π/2, points with large
angular distance are pushed away
(blue: increasing distance). When
ϕ > π/2, points are pulled to-
wards the codebook vector (green:
decreasing distance).

In this section, we analyze the effect of the rotation trick by looking
at how encoder outputs that are mapped to the same Voronoi region
are updated. While the STE applies the same update to all points
within the same partition, the rotation trick changes the update
based on the location of points within the Voronoi region. It can
push points within the same region farther apart or pull them closer
together depending on the direction of the gradient vector. The
former capability can correspond to increased codebook usage
while the latter to lower quantization error.

Let θ be the angle between e and q and ϕ be the angle between
q and ∇qL. When ∇qL and q point in the same direction, i.e.
−π/2 < ϕ < π/2, encoder outputs with large angular distance to
q are pushed farther away than they would otherwise be moved
by the STE update. Figure 5 illustrates this effect. The points with
large angular distance (blue regions) move further away from q
than the points with low angular distance (ivory regions).

The top right partitions of Figure 4 present an example of this
effect. The two clusters of points at the boundary—with relatively
large angle to the codebook vector—are pushed away while the
cluster of points with small angle to the codebook vector move with
it. The ability to push points at the boundary out of a quantized
region and into another is desirable for increasing codebook utiliza-
tion. Specifically, codebook utilization improves when points are
pushed into the Voronoi regions of previously unused codebook
vectors. This capability is not shared by the STE, which moves all
points in the same region by the same amount.

When ∇qL and q point in opposite directions, i.e. π/2 < ϕ <
3π/2, the distance among points within the same Voronoi region
decreases as they are pulled towards the location of the updated
codebook vector. This effect is visualized in Figure 5 (green
regions) and the bottom partitions of Figure 4 show an exam-
ple. Unlike the STE update—that maintains the distances among
points—the rotation trick pulls points with high angular distances
closer towards the post-update codebook vector. This capability
is desirable for reducing the quantization error and enabling the
encoder to lock on (Van Den Oord et al., 2017) to a target codebook
vector.

Taken together, both capabilities can form a push-pull effect that achieves two desiderata of vector
quantization: increasing information capacity and reducing distortion. Encoder outputs that have large

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of VQ-VAEs trained on ImageNet following Van Den Oord et al. (2017). We use the
Vector Quantization layer from https://github.com/lucidrains/vector-quantize-pytorch.

Approach Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 32× 32× 32 & Codebook Size: 1024
VQ-VAE 100% 0.107 5.9e-3 0.115 106.1 11.7
VQ-VAE w/ Rotation Trick 97% 0.116 5.1e-4 0.122 85.7 17.0

Codebook Lookup: Cosine & Latent Shape: 32× 32× 32 & Codebook Size: 1024
VQ-VAE 75% 0.107 2.9e-3 0.114 84.3 17.7
VQ-VAE w/ Rotation Trick 91% 0.105 2.7e-3 0.111 82.9 18.1

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 100% 0.028 1.0e-3 0.030 19.0 97.3
VQ-VAE w/ Hessian Approx. 39% 0.082 6.9e-5 0.112 35.6 65.1
VQ-VAE w/ Exact Gradients 84% 0.050 2.0e-3 0.053 25.4 80.4
VQ-VAE w/ Rotation Trick 99% 0.028 1.4e-4 0.030 16.5 106.3

Codebook Lookup: Cosine & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 31% 0.034 1.2e-4 0.038 26.0 77.8
VQ-VAE w/ Hessian Approx. 37% 0.035 3.8e-5 0.037 29.0 71.5
VQ-VAE w/ Exact Gradients 38% 0.035 3.6e-5 0.037 28.2 75.0
VQ-VAE w/ Rotation Trick 38% 0.033 9.6e-5 0.035 24.2 83.9

angular distance to the chosen codebook vector are “pushed” to other, possibly unused, codebook
regions by outwards-pointing gradients, thereby increasing codebook utilization. Concurrent with
this effect, center-pointing gradients will “pull” points loosely clustered around the codebook vector
closer together, locking on to the chosen codebook vector and reducing quantization error.

A third and final difference with the STE occurs when ∇qL is exactly orthogonal to q, i.e. ϕ = π/2.
For this event, each point within the Voronoi region generated by q is rotated by the same amount in
the direction of∇qL. The top left Voroni regions of Figure 4 visualize this case. While it is unlikely
that the gradient is exactly orthogonal to the codebook vector, the gradient’s orthogonal component
to q enables points to move in orthogonal directions via a rotation and expansion (if ϕ < π/2) or a
rotation and contraction (if ϕ > π/2).

5 EXPERIMENTS

In Section 4.3, we showed the rotation trick enables behavior that would increase codebook utilization
and reduce quantization error by changing how points within the same Voronoi region are updated.
However, the extent to which these changes will affect applications is unclear. In this section, we
evaluate the effect of the rotation trick across many different VQ-VAE paradigms.

We begin with image reconstruction: training a VQ-VAE with the reconstruction objective of Van
Den Oord et al. (2017) and later extend our evaluation to the more complex VQGANs (Esser
et al., 2021), the VQGANs designed for latent diffusion (Rombach et al., 2022), and then the
ViT-VQGAN (Yu et al., 2021). Finally, we evaluate VQ-VAE reconstructions on videos using a
TimeSformer (Bertasius et al., 2021) encoder and decoder. In total, our empirical analysis spans
11 different VQ-VAE configurations. For all experiments, aside from handling ∂q

∂e
differently, the

models, hyperparameters, and training settings are identical.

5.1 VQ-VAE EVALUATION

We begin with a straightforward evaluation: training a VQ-VAE to reconstruct examples from
ImageNet (Deng et al., 2009). Following Van Den Oord et al. (2017), our training objective is a linear
combination of the reconstruction, codebook, and commitment loss:

L = ∥x− x̃∥22 + ∥sg(e)− q∥22 + β∥e− sg(q)∥22
where β is a hyperparameter scaling constant. Following convention, we drop the codebook loss term
from the objective and instead use an exponential moving average to update the codebook vectors.

Evaluation Settings. For 256 × 256 × 3 input images, we evaluate two different settings: (1)
compressing to a latent space of dimension 32× 32× 32 with a codebook size of 1024 following Yu
et al. (2021) and (2) compressing to 64× 64× 3 with a codebook size of 8192 following Rombach
et al. (2022). In both settings, we compare with a Euclidean and cosine similarity codebook lookup.

Evaluation Metrics. We log both training and validation set reconstruction metrics. Of note, we
compute reconstruction FID (Heusel et al., 2017) and reconstruction IS (Salimans et al., 2016) on

8

https://github.com/lucidrains/vector-quantize-pytorch

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results for VQGAN designed for autoregressive generation as implemented in https://github.com/
CompVis/taming-transformers. Experiments on ImageNet and the combined dataset FFHQ (Karras et al., 2019)
and CelebA-HQ (Karras, 2017) use a latent bottleneck of dimension 16×16×256 with 1024 codebook vectors.

Approach Dataset Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN (reported) ImageNet — — — 7.9 114.4
VQGAN (our run) ImageNet 95% 0.134 0.594 7.3 118.2
VQGAN w/ Rotation Trick ImageNet 98% 0.002 0.422 4.6 146.5

VQGAN FFHQ & CelebA-HQ 27% 0.233 0.565 4.7 5.0
VQGAN w/ Rotation Trick FFHQ & CelebA-HQ 99% 0.002 0.313 3.7 5.2

Table 3: Results for VQGAN designed for latent diffusion as implemented in https://github.com/CompVis/
latent-diffusion. Both settings train on ImageNet.

Approach Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN 64× 64× 3 8192 15% 2.5e-3 0.183 0.53 220.6
VQGAN w/ Rotation Trick 64× 64× 3 8192 86% 1.7e-4 0.142 0.27 228.0

VQGAN 32× 32× 4 16384 2% 1.2e-2 0.385 5.0 141.5
VQGAN w/ Rotation Trick 32× 32× 4 16384 27% 2.4e-4 0.269 1.1 200.2

reconstructions from the full ImageNet validation set as a measure of reconstruction quality. We
also compute codebook usage, or the percentage of codebook vectors that are used in each batch of
data, as a measure of the information capacity of the vector quantization layer and quantization error
∥e− q∥22 as a measure of distortion.

Baselines. Our comparison spans the STE estimator (VQ-VAE), the Hessian approximation described
in Section 3 (VQ-VAE w/ Hessian Approx), the exact gradient backward pass described in Section 3
(VQ-VAE w/ Exact Gradients), and the rotation trick (VQ-VAE w/ Rotation Trick). All methods share
the same architecture, hyperparameters, and training settings, and these settings are summarized in
Table 10 of the Appendix. There is no functional difference among methods in the forward pass; the
only differences relates to how gradients are propagated through ∂q

∂e during backpropagation.

Results. Table 1 displays our findings. We find that using the rotation trick reduces the quantization
error—sometimes by an order of magnitude—and improves low codebook utilization. Both results
are expected given the Voronoi partition analysis in Section 4.3: points at the boundary of quantized
regions are likely pushed to under-utilized codebook vectors while points loosely grouped around the
codebook vector are condensed towards it. These two features appear to have a meaningful effect on
reconstruction metrics: training a VQ-VAE with the rotation trick substantially improves r-FID and
r-IS.

We also see that the Hessian Approximation or using Exact Gradients results in poor reconstruc-
tion performance. While the gradients to the encoder are, in a sense, “more accurate”, training
the encoder like an AutoEncoder (Hinton & Zemel, 1993) likely introduces overfitting and poor
generalization. Moreover, the mismatch in training objectives between the encoder and decoder is
likely an aggravating factor and partly responsible for both models’ poor performance.

5.2 VQGAN EVALUATION

Moving to the next level of complexity, we evaluate the effect of the rotation trick on VQGANs (Esser
et al., 2021). The VQGAN training objective is:

LVQGAN = LPer + ∥sg(e)− q∥22 + β∥e− sg(q)∥22 + λLAdv

where LPer is the perceptual loss from Johnson et al. (2016) and replaces the L2 loss used to train
VQ-VAEs. LAdv is a patch-based adversarial loss similar to the adversarial loss in Conditional
GAN (Isola et al., 2017). β is a constant that weights the commitment loss while λ is an adaptive
weight based on the ratio of∇LPer to ∇LAdv with respect to the last layer of the decoder.

Experimental Settings. We evaluate VQGANs under two settings: (1) the paradigm amenable to
autoregressive modeling with Transformers as described in Esser et al. (2021) and (2) the paradigm
suitable to latent diffusion models as described in Rombach et al. (2022). The first setting follows
the convolutional neural network and default hyperparameters described in Esser et al. (2021) while
the second follows those from Rombach et al. (2022). A full description of both training settings is
provided in Table 11 of the Appendix.

Results. Our results are listed in Table 2 for the first setting and Table 3 for the second. Similar to our
findings in Section 5.1, we find that training a VQ-VAE with the rotation trick substantially decreases
quantization error and improves codebook usage. Moreover, reconstruction performance as measured

9

https://github.com/CompVis/taming-transformers
https://github.com/CompVis/taming-transformers
https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/latent-diffusion

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results for ViT-VQGAN (Yu et al., 2021) trained on ImageNet. The latent shape is 8× 8× 32 with
8192 codebook vectors. r-FID and r-IS are reported on the validation set.

Approach Codebook Usage (↑) Train Loss (↓) Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

ViT-VQGAN [reported] — — — — 22.8 72.9
ViT-VQGAN [ours] 0.3% 0.124 6.7e-3 0.127 29.2 43.0
ViT-VQGAN w/ Rotation Trick 2.2% 0.113 8.3e-3 0.113 11.2 93.1

Table 5: Results for TimeSformer-VQGAN trained on BAIR and UCF-101 with 1024 codebook vectors. †:
model suffers from codebook collapse and diverges. r-FVD is computed on the validation set.

Approach Dataset Codebook Usage Train Loss (↓) Quantization Error (↓) Valid Loss (↓) r-FVD (↓)

TimeSformer† BAIR 0.4% 0.221 0.03 0.28 1661.1
TimeSformer w/ Rotation Trick BAIR 43% 0.074 3.0e-3 0.074 21.4

TimeSformer† UCF-101 0.1% 0.190 0.006 0.169 2878.1
TimeSformer w/ Rotation Trick UCF-101 30% 0.111 0.020 0.109 229.1

on the validation set by the total loss, r-FID, and r-IS are significantly improved across both modeling
paradigms.

5.3 VIT-VQGAN EVALUATION

Improving upon the VQGAN model, Yu et al. (2021) propose using a ViT (Dosovitskiy, 2020) rather
than CNN to parameterize the encoder and decoder. The ViT-VQGAN uses factorized codes and L2

normalization on the output and input to the vector quantization layer to improve performance and
training stability. Additionally, the authors change the training objective, adding a logit-laplace loss
and restoring the L2 reconstruction error to LVQGAN.

Experimental Settings. We follow the open source implementation of https://github.com/thuanz123/
enhancing-transformers and use the default model and hyperparameter settings for the small ViT-
VQGAN. A complete description of the training settings can be found in Table 12 of the Appendix.

Results. Table 4 summarizes our findings. Similar to our previous results for VQ-VAEs in Section 5.1
and VQGANs in Section 5.2, codebook utilization and reconstruction metrics are significantly
improved; however in this case, the quantization error is roughly the same.

5.4 VIDEO EVALUATION

Expanding our analysis beyond the image modality, we evaluate the effect of the rotation trick on
video reconstructions from the BAIR Robot dataset (Ebert et al., 2017) and from the UCF101 action
recognition dataset (Soomro, 2012). We follow the quantization paradigm used by ViT-VQGAN,
but replace the ViT with a TimeSformer (Bertasius et al., 2021) video model. Due to compute
limitations, both encoder and decoder follow a relatively small TimeSformer model: 8 layers, 256
hidden dimensions, 4 attention heads, and 768 MLP hidden dimensions. A complete description of
the architecture, training settings, and hyperparameters are provided in Appendix A.11.4.

Results. Table 5 shows our results. For both datasets, training a TimeSformer-VQGAN model with
the STE results in codebook collapse. We explored several different hyperparameter settings; however
in all cases, codebook utilization drops to almost 0% within the first several epochs. On the other
hand, models trained with the rotation trick do not exhibit any training instability and produce high
quality reconstructions as indicated by r-FVD (Unterthiner et al., 2018). Several non-cherry picked
video reconstructions are displayed in Appendix A.11.4.

6 CONCLUSION

In this work, we explore different ways to propagate gradients through the vector quantization layer
of VQ-VAEs and find that preserving the angle—rather than the direction—between the codebook
vector and gradient induces desirable effects for how points within the same codebook region are
updated. These effects cause a substantial improvement in model performance. Across 11 different
settings, we find that training VQ-VAEs with the rotation trick improves their reconstructions. For
example, training one of the VQGANs used in latent diffusion with the rotation trick improves r-FID
from 5.0 to 1.1 and r-IS from 141.5 to 200.2, reduces quantization error by two orders of magnitude,
and increases codebook usage by 13.5x.

10

https://github.com/thuanz123/enhancing-transformers
https://github.com/thuanz123/enhancing-transformers

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised learning of
discrete speech representations. arXiv preprint arXiv:1910.05453, 2019.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, volume 2, pp. 4, 2021.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Hang Chen, Sankepally Sainath Reddy, Ziwei Chen, and Dianbo Liu. Balance of number of
embedding and their dimensions in vector quantization. arXiv preprint arXiv:2407.04939, 2024.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised learning
with random-projection quantizer for speech recognition. In International Conference on Machine
Learning, pp. 3915–3924. PMLR, 2022.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-
vector products? In ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.io/2024/blog/
bench-hvp/. https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen,
Fang Wen, Nenghai Yu, and Baining Guo. Peco: Perceptual codebook for bert pre-training of
vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 552–560, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. CoRL, 12(16):23, 2017.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Tanmay Gautam, Reid Pryzant, Ziyi Yang, Chenguang Zhu, and Somayeh Sojoudi. Soft convex quan-
tization: Revisiting vector quantization with convex optimization. arXiv preprint arXiv:2310.03004,
2023.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nabarun Goswami, Yusuke Mukuta, and Tatsuya Harada. Hypervq: Mlr-based vector quantization in
hyperbolic space. arXiv preprint arXiv:2403.13015, 2024.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length and helmholtz
free energy. Advances in neural information processing systems, 6, 1993.

Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yongdong Zhang. Towards accurate image
coding: Improved autoregressive image generation with dynamic vector quantization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22596–22605,
2023.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-
through estimator: Overcoming optimization challenges in vector quantized networks. In Interna-
tional Conference on Machine Learning, pp. 14096–14113. PMLR, 2023.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, 2016.

Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and Neil
Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes. Advances in
Neural Information Processing Systems, 35:26295–26308, 2022.

Adrian Łańcucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans JGA
Dolfing, Sameer Khurana, Tanel Alumäe, and Antoine Laurent. Robust training of vector quantized
bottleneck models. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7.
IEEE, 2020.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

K Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

Yuhta Takida, Takashi Shibuya, WeiHsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu Uesaka,
Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsufuji. Sq-vae: Varia-
tional bayes on discrete representation with self-annealed stochastic quantization. arXiv preprint
arXiv:2205.07547, 2022.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv
preprint arXiv:1812.01717, 2018.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization
for tokenized image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18467–18476, 2023.

Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. arXiv preprint arXiv:2406.07548, 2024.

Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 22798–22807, 2023.

Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, and Gang
Hua. Designing a better asymmetric vqgan for stablediffusion. arXiv preprint arXiv:2306.04632,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS OF THE ROTATION TRICK

Rotation TrickSTE

Figure 6: Illustration of the rotation trick “over-rotating”
vectors when the angle between e1 and q is obtuse.

One potential limitation of the rotation trick is
when high numerical precision is required on
the quantized vectors during training. As the
rotation matrix does not have infinite precision,
it will rotate e to q up to a small error term so
that the input to the decoder will not be exactly
q during training, but rather offset by a very
small factor depending on the precision used to
compute R. Nevertheless, this limitation does
not arise during inference as a non-differentiable
codebook lookup transforms e into exactly q
since gradients are not needed during test-time.

A second possible limitation is when either the
encoder outputs or codebook vectors are forced
to be close to 0 norm (i.e., ∥e∥ ≈ 0 or ∥q∥ ≈ 0).
In this case, the angle between e and q may be
obtuse. When this happens, the rotation trick will “over-rotate” the gradient∇qL as it is transported
from q to e so that ∇qL and ∇eL now point in different directions (i.e. the cosine of the angle
between ∇eL and ∇qL will be negative). An example is visualized in Figure 6.

This is undesirable because—when the angle between e and q is obtuse—the rotation trick will violate
the assumption that when e ≈ q, ∇qL ≈ ∇eL, and it will likely result in worse performance than
VQ-VAEs trained with the STE. While obtuse angles between e and q are very unlikely—by design,
the codebook vectors should be “angularly close” to the vectors that are mapped to them—however,
if there is a restriction that forces codewords to have near 0 norm, then the rotation trick will likely
perform worse than the STE.

A.2 NON-CONVEX SYNTHETIC EXAMPLE

Figure 7: Loss surface for Himmelblau’s
function. Himmelblau’s function has four
equal local minima: f (3.0, 2.0) = 0.0, f (-
2.8.., 3.1...) = 0.0, f (-3.7.., -3.2..) = 0.0, and
f (3.5.., -1.8..) = 0.0.

To supplement our analysis in Section 4.3, we include a nu-
merical simulation of vector quantization for minimizing
Himmelblau’s function (Figure 7) across 100 gradient up-
dates for the STE and rotation trick gradient estimators to
highlight the differences in their behaviors. Our simulation
uses an EMA with a decay rate of 0.8 as described in Van
Den Oord et al. (2017) to update the codebook vectors and
a learning rate of 1e−3 to update the pre-quantized points.
Points for both the STE and the rotation trick simulation
use the same random initialization for both codewords and
pre-quantized vectors. The only difference is whether the
STE or the rotation trick is used as the gradient estimator
through the vector quantization operation.

Figure 8 visualizes our results after 33, 66, and 100 gra-
dient updates. The orange circles represent codebook vec-
tors, the green dots the initial points, and the blue dots the
updated points. Contour lines are drawn in each diagram
to indicate regions of equal loss, with blue representing
regions of low loss and red indicating regions of high loss.
Similar to our findings in Section 5, we see that the rotation
trick clusters points more tightly around each codebook
vector when compared to the STE, resulting in lower dis-
tortion. Moreover, the codebook vectors more rapidly converge to the four equal local minima in
Himmelblau’s function, resulting in a lower objective function value when averaged across all points.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The Rotation Trick

Straight-Through Estimator
0 Updates 33 Updates 66 Updates 100 Updates

Figure 8: Synthetic experiment for minimizing Himmelblau’s function with vector quantization using the STE
gradient estimator (top row) and the rotation trick (bottom row). The rotation trick more quickly converges to
these minima and achieves substantively lower distortion between codewords and pre-quantized points.

A.3 HESSIAN APPROXIMATION AND EXACT GRADIENT ANALYSIS

In this section, we expand our analysis in Section 3 and offer some intuition for why using exact
gradients, or a Hessian approximation of the exact gradients, may convey undesirable characteristics.
We begin by showing the Hessian approximates the exact gradient up to second order term with a
Taylor series expansion. We can write the loss Le exactly as an infinite series of around q:

Le = Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q) +
1

6
(e− q)T∇3

qL(e− q, e− q) +

so that the loss computed by the Hessian approximation differs from the loss computed with the exact
gradients method by the remainder term from truncating the Taylor series expansion after the second
term:

{Le}Hessian = Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

STE Gradient Rotation Trick Gradient Hessian & Exact GradientLoss Surface

Top-Left Partition Loss Surface Top-Right Partition Loss Surface Bottom Partition Loss Surface

Figure 9: Examples of how the gradient can change due to the presence of negative curvature or an indefinite
Hessian. As the loss in each partition is quadratic, the exact gradient will equal the Hessian approximation.
Notice that when q ≈ e, ∇qL ≈ ∇eL for both the STE and the rotation trick. As the Hessian approximation
and exact gradients use the curvature of the loss surface to move ∇qL from q to e, the direction of the gradient
can change substantively, even when q ≈ e.

When differentiating both of these losses to compute the gradients, the difference between the exact
gradient update and the Hessian update is:

∂Le

∂e
− {∂Le

∂e
}Hessian =

∂

∂e
O(∥e− q∥3)

where

O(∥e− q∥3) = 1

6
(e− q)T∇3

qL(e− q, e− q) + . . .

The Hessian idea described in Section 3 approximates the exact gradients to the encoder as if
quantization did not occur, i.e. it approximates the gradient used to update the encoder in the original
AutoEncoder (Hinton & Zemel, 1993) model.

We now explore some instances where the exact gradients, or their Hessian approximation, may
produce undesirable behavior in vector quantization. An inductive bias (Baxter, 2000) for vector
quantization to work well is that when e is “close” to q, their gradients are also “close”, i.e. if e ≈ q
then ∇eL ≈ ∇qL. Intuitively, if the distortion between e and q is small—i.e. q is a very good
codeword for e—then these points should move together during a gradient update. If they do not, the
distortion would increase.

This assumption holds for both the STE and Rotation Trick gradients; however, it can be violated by
the Hessian approximation or the exact gradient approaches, especially when the curvature around q
is negative or the Hessian is indefinite and forms a saddle point.

Figure 9 illustrates three such cases. As both the STE and Rotation Trick do not use the loss surface
to move ∇qL from q to e, when q ≈ e, ∇qL ≈ ∇eL. However, approaches that use the curvature
around q, such as the Hessian approximation or exact gradients, to either find or approximate the
loss at e can have∇eL point in a very different direction from ∇qL, even when q is close to e. The
top-left and bottom partitions of Figure 9 scatter the gradients as they move from q to the points in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Comparison of stochastic quantization with deterministic quantization for VQ-VAEs trained on
ImageNet. The architecture and optimization settings follow those of Table 1.

Approach Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 100% 0.028 1.0e-3 0.030 19.0 97.3
Gumbel VQ-VAE 39% 0.054 — 0.058 28.6 74.9
VQ-VAE w/ Rotation Trick 99% 0.028 1.4e-4 0.030 16.5 106.3

Table 7: Comparison of stochastic quantization with deterministic quantization for VQGANs trained on
ImageNet. The architecture and optimization settings follow Table 3.

Approach Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN 64× 64× 3 8192 15% 2.5e-3 0.183 0.53 220.6
Gumbel VQGAN 64× 64× 3 8192 4% — 0.197 0.60 219.7
VQGAN w/ Rotation Trick 64× 64× 3 8192 86% 1.7e-4 0.142 0.27 228.0

VQGAN 32× 32× 4 16384 2% 1.2e-2 0.385 5.0 141.5
Gumbel VQGAN 32× 32× 4 16384 12% — 0.3031 1.7 189.5
VQGAN w/ Rotation Trick 32× 32× 4 16384 27% 2.4e-4 0.269 1.1 200.2

these partitions due to negative curvature. A similar effect occurs in the top-right partition of Figure 9
due to the presence of a saddle point.

A.4 COMPARISON TO STOCHASTIC QUANTIZATION

In this section, we include experimental results comparing the STE and rotation trick to stochastic
quantization. Specifically, we compare with using the Gumbel softmax trick to attenuate a categorical
distribution over codebook vectors to a one-hot distribution in VQ-VAEs (Baevski et al., 2019;
Ramesh et al., 2021). Our results are summarized in Table 6 and Table 7, and for these experimental
settings, we find that VQ-VAEs and VQGANs trained with the rotation trick outperform VQ-VAEs
and VQGANs that employ stochastic quantization via the Gumbel softmax trick.

For the results in Table 6, we follow the Gumbel Vector Quantize function implemented by https:
//github.com/karpathy/deep-vector-quantization and use the suggested schedule to attenuate the
softmax temperature from 1.0 to 1

16 over the course of training. The architecture and experimental
details follow Table 1 and are fully described in Table 10. For the results in Table 7, we follow the
default hyperparameters and settings from Rombach et al. (2022).

A.5 BEHAVIOR AWAY FROM THE ORIGIN

Figure 11: Illustration of codebook
and encoder output shifted away
from the origin by a constant vector
d. The angle after the shift is smaller
than the angle before the shift: θ̂ <
θ.

Unlike the STE, the rotation trick is not invariant to the location
of the origin. In this section, we explore this characteristic and its
effect on how points within the same Voronoi region are updated.
For example, suppose each codebook vector and encoder output
in Figure 4 were shifted by some constant vector so that each now
has all positive components. How would this affect the rotation
trick’s gradient estimator?

Consider one codebook vector q and one encoder output e sep-
arated by angle θ. We define q̂ = q + d and ê = e+ d where d

is some large displacement vector. Let θ̂ be the angle between q̂
and ê. We visualize this example in Figure 11. From the law of
cosines:

∥q − e∥2 = ∥q∥2 + ∥e∥2 − 2∥q∥∥e∥ cos(θ)

and

∥q̂ − ê∥2 = ∥q − e∥2 = ∥q̂∥2 + ∥ê∥2 − 2∥q̂∥∥ê∥ cos
(
θ̂
)

17

https://github.com/karpathy/deep-vector-quantization
https://github.com/karpathy/deep-vector-quantization

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Voronoi Partition STE Updates Rotation Trick Updates

Figure 10: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle) when all points are far from the origin. The STE is invariant to the this
translation; however as the angle between e and q decreases as these vectors translated away from the origin, the
effect of the rotation trick will decrease. In the limit, the rotation trick reduces to the STE.

Substituting, we find that

cos
(
θ̂
)
=
∥q∥2 + ∥e∥2 − 2∥q∥∥e∥ cos(θ)− ∥q + d∥2 − ∥e+ d∥2

−2∥q + d∥∥e+ d∥
and consider the case when q̂ and ê are far from the origin, i.e.,∥d∥ >> ∥q∥, ∥e∥. Then we have:

cos
(
θ̂
)
≈ −2∥d∥

2

−2∥d∥2
= 1

So as d→∞, θ̂ → 0. This implies that ∥q̂∥
∥ê∥ → 1 and R̂→ I , which is exactly the STE update. As

points move away from the origin, the rotation trick smoothly transforms into the STE.

We visualize an example of this effect in Figure 10, where each point from Figure 4 is translated
by positive ten along each dimension. As illustrated above, the effect for the “push” gradient in the
top-right quadrant remains but it’s effect is reduced, i.e., more similar to the STE update. The top-left
partition becomes a “pull” because the gradient now points towards the origin, so points within this
region move closer together. Finally, the gradient in the bottom region no longer points towards the
origin, but is now more orthogonal to the codebook vector. As a result, we see more of a rotation
applied to the points in this region than the contraction that is depicted in Figure 4.

A.6 HOUSEHOLDER REFLECTION TRANSFORMATION

For any given e and q, the rotation R that aligns e with q in the plane spanned by both vectors can be
efficiently computed with Householder matrix reflections.
Definition 1 (Householder Reflection Matrix). For a unit norm vector a ∈ Rd, I − 2aaT ∈ Rd×d is
reflection matrix across the subspace (hyperplane) orthogonal to a.
Remark 1. Let a, b ∈ Rd that define hyperplanes a⊥ and b⊥ respectively. Then a reflection across
a⊥ followed by a reflection across b⊥ is a rotation of 2θ in the plane spanned by a, b where θ is the
angle between a, b.
Remark 2. Let a, b ∈ Rd with ∥a∥ = ∥b∥ = 1. Define c = a+b

∥a+b∥ as the vector half-way

between a and b so that ∠(a, b) = θ and ∠(a, c) = ∠(b, c) = θ
2 . From Definition 1, (I − 2ccT)

encodes a reflection across c⊥ and (I − 2bbT) encodes a reflection across b⊥. From Remark 1,
(I − 2bbT)(I − 2ccT) then corresponds to a rotation of 2(θ2) = θ in the plane spanned by b and c.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

As the span(b, c) = span(a, b), (I − 2bbT)(I − 2ccT) corresponds to a rotation of θ in the plane
spanned by a and b. Therefore, (I − 2bbT)(I − 2ccT)a = b.

Returning to vector quantization with q = [∥q∥∥e∥R]e, we can write R as the product of two Householder
reflection matrices that rotates e to q in the plane spanned between them. Without loss of generality,
assume e and q are unit norm, and let θ be the angle between e and q. Setting r = e+q

∥e+q∥ and
simplifying yields:

R = (I − 2qqT)(I − 2rrT)

= I − 2qqT − 2rrT + 4qqT rrT

= I − 2qqT − 2rrT + 4q
[
qT r

]
rT

= I − 2qqT − 2rrT + 4q

[
qT

e+ q

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
qT e+ qT q

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
∥q∥∥e∥ cos θ + ∥q∥∥q∥

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
cos θ + 1

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
∥e+ q∥2

2∥e+ q∥

]
rT

= I − 2qqT − 2rrT +
4∥e+ q∥2

2∥e+ q∥
qrT

= I − 2qqT − 2rrT +
4∥e+ q∥2

2∥e+ q∥2
q(e+ q)T

= I − 2qqT − 2rrT + 2qeT + 2qqT

= I − 2rrT + 2qeT

A.7 PROOF THE ROTATION TRICK PRESERVES ANGLES

For encoder output e and corresponding codebook vector q, we provide a formal proof that the
rotation trick preserves the angle between ∇qL and q as ∇qL moves to e. Unlike the notation in the
main text, which assumes q ∈ Rd×1, we use batch notation in the following proof to illustrate how
the rotation trick works when training neural networks. Specifically, q ∈ Rb×d and R ∈ Rb×d×d

where b is the number of examples in a batch and d is the dimension of the codebook vector.

Remark 3. The angle between q and ∇qL is preserved as∇qL moves to e.

Proof. With loss of generality, suppose ∥e∥ = ∥q∥ = 1. Then we have

q = eRT

∂q

∂e
= R

The gradient at e will then equal:

∇eL = ∇qL
[
∂q

∂e

]
= ∇qL [R]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Let θ be the angle between q and ∇qL and ϕ be the angle between e and ∇qL. Via the Euclidean
inner product, we have:

∥∇qL∥ cos θ = q [∇qL]T

= eRT [∇qL]T

= e [∇qLR]
T

= e [∇eL]T

= ∥∇qL∥ cosϕ

so θ = ϕ and the angle between q and∇qL is preserved as ∇qL moves to e.

A.8 TREATING R AND
||q||
||e|| AS CONSTANTS

In the rotation trick, we treat R and ||q||
||e|| as constants and detached from the computational graph

during the forward pass of the rotation trick. In this section, we explain why this is the case.

The rotation trick computes the input to the decoder q̃ after performing a non-differentiable codebook
lookup on e to find q. It is defined as:

q̃ =
||q||
||e||

Re

As shown in Section 4, R is a function of both e and q. However, using the quantization function
Q(e) = q, we can rewrite both ||q||

||e|| and R as a single function of e:

f(e) =
∥Q(e)∥
∥e∥

[
I − 2

[
e+Q(e)
∥e+Q(e)∥

] [
e+Q(e)
∥e+Q(e)∥

]T
+ 2Q(e)eT

]

=
∥q∥
∥e∥

R

The rotation trick then becomes

q̃ = f(e)e

and differentiating q̃ with respect to e gives us:

∂q̃

∂e
= f ′(e)e+ f(e)

However, f ′(e) cannot be computed as it would require differentiating through Q(e), which is a non-
differentiable codebook lookup. We therefore drop this term and use only f(e) as our approximation
of the gradient through the vector quantization layer: ∂q̃

∂e = f(e). This approximation conveys more
information about the vector quantization operation than the STE, which sets ∂q̃

∂e = I .

A.9 THE REFLECTION TRICK

One may also use a single reflection to align e to q, rather than a rotation. For instance, using the
notation from Appendix A.6, setting r = e−q

∥e−q∥ and reflecting across the plane orthogonal to this

vector via the Householder reflection (I − 2rrT) will reflect e to q. We denote this reflection as R̃ so
that q̃ = ∥q∥

∥e∥ R̃e. We call this approach “the reflection trick.”

While the reflection trick aligns e to q it can result in undesirable behavior during the backward
pass. While the reflection trick replicates the rotation trick when ∇qL is parallel to q, as illustrated
in the top two rows of Figure 12 and the top-right and bottom regions of Figure 13, the reflection
trick reflects orthogonal components of the gradient across the hyperplane orthogonal to e − q so
that these components are reversed. Simply, if the quantized gradient points “left” then the reflected
gradient will point “right”, and vice-versa. This behavior is undesirable for points with low distortion,
e ≈ q, because it will cause e to move away from q along the components of the gradient orthogonal

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Gradient at Rotation Trick Reflection TrickSTE

Figure 12: Illustration of how the gradient at q moves to e via the STE, the rotation trick, and the reflection
trick. The reflection trick matches the behavior of the rotation trick when the gradient ∇qL is parallel to q.
However, it will reverse the components of the gradients orthogonal to q for points in q’s partition. This effect is
illustrated in the bottom two rows of the rightmost column.

Voronoi Partition STE Updates Reflection Trick Updates

Figure 13: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle). The STE applies the same update to each point in the same region. The
reflection trick (Appendix A.9) modifies the update based on the location of each point with respect to the
codebook vector. Note the top-left region of the reflection trick update, where the points actually move in the
opposite direction of the gradient update.

to q, thereby increasing distortion for two points that are a “good match”. The top-left partition of
Figure 13 illustrates one such example. In this case, the gradient pushes the codebook vector “left”
while the points in this region are pushed in the opposite direction of the gradient.

We evaluate this effect experimentally following the VQ-VAE evaluation paradigm from Table 1 and
the VQGAN evaluation paradigm from Table 3. While we did not train these models to completion
due to GPU resource limitations, both paradigms exhibited poor convergence when trained with

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the rotation trick using q̃ = ∥q∥
∥e∥Re with using q̃ = Re + (q − Re) for VQ-VAE

models. The experimental setting follows Table 1.

Rotation Trick Function Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
∥q∥
∥e∥Re 99% 0.028 1.4e-4 0.030 16.5 106.3
Re− (q −Re) 100% 0.028 4.0e-4 0.030 16.5 106.1

Table 9: Comparison of the rotation trick using q̃ = ∥q∥
∥e∥Re with using q̃ = Re+(q−Re) for VQGAN models.

The models with codebook size were stopped after 2 epochs while the models with codebook size 16384 were
stopped after 3 epochs.

Rotation Trick Function Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)
∥q∥
∥e∥Re 64× 64× 3 8192 45% 4.0e-4 0.161 0.46 225.0
Re− (q −Re) 64× 64× 3 8192 28% 1.5e-3 0.183 0.6 220.0
∥q∥
∥e∥Re 32× 32× 4 16384 18% 3.3e-4 0.292 1.5 196.1
Re− (q −Re) 32× 32× 4 16384 13% 9.4e-4 0.292 1.5 191.5

the reflection trick. Specifically, after one epoch, the validation loss was approximately 3x higher
than the rotation trick for both 8192 and 16384 codebook VQGANs in Table 3. For the Euclidean
codebook model with latent Shape 64× 64× 3 in Table 1, the validation loss was approximately 2x
higher than the rotation trick after 15 epochs.

A.10 GRADIENT NORM SCALING IN THE ROTATION TRICK

In this section, we analyze the effect of the ∥q∥
∥e∥ term in the rotation trick. While this norm rescaling

is necessary to transform e into q during the forward pass, one could avoid the multiplicative factor
by instead formulating the rotation trick as:

q̃ = R︸︷︷︸
constant

e+ (q −Re)︸ ︷︷ ︸
constant

A possible benefit of this latter formulation is that ∂q
∂e = R, an orthogonal transformation with

determinant one that does not shrink or expand space by a factor of ∥q∥
∥e∥ . In this section, we analyze

the differences between both approaches and formulate both as specific instantiations of a more
general family of rotation-based gradient approximations.

A.10.1 COMPARISON BETWEEN
∥q∥
∥e∥ AND (q −Re)

An inductive bias of vector quantization is that when e ≈ q, then ∇eL ≈ ∇qL. Simply, when the
distortion between e and q is small, the gradient for both e and q should be approximately the same.
However when ∥e∥ ≈ 0 and a Euclidean metric is used to determine the closest codebook vector, the
angle between e and q can be obtuse as illustrated in Figure 6. In this instance, the rotation trick will
cause the gradient∇eL to “over-rotate” and point away from ∇qL.

Using a grad scaling of ||q||
||e|| can fix this. When ||e|| ≈ 0 and ||e|| < ||q||, the norm of the gradient

will be scaled up to push e away from the origin. Pushing e away from the origin makes the angle
between e and q more of a factor when computing the Euclidean distance:

∥e− q∥ =
√
∥e∥2 + ∥q∥2 − 2∥e∥∥q∥ cos θ

so e is more likely to map to a different q that forms an acute angle with it as ∥e∥ increases.

Now consider if ∥q∥ ≈ 0 and ∥e∥ > ∥q∥. When this occurs, the update to e will vanish because
∥q∥
∥e∥ ≈ 0. This behavior may also be desirable because when q is close to the origin, there’s a higher
likelihood the angle between e and q would be obtuse.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 14: Visualization of how different choices of γ(e) in the rotation trick affect the gradient field for (top)
f(x, y) = x2 + y2 and (bottom) f(x, y) = log

(
| 1
2
x+ tanh(y)|

)
. To prevent cluttered visualizations, the

maximum and minimum gradient norms are capped within the gradient field.

We also explore this factor in ablation experiments for VQ-VAEs and VQGANs. Table 8 mirrors
Table 1 and summarizes our findings for VQ-VAEs while Table 9 mirrors Table 3 and summarizes
our findings for the VQGANs used in latent diffusion. In Table 8, we do not observe a difference
between using q̃ = ||q||

||e||Re and q̃ = Re+ (q−Re). However, for the VQGAN results in Table 9, we
find that using the grad scaling factor modestly improves performance.

A.10.2 GENERAL FAMILY OF ROTATION-BASED GRADIENT ESTIMATORS

Generalizing the additive and multiplicative formulations of the rotation trick, we formulate both as
specific instantiations of a more general family:

q̃ = γ(e)Re+ (q − γ(e)Re)

where γ(e) determines the multiplicative scaling factor. For q̃ = ∥q∥
∥e∥Re, γ(e) = ∥q∥

∥e∥ and for
q̃ = Re+ (q −Re), γ(e) = 1. However, one can explore other scaling factors such as

γ(e) =
1

8∥q − e∥2

We visualize the gradient fields for different formulations of γ(e) in Figure 14.

It is almost certain that other formulations of γ(e) from the ones we explore in this work would
improve the training dynamics or performance of VQ-VAEs. In particular, a priori fixing γ(e) to
satisfy an inductive bias or developing an adaptive scaling factor that dynamically sets γ(e) similar to
the functions that adapt task weights in multi-task learning throughout training (Kendall et al., 2018;
Chen et al., 2018) are exciting directions for future work.

A.11 TRAINING SETTINGS

We detail the training settings used in our experimental analysis in Section 5. While a text description
can be helpful for understanding the experimental settings, our released code should be referenced to
fully reproduce the results presented in this work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Orig ROTSTE Orig ROTSTE

ImageNet FFHQ & CelebA-HQ

VQGAN from Taming TransformersVQGAN from Taming Transformers VQGAN from Latent Diffusion

Orig ROTSTE ROTSTE

ImageNet [f=8] [f=4]

Figure 15: Non-cherry picked reconstructions for VQGAN results in Table 2 and Table 3. ROT is an abbreviation
for the rotation trick.

A.11.1 VQ-VAE EVALUATION.

Table 10 summarizes the hyperparameters used for the experiments in Section 5.1. For the encoder
and decoder architectures, we use the Convolutional Neural Network described by Esser et al. (2021).
The hyperparameters for the cosine similarity codebook lookup follow from Yu et al. (2021) and
the hyperparameters for the Euclidean distance codebook lookup follow from the default values set
in the Vector Quantization library from https://github.com/lucidrains/vector-quantize-pytorch. All
models replace the codebook loss with the exponential moving average described in Van Den Oord
et al. (2017) with decay = 0.8. The notation for both encoder and decoder architectures is adapted
from Esser et al. (2021).

Table 10: Hyperparameters for the experiments in Table 1. (1024, 32) indicates a model trained
with a codebook size of 1024 and codebook dimension of 32. Similarly, (8192, 3) indicates a model
trained with codebook size of 8192 and codebook dimension of 3.

Cosine Similarity Lookup Euclidean Lookup

(1024, 32) (8192, 3) (1024, 32) (8192, 3)

Input size 256× 256× 3 256× 256× 3 256× 256× 3 256× 256× 3
Latent size 16× 16× 32 64× 64× 3 16× 16× 32 64× 64× 3
β (commitment loss coefficient) 1.0 1.0 1.0 1.0
encoder/decoder channels 128 128 128 128
encoder/decoder channel mult. [1, 1, 2, 2, 4] [1, 2, 4] [1, 1, 2, 2, 4] [1, 2, 4]
[Effective] Batch size 256 256 256 256
Learning rate 1× 10−4 1× 10−4 5× 10−5 5× 10−5

Weight Decay 1× 10−4 1× 10−4 0 0
Codebook size 1024 8192 1024 8192
Codebook dimension 32 3 32 3
Training epochs 25 20 25 20

A.11.2 VQGAN EVALUATION

Table 11 summarizes the hyperparameters for the VQGAN experiments in Section 5.2. Non-cherry
picked reconstructions for the models trained in Table 2 and Table 3 are depicted in Figure 15. As
indicated by the increased r-FID score, the reconstructions out by the VQGAN trained with the
rotation trick appear to better reproduce the original image, especially fine details.

24

https://github.com/lucidrains/vector-quantize-pytorch

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 11: Hyperparameters for the experiments in Table 2 and Table 3. We implement the rotation
trick in the open source https://github.com/CompVis/taming-transformers for the experiments in
Table 2 and implement the rotation trick in https://github.com/CompVis/latent-diffusion for Table 3.
In both settings, we use the default hyperparameters. †: 18 epochs for ImageNet and 50 epochs for
FFHQ & CelebA-HQ.

Table 2 VQGAN Table 3 VQGAN Table 3 VQGAN

Input size 256× 256× 3 256× 256× 3 256× 256× 3
Latent size 16× 16× 256 64× 64× 3 32× 32× 4
Codebook weight 1.0 1.0 1.0
Discriminator weight 0.8 0.75 0.6
encoder/decoder channels 128 128 128
encoder/decoder channel mult. [1, 1, 2, 2, 4] [1, 2, 4] [1, 2, 2, 4]
[Effective] Batch size 48 16 16
[Effective] Learning rate 4.5× 10−6 4.5× 10−6 4.5× 10−6

Codebook size 1024 8192 16384
Codebook dimensions 256 3 4
Training Epochs 18/50† 4 4

Table 12: Hyperparameters for the experiments in Table 4.

ViT-VQGAN Settings

Input size 256× 256× 3
Patch size 8
Encoder / Decoder Hidden Dim 512
Encoder / Decoder MLP Dim 1024
Encoder / Decoder Hidden Depth 8
Encoder / Decoder Hidden Num Heads 8
Codebook Dimension 32
Codebook Size 8192
Codebook Loss Coefficient 1.0
Log Laplace loss Coefficient 0.0
Log Gaussian Coefficient 1.0
Perceptual loss Coefficient 0.1
Adversarial loss Coefficient 0.1
[Effective] Batch size 32
Learning rate 1× 10−4

Weight Decay 1× 10−4

Training epochs 10

Orig ROTSTE

ViT-VQGAN

Figure 16: Non-cherry
picked reconstructions for
ViT-VQGAN results in Ta-
ble 4. ROT is an abbreviation
for the rotation trick.

A.11.3 VIT-VQGAN EVALUATION

Our experiments in Section 5.3 use the ViT-VQGAN implemented in the open source repository
https://github.com/thuanz123/enhancing-transformers. The default hyperparameters follow those
specified by Yu et al. (2021), and our experiments use the default architecture settings specified by
the ViT small model configuration file.

We depict several reconstructions in Figure 16 and see that the ViT-VQGAN trained with the rotation
trick is able to better replicate small details that the ViT-VQGAN trained with the STE misses. This
is expected as the rotation trick drops r-FID from 29.2 to 11.2 as shown in Table 4.

A.11.4 TIMESFORMER VIDEO EVALUATION

We use the Hugging Face implementation of the TimeSformer from https://huggingface.co/docs/
transformers/en/model_doc/timesformer and the ViT-VQGAN vector quantization layer from https:
//github.com/thuanz123/enhancing-transformers. We loosely follow the hyperparameters listed in Yu
et al. (2021) and implement a small TimeSformer encoder and decoder due to GPU VRAM constraints.

25

https://github.com/CompVis/taming-transformers
https://github.com/CompVis/latent-diffusion
https://github.com/thuanz123/enhancing-transformers
https://huggingface.co/docs/transformers/en/model_doc/timesformer
https://huggingface.co/docs/transformers/en/model_doc/timesformer
https://github.com/thuanz123/enhancing-transformers
https://github.com/thuanz123/enhancing-transformers

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Original Video Rotation Trick
Reconstructions

STE

Reconstructions

Figure 17: BAIR Robot Pushing reconstruction examples. While the model trains on 16 video frames at a time,
we only visualize 4 at a time in this figure. The model trained with the STE undergoes codebook collapse, using
4 out of the 1024 codebook vectors for reconstruction and therefore crippling the information capacity of the
vector quantization layer. On the other hand, the VQ-VAE trained with the rotation trick instead uses an average
of 441 of the 1024 codebook vectors in each batch of 2 example videos.

Original Video Rotation Trick
Reconstructions

STE

Reconstructions

Figure 18: UCF-101 reconstruction examples. While the model trains on 16 video frames at a time, we
only visualize 4 at a time in this figure. The model trained with the STE undergoes codebook collapse, using
approximately 2 out of the 2048 codebook vectors for reconstruction and therefore crippling the information
capacity of the vector quantization layer. The VQ-VAE trained with the rotation trick instead uses an average of
615 of the 2048 codebook vectors in each batch of 2 example videos.

We reuse the dataloading functions of both BAIR Robot Pushing and UCF101 dataloaders from Yan
et al. (2021) at https://github.com/wilson1yan/VideoGPT. A complete description of the settings we
use for the experiments in Section 5.4 are listed in Table 13.

We also visualize the reconstructions for the TimeSformer-VQGAN trained with the rotation trick
and the STE. Figure 17 shows the reconstructions for BAIR Robot Pushing, and Figure 18 shows the
reconstructions for UCF101. For both datasets, the model trained with the STE undergoes codebook
collapse early into training. Specifically, it learns to only use 4

1024 of the available codebook vectors
for BAIR Robot Pushing and 2

2048 for UCF101 in a batch of 2 input examples. Small manual tweaks
to the architecture and training hyperparameters did not fix this issue.

In contrast, VQ-VAEs trained with the rotation trick do not manifest this training instability. Instead,
codebook usage is relatively high—at 43% for BAIR Robot Pushing and 30% for UCF101—and the
reconstructions accurately match the input, even though both encoder and decoder are very small
video models.

A.11.5 CREATION OF VORONOI REGION FIGURE

In this section, we describe the creation of Figure 4 as well as the other figures that use this format.
For the top-right and bottom partitions, we fix the codebook to a set of preset values and sample
pre-quantized points from four different Gaussian distributions. For the pre-quantized points in the
top-left partition, we manually set them to form a crescent shape around the codeword.

26

https://github.com/wilson1yan/VideoGPT

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 13: Hyperparameters for the experiments in Table 5. A TimeSformer (Bertasius et al., 2021)
is used for the Encoder and Decoder architecture as implemented at https://huggingface.co/docs/
transformers/en/model_doc/timesformer. The vector quantization layer between Encoder and Decoder
follow from Yu et al. (2021) as implemented in https://github.com/thuanz123/enhancing-transformers.

TimeSformer-VQGAN Settings

BAIR Robot Pushing UCF101 Action Recognition

Input size 16× 64× 64× 3 16× 128× 128× 3
Patch size 2 4
Encoder / Decoder Hidden Dim 256 256
Encoder / Decoder MLP Dim 768 768
Encoder / Decoder Hidden Depth 8 8
Encoder / Decoder Hidden Num Heads 4 4
Codebook Dimension 32 32
Codebook Size 1024 2048
Codebook Loss Coefficient 1.0 1.0
Log Laplace loss Coefficient 0.0 0.0
Log Gaussian Coefficient 1.0 1.0
Perceptual loss Coefficient 0.1 0.1
Adversarial loss Coefficient 0.1 0.1
[Effective] Batch size 24 20
Learning rate 1× 10−4 4.5× 10−6

Weight Decay 1× 10−4 1× 10−4

Training epochs 30 3

We similarly fix constant gradient vectors for each partition, and apply them to the pre-quantized
points after transformation by the STE, i.e. simply moving the gradient to each pre-quantized point
in the quantized region, or by the rotation trick, i.e. rotating the gradient based on the angle between
the pre-quantized point and closest codebook vector and rescaling appropriately. We multiply the
gradient by a small constant—the learning rate—and then apply the gradient to each pre-quantized
point. We repeat the above 25 times, at each point re-computing the angle and magnitude between the
pre-quantized point and the codebook vector for the rotation trick update. For simplicity, we do not
update the codebook vectors themselves or recompute codebook regions throughout the numerical
simulation.

A.12 COMPARISON WITHIN GENERATIVE MODELING APPLICATIONS

Absent from our work is an analysis on the effect of VQ-VAEs trained with the rotation trick on
down-stream generative modeling applications. We see this comparison as outside the scope of this
work and do not claim that improving reconstruction metrics, codebook usage, or quantization error in
“Stage 1” VQ-VAE training will lead to improvements in “Stage 2” generative modeling applications.

While poor reconstruction performance will clearly lead to poor generative modeling, recent work (Yu
et al., 2023) suggests that—at least for autoregressive modeling of codebook sequences with
MaskGit (Chang et al., 2022)—the connection between VQ-VAE reconstruction performance and
downstream generative modeling performance is non-linear. Specifically, increasing the size of
the codebook past a certain amount will improve VQ-VAE reconstruction performance but make
downstream likelihood-based geneative modeling of codebook vectors more difficult.

We believe this nuance may extend beyond MaskGit, and that the desiderata for likelihood-based
generative models will likely be different than that for score-based generative models like diffusion.
It is even possible that different preferences appear within the same class. For example, left-to-right
autoregressive modeling of codebook elements with Transformers (Vaswani, 2017) may exhibit
different preferences for Stage 1 VQ-VAE models than those of MaskGit.

These topics deserve a deep, and rich, analysis that we would find difficult to include within this work
as our focus is on propagating gradients through vector quantization layers. As a result, we entrust
the exploration of these questions to future work.

27

https://huggingface.co/docs/transformers/en/model_doc/timesformer
https://huggingface.co/docs/transformers/en/model_doc/timesformer
https://github.com/thuanz123/enhancing-transformers

	Introduction
	Related Work
	Straight Through Estimator (STE)
	The Rotation Trick
	The Rotation Trick Preserves Angles
	Efficient Rotation Computation
	Voronoi Partition Analysis

	Experiments
	VQ-VAE Evaluation
	VQGAN Evaluation
	ViT-VQGAN Evaluation
	Video Evaluation

	Conclusion
	Appendix
	Limitations of the Rotation Trick
	Non-Convex Synthetic Example
	Hessian Approximation and Exact Gradient Analysis
	Comparison to Stochastic Quantization
	Behavior Away From The Origin
	HouseHolder Reflection Transformation
	Proof the Rotation Trick Preserves Angles
	Treating R and ||q||||e|| as Constants
	The Reflection Trick
	Gradient Norm Scaling in the Rotation Trick
	Comparison Between q e and (q-Re)
	General Family of Rotation-Based Gradient Estimators

	Training Settings
	VQ-VAE Evaluation.
	VQGAN Evaluation
	ViT-VQGAN Evaluation
	TimeSformer Video Evaluation
	Creation of Voronoi Region Figure

	Comparison within Generative Modeling Applications

