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ABSTRACT

Vector Quantized Variational AutoEncoders (VQ-VAEs) are designed to compress
a continuous input to a discrete latent space and reconstruct it with minimal
distortion. They operate by maintaining a set of vectors—often referred to as
the codebook—and quantizing each encoder output to the nearest vector in the
codebook. However, as vector quantization is non-differentiable, the gradient to
the encoder flows around the vector quantization layer rather than through it in
a straight-through approximation. This approximation may be undesirable as all
information from the vector quantization operation is lost. In this work, we propose
a way to propagate gradients through the vector quantization layer of VQ-VAEs.
We smoothly transform each encoder output into its corresponding codebook vector
via a rotation and rescaling linear transformation that is treated as a constant during
backpropagation. As a result, the relative magnitude and angle between encoder
output and codebook vector becomes encoded into the gradient as it propagates
through the vector quantization layer and back to the encoder. Across 11 different
VQ-VAE training paradigms, we find this restructuring improves reconstruction
metrics, codebook utilization, and quantization error.

1 INTRODUCTION

Vector quantization (Gray, 1984) is an approach to discretize a continuous vector space. It defines a
finite set of vectors—referred to as the codebook—and maps any vector in the continuous vector space
to the closest vector in the codebook. However, deep learning paradigms that use vector quantization
are often difficult to train because replacing a vector with its closest codebook counterpart is a non-
differentiable operation (Huh et al., 2023). This characteristic was not an issue at its creation during
the Renaissance of Information Theory for applications like noisy channel communication (Cover,
1999); however in the era deep learning, it presents a challenge as gradients cannot directly flow
through layers that use vector quantization during backpropagation.

In deep learning, vector quantization is largely used in the eponymous Vector Quantized-Variational
AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017). A VQ-VAE is an AutoEncoder with a
vector quantization layer between the encoder’s output and decoder’s input, thereby quantizing the
learned representation at the bottleneck. While VQ-VAEs are ubiquitous in state-of-the-art generative
modeling (Rombach et al., 2022; Dhariwal et al., 2020; Brooks et al., 2024), their gradients cannot
flow from the decoder to the encoder uninterrupted as they must pass through a non-differentiable
vector quantization layer.

A solution to the non-differentiability problem is to approximate gradients via a “straight-through
estimator” (STE) (Bengio et al., 2013). During backpropagation, the STE copies and pastes the
gradients from the decoder’s input to the encoder’s output, thereby skipping the quantization operation
altogether. However, this approximation can lead to poor-performing models and codebook collapse:
a phenomena where a large percentage of the codebook converge to zero norm and are unused by
the model (Mentzer et al., 2023). Even if codebook collapse does not occur, the codebook is often
under-utilized, thereby limiting the information capacity of the VQ-VAEs’s bottleneck (Dhariwal
et al., 2020).

In this work, we propose an alternate way to propagate gradients through the vector quantization layer
in VQ-VAEs. For a given encoder output e and nearest codebook vector q, we smoothly transform e
to q via a rotation and rescaling linear transformation and then send this output—rather than the direct
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Encoder Decoder

Codebook Lookup

Rotate and Rescale to Codebook Vectors

Backward Pass

Rotation 
Trick

STE

Gradient Update Codebook Regions before Update Codebook Regions after Update

Figure 1: Illustration of the rotation trick. In the forward pass, encoder output e is rotated and rescaled to q1.
Not shown is the rotation of the other encoder outputs to their corresponding codebook vectors. In the backward
pass, the gradient at q1 moves to e so that the angle between ∇q1L and q1 is preserved. Now, points within
the same codebook region receive different gradients depending on their relative angle and magnitude to the
codebook vector. For example, points with high angular distance can be pushed into new codebook regions,
thereby increasing codebook utilization.

Algorithm 1 VQ-VAE with the Rotation Trick

Require: input example x
e← Encoder(x)
q ← nearest codebook vector to e
R← rotation matrix that aligns e to q

q̃ ← stop-gradient
[
∥q∥
∥e∥R

]
e

x̃← Decoder(q̃)
loss← L(x, x̃)
return loss

result of the codebook lookup—to the decoder.
As the input to the decoder, q̃, is now treated
as a smooth linear transformation of e, gradi-
ents flow back from the decoder to the encoder
unimpeded. To avoid differentiating through
the rotation and rescaling, we treat both as con-
stants with respect to e and q. We explain why
this choice is necessary in Appendix A.8. Fol-
lowing the convention of Kingma & Welling
(2013), we call this restructuring “the rotation
trick.” It is illustrated in Figure 3 and described
in Algorithm 1.

The rotation trick does not change the output of the VQ-VAE in the forward pass. However, during
the backward pass, it transports the gradient ∇qL at q to become the gradient ∇eL at e so that the
angle between q and ∇qL after the vector quantization layer equals the angle between e and ∇eL
before the vector quantization layer. Preserving this angle encodes relative angular distances and
magnitudes into the gradient and changes how points within the same codebook region are updated.

The STE applies the same update to all points within the same codebook region, maintaining their
relative distances. However as we will show in Section 4.3, the rotation trick can push points within
the same codebook region farther apart—or pull them closer together—depending on the direction of
the gradient vector. The former capability can correspond to increased codebook usage while the
latter to lower quantization error. In the context of lossy compression, both capabilities are desirable
for reducing the distortion and increasing the information capacity of the vector quantization layer.

When applied to several open-source VQ-VAE repositories, we find the rotation trick substantively
improves reconstruction performance, increases codebook usage, and decreases the distance between
encoder outputs and their corresponding codebook vectors. For instance, training the VQGAN from
Rombach et al. (2022) on ImageNet (Deng et al., 2009) with the rotation trick improves reconstruction
FID from 5.0 to 1.1, reconstruction IS from 141.5 to 200.2, increases codebook usage from 2% to
27%, and decreases quantization error by two orders of magnitude.

2 RELATED WORK

Many researchers have built upon the seminal work of Van Den Oord et al. (2017) to improve
VQ-VAE performance. While non-exhaustive, our review focuses on methods that address training
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instabilities caused by the vector quantization layer. We partition these efforts into two categories: (1)
methods that sidestep the STE and (2) methods that improve codebook-model interactions.

Sidestepping the STE. Several prior works have sought to fix the problems caused by the STE
by avoiding deterministic vector quantization. Baevski et al. (2019) employ the Gumbel-Softmax
trick (Jang et al., 2016) to fit a categorical distribution over codebook vectors that converges to
a one-hot distribution towards the end of training, Gautam et al. (2023) quantize using a convex
combination of codebook vectors, and Takida et al. (2022) employ stochastic quantization. Unlike
the above that cast vector quantization as a distribution over codebook vectors, Huh et al. (2023)
propose an alternating optimization where the encoder is optimized to output representations close to
the codebook vectors while the decoder minimizes reconstruction loss from a fixed set of codebook
vector inputs. While these approaches sidestep the training instabilities caused by the STE, they can
introduce their own set of problems and complexities such as low codebook utilization at inference
and the tuning of a temperature schedule (Zhang et al., 2023). As a result, many applications and
research papers continue to employ VQ-VAEs that are trained using the STE (Rombach et al., 2022;
Chang et al., 2022; Huang et al., 2023; Zhu et al., 2023; Dong et al., 2023).

Codebook-Model Improvements. Another way to attack codebook collapse or under-utilization is
to change the codebook lookup. Rather than use Euclidean distance, Yu et al. (2021) employ a cosine
similarity measure, Goswami et al. (2024) a hyperbolic metric, and Lee et al. (2022) stochastically
sample codes as a function of the distance between the encoder output and codebook vectors. Another
perspective examines the learning of the codebook. Kolesnikov et al. (2022) split high-usage codebook
vectors, Dhariwal et al. (2020); Łańcucki et al. (2020); Zheng & Vedaldi (2023) resurrect low-usage
codebook vectors throughout training, Chen et al. (2024) dynamically selects one of m codebooks
for each datapoint, and Mentzer et al. (2023); Zhao et al. (2024); Yu et al. (2023); Chiu et al. (2022)
fix the codebook vectors to an a priori geometry and train the model without learning the codebook
at all. Other works propose loss penalties to encourage codebook utilization. Zhang et al. (2023)
add a KL-divergence penalty between codebook utilization and a uniform distribution while Yu et al.
(2023) add an entropy loss term to penalize low codebook utilization. While effective at targeting
specific training difficulties, as each of these methods continue to use the STE, the training instability
caused by this estimator persist. Most of our experiments in Section 5 implement a subset of these
approaches, and we find that replacing the STE with the rotation trick further improves performance.

3 STRAIGHT THROUGH ESTIMATOR (STE)

In this section, we review the Straight-Through Estimator (STE) and visualize its effect on the gradi-
ents. We then explore two STE alternatives that—at first glance—appear to correct the approximation
made by the STE.

For notation, we define a sample space X over the input data with probability distribution p. For input
x ∈ X , we define the encoder as a deterministic mapping that parameterizes a posterior distribution
pE(e|x). The vector quantization layer, Q(·), is a function that selects the codebook vector q ∈ C
nearest to the encoder output e. Under Euclidean distance, it has the form:

Q(q = i|e) =
{
1 if i = argmin1≤j≤|C| ∥e− qj∥2
0 otherwise

The decoder is similarly defined as a deterministic mapping that parameterizes the conditional
distribution over reconstructions pD(x̃|q). As in the VAE (Kingma & Welling, 2013), the loss function
follows from the ELBO with the KL-divergence term zeroing out as pE(e|x) is deterministic and the
utilization over codebook vectors is assumed to be uniform. Van Den Oord et al. (2017) additionally
add a “codebook loss” term ∥sg(e)− q∥22 to learn the codebook vectors and a “commitment loss”
term β∥e− sg(q)∥22 to pull the encoder’s output towards the codebook vectors. sg stands for stop-
gradient and β is a hyperparameter, typically set to a value in [0.25, 2]. For predicted reconstruction
x̃, the optimization objective becomes:

L(x̃) = ∥x− x̃∥22 + ∥sg(e)− q∥22 + β∥e− sg(q)∥22

In the subsequent analysis, we focus only on the ∥x− x̃∥22 term as the other two are not functions of
the decoder. During backpropagation, the model must differentiate through the vector quantization
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Gradient Field STE Gradient Field

Figure 2: Visualization of how the straight-through estimator (STE) transforms the gradient field for 16
codebook vectors for (top) f(x, y) = x2 + y2 and (bottom) f(x, y) = log

(
| 1
2
x+ tanh(y)|

)
. The STE takes

the gradient at the codebook vector (qx, qy) and “copies-and-pastes” it to all other locations within the same
codebook region, forming a “checker-board” pattern in the gradient field.

function Q(·). We can break down the backward pass into three terms:

∂L
∂x

=
∂L
∂q

∂q

∂e

∂e

∂x

where ∂L
∂q represents backpropagation through the decoder, ∂q

∂e represents backpropagation through
the vector quantization layer, and ∂e

∂x represents backpropagation through the encoder. As vector
quantization is not a smooth transformation, ∂q

∂e cannot be computed and gradients cannot flow
through this term to update the encoder in backpropagation.

To solve the issue of non-differentiability, the STE copies the gradients from q to e, bypassing vector
quantization entirely. Simply, the STE sets ∂q

∂e to the identity matrix I in the backward pass:

∂L
∂x

=
∂L
∂q

I
∂e

∂x

The first two terms ∂L
∂q

∂q
∂e combine to ∂L

∂e which, somewhat misleadingly, does not actually depend
on e. As a consequence, the location of e within the Voronoi partition generated by codebook vector
q—be it close to q or at the boundary of the region—has no impact on the gradient update to the
encoder.

An example of this effect is visualized in Figure 2 for two example functions. In the STE approxi-
mation, the “exact” gradient at the encoder output is replaced by the gradient at the corresponding
codebook vector for each Voronoi partition, irrespective of where in that region the encoder output e
lies. As a result, the exact gradient field becomes “partitioned” into 16 different regions—all with the
same gradient update to the encoder—for the 16 vectors in the codebook.

Returning to our question, is there a better way to propagate gradients through the vector quantization
layer? At first glance, one may be tempted to estimate the curvature at q and use this information to
transform ∂q

∂e as q moves to e. This is accomplished by taking a second order expansion around q to
approximate the value of the loss at e:

Le ≈ Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q)

4
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Then we can compute the gradient at the point e instead of q up to second order approximation with:

∂L
∂e
≈ ∂

∂e

[
Lq + (∇qL)T (e− q) +

1

2
(e− q)T (∇2

qL)(e− q)

]
= ∇qL+ (∇2

qL)(e− q)

While computing Hessians with respect to model parameters are typically prohibitive in modern deep
learning architectures, computing them with respect to only the codebook is feasible. Moreover as
we must only compute (∇2

qL)(e− q), one may take advantage of efficient Hessian-Vector products
implementations in deep learning frameworks (Dagréou et al., 2024) and avoid computing the full
Hessian matrix.

Extending this idea a step further, we can compute the exact gradient ∂L
∂e at e by making two passes

through the network. Let Lq be the loss with the vector quantization layer and Le be the loss without
vector quantization, i.e. q = e rather than q = Q(e). Then one may form the total loss L = Lq+λLe,
where λ is a small constant like 10−6, to scale down the effect of Le on the decoder’s parameters and
use a gradient scaling multiplier of λ−1 to reweigh the effect of Le on the encoder’s parameters to 1.
As ∂q

∂e is non-differentiable, gradients from Lq will not flow to the encoder.

While seeming to correct the encoder’s gradients, replacing the STE with either approach will
likely result in worse performance. This is because computing the exact gradient with respect
to e is actually the AutoEncoder (Hinton & Zemel, 1993) gradient, the model that VAEs (Kingma
& Welling, 2013) and VQ-VAEs (Van Den Oord et al., 2017) were designed to replace given the
AutoEncoder’s propensity to overfit and difficultly generalizing. Accordingly using either Hessian
approximation or exact gradients via a double forward pass will cause the encoder to be trained
like an AutoEncoder and the decoder to be trained like a VQ-VAE. This mis-match in optimization
objectives is likely another contributing factor to the poor performance we observe for both methods
in Table 1.

4 THE ROTATION TRICK

As discussed in Section 3, updating the encoder’s parameters by approximating, or exactly, computing
the gradient at the encoder’s output is undesirable. Similarly, the STE appears to lose information:
the location of e within the quantized region—be it close to q or far away at the boundary—has no
impact on the gradient update to the encoder. Capturing this information, i.e. using the location of e
in relation to q to transform the gradients through ∂q

∂e , could be beneficial to the encoder’s gradient
updates and an improvement over the STE.

Viewed geometrically, we ask how to move the gradient∇qL from q to e, and what characteristics
of ∇qL and q should be preserved during this movement. The STE offers one possible answer:
move the gradient from q to e so that its direction and magnitude are preserved. However, this paper
supplies a different answer: move the gradient so that the angle between ∇qL and q is preserved
as ∇qL moves to e. We term this approach “the rotation trick”, and in Section 4.3 we show that
preserving the angle between q and ∇qL conveys desirable properties to how points move within the
same quantized region.

4.1 THE ROTATION TRICK PRESERVES ANGLES

In this section, we formally define the rotation trick. For encoder output e, let q = Q(e) represent the
corresponding codebook vector. Q(·) is non-differentiable so gradients cannot flow through this layer
during the backward pass. The STE solves this problem—maintaining the direction and magnitude
of the gradient∇qL—as∇qL moves from q to e with some clever hacking of the backpropagation
function in deep learning frameworks:

q̃ = e− (q − e)︸ ︷︷ ︸
constant

which is a parameterization of vector quantization that sets the gradient at the encoder
output to the gradient at the decoder’s input. The rotation trick offers a different pa-
rameterization: casting the forward pass as a rotation and rescaling that aligns e with q:
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Gradient at Rotation TrickSTE

Figure 3: Illustration of how the gradient at q
moves to e via the STE (middle) and rotation trick
(right). The STE “copies-and-pastes” the gradient
to preserve its direction while the rotation trick
moves the gradient so the angle between q and
∇qL is preserved.

q̃ =

[
∥q∥
∥e∥

R

]
︸ ︷︷ ︸

constant

e

R is the rotation1 transformation that aligns e with
q and ∥q∥

∥e∥ rescales e to have the same magnitude

as q. Note that both R and ∥q∥
∥e∥ are functions of e.

To avoid differentiating through this dependency, we
treat them as fixed constants—or detached from the
computational graph in deep learning frameworks—
when differentiating. This choice is explained in
Appendix A.8.

While the rotation trick does not change the output of
the forward pass, the backward pass changes. Rather
than set ∂q

∂e = I as in the STE, the rotation trick sets
∂q
∂e to be a rotation and rescaling transformation:

∂q̃

∂e
=
∥q∥
∥e∥

R

As a result, ∂q
∂e changes based on the position of e in

the codebook partition of q, and notably, the angle
between∇qL and q is preserved as∇qL moves to e. This effect is visualized in Figure 3. While the
STE translates the gradient from q to e, the rotation trick rotates it so that the angle between ∇qL
and q is preserved. In a sense, the rotation trick and the STE are sibilings. They choose different
characteristics of the gradient as desiderata and then preserve those characteristics as the gradient
flows around the non-differentiable vector quantization operation to the encoder.

4.2 EFFICIENT ROTATION COMPUTATION

The rotation transformation R that rotates e to q can be efficiently computed with Householder matrix
reflections. We define ê = e

∥e∥ , q̂ = q
∥q∥ , λ = ∥q∥

∥e∥ , and r = ê+q̂
∥ê+q̂∥ . Then the rotation and rescaling

that aligns e to q is simply:

q̃ = λRe

= λ(I − 2rrT + 2q̂êT )e

= λ[e− 2rrT e+ 2q̂êT e]

Due to space constraints, we leave the derivation of this formula to Appendix A.6. Parameterizing
the rotation in this fashion avoids computing outer products and therefore consumes minimal GPU
VRAM. Further, we did not detect a difference in wall-clock time between VQ-VAEs trained with
the STE and VQ-VAEs trained with the rotation trick for our experiments in Section 5.

4.3 VORONOI PARTITION ANALYSIS

In the context of lossy compression, vector quantization works well when the distortion, or equiv-
alently quantization error ∥e− q∥22, is low and the information capacity—equivalently codebook
utilization—is high (Cover, 1999). Later in Section 5, we will see that VQ-VAEs trained with the
rotation trick have this desiderata—often reducing quantization error by an order of magnitude
and substantially increasing codebook usage—when compared to VQ-VAEs trained with the STE.
However, the underlying reason why this occurs is less clear.

1A rotation is defined as a linear transformation so that RRT = I , R−1 = RT , and det(R) = 1.
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Voronoi Partition STE Updates Rotation Trick Updates

Figure 4: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle). The STE applies the same update to each point in the same region. The
rotation trick modifies the update based on the location of each point with respect to the codebook vector.

Change in Distance Between
and After an Update

Figure 5: With the STE, the dis-
tances among points within the
same region do not change. How-
ever with the rotation trick, the
distances among points do change.
When ϕ < π/2, points with large
angular distance are pushed away
(blue: increasing distance). When
ϕ > π/2, points are pulled to-
wards the codebook vector (green:
decreasing distance).

In this section, we analyze the effect of the rotation trick by looking
at how encoder outputs that are mapped to the same Voronoi region
are updated. While the STE applies the same update to all points
within the same partition, the rotation trick changes the update
based on the location of points within the Voronoi region. It can
push points within the same region farther apart or pull them closer
together depending on the direction of the gradient vector. The
former capability can correspond to increased codebook usage
while the latter to lower quantization error.

Let θ be the angle between e and q and ϕ be the angle between
q and ∇qL. When ∇qL and q point in the same direction, i.e.
−π/2 < ϕ < π/2, encoder outputs with large angular distance to
q are pushed farther away than they would otherwise be moved
by the STE update. Figure 5 illustrates this effect. The points with
large angular distance (blue regions) move further away from q
than the points with low angular distance (ivory regions).

The top right partitions of Figure 4 present an example of this
effect. The two clusters of points at the boundary—with relatively
large angle to the codebook vector—are pushed away while the
cluster of points with small angle to the codebook vector move with
it. The ability to push points at the boundary out of a quantized
region and into another is desirable for increasing codebook utiliza-
tion. Specifically, codebook utilization improves when points are
pushed into the Voronoi regions of previously unused codebook
vectors. This capability is not shared by the STE, which moves all
points in the same region by the same amount.

When ∇qL and q point in opposite directions, i.e. π/2 < ϕ <
3π/2, the distance among points within the same Voronoi region
decreases as they are pulled towards the location of the updated
codebook vector. This effect is visualized in Figure 5 (green
regions) and the bottom partitions of Figure 4 show an exam-
ple. Unlike the STE update—that maintains the distances among
points—the rotation trick pulls points with high angular distances
closer towards the post-update codebook vector. This capability
is desirable for reducing the quantization error and enabling the
encoder to lock on (Van Den Oord et al., 2017) to a target codebook
vector.

Taken together, both capabilities can form a push-pull effect that achieves two desiderata of vector
quantization: increasing information capacity and reducing distortion. Encoder outputs that have large

7
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Table 1: Comparison of VQ-VAEs trained on ImageNet following Van Den Oord et al. (2017). We use the
Vector Quantization layer from https://github.com/lucidrains/vector-quantize-pytorch.

Approach Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 32× 32× 32 & Codebook Size: 1024
VQ-VAE 100% 0.107 5.9e-3 0.115 106.1 11.7
VQ-VAE w/ Rotation Trick 97% 0.116 5.1e-4 0.122 85.7 17.0

Codebook Lookup: Cosine & Latent Shape: 32× 32× 32 & Codebook Size: 1024
VQ-VAE 75% 0.107 2.9e-3 0.114 84.3 17.7
VQ-VAE w/ Rotation Trick 91% 0.105 2.7e-3 0.111 82.9 18.1

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 100% 0.028 1.0e-3 0.030 19.0 97.3
VQ-VAE w/ Hessian Approx. 39% 0.082 6.9e-5 0.112 35.6 65.1
VQ-VAE w/ Exact Gradients 84% 0.050 2.0e-3 0.053 25.4 80.4
VQ-VAE w/ Rotation Trick 99% 0.028 1.4e-4 0.030 16.5 106.3

Codebook Lookup: Cosine & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 31% 0.034 1.2e-4 0.038 26.0 77.8
VQ-VAE w/ Hessian Approx. 37% 0.035 3.8e-5 0.037 29.0 71.5
VQ-VAE w/ Exact Gradients 38% 0.035 3.6e-5 0.037 28.2 75.0
VQ-VAE w/ Rotation Trick 38% 0.033 9.6e-5 0.035 24.2 83.9

angular distance to the chosen codebook vector are “pushed” to other, possibly unused, codebook
regions by outwards-pointing gradients, thereby increasing codebook utilization. Concurrent with
this effect, center-pointing gradients will “pull” points loosely clustered around the codebook vector
closer together, locking on to the chosen codebook vector and reducing quantization error.

A third and final difference with the STE occurs when ∇qL is exactly orthogonal to q, i.e. ϕ = π/2.
For this event, each point within the Voronoi region generated by q is rotated by the same amount in
the direction of∇qL. The top left Voroni regions of Figure 4 visualize this case. While it is unlikely
that the gradient is exactly orthogonal to the codebook vector, the gradient’s orthogonal component
to q enables points to move in orthogonal directions via a rotation and expansion (if ϕ < π/2) or a
rotation and contraction (if ϕ > π/2).

5 EXPERIMENTS

In Section 4.3, we showed the rotation trick enables behavior that would increase codebook utilization
and reduce quantization error by changing how points within the same Voronoi region are updated.
However, the extent to which these changes will affect applications is unclear. In this section, we
evaluate the effect of the rotation trick across many different VQ-VAE paradigms.

We begin with image reconstruction: training a VQ-VAE with the reconstruction objective of Van
Den Oord et al. (2017) and later extend our evaluation to the more complex VQGANs (Esser
et al., 2021), the VQGANs designed for latent diffusion (Rombach et al., 2022), and then the
ViT-VQGAN (Yu et al., 2021). Finally, we evaluate VQ-VAE reconstructions on videos using a
TimeSformer (Bertasius et al., 2021) encoder and decoder. In total, our empirical analysis spans
11 different VQ-VAE configurations. For all experiments, aside from handling ∂q

∂e
differently, the

models, hyperparameters, and training settings are identical.

5.1 VQ-VAE EVALUATION

We begin with a straightforward evaluation: training a VQ-VAE to reconstruct examples from
ImageNet (Deng et al., 2009). Following Van Den Oord et al. (2017), our training objective is a linear
combination of the reconstruction, codebook, and commitment loss:

L = ∥x− x̃∥22 + ∥sg(e)− q∥22 + β∥e− sg(q)∥22
where β is a hyperparameter scaling constant. Following convention, we drop the codebook loss term
from the objective and instead use an exponential moving average to update the codebook vectors.

Evaluation Settings. For 256 × 256 × 3 input images, we evaluate two different settings: (1)
compressing to a latent space of dimension 32× 32× 32 with a codebook size of 1024 following Yu
et al. (2021) and (2) compressing to 64× 64× 3 with a codebook size of 8192 following Rombach
et al. (2022). In both settings, we compare with a Euclidean and cosine similarity codebook lookup.

Evaluation Metrics. We log both training and validation set reconstruction metrics. Of note, we
compute reconstruction FID (Heusel et al., 2017) and reconstruction IS (Salimans et al., 2016) on
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Table 2: Results for VQGAN designed for autoregressive generation as implemented in https://github.com/
CompVis/taming-transformers. Experiments on ImageNet and the combined dataset FFHQ (Karras et al., 2019)
and CelebA-HQ (Karras, 2017) use a latent bottleneck of dimension 16×16×256 with 1024 codebook vectors.

Approach Dataset Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN (reported) ImageNet — — — 7.9 114.4
VQGAN (our run) ImageNet 95% 0.134 0.594 7.3 118.2
VQGAN w/ Rotation Trick ImageNet 98% 0.002 0.422 4.6 146.5

VQGAN FFHQ & CelebA-HQ 27% 0.233 0.565 4.7 5.0
VQGAN w/ Rotation Trick FFHQ & CelebA-HQ 99% 0.002 0.313 3.7 5.2

Table 3: Results for VQGAN designed for latent diffusion as implemented in https://github.com/CompVis/
latent-diffusion. Both settings train on ImageNet.

Approach Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN 64× 64× 3 8192 15% 2.5e-3 0.183 0.53 220.6
VQGAN w/ Rotation Trick 64× 64× 3 8192 86% 1.7e-4 0.142 0.27 228.0

VQGAN 32× 32× 4 16384 2% 1.2e-2 0.385 5.0 141.5
VQGAN w/ Rotation Trick 32× 32× 4 16384 27% 2.4e-4 0.269 1.1 200.2

reconstructions from the full ImageNet validation set as a measure of reconstruction quality. We
also compute codebook usage, or the percentage of codebook vectors that are used in each batch of
data, as a measure of the information capacity of the vector quantization layer and quantization error
∥e− q∥22 as a measure of distortion.

Baselines. Our comparison spans the STE estimator (VQ-VAE), the Hessian approximation described
in Section 3 (VQ-VAE w/ Hessian Approx), the exact gradient backward pass described in Section 3
(VQ-VAE w/ Exact Gradients), and the rotation trick (VQ-VAE w/ Rotation Trick). All methods share
the same architecture, hyperparameters, and training settings, and these settings are summarized in
Table 10 of the Appendix. There is no functional difference among methods in the forward pass; the
only differences relates to how gradients are propagated through ∂q

∂e during backpropagation.

Results. Table 1 displays our findings. We find that using the rotation trick reduces the quantization
error—sometimes by an order of magnitude—and improves low codebook utilization. Both results
are expected given the Voronoi partition analysis in Section 4.3: points at the boundary of quantized
regions are likely pushed to under-utilized codebook vectors while points loosely grouped around the
codebook vector are condensed towards it. These two features appear to have a meaningful effect on
reconstruction metrics: training a VQ-VAE with the rotation trick substantially improves r-FID and
r-IS.

We also see that the Hessian Approximation or using Exact Gradients results in poor reconstruc-
tion performance. While the gradients to the encoder are, in a sense, “more accurate”, training
the encoder like an AutoEncoder (Hinton & Zemel, 1993) likely introduces overfitting and poor
generalization. Moreover, the mismatch in training objectives between the encoder and decoder is
likely an aggravating factor and partly responsible for both models’ poor performance.

5.2 VQGAN EVALUATION

Moving to the next level of complexity, we evaluate the effect of the rotation trick on VQGANs (Esser
et al., 2021). The VQGAN training objective is:

LVQGAN = LPer + ∥sg(e)− q∥22 + β∥e− sg(q)∥22 + λLAdv

where LPer is the perceptual loss from Johnson et al. (2016) and replaces the L2 loss used to train
VQ-VAEs. LAdv is a patch-based adversarial loss similar to the adversarial loss in Conditional
GAN (Isola et al., 2017). β is a constant that weights the commitment loss while λ is an adaptive
weight based on the ratio of∇LPer to ∇LAdv with respect to the last layer of the decoder.

Experimental Settings. We evaluate VQGANs under two settings: (1) the paradigm amenable to
autoregressive modeling with Transformers as described in Esser et al. (2021) and (2) the paradigm
suitable to latent diffusion models as described in Rombach et al. (2022). The first setting follows
the convolutional neural network and default hyperparameters described in Esser et al. (2021) while
the second follows those from Rombach et al. (2022). A full description of both training settings is
provided in Table 11 of the Appendix.

Results. Our results are listed in Table 2 for the first setting and Table 3 for the second. Similar to our
findings in Section 5.1, we find that training a VQ-VAE with the rotation trick substantially decreases
quantization error and improves codebook usage. Moreover, reconstruction performance as measured
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Table 4: Results for ViT-VQGAN (Yu et al., 2021) trained on ImageNet. The latent shape is 8× 8× 32 with
8192 codebook vectors. r-FID and r-IS are reported on the validation set.

Approach Codebook Usage (↑) Train Loss (↓) Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

ViT-VQGAN [reported] — — — — 22.8 72.9
ViT-VQGAN [ours] 0.3% 0.124 6.7e-3 0.127 29.2 43.0
ViT-VQGAN w/ Rotation Trick 2.2% 0.113 8.3e-3 0.113 11.2 93.1

Table 5: Results for TimeSformer-VQGAN trained on BAIR and UCF-101 with 1024 codebook vectors. †:
model suffers from codebook collapse and diverges. r-FVD is computed on the validation set.

Approach Dataset Codebook Usage Train Loss (↓) Quantization Error (↓) Valid Loss (↓) r-FVD (↓)

TimeSformer† BAIR 0.4% 0.221 0.03 0.28 1661.1
TimeSformer w/ Rotation Trick BAIR 43% 0.074 3.0e-3 0.074 21.4

TimeSformer† UCF-101 0.1% 0.190 0.006 0.169 2878.1
TimeSformer w/ Rotation Trick UCF-101 30% 0.111 0.020 0.109 229.1

on the validation set by the total loss, r-FID, and r-IS are significantly improved across both modeling
paradigms.

5.3 VIT-VQGAN EVALUATION

Improving upon the VQGAN model, Yu et al. (2021) propose using a ViT (Dosovitskiy, 2020) rather
than CNN to parameterize the encoder and decoder. The ViT-VQGAN uses factorized codes and L2

normalization on the output and input to the vector quantization layer to improve performance and
training stability. Additionally, the authors change the training objective, adding a logit-laplace loss
and restoring the L2 reconstruction error to LVQGAN.

Experimental Settings. We follow the open source implementation of https://github.com/thuanz123/
enhancing-transformers and use the default model and hyperparameter settings for the small ViT-
VQGAN. A complete description of the training settings can be found in Table 12 of the Appendix.

Results. Table 4 summarizes our findings. Similar to our previous results for VQ-VAEs in Section 5.1
and VQGANs in Section 5.2, codebook utilization and reconstruction metrics are significantly
improved; however in this case, the quantization error is roughly the same.

5.4 VIDEO EVALUATION

Expanding our analysis beyond the image modality, we evaluate the effect of the rotation trick on
video reconstructions from the BAIR Robot dataset (Ebert et al., 2017) and from the UCF101 action
recognition dataset (Soomro, 2012). We follow the quantization paradigm used by ViT-VQGAN,
but replace the ViT with a TimeSformer (Bertasius et al., 2021) video model. Due to compute
limitations, both encoder and decoder follow a relatively small TimeSformer model: 8 layers, 256
hidden dimensions, 4 attention heads, and 768 MLP hidden dimensions. A complete description of
the architecture, training settings, and hyperparameters are provided in Appendix A.11.4.

Results. Table 5 shows our results. For both datasets, training a TimeSformer-VQGAN model with
the STE results in codebook collapse. We explored several different hyperparameter settings; however
in all cases, codebook utilization drops to almost 0% within the first several epochs. On the other
hand, models trained with the rotation trick do not exhibit any training instability and produce high
quality reconstructions as indicated by r-FVD (Unterthiner et al., 2018). Several non-cherry picked
video reconstructions are displayed in Appendix A.11.4.

6 CONCLUSION

In this work, we explore different ways to propagate gradients through the vector quantization layer
of VQ-VAEs and find that preserving the angle—rather than the direction—between the codebook
vector and gradient induces desirable effects for how points within the same codebook region are
updated. These effects cause a substantial improvement in model performance. Across 11 different
settings, we find that training VQ-VAEs with the rotation trick improves their reconstructions. For
example, training one of the VQGANs used in latent diffusion with the rotation trick improves r-FID
from 5.0 to 1.1 and r-IS from 141.5 to 200.2, reduces quantization error by two orders of magnitude,
and increases codebook usage by 13.5x.
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A APPENDIX

A.1 LIMITATIONS OF THE ROTATION TRICK

Rotation TrickSTE

Figure 6: Illustration of the rotation trick “over-rotating”
vectors when the angle between e1 and q is obtuse.

One potential limitation of the rotation trick is
when high numerical precision is required on
the quantized vectors during training. As the
rotation matrix does not have infinite precision,
it will rotate e to q up to a small error term so
that the input to the decoder will not be exactly
q during training, but rather offset by a very
small factor depending on the precision used to
compute R. Nevertheless, this limitation does
not arise during inference as a non-differentiable
codebook lookup transforms e into exactly q
since gradients are not needed during test-time.

A second possible limitation is when either the
encoder outputs or codebook vectors are forced
to be close to 0 norm (i.e., ∥e∥ ≈ 0 or ∥q∥ ≈ 0).
In this case, the angle between e and q may be
obtuse. When this happens, the rotation trick will “over-rotate” the gradient∇qL as it is transported
from q to e so that ∇qL and ∇eL now point in different directions (i.e. the cosine of the angle
between ∇eL and ∇qL will be negative). An example is visualized in Figure 6.

This is undesirable because—when the angle between e and q is obtuse—the rotation trick will violate
the assumption that when e ≈ q, ∇qL ≈ ∇eL, and it will likely result in worse performance than
VQ-VAEs trained with the STE. While obtuse angles between e and q are very unlikely—by design,
the codebook vectors should be “angularly close” to the vectors that are mapped to them—however,
if there is a restriction that forces codewords to have near 0 norm, then the rotation trick will likely
perform worse than the STE.

A.2 NON-CONVEX SYNTHETIC EXAMPLE

Figure 7: Loss surface for Himmelblau’s
function. Himmelblau’s function has four
equal local minima: f (3.0, 2.0) = 0.0, f (-
2.8.., 3.1...) = 0.0, f (-3.7.., -3.2..) = 0.0, and
f (3.5.., -1.8..) = 0.0.

To supplement our analysis in Section 4.3, we include a nu-
merical simulation of vector quantization for minimizing
Himmelblau’s function (Figure 7) across 100 gradient up-
dates for the STE and rotation trick gradient estimators to
highlight the differences in their behaviors. Our simulation
uses an EMA with a decay rate of 0.8 as described in Van
Den Oord et al. (2017) to update the codebook vectors and
a learning rate of 1e−3 to update the pre-quantized points.
Points for both the STE and the rotation trick simulation
use the same random initialization for both codewords and
pre-quantized vectors. The only difference is whether the
STE or the rotation trick is used as the gradient estimator
through the vector quantization operation.

Figure 8 visualizes our results after 33, 66, and 100 gra-
dient updates. The orange circles represent codebook vec-
tors, the green dots the initial points, and the blue dots the
updated points. Contour lines are drawn in each diagram
to indicate regions of equal loss, with blue representing
regions of low loss and red indicating regions of high loss.
Similar to our findings in Section 5, we see that the rotation
trick clusters points more tightly around each codebook
vector when compared to the STE, resulting in lower dis-
tortion. Moreover, the codebook vectors more rapidly converge to the four equal local minima in
Himmelblau’s function, resulting in a lower objective function value when averaged across all points.
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The Rotation Trick

Straight-Through Estimator
0 Updates 33 Updates 66 Updates 100 Updates

Figure 8: Synthetic experiment for minimizing Himmelblau’s function with vector quantization using the STE
gradient estimator (top row) and the rotation trick (bottom row). The rotation trick more quickly converges to
these minima and achieves substantively lower distortion between codewords and pre-quantized points.

A.3 HESSIAN APPROXIMATION AND EXACT GRADIENT ANALYSIS

In this section, we expand our analysis in Section 3 and offer some intuition for why using exact
gradients, or a Hessian approximation of the exact gradients, may convey undesirable characteristics.
We begin by showing the Hessian approximates the exact gradient up to second order term with a
Taylor series expansion. We can write the loss Le exactly as an infinite series of around q:

Le = Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q) +
1

6
(e− q)T∇3

qL(e− q, e− q) + . . . .

so that the loss computed by the Hessian approximation differs from the loss computed with the exact
gradients method by the remainder term from truncating the Taylor series expansion after the second
term:

{Le}Hessian = Lq + (∇qL)T (e− q) +
1

2
(e− q)T (∇2

qL)(e− q)
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STE Gradient Rotation Trick Gradient Hessian & Exact GradientLoss Surface

Top-Left Partition Loss Surface Top-Right Partition Loss Surface Bottom Partition Loss Surface

Figure 9: Examples of how the gradient can change due to the presence of negative curvature or an indefinite
Hessian. As the loss in each partition is quadratic, the exact gradient will equal the Hessian approximation.
Notice that when q ≈ e, ∇qL ≈ ∇eL for both the STE and the rotation trick. As the Hessian approximation
and exact gradients use the curvature of the loss surface to move ∇qL from q to e, the direction of the gradient
can change substantively, even when q ≈ e.

When differentiating both of these losses to compute the gradients, the difference between the exact
gradient update and the Hessian update is:

∂Le

∂e
− {∂Le

∂e
}Hessian =

∂

∂e
O(∥e− q∥3)

where

O(∥e− q∥3) = 1

6
(e− q)T∇3

qL(e− q, e− q) + . . .

The Hessian idea described in Section 3 approximates the exact gradients to the encoder as if
quantization did not occur, i.e. it approximates the gradient used to update the encoder in the original
AutoEncoder (Hinton & Zemel, 1993) model.

We now explore some instances where the exact gradients, or their Hessian approximation, may
produce undesirable behavior in vector quantization. An inductive bias (Baxter, 2000) for vector
quantization to work well is that when e is “close” to q, their gradients are also “close”, i.e. if e ≈ q
then ∇eL ≈ ∇qL. Intuitively, if the distortion between e and q is small—i.e. q is a very good
codeword for e—then these points should move together during a gradient update. If they do not, the
distortion would increase.

This assumption holds for both the STE and Rotation Trick gradients; however, it can be violated by
the Hessian approximation or the exact gradient approaches, especially when the curvature around q
is negative or the Hessian is indefinite and forms a saddle point.

Figure 9 illustrates three such cases. As both the STE and Rotation Trick do not use the loss surface
to move ∇qL from q to e, when q ≈ e, ∇qL ≈ ∇eL. However, approaches that use the curvature
around q, such as the Hessian approximation or exact gradients, to either find or approximate the
loss at e can have∇eL point in a very different direction from ∇qL, even when q is close to e. The
top-left and bottom partitions of Figure 9 scatter the gradients as they move from q to the points in
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Table 6: Comparison of stochastic quantization with deterministic quantization for VQ-VAEs trained on
ImageNet. The architecture and optimization settings follow those of Table 1.

Approach Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
VQ-VAE 100% 0.028 1.0e-3 0.030 19.0 97.3
Gumbel VQ-VAE 39% 0.054 — 0.058 28.6 74.9
VQ-VAE w/ Rotation Trick 99% 0.028 1.4e-4 0.030 16.5 106.3

Table 7: Comparison of stochastic quantization with deterministic quantization for VQGANs trained on
ImageNet. The architecture and optimization settings follow Table 3.

Approach Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)

VQGAN 64× 64× 3 8192 15% 2.5e-3 0.183 0.53 220.6
Gumbel VQGAN 64× 64× 3 8192 4% — 0.197 0.60 219.7
VQGAN w/ Rotation Trick 64× 64× 3 8192 86% 1.7e-4 0.142 0.27 228.0

VQGAN 32× 32× 4 16384 2% 1.2e-2 0.385 5.0 141.5
Gumbel VQGAN 32× 32× 4 16384 12% — 0.3031 1.7 189.5
VQGAN w/ Rotation Trick 32× 32× 4 16384 27% 2.4e-4 0.269 1.1 200.2

these partitions due to negative curvature. A similar effect occurs in the top-right partition of Figure 9
due to the presence of a saddle point.

A.4 COMPARISON TO STOCHASTIC QUANTIZATION

In this section, we include experimental results comparing the STE and rotation trick to stochastic
quantization. Specifically, we compare with using the Gumbel softmax trick to attenuate a categorical
distribution over codebook vectors to a one-hot distribution in VQ-VAEs (Baevski et al., 2019;
Ramesh et al., 2021). Our results are summarized in Table 6 and Table 7, and for these experimental
settings, we find that VQ-VAEs and VQGANs trained with the rotation trick outperform VQ-VAEs
and VQGANs that employ stochastic quantization via the Gumbel softmax trick.

For the results in Table 6, we follow the Gumbel Vector Quantize function implemented by https:
//github.com/karpathy/deep-vector-quantization and use the suggested schedule to attenuate the
softmax temperature from 1.0 to 1

16 over the course of training. The architecture and experimental
details follow Table 1 and are fully described in Table 10. For the results in Table 7, we follow the
default hyperparameters and settings from Rombach et al. (2022).

A.5 BEHAVIOR AWAY FROM THE ORIGIN

Figure 11: Illustration of codebook
and encoder output shifted away
from the origin by a constant vector
d. The angle after the shift is smaller
than the angle before the shift: θ̂ <
θ.

Unlike the STE, the rotation trick is not invariant to the location
of the origin. In this section, we explore this characteristic and its
effect on how points within the same Voronoi region are updated.
For example, suppose each codebook vector and encoder output
in Figure 4 were shifted by some constant vector so that each now
has all positive components. How would this affect the rotation
trick’s gradient estimator?

Consider one codebook vector q and one encoder output e sep-
arated by angle θ. We define q̂ = q + d and ê = e+ d where d

is some large displacement vector. Let θ̂ be the angle between q̂
and ê. We visualize this example in Figure 11. From the law of
cosines:

∥q − e∥2 = ∥q∥2 + ∥e∥2 − 2∥q∥∥e∥ cos(θ)

and

∥q̂ − ê∥2 = ∥q − e∥2 = ∥q̂∥2 + ∥ê∥2 − 2∥q̂∥∥ê∥ cos
(
θ̂
)
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Voronoi Partition STE Updates Rotation Trick Updates

Figure 10: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle) when all points are far from the origin. The STE is invariant to the this
translation; however as the angle between e and q decreases as these vectors translated away from the origin, the
effect of the rotation trick will decrease. In the limit, the rotation trick reduces to the STE.

Substituting, we find that

cos
(
θ̂
)
=
∥q∥2 + ∥e∥2 − 2∥q∥∥e∥ cos(θ)− ∥q + d∥2 − ∥e+ d∥2

−2∥q + d∥∥e+ d∥
and consider the case when q̂ and ê are far from the origin, i.e.,∥d∥ >> ∥q∥, ∥e∥. Then we have:

cos
(
θ̂
)
≈ −2∥d∥

2

−2∥d∥2
= 1

So as d→∞, θ̂ → 0. This implies that ∥q̂∥
∥ê∥ → 1 and R̂→ I , which is exactly the STE update. As

points move away from the origin, the rotation trick smoothly transforms into the STE.

We visualize an example of this effect in Figure 10, where each point from Figure 4 is translated
by positive ten along each dimension. As illustrated above, the effect for the “push” gradient in the
top-right quadrant remains but it’s effect is reduced, i.e., more similar to the STE update. The top-left
partition becomes a “pull” because the gradient now points towards the origin, so points within this
region move closer together. Finally, the gradient in the bottom region no longer points towards the
origin, but is now more orthogonal to the codebook vector. As a result, we see more of a rotation
applied to the points in this region than the contraction that is depicted in Figure 4.

A.6 HOUSEHOLDER REFLECTION TRANSFORMATION

For any given e and q, the rotation R that aligns e with q in the plane spanned by both vectors can be
efficiently computed with Householder matrix reflections.
Definition 1 (Householder Reflection Matrix). For a unit norm vector a ∈ Rd, I − 2aaT ∈ Rd×d is
reflection matrix across the subspace (hyperplane) orthogonal to a.
Remark 1. Let a, b ∈ Rd that define hyperplanes a⊥ and b⊥ respectively. Then a reflection across
a⊥ followed by a reflection across b⊥ is a rotation of 2θ in the plane spanned by a, b where θ is the
angle between a, b.
Remark 2. Let a, b ∈ Rd with ∥a∥ = ∥b∥ = 1. Define c = a+b

∥a+b∥ as the vector half-way

between a and b so that ∠(a, b) = θ and ∠(a, c) = ∠(b, c) = θ
2 . From Definition 1, (I − 2ccT )

encodes a reflection across c⊥ and (I − 2bbT ) encodes a reflection across b⊥. From Remark 1,
(I − 2bbT )(I − 2ccT ) then corresponds to a rotation of 2( θ2 ) = θ in the plane spanned by b and c.
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As the span(b, c) = span(a, b), (I − 2bbT )(I − 2ccT ) corresponds to a rotation of θ in the plane
spanned by a and b. Therefore, (I − 2bbT )(I − 2ccT )a = b.

Returning to vector quantization with q = [∥q∥∥e∥R]e, we can write R as the product of two Householder
reflection matrices that rotates e to q in the plane spanned between them. Without loss of generality,
assume e and q are unit norm, and let θ be the angle between e and q. Setting r = e+q

∥e+q∥ and
simplifying yields:

R = (I − 2qqT )(I − 2rrT )

= I − 2qqT − 2rrT + 4qqT rrT

= I − 2qqT − 2rrT + 4q
[
qT r

]
rT

= I − 2qqT − 2rrT + 4q

[
qT

e+ q

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
qT e+ qT q

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
∥q∥∥e∥ cos θ + ∥q∥∥q∥

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
cos θ + 1

∥e+ q∥

]
rT

= I − 2qqT − 2rrT + 4q

[
∥e+ q∥2

2∥e+ q∥

]
rT

= I − 2qqT − 2rrT +
4∥e+ q∥2

2∥e+ q∥
qrT

= I − 2qqT − 2rrT +
4∥e+ q∥2

2∥e+ q∥2
q(e+ q)T

= I − 2qqT − 2rrT + 2qeT + 2qqT

= I − 2rrT + 2qeT

A.7 PROOF THE ROTATION TRICK PRESERVES ANGLES

For encoder output e and corresponding codebook vector q, we provide a formal proof that the
rotation trick preserves the angle between ∇qL and q as ∇qL moves to e. Unlike the notation in the
main text, which assumes q ∈ Rd×1, we use batch notation in the following proof to illustrate how
the rotation trick works when training neural networks. Specifically, q ∈ Rb×d and R ∈ Rb×d×d

where b is the number of examples in a batch and d is the dimension of the codebook vector.

Remark 3. The angle between q and ∇qL is preserved as∇qL moves to e.

Proof. With loss of generality, suppose ∥e∥ = ∥q∥ = 1. Then we have

q = eRT

∂q

∂e
= R

The gradient at e will then equal:

∇eL = ∇qL
[
∂q

∂e

]
= ∇qL [R]
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Let θ be the angle between q and ∇qL and ϕ be the angle between e and ∇qL. Via the Euclidean
inner product, we have:

∥∇qL∥ cos θ = q [∇qL]T

= eRT [∇qL]T

= e [∇qLR]
T

= e [∇eL]T

= ∥∇qL∥ cosϕ

so θ = ϕ and the angle between q and∇qL is preserved as ∇qL moves to e.

A.8 TREATING R AND
||q||
||e|| AS CONSTANTS

In the rotation trick, we treat R and ||q||
||e|| as constants and detached from the computational graph

during the forward pass of the rotation trick. In this section, we explain why this is the case.

The rotation trick computes the input to the decoder q̃ after performing a non-differentiable codebook
lookup on e to find q. It is defined as:

q̃ =
||q||
||e||

Re

As shown in Section 4, R is a function of both e and q. However, using the quantization function
Q(e) = q, we can rewrite both ||q||

||e|| and R as a single function of e:

f(e) =
∥Q(e)∥
∥e∥

[
I − 2

[
e+Q(e)
∥e+Q(e)∥

] [
e+Q(e)
∥e+Q(e)∥

]T
+ 2Q(e)eT

]

=
∥q∥
∥e∥

R

The rotation trick then becomes

q̃ = f(e)e

and differentiating q̃ with respect to e gives us:

∂q̃

∂e
= f ′(e)e+ f(e)

However, f ′(e) cannot be computed as it would require differentiating through Q(e), which is a non-
differentiable codebook lookup. We therefore drop this term and use only f(e) as our approximation
of the gradient through the vector quantization layer: ∂q̃

∂e = f(e). This approximation conveys more
information about the vector quantization operation than the STE, which sets ∂q̃

∂e = I .

A.9 THE REFLECTION TRICK

One may also use a single reflection to align e to q, rather than a rotation. For instance, using the
notation from Appendix A.6, setting r = e−q

∥e−q∥ and reflecting across the plane orthogonal to this

vector via the Householder reflection (I − 2rrT ) will reflect e to q. We denote this reflection as R̃ so
that q̃ = ∥q∥

∥e∥ R̃e. We call this approach “the reflection trick.”

While the reflection trick aligns e to q it can result in undesirable behavior during the backward
pass. While the reflection trick replicates the rotation trick when ∇qL is parallel to q, as illustrated
in the top two rows of Figure 12 and the top-right and bottom regions of Figure 13, the reflection
trick reflects orthogonal components of the gradient across the hyperplane orthogonal to e − q so
that these components are reversed. Simply, if the quantized gradient points “left” then the reflected
gradient will point “right”, and vice-versa. This behavior is undesirable for points with low distortion,
e ≈ q, because it will cause e to move away from q along the components of the gradient orthogonal
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Gradient at Rotation Trick Reflection TrickSTE

Figure 12: Illustration of how the gradient at q moves to e via the STE, the rotation trick, and the reflection
trick. The reflection trick matches the behavior of the rotation trick when the gradient ∇qL is parallel to q.
However, it will reverse the components of the gradients orthogonal to q for points in q’s partition. This effect is
illustrated in the bottom two rows of the rightmost column.

Voronoi Partition STE Updates Reflection Trick Updates

Figure 13: Depiction of how points within the same codebook region change after a gradient update (red arrow)
at the codebook vector (orange circle). The STE applies the same update to each point in the same region. The
reflection trick (Appendix A.9) modifies the update based on the location of each point with respect to the
codebook vector. Note the top-left region of the reflection trick update, where the points actually move in the
opposite direction of the gradient update.

to q, thereby increasing distortion for two points that are a “good match”. The top-left partition of
Figure 13 illustrates one such example. In this case, the gradient pushes the codebook vector “left”
while the points in this region are pushed in the opposite direction of the gradient.

We evaluate this effect experimentally following the VQ-VAE evaluation paradigm from Table 1 and
the VQGAN evaluation paradigm from Table 3. While we did not train these models to completion
due to GPU resource limitations, both paradigms exhibited poor convergence when trained with

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the rotation trick using q̃ = ∥q∥
∥e∥Re with using q̃ = Re + (q − Re) for VQ-VAE

models. The experimental setting follows Table 1.

Rotation Trick Function Training Metrics Validation Metrics

Codebook Usage (↑) Rec. Loss (↓) Quantization Error (↓) Rec. Loss (↓) r-FID (↓) r-IS (↑)

Codebook Lookup: Euclidean & Latent Shape: 64× 64× 3 & Codebook Size: 8192
∥q∥
∥e∥Re 99% 0.028 1.4e-4 0.030 16.5 106.3
Re− (q −Re) 100% 0.028 4.0e-4 0.030 16.5 106.1

Table 9: Comparison of the rotation trick using q̃ = ∥q∥
∥e∥Re with using q̃ = Re+(q−Re) for VQGAN models.

The models with codebook size were stopped after 2 epochs while the models with codebook size 16384 were
stopped after 3 epochs.

Rotation Trick Function Latent Shape Codebook Size Codebook Usage Quantization Error (↓) Valid Loss (↓) r-FID (↓) r-IS (↑)
∥q∥
∥e∥Re 64× 64× 3 8192 45% 4.0e-4 0.161 0.46 225.0
Re− (q −Re) 64× 64× 3 8192 28% 1.5e-3 0.183 0.6 220.0
∥q∥
∥e∥Re 32× 32× 4 16384 18% 3.3e-4 0.292 1.5 196.1
Re− (q −Re) 32× 32× 4 16384 13% 9.4e-4 0.292 1.5 191.5

the reflection trick. Specifically, after one epoch, the validation loss was approximately 3x higher
than the rotation trick for both 8192 and 16384 codebook VQGANs in Table 3. For the Euclidean
codebook model with latent Shape 64× 64× 3 in Table 1, the validation loss was approximately 2x
higher than the rotation trick after 15 epochs.

A.10 GRADIENT NORM SCALING IN THE ROTATION TRICK

In this section, we analyze the effect of the ∥q∥
∥e∥ term in the rotation trick. While this norm rescaling

is necessary to transform e into q during the forward pass, one could avoid the multiplicative factor
by instead formulating the rotation trick as:

q̃ = R︸︷︷︸
constant

e+ (q −Re)︸ ︷︷ ︸
constant

A possible benefit of this latter formulation is that ∂q
∂e = R, an orthogonal transformation with

determinant one that does not shrink or expand space by a factor of ∥q∥
∥e∥ . In this section, we analyze

the differences between both approaches and formulate both as specific instantiations of a more
general family of rotation-based gradient approximations.

A.10.1 COMPARISON BETWEEN
∥q∥
∥e∥ AND (q −Re)

An inductive bias of vector quantization is that when e ≈ q, then ∇eL ≈ ∇qL. Simply, when the
distortion between e and q is small, the gradient for both e and q should be approximately the same.
However when ∥e∥ ≈ 0 and a Euclidean metric is used to determine the closest codebook vector, the
angle between e and q can be obtuse as illustrated in Figure 6. In this instance, the rotation trick will
cause the gradient∇eL to “over-rotate” and point away from ∇qL.

Using a grad scaling of ||q||
||e|| can fix this. When ||e|| ≈ 0 and ||e|| < ||q||, the norm of the gradient

will be scaled up to push e away from the origin. Pushing e away from the origin makes the angle
between e and q more of a factor when computing the Euclidean distance:

∥e− q∥ =
√
∥e∥2 + ∥q∥2 − 2∥e∥∥q∥ cos θ

so e is more likely to map to a different q that forms an acute angle with it as ∥e∥ increases.

Now consider if ∥q∥ ≈ 0 and ∥e∥ > ∥q∥. When this occurs, the update to e will vanish because
∥q∥
∥e∥ ≈ 0. This behavior may also be desirable because when q is close to the origin, there’s a higher
likelihood the angle between e and q would be obtuse.
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Figure 14: Visualization of how different choices of γ(e) in the rotation trick affect the gradient field for (top)
f(x, y) = x2 + y2 and (bottom) f(x, y) = log

(
| 1
2
x+ tanh(y)|

)
. To prevent cluttered visualizations, the

maximum and minimum gradient norms are capped within the gradient field.

We also explore this factor in ablation experiments for VQ-VAEs and VQGANs. Table 8 mirrors
Table 1 and summarizes our findings for VQ-VAEs while Table 9 mirrors Table 3 and summarizes
our findings for the VQGANs used in latent diffusion. In Table 8, we do not observe a difference
between using q̃ = ||q||

||e||Re and q̃ = Re+ (q−Re). However, for the VQGAN results in Table 9, we
find that using the grad scaling factor modestly improves performance.

A.10.2 GENERAL FAMILY OF ROTATION-BASED GRADIENT ESTIMATORS

Generalizing the additive and multiplicative formulations of the rotation trick, we formulate both as
specific instantiations of a more general family:

q̃ = γ(e)Re+ (q − γ(e)Re)

where γ(e) determines the multiplicative scaling factor. For q̃ = ∥q∥
∥e∥Re, γ(e) = ∥q∥

∥e∥ and for
q̃ = Re+ (q −Re), γ(e) = 1. However, one can explore other scaling factors such as

γ(e) =
1

8∥q − e∥2

We visualize the gradient fields for different formulations of γ(e) in Figure 14.

It is almost certain that other formulations of γ(e) from the ones we explore in this work would
improve the training dynamics or performance of VQ-VAEs. In particular, a priori fixing γ(e) to
satisfy an inductive bias or developing an adaptive scaling factor that dynamically sets γ(e) similar to
the functions that adapt task weights in multi-task learning throughout training (Kendall et al., 2018;
Chen et al., 2018) are exciting directions for future work.

A.11 TRAINING SETTINGS

We detail the training settings used in our experimental analysis in Section 5. While a text description
can be helpful for understanding the experimental settings, our released code should be referenced to
fully reproduce the results presented in this work.
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Orig ROTSTE Orig ROTSTE

ImageNet FFHQ & CelebA-HQ

VQGAN from Taming TransformersVQGAN from Taming Transformers VQGAN from Latent Diffusion

Orig ROTSTE ROTSTE

ImageNet [f=8] [f=4]

Figure 15: Non-cherry picked reconstructions for VQGAN results in Table 2 and Table 3. ROT is an abbreviation
for the rotation trick.

A.11.1 VQ-VAE EVALUATION.

Table 10 summarizes the hyperparameters used for the experiments in Section 5.1. For the encoder
and decoder architectures, we use the Convolutional Neural Network described by Esser et al. (2021).
The hyperparameters for the cosine similarity codebook lookup follow from Yu et al. (2021) and
the hyperparameters for the Euclidean distance codebook lookup follow from the default values set
in the Vector Quantization library from https://github.com/lucidrains/vector-quantize-pytorch. All
models replace the codebook loss with the exponential moving average described in Van Den Oord
et al. (2017) with decay = 0.8. The notation for both encoder and decoder architectures is adapted
from Esser et al. (2021).

Table 10: Hyperparameters for the experiments in Table 1. (1024, 32) indicates a model trained
with a codebook size of 1024 and codebook dimension of 32. Similarly, (8192, 3) indicates a model
trained with codebook size of 8192 and codebook dimension of 3.

Cosine Similarity Lookup Euclidean Lookup

(1024, 32) (8192, 3) (1024, 32) (8192, 3)

Input size 256× 256× 3 256× 256× 3 256× 256× 3 256× 256× 3
Latent size 16× 16× 32 64× 64× 3 16× 16× 32 64× 64× 3
β (commitment loss coefficient) 1.0 1.0 1.0 1.0
encoder/decoder channels 128 128 128 128
encoder/decoder channel mult. [1, 1, 2, 2, 4] [1, 2, 4] [1, 1, 2, 2, 4] [1, 2, 4]
[Effective] Batch size 256 256 256 256
Learning rate 1× 10−4 1× 10−4 5× 10−5 5× 10−5

Weight Decay 1× 10−4 1× 10−4 0 0
Codebook size 1024 8192 1024 8192
Codebook dimension 32 3 32 3
Training epochs 25 20 25 20

A.11.2 VQGAN EVALUATION

Table 11 summarizes the hyperparameters for the VQGAN experiments in Section 5.2. Non-cherry
picked reconstructions for the models trained in Table 2 and Table 3 are depicted in Figure 15. As
indicated by the increased r-FID score, the reconstructions out by the VQGAN trained with the
rotation trick appear to better reproduce the original image, especially fine details.
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Table 11: Hyperparameters for the experiments in Table 2 and Table 3. We implement the rotation
trick in the open source https://github.com/CompVis/taming-transformers for the experiments in
Table 2 and implement the rotation trick in https://github.com/CompVis/latent-diffusion for Table 3.
In both settings, we use the default hyperparameters. †: 18 epochs for ImageNet and 50 epochs for
FFHQ & CelebA-HQ.

Table 2 VQGAN Table 3 VQGAN Table 3 VQGAN

Input size 256× 256× 3 256× 256× 3 256× 256× 3
Latent size 16× 16× 256 64× 64× 3 32× 32× 4
Codebook weight 1.0 1.0 1.0
Discriminator weight 0.8 0.75 0.6
encoder/decoder channels 128 128 128
encoder/decoder channel mult. [1, 1, 2, 2, 4] [1, 2, 4] [1, 2, 2, 4]
[Effective] Batch size 48 16 16
[Effective] Learning rate 4.5× 10−6 4.5× 10−6 4.5× 10−6

Codebook size 1024 8192 16384
Codebook dimensions 256 3 4
Training Epochs 18/50† 4 4

Table 12: Hyperparameters for the experiments in Table 4.

ViT-VQGAN Settings

Input size 256× 256× 3
Patch size 8
Encoder / Decoder Hidden Dim 512
Encoder / Decoder MLP Dim 1024
Encoder / Decoder Hidden Depth 8
Encoder / Decoder Hidden Num Heads 8
Codebook Dimension 32
Codebook Size 8192
Codebook Loss Coefficient 1.0
Log Laplace loss Coefficient 0.0
Log Gaussian Coefficient 1.0
Perceptual loss Coefficient 0.1
Adversarial loss Coefficient 0.1
[Effective] Batch size 32
Learning rate 1× 10−4

Weight Decay 1× 10−4

Training epochs 10

Orig ROTSTE

ViT-VQGAN

Figure 16: Non-cherry
picked reconstructions for
ViT-VQGAN results in Ta-
ble 4. ROT is an abbreviation
for the rotation trick.

A.11.3 VIT-VQGAN EVALUATION

Our experiments in Section 5.3 use the ViT-VQGAN implemented in the open source repository
https://github.com/thuanz123/enhancing-transformers. The default hyperparameters follow those
specified by Yu et al. (2021), and our experiments use the default architecture settings specified by
the ViT small model configuration file.

We depict several reconstructions in Figure 16 and see that the ViT-VQGAN trained with the rotation
trick is able to better replicate small details that the ViT-VQGAN trained with the STE misses. This
is expected as the rotation trick drops r-FID from 29.2 to 11.2 as shown in Table 4.

A.11.4 TIMESFORMER VIDEO EVALUATION

We use the Hugging Face implementation of the TimeSformer from https://huggingface.co/docs/
transformers/en/model_doc/timesformer and the ViT-VQGAN vector quantization layer from https:
//github.com/thuanz123/enhancing-transformers. We loosely follow the hyperparameters listed in Yu
et al. (2021) and implement a small TimeSformer encoder and decoder due to GPU VRAM constraints.
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Original Video Rotation Trick 
Reconstructions

STE

Reconstructions

Figure 17: BAIR Robot Pushing reconstruction examples. While the model trains on 16 video frames at a time,
we only visualize 4 at a time in this figure. The model trained with the STE undergoes codebook collapse, using
4 out of the 1024 codebook vectors for reconstruction and therefore crippling the information capacity of the
vector quantization layer. On the other hand, the VQ-VAE trained with the rotation trick instead uses an average
of 441 of the 1024 codebook vectors in each batch of 2 example videos.

Original Video Rotation Trick 
Reconstructions

STE

Reconstructions

Figure 18: UCF-101 reconstruction examples. While the model trains on 16 video frames at a time, we
only visualize 4 at a time in this figure. The model trained with the STE undergoes codebook collapse, using
approximately 2 out of the 2048 codebook vectors for reconstruction and therefore crippling the information
capacity of the vector quantization layer. The VQ-VAE trained with the rotation trick instead uses an average of
615 of the 2048 codebook vectors in each batch of 2 example videos.

We reuse the dataloading functions of both BAIR Robot Pushing and UCF101 dataloaders from Yan
et al. (2021) at https://github.com/wilson1yan/VideoGPT. A complete description of the settings we
use for the experiments in Section 5.4 are listed in Table 13.

We also visualize the reconstructions for the TimeSformer-VQGAN trained with the rotation trick
and the STE. Figure 17 shows the reconstructions for BAIR Robot Pushing, and Figure 18 shows the
reconstructions for UCF101. For both datasets, the model trained with the STE undergoes codebook
collapse early into training. Specifically, it learns to only use 4

1024 of the available codebook vectors
for BAIR Robot Pushing and 2

2048 for UCF101 in a batch of 2 input examples. Small manual tweaks
to the architecture and training hyperparameters did not fix this issue.

In contrast, VQ-VAEs trained with the rotation trick do not manifest this training instability. Instead,
codebook usage is relatively high—at 43% for BAIR Robot Pushing and 30% for UCF101—and the
reconstructions accurately match the input, even though both encoder and decoder are very small
video models.

A.11.5 CREATION OF VORONOI REGION FIGURE

In this section, we describe the creation of Figure 4 as well as the other figures that use this format.
For the top-right and bottom partitions, we fix the codebook to a set of preset values and sample
pre-quantized points from four different Gaussian distributions. For the pre-quantized points in the
top-left partition, we manually set them to form a crescent shape around the codeword.
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Table 13: Hyperparameters for the experiments in Table 5. A TimeSformer (Bertasius et al., 2021)
is used for the Encoder and Decoder architecture as implemented at https://huggingface.co/docs/
transformers/en/model_doc/timesformer. The vector quantization layer between Encoder and Decoder
follow from Yu et al. (2021) as implemented in https://github.com/thuanz123/enhancing-transformers.

TimeSformer-VQGAN Settings

BAIR Robot Pushing UCF101 Action Recognition

Input size 16× 64× 64× 3 16× 128× 128× 3
Patch size 2 4
Encoder / Decoder Hidden Dim 256 256
Encoder / Decoder MLP Dim 768 768
Encoder / Decoder Hidden Depth 8 8
Encoder / Decoder Hidden Num Heads 4 4
Codebook Dimension 32 32
Codebook Size 1024 2048
Codebook Loss Coefficient 1.0 1.0
Log Laplace loss Coefficient 0.0 0.0
Log Gaussian Coefficient 1.0 1.0
Perceptual loss Coefficient 0.1 0.1
Adversarial loss Coefficient 0.1 0.1
[Effective] Batch size 24 20
Learning rate 1× 10−4 4.5× 10−6

Weight Decay 1× 10−4 1× 10−4

Training epochs 30 3

We similarly fix constant gradient vectors for each partition, and apply them to the pre-quantized
points after transformation by the STE, i.e. simply moving the gradient to each pre-quantized point
in the quantized region, or by the rotation trick, i.e. rotating the gradient based on the angle between
the pre-quantized point and closest codebook vector and rescaling appropriately. We multiply the
gradient by a small constant—the learning rate—and then apply the gradient to each pre-quantized
point. We repeat the above 25 times, at each point re-computing the angle and magnitude between the
pre-quantized point and the codebook vector for the rotation trick update. For simplicity, we do not
update the codebook vectors themselves or recompute codebook regions throughout the numerical
simulation.

A.12 COMPARISON WITHIN GENERATIVE MODELING APPLICATIONS

Absent from our work is an analysis on the effect of VQ-VAEs trained with the rotation trick on
down-stream generative modeling applications. We see this comparison as outside the scope of this
work and do not claim that improving reconstruction metrics, codebook usage, or quantization error in
“Stage 1” VQ-VAE training will lead to improvements in “Stage 2” generative modeling applications.

While poor reconstruction performance will clearly lead to poor generative modeling, recent work (Yu
et al., 2023) suggests that—at least for autoregressive modeling of codebook sequences with
MaskGit (Chang et al., 2022)—the connection between VQ-VAE reconstruction performance and
downstream generative modeling performance is non-linear. Specifically, increasing the size of
the codebook past a certain amount will improve VQ-VAE reconstruction performance but make
downstream likelihood-based geneative modeling of codebook vectors more difficult.

We believe this nuance may extend beyond MaskGit, and that the desiderata for likelihood-based
generative models will likely be different than that for score-based generative models like diffusion.
It is even possible that different preferences appear within the same class. For example, left-to-right
autoregressive modeling of codebook elements with Transformers (Vaswani, 2017) may exhibit
different preferences for Stage 1 VQ-VAE models than those of MaskGit.

These topics deserve a deep, and rich, analysis that we would find difficult to include within this work
as our focus is on propagating gradients through vector quantization layers. As a result, we entrust
the exploration of these questions to future work.
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