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ABSTRACT

Out-of-distribution (OOD) generalization is a challenging machine learning prob-
lem yet highly desirable in many high-stake applications. Existing methods suffer
from overly pessimistic modeling with low generalization confidence. As generaliz-
ing to arbitrary test distributions is impossible, we hypothesize that further structure
on the topology of distributions is crucial in developing strong OOD resilience. To
this end, we propose topology-aware robust optimization (TRO) that seamlessly
integrates distributional topology in a principled optimization framework. More
specifically, TRO solves two optimization objectives: (1) Topology Learning which
explores data manifold to uncover the distributional topology; (2) Learning on
Topology which exploits the topology to constrain robust optimization for tightly-
bounded generalization risks. We theoretically demonstrate the effectiveness of our
approach, and empirically show that it significantly outperforms the state of the
arts in a wide range of tasks including classification, regression, and semantic seg-
mentation. Moreover, we empirically find the data-driven distributional topology is
consistent with domain knowledge, enhancing the explainability of our approach.

1 INTRODUCTION

Recent years have witnessed a surge of applying machine learning (ML) in high-stake and safety-
critical applications. Such applications pose an unprecedented out-of-distribution (OOD) general-
ization challenge: ML models are constantly exposed to unseen distributions that lie outside their
training space. Despite well-documented success for interpolation, modern ML models (e.g., deep
neural networks) are notoriously weak for extrapolation; a highly accurate model on average can
fail catastrophically when presented with rare or unseen distributions (Arjovsky et al., 2019). For
example, a flood predictor, trained with data of all 89 major flood events in the U.S. from 2000 to
2020, would erroneously predict on event “Hurricane Ida” in 2021. Without addressing this challenge,
it is unclear when and where a model can be applied and how much risk is associated with its use.

A promising solution for out-of-distribution generalization is to conduct distributionally robust
optimization (DRO) (Namkoong & Duchi, 2016; Staib & Jegelka, 2019; Levy et al., 2020). DRO
minimizes the worst-case expected risk over an uncertainty set of potential test distributions. The un-
certainty set is typically formulated as a divergence ball surrounding the training distribution endowed
with a certain distance metric such as f -divergence (Namkoong & Duchi, 2016) and Wasserstein dis-
tance (Shafieezadeh Abadeh et al., 2018). Compared to empirical risk minimization (ERM) (Vapnik,
1998) that minimizes the average loss, DRO is more robust against distributional drifts from spurious
correlations, adversarial attacks, subpopulations, or naturally-occurring variation (Robey et al., 2021).

However, it is non-trivial to build a realistic uncertainty set that truly approximates unseen distribu-
tions. On the one hand, to confer robustness against extensive distributional drifts, the uncertainty
set has to be sufficiently large, which increases the risks of conferring implausible distributions,
e.g., outliers, and thus yielding overly pessimistic models with low prediction confidence (Hu et al.,
2018; Frogner et al., 2021). On the other hand, the worst-case distributions are not necessarily the
influential ones that are truly connected to unseen distributions; optimizing over worst-case rather
than influential distributions would yield compromised OOD resilience.

1The source code and pre-trained models are available at: https://github.com/joffery/TRO.
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As generalizing to arbitrary test distributions is impossible, we hypothesize further structure on the
topology of distributions is crucial in constructing a realistic uncertainty set. More specifically, we
propose topology-aware robust optimization (TRO) by integrating two optimization objectives:
(1) Topology learning: We model the data distributions as many discrete groups lying on a common
low-dimensional manifold, where we can explore the distributional topology by either using physical
priors or measuring multiscale Earth Mover’s Distance (EMD) among distributions.
(2) Learning on topology: The acquired distributional topology is then exploited to construct a
realistic uncertainty set, where robust optimization is constrained to bound the generalization risk
within a topology graph, rather than blindly generalizing to unseen distributions.

Our contributions include: 1. A new principled optimization method that seamlessly integrates
topological information to develop strong OOD resilience. 2. Theoretical analysis that proves
our method enjoys fast convergence for both convex and non-convex loss functions while the
generalization risk is tightly bounded. 3. Empirical results in a wide range of tasks including
classification, regression, and semantic segmentation that demonstrate the superior performance
of our method over SOTA. 4. Data-driven distributional topology that is consistent with domain
knowledge and facilitates the explainability of our approach.

2 PROBLEM FORMULATION AND PRELIMINARY WORKS

The problem of out-of-distribution (OOD) generalization is defined by a pair of random variables
(X,Y ) over instances x ∈ X ⊆ Rd and corresponding labels y ∈ Y , following an unknown joint
probability distribution P (X,Y ). The objective is to learn a predictor f ∈ F such that f(x) → y
for any (x, y) ∼ P (X,Y ). Here F is a function class that is model-agnostic for a prediction
task. However, unlike typical supervised learning, the OOD generalization is complicated since
one cannot sample directly from P (X,Y ). Instead, it is assumed that we can only measure (X,Y )
under different environmental conditions e so that data is drawn from a set of groups Eall such that
(x, y) ∼ Pe(X,Y ). For example, in flood prediction, these environmental conditions denote the latent
factors (e.g., stressors, precipitation, terrain, etc) that underlie different flood events. Let Etrain ⊊ Eall
be a finite subset of training groups (distributions), given the loss function ℓ, an OOD-resilient model
f can be learned by solving a minimax optimization:

min
f∈F

{
R(f) := sup

e∈Eall

E(x,y)∼Pe(X,Y )[ℓ(f(x), y)]

}
. (1)

Intuitively, Eq. 1 aims to learn a model that minimizes the worst-case risk over the entire family Eall.
It is nontrivial since we do not have access to data from any unseen distributions Etest = Eall\Etrain .

Empirical Risk Minimization (ERM). Typically, classic supervised learning employs ERM (Vapnik,
1998) to find a model f that minimizes the average risk under the training distribution Ptr:

min
f∈F
{R(f) := E(x,y)∼Ptr

[ℓ(f(x), y)]}.

Though proved to be effective in i.i.d. settings, models trained via ERM heavily rely on spurious
correlations that do not always hold under distributional drifts (Arjovsky et al., 2019).

Distributionally Robust Optimization (DRO). To develop OOD resilience, DRO (Namkoong &
Duchi, 2016) minimizes the worst-case risk over an uncertainty set Q by solving:

min
f∈F
{R(f) := sup

Q∈P(Ptr)

E(x,y)∼Q[ℓ(f(x), y)]}. (2)

Here the uncertainty set Q approximates potential test distributions. It is usually formulated as a diver-
gence ball with a radius of ρ surrounding the training distribution P (Ptr) = {Q : D (Q,Ptr) ≤ ρ}
endowed with a certain distance metric D(·, ·) such as f -divergence (Namkoong & Duchi, 2016)
or Wasserstein distance (Shafieezadeh Abadeh et al., 2018). To construct a realistic uncertainty set
without being overly conservative, Group DRO is further developed to formulate the uncertainty set
as the mixture of training groups (Hu et al., 2018; Sagawa et al., 2019).

Despite the well-documented success, existing DRO methods suffer from critical limitations. (1) To
endow robustness against a wide range of potential test distributions, the radius of the divergence
ball has to be sufficiently large with high risks of containing implausible distributions; optimizing
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for implausible distributions would fundamentally damage the OOD resilience by yielding overly-
pessimistic models with low prediction confidence. (2) The worst-case groups are not necessarily the
influential ones that are truly connected to unseen distributions; optimizing over worst-case rather
than influential groups would yield compromised OOD resilience.

3 TOPOLOGY-AWARE ROBUST OPTIMIZATION

We propose a new principled optimization method (TRO) to develop OOD resilience, which integrates
topology and optimization via a two-phase scheme: Topology Learning and Learning on Topology.

3.1 TOPOLOGY LEARNING: EXPLORE THE DISTRIBUTIONAL TOPOLOGY
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Figure 1: Overview of topology-aware dis-
tributionally robust optimization (TRO).

We model the data groups Eall as many discrete distri-
butions lying on a common low-dimensional manifold
in a high-dimensional data measurement space. In such
case their structure, i.e. distributional topology, can be
naturally captured by a graph G = (V,E), where the
entities V = ∪e∈EallXe symbolize the groups and the
edges E represent interactions among groups. The topol-
ogy graph is constructed by: (1) identifying entity: we
assume the entities are defined by the given group iden-
tities; and (2) uncovering interactions: we consider two
scenarios to measure the connectivity between discrete
distributions as illustrated in Fig 1.

Physical-based distributional topology. In the sce-
nario where the distributional adjacency information is
available, we can instantly acquire the topology Gphysic
by simply imposing the predefined neighborhood infor-
mation. For example, to capture the similarity of weather
events in the U.S., one can construct a graph where each
state realizes an entity, and the physical adjacency be-
tween two states results in an edge (see Fig. 1). In this case, Gphysic functions as a physical prior
to constrain the robust optimization introduced in Sec. 3.2. We empirically find Gphysic yields an
improvement of 9.56% over the state of the art regarding OOD generalization reported in Sec. 5.1.

Data-driven distributional topology. In the absence of Gphysic, we propose a data-driven approach
to learn the topology Gdata from training data. Specifically, we embed the individual groups onto a
shared data graph based on an affinity matrix of the combined data. Inspired by Leeb & Coifman
(2016), such a data graph can be viewed as a discretization of an underlying Riemann closed manifold.
By simulating a time-dependent diffusion process over the graph, we will obtain density estimates at
multiple scales for each group, which will be used to calculate ℓ1 distances between two groups. Such
multiscale ℓ1 distance has been proved to be topologically equivalent to the Earth Mover’s Distance
(EMD) on the manifold geodesic, but cutting down the computational complexity from O

(
m2n3

)
to

Õ(mn) between m distributions over n data points (Tong et al., 2021).

We obtain the data-driven topology through three steps: (1) Data graph construction: we construct a
data graph through an affinity matrix K of the combined data. K can be implemented through kernel
functions (e.g., RBF kernel) which capture the similarity of data. Instead of calculating the similarity
between raw data, we calculate the similarity between features extracted from an ERM-trained model
as it captures spurious correlations which preserve group identity (Creager et al., 2021). Specifically,
we define the affinity matrix as: Ki,j = exp

(
−∥f(xi)− f(xj)∥2/σ2

)
, where σ2 is the kernel scale.

(2) Multiscale diffusion density estimation: to simulate the diffusion process over the graph, we
obtain a Markov diffusion operator P from K. Following Coifman & Lafon (2006), we normalize
the affinity matrix: M = Q−1KQ−1, where Q is a diagonal matrix and Qi,i =

∑
j Ki,j . The

diffusion operator is defined as P = D−1M, where D is a diagonal matrix and Di,i =
∑

j Mi,j .
The operator P will be used to approximate the multiscale density estimates µe for each data group
Xe: µt

e = 1
ne

Pt1Xe , where t is the diffusion time, Pt denotes the t-th power of P, and 1Xe is the

3



Published as a conference paper at ICLR 2023

indicator function for group e. Intuitively, Pt
i,j sums the probabilities of all possible paths of length

t between xi and xj . By taking multiple powers of P, µe reveals the topological structure of Xe

at multiple scales. (3) Diffusion EMD measurement: we follow Tong et al. (2021) to measure the
geodesic distance Wα,K (Xe, Xe′) between Xe and Xe′ by aggregating the ℓ1 distances between the
multiscale density estimates:

Wα,K (Xe, Xe′) =

K∑
k=0

∥Tα,k (Xe)− Tα,k (Xe′)∥1 , (3)

where α is used to balance long- and short-range distances, K is the maximum scale, and

Tα,k (Xe) =

2−(K−k−1)α

(
µ
(2k+1)
e − µ

(2k)
e

)
, k < K

µ
(2K)
e , k = K

Although Gdata is computationally more expensive than Gphysic, our experimental results in Sec. 5.2
indicate that optimizing with Gdata can yield improved OOD resilience. Besides, the ablation study in
Sec. 5.3 also indicates that Gdata is consistent with domain knowledge and enhances the explainability
of TRO. Last but not least, the data-driven method is fully differentiable, making it amenable to
jointly conducting topology learning and learning on topology in an end-to-end manner. We leave
this as future work.

3.2 LEARNING ON TOPOLOGY: EXPLOIT TOPOLOGY FOR ROBUST OPTIMIZATION

Algorithm 1: TRO Algorithm
Input: Data of Etrain, Step sizes ηθ and ηq
Output: Learned model f
Topology Learning:
if Gphysic exists then
G ← Gphysic

else
Obtain the affinity matrix K from data
Q← Diag

(∑
j Kij

)
M← Q−1KQ−1

D← Diag
(∑

j Mij

)
P← D−1M
Obtain Gdata via Eq. 3
G ← Gdata

end
Learning on Topology:
Calculate topological prior p from G
while not converged do

Sample (x, y) ∼ Pe(X,Y ) ∀e ∈ Etrain
CalculateR(f,q) via Eq. 5
Update θ and q via Eq. 6

end

Next, we propose a principled method that in-
tegrates distributional topology to develop TRO.
The key challenge is how to leverage G to con-
struct a uncertainty set which can approximate
unseen distributions with bounded generalization
risk. Our main idea is to assess the group cen-
trality of training distributions. Graph centrality
is widely used in social network analysis (New-
man, 2005) to measure how much information
is propagated through each entity. Here we in-
troduce group centrality to identify influential
groups that are truly connected to unseen dis-
tributions, which can be calculated using graph
measurements (Tian et al., 2019) such as degree,
betweenness, and closeness. More specifically,
we first calculate the centrality of each entity in
G as a topological prior p to identify influen-
tial groups. Then, we construct the uncertainty
set as an arbitrary mixture of training groups
Q := {∑e∈Etrain

qePe | q ∈ ∆m} where qe de-
notes the weight of group e, Pe is the distribution
of group e, and ∆m is a (m − 1)−dimensional
probability simplex. Finally, we use the prior p
to constrain the uncertainty set Q by solving the
minimax optimization problem as:

min
f∈F
{R(f,q) := max

q∈∆m

∑
e∈Etrain

qe E(x,y)∼Pe(X,Y )[ℓ(f(x), y)]}, s.t. D(q∥p) ≤ τ. (4)

Intuitively, groups with high training loss and centrality will be assigned with large weights; this can
tightly bound the OOD generalization risk within a topological graph. D is an arbitrary distributional
distance metric. We use ℓ2 distance to implement D due to its strong convexity and simplicity.

However, solving Eq. 4 often leads to a non-convex problem, wherein methods such as stochastic
gradient descent (SGD) cannot guarantee constraint satisfaction (Robey et al., 2021). To address this
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issue, we leverage Karush–Kuhn–Tucker conditions (Boyd et al., 2004) and introduce a Lagrange
multiplier to convert the constrained problem into its unconstrained counterpart:

min
f∈F
{R(f,q) := max

q∈∆m

∑
e∈Etrain

qe E(x,y)∼Pe(X,Y )[ℓ(f(x), y)]− λD(q∥p)}, (5)

where λ is the dual variable. Let θ ∈ Θ be the model parameters of f , we can solve the primal-dual
problem effectively by alternatively updating:

θt+1 = θt − ηtθ∇θR(f,q), qt+1 = P∆m
(qt + ηtq∇qR(f,q)), (6)

where ηtθ (ηtq) is gradient descent (ascent) step size. P∆m
(q) projects q onto simplex ∆m for

regularization. The overall algorithm of TRO is shown in Alg. 1. In Sec. 4, we show TRO enjoys
fast convergence for both convex and non-convex loss functions, while the generalization risk is
tightly bounded with topological constraints. We empirically demonstrate TRO achieves strong OOD
resilience by striking a good balance between the worst-case and influential groups (see Sec. 5.2).

Calculation of group centrality. We use betweenness centrality to measure the centrality of groups.
Betweenness centrality measures how often an entity is on the shortest path between two other entities
in the topology. Freeman (1977) reveals that entities with higher betweenness centrality would have
more control over the topology as more information will pass through them. For physical-based
topology Gphysic, we define the centrality of group e by computing the fraction of shortest paths
that pass through it: cphysice =

∑
s∈Etrain,t∈Etest

σ(s,t|e)
σ(s,t) , where σ(s, t) is the number of shortest paths

between groups s and t in the graph ((s, t)-paths), and σ(s, t | e) is the number of (s, t)-paths that
go through group e. Intuitively, cphysice measures how much information is propagated through e
from the start (training) to the end (test). For data-driven topology Gdata, the underlying assumption
is that training groups with high centrality also exert strong influence on unseen groups. Instead of
sampling group pairs from two separate sets, we sample (s, t) from Etrain. The centrality is modified
as: cdatae =

∑
s,t∈Etrain

σ(s,t|e)
σ(s,t) . We use softmax function to normalize ce and the prior probability for

group e ∈ Etrain is defined as: pe = exp(ce)/
∑

e∈Etrain
exp(ce).

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we show that by choosing appropriate step sizes ηtθ and ηtq , TRO yields fast convergence
rates for both convex and non-convex loss functions. We first state the assumptions of the theorems.
Next, we give the convergence rate for convex loss functions in Theorem 1 and the convergence rate
for non-convex loss functions in Theorem 2.

Definition 1. (Lipschitz continuity) A mapping f : X → Rm is G-Lipschitz continuous if for any
x, y ∈ X , ∥f(x)− f(y)∥ ≤ G∥x− y∥.
Definition 2. (Smoothness) A function f : X → R is L-smooth if it is differentiable on X and
the gradient ∇f is L-Lipschitz continuous, i.e., ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for all x, y ∈ X .
Assumption 1. We make the following assumptions throughout the paper: Given θ, the loss function
ℓ(fθ(x), y) is G-Lipschitz continuous and L-smooth with respect to x.

Convex Loss. The expected number of stochastic gradient computations is utilized to estimate
the convergence rate. To reach a duality gap of ϵ (Nemirovski et al., 2009), the optimal rate of
convergence for solving the stochastic min-max problems is O

(
1/ϵ2

)
if it is convex-concave. The

duality gap of the pair (θ̃, q̃) is defined as maxq∈∆m
R(θ̃, q)−minθ∈ΘR(θ, q̃). In the case of strong

duality, (θ̃, q̃) is optimal iif the duality gap is zero. We show TRO achieves the optimalO
(
1/ϵ2

)
rate.

Theorem 1. Consider the dual problem in Eq. 5 when the loss function is convex and Assumption 1
holds. Let Θ bounded by RΘ, E

[
∥∇θR(θ, q)∥22

]
≤ Ĝ2

θ, and E
[
∥∇qR(θ, q)∥22

]
≤ Ĝ2

q . With step

sizes ηθ = 2RΘ/
(
Ĝθ

√
T
)

and ηq = 2/
(
Ĝq

√
T
)

, the output of TRO satisfies:

E
[
max
q∈∆m

R (θT , q)−min
θ∈Θ
R (θ, qT )

]
≤ 3RΘĜθ + 3Ĝq√

T
. (7)
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Theorem 1 shows that our method requires T = O
(
1/ϵ2

)
iterations to reach a duality gap within ϵ.

To derive the convergence rate for non-convex functions., we define ϵ-stationary points as follows:
Definition 3. (ϵ-stationary point) For a differentiable function f : X → R, a point x ∈ X is said to
be first-order ϵ-stationary if ∥∇f(x)∥ ≤ ϵ.

Nonconvex Loss. The loss function ℓ(fθ(x), y) can be nonconvex and as a result, R(θ, q) is
nonconvex in θ. Following Collins et al. (2020), we define (θ̃, q̃) is an (ϵ, δ)-stationary point ofR if:∥∥∥∇θR(θ̃, q̃)

∥∥∥
2
≤ ϵ andR(θ̃, q̃) ≥ maxq∈∆m

R(θ̃, q)− δ, where ϵ, δ > 0.

Theorem 2. If Assumption 1 holds and the loss function is bounded by B and is M-smooth, the
output of Alg. 1 satisfies:

E
[
∥∇θR (θT , qT )∥22

]
≤ R

(
θ0, q0

)
+B

Tηθ
+

2ηq
√
nBĜq

ηθ
+

ηθMĜ2
θ

2
,

E [R (θT , qT )] ≥ max
q∈∆m

{E [R (θT , q)]} −
1

ηqT
− ηqĜ

2
q

2
.

(8)

Theorem 2 shows that our method converges in expectation to an (ϵ, δ)-stationary point of R in
O(1/ϵ4) stochastic gradient evaluations.

4.2 GENERALIZATION BOUNDS

In this section, we provide learning guarantees for TRO. Compared to DRO, TRO achieves a lower
upper bound on the generalization risks over unseen distributions with the topological constraint.

LetH denote the family of losses associated with a hypothesis set F : H = {(x, y) 7→ ℓ(f(x), y) :
f ∈ F}, and n = (n1, . . . , nm) denote the vector of sample sizes for all training groups. Follow-
ing Mohri et al. (2019), we define weighted Rademacher complexity for any F as:

Rn(H, q) = E
Se∼Pe

E
σ

[
sup
f∈F

m∑
e=1

qe
ne

ne∑
i=1

σe,iℓ (f (xe,i) , ye,i)

]
,

where e denotes group index, Se a sample of size ne, Pe the distribution of group e, and
σ = (σe,i)e∈[m],i∈[ne]

a collection of Rademacher variables. The minimax weighted Rademacher
complexity for a subset Λ ⊆ ∆m is defined by Rn(H,Λ) = maxq∈Λ Rn(H, q) where n =

∑m
e=1 ne.

Let PΛ be the distribution over the mixture of training groups and P̂Λ be its empirical counterpart.
Let the distribution of some test group be P . The learning guarantee for P is shown in Theorem 3.

Theorem 3. Assume the loss function ℓ is bounded by B. For any ϵ ≥ 0 and δ > 0, with probability
at least 1− δ, the following inequality holds for all f ∈ F :

RP (f) ≤ RP̂Λ
(f, q) + 2Rn(H,Λ) +BD (P∥PΛ) +B

√
1

2m
log
|Λ|
δ
.

The upper bound of the generalization risk on P is mainly determined by its distance to PΛ:
D (P∥PΛ). With the topological prior, risks on P can be tightly bounded by minimizing D (P∥PΛ),
as long as P falls into the convex hull of training groups. We empirically verify the effectiveness of
the topological prior in minimizing the generalization risks over unseen distributions (see Sec. 5).

5 EXPERIMENTS

We evaluate TRO in a wide range of tasks including classification, regression, and semantic segmen-
tation. We compare TRO with SOTA baselines on OOD generalization and conduct ablation study on
the key components of TRO. Following Gulrajani & Lopez-Paz (2021), we perform model selection
based on a validation set constructed from training groups only. We provide implementation details
in Appendix 7.2 and results on DomainBed (Gulrajani & Lopez-Paz, 2021) in Appendix 7.3.

Baselines. We compare TRO with the following methods: (1) Empirical Risk Minimization
(ERM) (Vapnik, 1998); (2) Group distributionally robust optimization (DRO) (Sagawa et al., 2019);
(3) Invariant Risk Minimization (IRM) (Arjovsky et al., 2019); (4) Risk Extrapolation (REx) (Krueger
et al., 2021); (5) Spectral Decoupling (SD) (Pezeshki et al., 2021).
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Table 1: Accuracy (%) on DG-15 and DG-60. TRO sets the new SOTA on both DG-15 and DG-60.

ERM IRM REx SD DRO TRO (physical) TRO (data)
DG-15 58.00 57.87 57.22 57.56 43.22 67.56 67.89
DG-60 76.02 76.61 86.89 81.04 79.59 89.19 90.72

Group ID
60

1

(b) DG-60

Class 1 

Class 0 

Group ID
15

1

(a) DG-15

Class 0 

Class 1 
Train

Test

Train

Test

Figure 2: Illustration of data groups in (a) DG-15 and (b) DG-60 datasets.

Train

Test

Group Importance of TROGroup Importance of DROTrain
Test Importance

1

0

ACC: 43.22% ACC: 67.56% 

Figure 3: Group importance of DRO and TRO on DG-15. DRO assigns the highest weight to
the worst-case group “1” which is the furthest group to the test groups while TRO focuses on the
influential groups “2”, “5”, and “6”, which are truly connected to test groups.

5.1 CLASSIFICATION

Datasets. DG-15 (Xu et al., 2022) is a synthetic binary classification dataset with 15 groups. Each
group contains 100 data points. In this dataset, adjacent groups have similar decision boundaries.
Following Xu et al. (2022), we use six connected groups as the training groups, and use others as test
groups. Note that, different from Xu et al. (2022) which focuses on domain adaptation, the data of
test groups are unseen in OOD generalization. DG-60 (Xu et al., 2022) is another synthetic dataset
generated using the same procedure as DG-15, except that it contains 60 groups, with 6,000 data
points in total. We randomly select six groups as the training groups and use others as test groups.
Visualization of DG-15 and DG-60 are shown in Fig. 2 (a) and (b), respectively.

Results. The results of DG-15 and DG-60 are summarized in Tab. 1. In both datasets, our method
yields the highest accuracy. For DG-15, we show the detailed results of all groups in Fig. 8. We
visualize the decision boundary of DG-15 and DG-60 in Appendix 7.3.

Ablations study. TRO significantly improves the generalization performance by discovering influen-
tial groups. To investigate the reason why TRO outperforms DRO, we show group weights q of DRO
and TRO on DG-15 in Fig. 3. DRO assigns the highest weight to group “1” which is the furthest
group to test groups. Instead, TRO prioritizes influential groups “2”, “5”, and “6” which are truly
connected to the test ones, yielding improved performance on unseen distributions.

5.2 REGRESSION

Datasets. TPT-48 (Vose et al., 2014) contains the monthly average temperature for the 48 contiguous
states in the US from 2008 to 2019. We focus on the regression task to predict the next 6 months’
temperature based on the previous first 6 months’ temperature. We consider two generalization tasks:
(1) E(24)→W(24): we use the 24 eastern states as training groups and the 24 western states as test
groups; (2) N(24)→ S(24): we use the 24 northern states as training groups and the 24 southern
states as test groups. Test groups one hop away from the closest training group are defined as Hop-1
test groups, those two hops away are Hop-2 test groups, and the remaining groups are Hop-3 test
groups. The visualization of N(24)→ S(24) on TPT-48 is shown in Fig. 4 (left).
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Table 2: Mean Squared Error (MSE) for both tasks E (24)→W (24) and N (24)→ S (24) on TPT-48.
TRO (data-driven topology) consistently outperforms TRO (physical-based topology) in both tasks,
indicating the data-driven topology captures the distributional relation more accurately.

Task Group ERM IRM REx SD DRO TRO (physical) TRO (data)

E (24)→W (24)

Average of Hop-1 groups 1.693 1.699 1.577 1.701 1.678 1.445 1.435
Average of Hop-2 groups 1.800 1.811 1.702 1.806 1.762 1.576 1.569
Average of Hop-3 groups 1.672 1.679 1.584 1.674 1.628 1.400 1.392

Average of All test groups 1.716 1.724 1.616 1.722 1.684 1.466 1.458

N (24)→S (24)

Average of Hop-1 groups 1.084 1.133 0.487 1.169 0.931 0.889 0.855
Average of Hop-2 groups 1.265 1.312 0.944 1.354 1.170 0.991 0.950
Average of Hop-3 groups 1.975 2.021 2.266 2.091 2.027 1.678 1.604

Average of All test groups 1.426 1.474 1.194 1.523 1.356 1.177 1.129

Centrality
1

0

Data-driven Distributionally Topology

Train
Test

Generalization Task of North → South Physical-based Distributional Topology 

MSE: 1.177 MSE: 1.129

Figure 4: Left: Generalization task of North → South on TPT-48. Middle: Group centrality of
physical-based topology. Right: Group centrality of data-driven topology. “PA” is identified by TRO
as the influential group in physical-based topology; “NY”, “PA”, and “MA” are identified by TRO as
influential groups in data-driven topology. Data topology yields lower MSE than physical topology.

Weight
1

0

Group Importance of DRO Group Importance after Learning on Topology
Importance
1

0

MSE: 1.356 MSE: 1.129

WORST-CASE GROUP

Group Importance after Topology Learning

MSE: 1.829

INFLUENTIAL GROUP

Figure 5: Group importance of DRO and TRO on the North→ South task. TRO significantly reduces
the generalization risks by not only prioritizing the worst-case groups but also the influential ones.

Results. We show the results of TPT-48 in Tab. 2. TRO yields the lowest average MSE on both tasks.
We also report the average MSE of Hop-1, Hop-2, and Hop-3 test groups for both tasks. Although
REx yields the lowest error on Hop-1 and Hop-2 groups in N (24)→ S (24), it yields the highest
prediction error on Hop-3 groups. The results indicate that REx may yield compromised performance
under large distributional drifts. TRO yields the best performance on Hop-3 groups, indicating its
strong generalization capability under large distributional drifts.

Ablations study. (1) Data-driven topology yields better performance than physical-based topology.
We show group centrality of both physical and data topology on the task of North→ South in Fig. 4.
“PA” is identified by TRO as the influential group in physical-based topology; “NY”, “PA”, and
“MA” are identified by TRO as influential groups in data-driven topology. The results prove that the
influential groups in data topology are more effective in minimizing the generalization error.

Table 3: MSE on TPT-48. Ignoring either
the worst-case (IW-ERM) or influential (DRO)
groups would yield compromised performance.

Hop-1 Avg. Hop-2 Avg. Hop-3 Avg. Avg.
ERM 1.084 1.265 1.975 1.426
IW-ERM 1.320 1.604 2.635 1.829
DRO 0.931 1.170 2.027 1.356

TRO 0.855 0.950 1.604 1.129

(2) Strong OOD resilience of TRO comes from the
synergy of the worst-case and influential groups.
To investigate which components contribute to the
superior performance of TRO. We build a simple
baseline based on ERM: we directly use the group
importance acquired from the topology to weight
training groups and the weights are fixed during
the training. We name this baseline as importance
weighted ERM (IW-ERM). We show the results of
“N(24)→S(24)” on TPT-48 in Tab. 3. The results
of IW-ERM are inferior to ERM and DRO, possibly because IW-ERM merely considers influential
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Figure 6: Left: Location of the 11 flood events on Sen1Floods11. We use the event “BOL” for testing
and other events for training. Right: Data-driven distributional topology on Sen1Floods11. (1) “IND”
and “NGA” are identified by TRO as the most influential groups. A possible explanation is that both
“IND” and “NGA” are aroused by heavy rainfall, the most prevalent disaster that causes floods. (2)
“GHA” and “KHM” are identified by TRO as the least influential groups. A possible explanation is that
both “GHA” and “KHM” are aroused edge cases such as dam collapse. The data-driven distributional
topology is consistent with domain knowledge and facilitates the explainability of TRO.

groups. We further show the group importance of DRO and TRO in Fig. 5. TRO significantly reduces
the generalization risks by not only prioritizing the worst-case groups but also the influential ones.

5.3 SEMANTIC SEGMENTATION

Datasets. Sen1Floods11 (Bonafilia et al., 2020) is a public dataset for flood mapping at the global
scale. The dataset provides global coverage of 4,831 chips of 512 x 512 10m satellite images across
11 distinct flood events, covering 120,406 km2. Each image is associated with its pixel-wise label.
Locations of the 11 flood events are shown in Fig. 6 (left). Flood events vary in boundary conditions,
terrain, and other latent factors, posing significant OOD challenges to existing models in terms of
reliability and explainability. Following Bonafilia et al. (2020), event “BOL” is held out for testing,
and data of other events are split into training and validation sets with a random 80-20 split.

ERM IRM REx SD DRO TRO (data)

Val .489 .387 .484 .449 .480 .485

Test .430 .338 .357 .400 .433 .450

Table 4: Segmentation results (IoU) on Sen1Floods11.
TRO yields better performance than other baselines on
unseen flood events.
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Figure 7: Ablation study on
λ. IoU remains stable for a
wide range of λ.

Results. We show the results of Sen1Floods11 in Tab. 4. ERM achieves the highest IoU on the
validation set while TRO achieves the highest IoU on the test set. The results prove that TRO yields
better performance than other baselines on unseen flood events.

Ablations study. (1) Data-driven distributional topology is consistent with domain knowledge.
We visualize the distributional topology as well as group centrality in Fig. 6 (right). The learned
distributional topology is consistent with domain knowledge, enhancing the explainability of TRO.
(2) Ablation study on λ. We report IoU under different λ on Sen1Floods11 in Fig. 7. IoU remains
stable for a wide range of λ, and λ = 0.01 yields the best performance.

6 CONCLUSION

In this paper, we proposed a new principled optimization method that seamlessly integrates topological
information to develop strong OOD resilience. Empirical results in a wide range of tasks including
classification, regression, and semantic segmentation demonstrate the superior performance of our
method over SOTA. Moreover, the data-driven distributional topology is consistent with domain
knowledge and facilitates the explainability of our approach.
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7 APPENDIX

7.1 RELATED WORK

Distributionally Robust Optimization. In the context of distributionally robust optimization (DRO),
Duchi & Namkoong (2021) and Shalev-Shwartz & Wexler (2016) argued that minimizing the maximal
loss over a set of possible distributions can provide better generalization performance than minimizing
the average loss. The robustness guarantee of DRO heavily relies on the quality of the uncertainty set
which is typically constructed by moment constraints (Delage & Ye, 2010), f -divergence (Namkoong
& Duchi, 2016) or Wasserstein distance (Shafieezadeh Abadeh et al., 2018). To avoid yielding
overly pessimistic models, group DRO (Hu et al., 2018; Sagawa et al., 2019) is proposed to leverage
pre-defined data groups to formulate the uncertainty set as the mixture of these groups. Although the
uncertainty set of Group DRO is of a wider radius while not being too conservative, our preliminary
results show that Group DRO recklessly prioritizes the worst-case groups that incur higher losses
than others. Such worst-case groups are not necessarily the influential ones that are truly connected
to unseen distributions; optimizing over the worst-case rather than influential groups would yield
mediocre OOD generalization performance.

Out-of-Distribution Generalization. The goal of OOD generalization is to generalize the model
from source distributions to unseen target distributions. There are mainly two branches of methods to
tackle OOD generalization: group-invariant learning (Arjovsky et al., 2019; Koyama & Yamaguchi,
2020; Liu et al., 2021) and distributionally robust optimization. The goal of group-invariant learning is
to exploit the causally invariant correlations across multiple distributions. Invariant Risk Minimization
(IRM) is one of the most representative methods which learns the optimal classifier across source
distributions. However, recent work (Rosenfeld et al., 2021) shows that IRM methods can fail
catastrophically unless the test data are sufficiently similar to the training distribution.

7.2 IMPLEMENTATION DETAILS

In Sec. 3.1, for all hyperparameters such as the kernel scale σ2 and the maximum scale K, we use
the default values from the official implementation1 of Tong et al. (2021). In Sec. 3.2, for learning
rate of model parameters ηθ, we use default values from Xu et al. (2022) (DG-15/-60 and TPT-48)
and Bonafilia et al. (2020) (Sen1Floods11). Therefore, we only tune the learning rate of the mixture
distribution ηq and the dual variable λ. All results are reported over 3 random seed runs, which is
consistent with Koh et al. (2021) and Shi et al. (2022). We select λ from {1e-3, 1e-2, 1e-1, 1, 10,
100} and select ηq from {1e-4, 1e-3, 1e-2, 1e-1, 1}.

7.3 ADDITIONAL RESULTS

DG-15 and DG-60. We provide detailed classification results for each group. The results are shown in
Fig. 8. We can see that, compared to other baselines, TRO significantly improves the generalization
performance on groups that are far from the training groups, such as group “13”. We further visualize
the decision boundary of DG-15 and DG-60 in Fig. 9 and Fig. 10, respectively.

1https://github.com/KrishnaswamyLab/DiffusionEMD
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ERM: 58.00% 

REx: 57.22% TRO: 67.56% 

IRM: 57.87% 

DRO: 43.22% 

Train
Test

Accuracy
100%

0%

Figure 8: Detailed results on DG-15. Our method outperforms ERM by 9.56% while other baselines
are inferior to ERM.

ERM: 58.00% IRM: 57.87% Ground Truth

REx: 57.22% TRO: 67.56% DRO: 43.22% 

Class 0
Class 1

Figure 9: Visualization of decision boundary on DG-15.

ERM: 76.02% IRM: 76.61% Ground Truth

REx: 86.89% TRO: 89.19% DRO: 79.59% 

Class 0
Class 1

Figure 10: Visualization of decision boundary on DG-60. TRO can correctly classify the data of most
groups even if training groups are only one-tenth of all groups.
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Figure 11: Left: Image samples of DomainBed. Right: the data-driven topology of PACS when
“Cartoon” is the test group while the other three are training groups. We assume the reason why “Art”
is the most influential group is that “Art” may contain more information than “Photo” and “Sketch”
as “Art” is the combination of photos and various kinds of styles.

Table 5: Accuracy (%) on PACS. “Art”: “Art” is the test group while the other three groups are
training groups. In average accuracy, TRO outperforms the SOTA by 0.5% and outperforms ERM
and DRO by 0.8% and 2.4%.

Art Cartoon Photo Sketch Average
ERM 88.1(0.1) 77.9(1.3) 97.8(0) 79.1(0.9) 85.7(0.5)
Group DRO 86.4(0.3) 79.9(0.8) 98.0(0.3) 72.1(0.7) 84.1(0.4)
CORAL (SOTA) 87.7(0.6) 79.2(1.1) 97.6(0) 79.4(0.7) 86.0(0.2)
TRO (ours) 87.7(0.5) 82.1(0.5) 98.0(0.2) 78.2(1.9) 86.5(0.4)

Table 6: Accuracy (%) on Terra. TRO achieves comparable results with the SOTA and outperforms
ERM and DRO by 1.8% and 2.0%.

L100 L38 L43 L46 Average
ERM 50.8(1.8) 42.5(0.7) 57.9(0.6) 37.6(1.2) 47.2(0.4)
Group DRO 47.2(1.6) 40.1(1.6) 57.6(0.9) 43.0(0.7) 47.0(0.3)
MMD (SOTA) 52.2(5.8) 47.0(0.6) 57.8(1.3) 40.3(0.5) 49.3(1.4)
TRO (ours) 53.3(2.4) 42.2(1.3) 59.0(0.8) 41.3(0.5) 49.0(0.6)

DomainBed. Following the instructions of the official implementation of DomainBed Gulrajani &
Lopez-Paz (2021), we have conducted experiments on PACS (Li et al., 2017), Terra (Beery et al.,
2018), and VLCS (Fang et al., 2013). Image samples of the three datasets are shown in Fig. 11 (left).

(1) PACS is one of the most popular dataset for out-of-distribution generalization. It consists of
images from four groups: “Art”, “Cartoon”, “Photo” and “Sketch”. Results on PACS are shown
in Tab. 5. Results of other baselines are from Appendix B.4 of Gulrajani & Lopez-Paz (2021).
In average accuracy, TRO outperforms the SOTA by 0.5%. To further investigate the results, we
visualize the learned topology in Fig. 11 (right). As observed, when “Cartoon” is the test group,
the topology is a chain graph consisting of three nodes where “Art” is the most influential group.
A possible explanation is that “Art” may contain more information than “Photo” and “Sketch” as
“Art” can be viewed as the combination of photos and various kinds of styles. Even though the
topology is so simple, it enables our method to significantly outperforms ERM and DRO by 0.8%
and 2.4% on average. The results empirically demonstrate the strong explainability of our method
when the number of training groups is quite limited, i.e., 3. We would like to point out that when
the distributional shift across different groups is small (see explanation on the results of VLCS), the
influential group may not exist and all groups share the same centrality. In this special case, TRO
aims to strike a good balance between the average (ERM) risk and the worst-case (DRO) risk.
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Table 7: Accuracy (%) on VLCS. The average accuracy of DRO and TRO is the same. We assume the
reason is that the distributional shift across different groups is small (Li et al., 2017), and therefore
the influential group may not exist and all groups share the same centrality.

Caltech101 LabelMe SUN09 VOC2007 Average
ERM 97.6(1.0) 63.3(0.9) 72.2(0.5) 76.4(1.5) 77.4(0.3)
Group DRO 97.7(0.4) 62.5(1.1) 70.1(0.7) 78.4(0.9) 77.2(0.6)
DANN (SOTA) 98.5(0.2) 64.9(1.1) 73.1(0.7) 78.3(0.3) 78.7(0.3)
TRO (ours) 96.9(0.2) 65.0(0.8) 71.3(0.9) 75.5(0.9) 77.2(0.5)

(2) Terra consists of images of wild animals captured by camera traps under four locations. Results
on Terra are shown in Tab. 6. Results of other baselines are from Appendix B.6 of Gulrajani &
Lopez-Paz (2021). As observed, in average accuracy, TRO achieves comparable results with the
SOTA and outperforms ERM and DRO by 1.8% and 2.0%.

(3) Results on VLCS are shown in Tab. 7. Results of other baselines are from Appendix B.3 of
Gulrajani & Lopez-Paz (2021). The average accuracy of DRO and TRO is the same. We assume the
reason is that the distributional shift across different groups is small (Li et al., 2017), and therefore
the influential group may not exist and all groups share the same centrality. In this special case, TRO
aims to strike a good balance between the average (ERM) risk and the worst-case (DRO) risk. The
images of VLCS are all photos and the distributional shift is not as significant as PACS (e.g., Photo
vs. Sketch). As stated in Sec. 2.1 of Li et al. (2017), “despite the famous analysis of dataset bias
that motivated the creation of the VLCS benchmark, it was later shown that the domain shift is much
smaller with recent deep features”, and PACS (Li et al., 2017) was proposed to address this limitation.

7.4 PROOF OF THEOREM 1

Proof. By using the property of convex loss functions, we can obtain:
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By rearranging the terms in the above equation, we obtain:
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Following Collins et al. (2020), we will derive the combined bound by bounding the expectation of
each term in the above equation. For the first term, by utilizing the telescoping sum, we can obtain:
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Similarly, for the second term:
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The third term and the last term are bounded by
√
T σ̃q and RΘ

√
T σ̃θ, respectively. To this end, we

can derive the overall bound as:
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The above bound can be minimized by setting the step sizes ηθ = 2RΘ/
(
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T
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.

7.5 PROOF OF THEOREM 2

Proof. Inspired by Qian et al. (2019) and Collins et al. (2020), we utilize the property of M-smooth to
start the proof:
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The second term of the above equation can be bounded by:
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Next, we investigate the convergence of q:
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By aggregating the difference at all time steps, we obtain:
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Since the above equation holds for all q ∈ ∆m, we maximize the right hand side over q ∈ ∆m:
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Eqs. 9 and 10 show that TRO converges in expectation to an (ϵ, δ)-stationary point ofR in O(1/ϵ4)
stochastic gradient evaluations.
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