

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCORPORATING EXPERT PRIORS INTO BAYESIAN OP- TIMIZATION VIA DYNAMIC MEAN DECAY

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is a powerful approach for black-box optimization, and in many real-world problems, domain experts possess valuable prior knowledge about promising regions of the search space. However, existing prior-informed BO methods are often overly complex, tied to specific acquisition functions, or highly sensitive to inaccurate priors. We propose DynMeanBO, a simple and general framework that incorporates expert priors into the Gaussian process mean function with a dynamic decay mechanism. This design allows BO to exploit expert knowledge in the early stages while gradually reverting to standard BO behavior, ensuring robustness against misleading priors while retaining the exploratory behavior of standard BO. DynMeanBO is broadly compatible with acquisition functions, introduces negligible computational cost, and comes with convergence guarantees under Expected Improvement and Upper Confidence Bound. Experiments on synthetic benchmarks and hyperparameter optimization tasks show that DynMeanBO accelerates convergence with informative priors and remains robust under biased ones.

1 INTRODUCTION

Black-box optimization aims to optimize objective functions that are expensive to evaluate and lack analytical expressions or gradient information. Among various approaches, Bayesian optimization (BO) (Jones et al., 1998; Shahriari et al., 2015; Frazier, 2018; Garnett, 2023) has emerged as a powerful and sample-efficient framework by constructing a probabilistic surrogate model of the objective function and selecting promising candidates via an acquisition function. BO has found widespread applications in hyperparameter optimization (HPO) (Bergstra et al., 2011; Snoek et al., 2012), automated materials discovery (Li et al., 2017; Zhang et al., 2020), and robotics control optimization (Antonova et al., 2017; Calandra et al., 2016).

While BO has achieved remarkable success, fully automated optimization remains challenging in many real-world scenarios. In domains where evaluations are costly, practitioners often rely on prior knowledge to guide the search. For example, in HPO, experts frequently use heuristic rules or accumulated experience to identify promising hyperparameter regions rather than applying BO from scratch (Bouthillier & Varoquaux, 2020; Smith et al., 2018; He et al., 2019; Li et al., 2024a; Marek et al., 2025). Incorporating expert priors into BO can accelerate optimization by complementing BO’s efficiency with expert insights. However, prior-informed BO methods (Ramachandran et al., 2020; Souza et al., 2021; AV et al., 2022; Hvarfner et al., 2022; Huang et al., 2023; Hvarfner et al., 2024) are often complex or difficult to generalize across acquisition functions.

In this paper, we propose Dynamic Mean Bayesian Optimization (DynMeanBO), a framework that incorporates expert priors into the Gaussian process(GP) mean function and gradually decays their influence as more data is collected. This design allows the optimizer to exploit prior knowledge in the early stages of exploration while mitigating potential bias from inaccurate priors in the long run.

Our main contributions are:

- We introduce DynMeanBO, a BO framework that integrates expert priors via a dynamically decaying mean function.
- The method is lightweight, broadly compatible with acquisition functions, and adds negligible computational overhead.

054 • We provide convergence guarantees for DynMeanBO under Expected Improvement (EI)
 055 and Upper Confidence Bound (UCB).
 056 • Experiments on synthetic functions and HPO tasks show that DynMeanBO accelerates
 057 convergence with accurate expert priors, remains robust under biased expert priors, and
 058 consistently outperforms other prior-informed approaches.
 059

060 **2 BACKGROUND**

062 **Notations.** Scalars are denoted by lowercase letters (e.g., f), vectors by bold lowercase letters (e.g., \mathbf{x}), and matrices by bold uppercase letters (e.g., \mathbf{K}). The search space is $\mathcal{X} \subseteq \mathbb{R}^d$, and the observed
 063 dataset of n points is $\mathcal{D}_n = \{\mathbf{X}, \mathbf{y}\}$. We denote the GP posterior mean and variance as $\mu_n(\mathbf{x})$ and
 064 $s_n^2(\mathbf{x})$, respectively, and the observation noise variance as σ^2 . The global optimum location and its
 065 value are denoted by \mathbf{x}^* and $f(\mathbf{x}^*)$, expert priors over the optimum location are denoted as $\pi(\mathbf{x})$,
 066 acquisition functions are denoted as $\alpha(\mathbf{x})$ and $\mathbb{E}[\cdot]$ denotes expectation.
 067

069 **2.1 BAYESIAN OPTIMIZATION**

071 BO is a framework for optimizing expensive black-box functions by sequentially selecting evaluation
 072 points. Given an unknown objective function f , the goal is to find its global maximizer:

$$\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}). \quad (1)$$

075 At iteration n , a point \mathbf{x}_n is evaluated with noisy observation $y_n = f(\mathbf{x}_n) + \varepsilon_n$, $\varepsilon_n \sim \mathcal{N}(0, \sigma^2)$.
 076 Conditioned on the observed dataset $\mathcal{D}_n = \mathcal{D}_{n-1} \cup \{\mathbf{x}_n, y_n\}$, a probabilistic surrogate model defines
 077 the posterior $p(f \mid \mathcal{D}_n)$. We adopt a GP as the surrogate model, which naturally provides a posterior
 078 distribution for the objective function; alternatives such as random forests (Hutter et al., 2011) or
 079 Bayesian neural networks (Springenberg et al., 2016; Li et al., 2024b) can also be used. The next
 080 evaluation point is selected by maximizing an acquisition function $\alpha(\mathbf{x})$, which balances exploration
 081 and exploitation.

083 **2.2 GAUSSIAN PROCESS**

084 A GP (Williams & Rasmussen, 2006) places a distribution over functions, enabling Bayesian non-
 085 parametric regression with principled uncertainty estimation. It is fully specified by a mean function
 086 $m(\mathbf{x})$ ($m : \mathcal{X} \rightarrow \mathbb{R}$) and a covariance (kernel) function $k(\mathbf{x}, \mathbf{x}')$ ($k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$).
 087 The mean function $m(\mathbf{x})$ can take any form, though it is often set to zero for simplicity in stand-
 088 ard BO. The kernel function $k(\mathbf{x}, \mathbf{x}')$ encodes correlations between any two inputs, with com-
 089 mon choices including the squared exponential (SE) and Matérn kernels (Frazier, 2018). The
 090 unknown objective $f(\mathbf{x})$ is modeled as a GP prior, $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$. Given dataset
 091 $\mathcal{D}_n = \{\mathbf{X}, \mathbf{y}\}$, where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\top$ and $\mathbf{y} = [y_1, \dots, y_n]^\top$, the posterior is also a GP:
 092 $p(f \mid \mathcal{D}_n) = \mathcal{GP}(\mu_n(\mathbf{x}), k_n(\mathbf{x}, \mathbf{x}'))$, with

$$\begin{aligned} \mu_n(\mathbf{x}) &= m(\mathbf{x}) + \mathbf{k}_n(\mathbf{x})^\top [\mathbf{K}_n + \sigma^2 \mathbf{I}]^{-1} (\mathbf{y} - \mathbf{m}), \\ k_n(\mathbf{x}, \mathbf{x}') &= k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_n(\mathbf{x})^\top [\mathbf{K}_n + \sigma^2 \mathbf{I}]^{-1} \mathbf{k}_n(\mathbf{x}'), \end{aligned} \quad (2)$$

096 where \mathbf{K}_n is the $n \times n$ kernel matrix with entries $[\mathbf{K}_n]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ for $i, j \in \{1, \dots, n\}$, $\mathbf{k}_n(\mathbf{x}) =$
 097 $[k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_n, \mathbf{x})]^\top$, $\mathbf{m} = [m(\mathbf{x}_1), \dots, m(\mathbf{x}_n)]^\top$ and \mathbf{I} is the $n \times n$ identity matrix. The posterior
 098 variance is $s_n^2(\mathbf{x}) = k_n(\mathbf{x}, \mathbf{x})$.

099 Kernel hyperparameters θ are typically learned by maximizing the marginal likelihood. For a GP
 100 with mean function m , the marginal likelihood is $p(\mathbf{y} \mid \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{m}, \mathbf{K}_n + \sigma^2 \mathbf{I})$, which leads
 101 to the log marginal likelihood

$$\log p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2}(\mathbf{y} - \mathbf{m})^\top (\mathbf{K}_n + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{m}) - \frac{1}{2} \log |\mathbf{K}_n + \sigma^2 \mathbf{I}| - \frac{n}{2} \log(2\pi). \quad (3)$$

105 **2.3 ACQUISITION FUNCTION**

106 Acquisition functions (AFs) are utility functions that guide the selection of the next evaluation
 107 point in BO, trading off exploitation of high-value regions with exploration of uncertain regions

(Wang et al., 2023). A wide variety of AFs have been proposed, each with distinct characteristics. Improvement-based methods include Probability of Improvement (PI) (Kushner, 1964), EI (Jones et al., 1998), and the Knowledge Gradient (KG) (Frazier et al., 2008), which aim to maximize the respective measures of improvement. Confidence-bound approaches include UCB (Srinivas et al., 2010); sampling-based methods include Thompson Sampling (TS) (Agrawal & Goyal, 2012); and information-theoretic strategies include Entropy Search (ES) (Hennig & Schuler, 2012), Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014), and Max-value Entropy Search (MES) (Wang & Jegelka, 2017). Among these, EI and UCB are most widely used in practice.

EI maximizes the expected improvement over the current best observation f_n^* :

$$\begin{aligned}\alpha_{\text{EI}}(\mathbf{x}) &= \mathbb{E} [\max (0, f(\mathbf{x}) - f_n^*)] \\ &= (\mu_n(\mathbf{x}) - f_n^*) \Phi \left(\frac{\mu_n(\mathbf{x}) - f_n^*}{s_n(\mathbf{x})} \right) + s_n(\mathbf{x}) \phi \left(\frac{\mu_n(\mathbf{x}) - f_n^*}{s_n(\mathbf{x})} \right),\end{aligned}\quad (4)$$

where $\Phi(\cdot)$ and $\phi(\cdot)$ denote the cumulative distribution function and probability density function of the standard normal distribution, respectively.

UCB selects the next observation point based on the upper confidence bound of the predictive distribution. It balances exploration and exploitation as:

$$\alpha_{\text{UCB}}(\mathbf{x}) = \mu_{n-1}(\mathbf{x}) + \beta_n^{1/2} s_{n-1}(\mathbf{x}), \quad (5)$$

where $\beta_n > 0$ is a parameter controlling the exploration–exploitation trade-off.

2.4 EXPERT PRIOR

In many domains, experts often possess prior knowledge about the likely location of the optimum \mathbf{x}^* before evaluating a new task or model (Perrone et al., 2019). Such knowledge can be formalized as a probability distribution over the optimum location:

$$\pi(\mathbf{x}) = \mathbb{P} \left(\mathbf{x} = \arg \max_{\mathbf{x}' \in \mathcal{X}} f(\mathbf{x}') \right), \quad (6)$$

which encodes the likelihood that different inputs correspond to the global maximizer. In principle, the expert prior distribution $\pi(\mathbf{x})$ can take any form. In practice, the most commonly used distributions are Gaussian distributions, representing a single promising region, or mixtures of Gaussians, which can capture multiple promising regions in the search space. Figure 6 in Appendix A illustrates several examples of expert priors in one dimension, and the concept naturally extends to higher-dimensional search spaces.

Preference-based expert priors can also be constructed using a similar approach: when experts provide relative or pairwise preferences over candidate inputs, these preferences can be converted into a probability distribution over the optimum location. A mixture of Gaussians is often a convenient choice in this setting, as it can flexibly represent multiple favored regions implied by the expert preferences. In fact, expert priors can be easily converted into a probabilistic form, and this form is not limited to the Gaussian or Gaussian mixture examples used in the paper. Any probability distribution that can adequately express the expert’s belief is valid. Further details can be found in Appendix A

3 RELATED WORK

Incorporating expert prior knowledge into BO has significant practical and theoretical value. Although the related literature remains limited, several representative studies have explored this direction. Nguyen & Osborne (2020) proposed a Bayesian framework for the scenario where the optimal function value f^* is known, but its optimal location remains unknown. This approach works well when experts can precisely provide the optimal value; however, in most real-world tasks, such knowledge is rarely available, limiting its applicability. Huang et al. (2023) introduced the Preference Bayesian Neural Network (PBNN), which leverages a Siamese neural network to incorporate expert-provided preference feedback, effectively accelerating the BO process. Similarly, AV et al. (2022) proposed a human-in-the-loop BO framework, where human experts can directly intervene in the point selection process to improve search efficiency and performance.

The above methods incorporate expert priors in terms of the optimal value $f(\mathbf{x}^*)$, preference information, or feedback mechanisms. However, a more common and practical setting involves expert priors on the location of the optimum \mathbf{x}^* . BOPro (Souza et al., 2021) integrated expert priors into the BO-TPE framework (Bergstra et al., 2011), where experts design “good” and “bad” priors over \mathbf{x}^* , which are then combined within the BO-TPE structure to guide the optimization. However, this method cannot be applied to other more general BO approaches. Ramachandran et al. (2020) proposed a novel framework that directly embeds the cumulative distribution of expert priors over \mathbf{x}^* into the kernel function. While interesting, this method is highly sensitive to inaccurate priors since they affect the entire kernel, potentially degrading performance significantly. Li et al. (2020) constructed a conditional posterior distribution incorporating expert priors over \mathbf{x}^* , defined as $p(\mathbf{x}^* | \mathcal{D}_n, \pi) \propto p(\mathbf{x}^* | \mathcal{D}_n) \pi(\mathbf{x}^*)$, and determined the next evaluation point by repeatedly sampling from this distribution. However, this approach can only be used with specific sampling strategies and cannot integrate with general acquisition functions, which restricts its flexibility. π_{BO} (Hvarfner et al., 2022) integrates expert prior distributions into the acquisition function through a weighting mechanism, where the influence of the prior gradually decreases as more evaluations are performed. Although π_{BO} is simple and effective and provides convergence guarantees for the EI acquisition function, it does not explicitly model the prior in the surrogate model and remains essentially heuristic. More recently, ColaBO (Hvarfner et al., 2024) is a highly flexible framework that injects expert priors as additional priors over the surrogate model, orthogonal to the traditional priors on kernel hyperparameters. While compatible with Monte Carlo (MC)-based acquisition functions, ColaBO cannot be used with non-MC acquisition functions and incurs substantial computational costs.

Despite these advances, existing methods still face several limitations: (1) some approaches are overly complex and difficult to implement in practice; (2) many rely on specific acquisition functions or sampling strategies, limiting their general applicability; and (3) several methods are highly sensitive to the quality of expert priors, which reduces robustness. Motivated by these challenges, we propose DynMeanBO, a simple yet effective framework that directly incorporates expert prior knowledge into the surrogate model by embedding it in the mean function of the GP. Unlike existing heuristic-based approaches, DynMeanBO achieves a principled integration of expert knowledge at the model level, is compatible with arbitrary acquisition functions, and demonstrates strong empirical performance across diverse benchmarks.

4 METHODOLOGY

We now present the proposed DynMeanBO framework. Unlike existing approaches that either embed priors heuristically or require specific acquisition functions, our method incorporates expert prior distributions on the location of the optimum by embedding them directly into the GP mean function. Although the design of DynMeanBO in this paper is implemented using a GP surrogate model, the method itself is not tied to any specific surrogate. It can equally be combined with other types of models, such as random forests (Hutter et al., 2011) or Bayesian neural networks (Springenberg et al., 2016; Li et al., 2024b). In Section 4.1, we construct a GP mean function based on expert priors. Section 4.2 details the overall algorithm framework, and Section 4.3 provides a theoretical analysis.

4.1 EXPERT-PRIOR-BASED MEAN FUNCTION

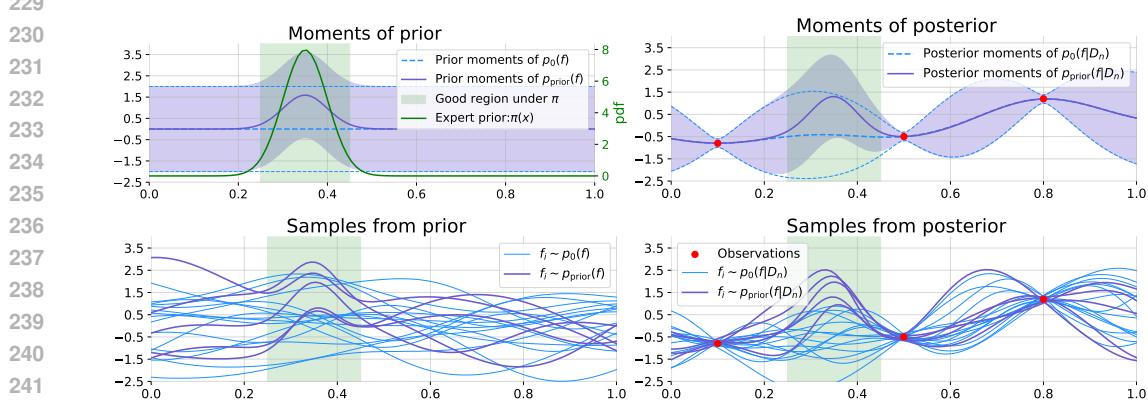
In BO, we adopt a GP surrogate model, $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, where $k(\mathbf{x}, \mathbf{x}') = \text{Cov}(f(\mathbf{x}), f(\mathbf{x}'))$ denotes the covariance and $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ encodes prior beliefs. In practice, $m(\mathbf{x})$ is often set to zero when the functional form of f is unknown. When partial knowledge is available, for example if f is approximately linear, a parametric mean of the form $m(\mathbf{x}) = a\mathbf{x} + b$ can be employed. The hyperparameters a and b are estimated from \mathcal{D}_n via maximum likelihood, in the same way as kernel hyperparameters.

In most real-world problems, even domain experts rarely know the explicit form of $f(\mathbf{x})$. Instead, they may provide a prior distribution $\pi(\mathbf{x})$ over the likely location of the optimum \mathbf{x}^* . We incorporate this expert knowledge into the GP mean function as

$$m_{\text{prior}}(\mathbf{x}) = A \cdot \pi(\mathbf{x}) + B, \quad (7)$$

216 where $A > 0$ is a parameter controlling the scaling of $\pi(\mathbf{x})$, and B is another parameter introducing
 217 an additive shift to $A\pi(\mathbf{x})$. Further details on the interpretation of A and B , as well as their sensitiv-
 218 ity analysis, can be found in Appendix B. Before any observations, $m_{\text{prior}}(\mathbf{x})$ reflects the shape of
 219 the expert prior, providing a coarse estimate of the function landscape consistent with prior beliefs
 220 about \mathbf{x}^* .

221 Figure 1 illustrates an example where a one-dimensional Gaussian prior $\pi(\mathbf{x})$ is incorporated into
 222 the GP mean function. Using the mean function $m_{\text{prior}}(\mathbf{x})$, which encodes expert prior knowledge,
 223 has a pronounced effect on both the prior and posterior distributions of f . Samples drawn from the
 224 prior $p_{\text{prior}}(f)$ and posterior $p_{\text{prior}}(f | \mathcal{D}_n)$ show a clear peak in the region deemed “good” by the
 225 expert (green area in Figure 1), indicating that the optimal values are highly likely to fall within this
 226 region. This confirms that the expert prior knowledge has been effectively integrated into the BO
 227 framework. For an example with a one-dimensional mixture of Gaussians as the expert prior, see
 228 Appendix C.



229
 230 Figure 1: (Top left) Mean function and 95% confidence interval without any observations. $p(f)$
 231 denotes the GP prior with $m(\mathbf{x}) = 0$, i.e., $p(f) = \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, while $p_{\text{prior}}(f) =$
 232 $\mathcal{GP}(m_{\text{prior}}(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$. (Top right) Mean function and 95% confidence interval conditioned on
 233 observed data \mathcal{D}_n . $p(f | \mathcal{D}_n)$ uses $m(\mathbf{x}) = 0$, whereas $p_{\text{prior}}(f | \mathcal{D}_n)$ uses $m_{\text{prior}}(\mathbf{x})$. (Bottom left)
 234 Samples drawn from the prior distributions $p(f)$ and $p_{\text{prior}}(f)$ without observations. (Bottom right)
 235 Samples drawn from the posterior distributions $p(f | \mathcal{D}_n)$ and $p_{\text{prior}}(f | \mathcal{D}_n)$ given \mathcal{D}_n .
 236
 237

238 4.2 BAYESIAN OPTIMIZATION WITH A DYNAMICALLY DECAYING MEAN FUNCTION

239 As more points are evaluated in BO, we gain increasing information about the objective function f ,
 240 enabling a more accurate model of f . Thus, the reliance on the expert prior should progressively
 241 decline, which not only reflects the growing confidence in observed data but also preserves robust-
 242 ness in cases where the expert prior is far from the true optimum. Inspired by π_{BO} (Hvarfner et al.,
 243 2022), we incorporate a decay mechanism into the mean function, defining the mean function at
 244 iteration n after initialization as

$$245 m_n(\mathbf{x}) = \gamma_n \cdot m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n) \cdot \mu_0(\mathbf{x}), \quad \gamma_n = \exp(-\lambda(n - N_0)), \quad (8)$$

246 where $\lambda > 0$ controls the decay rate and N_0 is the number of initial evaluations. A sensitivity
 247 analysis of λ is provided in Appendix J. The baseline mean function $\mu_0(\mathbf{x})$ corresponds to the mean
 248 function used in the standard BO setting, which is typically chosen as a constant function—most
 249 commonly the zero mean function. By gradually decaying the influence of the expert prior mean
 250 toward the baseline mean, the method remains robust even when the expert prior is substantially
 251 misaligned with the true optimum.

252 The complete procedure for incorporating expert prior knowledge into the BO framework is summa-
 253 rized in Algorithm 1. During initialization, we sample a portion of the initial points from the expert
 254 prior distribution $\pi(\mathbf{x})$, while the remaining points are drawn using Sobol sequences to ensure uni-
 255 form coverage of the search space \mathcal{X} . This hybrid initialization strategy facilitates building a more
 256 accurate surrogate model and improves the subsequent optimization performance. Further analysis
 257 regarding the choice of the initialization ratio ρ for sampling from $\pi(\mathbf{x})$ is presented in Appendix K.

270 **Algorithm 1** **DynMeanBO**: Bayesian Optimization with Dynamic Mean Decay

271 **Require:** Search space \mathcal{X} , kernel function $k(\mathbf{x}, \mathbf{x}')$, expert prior distribution $\pi(\mathbf{x})$, decay coefficient
272 λ , initial design size N_0 , initialization ratio ρ , max iterations N , the parameters A and B

273 **Ensure:** Optimized design \mathbf{x}^*

274 1: **Initialization:**

275 2: Draw $N_0^{(\text{prior})} = \lfloor \rho N_0 \rfloor$ samples from $\pi(\mathbf{x})$

276 3: Draw $N_0^{(\text{Sobol})} = N_0 - N_0^{(\text{prior})}$ samples via Sobol sequences

277 4: Set $\{\mathbf{x}_i\}_{i=1}^{N_0} = \{\mathbf{x}_i\}_{i=1}^{N_0^{(\text{prior})}} \cup \{\mathbf{x}_j\}_{j=1}^{N_0^{(\text{Sobol})}}$

278 5: Observe $y_i = f(\mathbf{x}_i) + \varepsilon_i$, and set $\mathcal{D}_{N_0} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_0}$

279 6: Initialize GP prior mean $m_{\text{prior}}(\mathbf{x}) = A \cdot \pi(\mathbf{x}) + B$

280 7: Fit GP posterior $p(f|\mathcal{D}_{N_0}) = \mathcal{GP}(\mu_{N_0}(\mathbf{x}), k_{N_0}(\mathbf{x}, \mathbf{x}'))$ according to Eq. (2)

281 8: **for** $n = N_0 + 1, \dots, N$ **do**

282 9: $\mathbf{x}_n = \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha(\mathbf{x}, \mathcal{D}_{n-1})$

283 10: $y_n = f(\mathbf{x}_n) + \varepsilon_n$

284 11: $\mathcal{D}_n = \mathcal{D}_{n-1} \cup \{(\mathbf{x}_n, y_n)\}$

285 12: Update mean function: $m_n(\mathbf{x})$ according to Eq.(8)

286 13: Update GP posterior: $p(f|\mathcal{D}_n) = \mathcal{GP}(\mu_n(\mathbf{x}), k_n(\mathbf{x}, \mathbf{x}'))$ according to Eq. (2)

287 14: **end for**

288 15: **return** $\mathbf{x}^* = \arg \max_{(\mathbf{x}_i, y_i) \in \mathcal{D}_N} y_i$

290

291

292

4.3 THEORETICAL ANALYSIS

293 We provide a theoretical analysis of the convergence properties of DynMeanBO, establishing guarantees
294 for the commonly used EI and UCB acquisition functions. Complete proofs are presented
295 in Appendix D and Appendix E. The analysis can be straightforwardly extended to other standard
296 acquisition functions, following similar arguments; we omit these extensions for brevity.

297 **Convergence under EI.** To analyze the convergence of DynMeanBO under EI, we adopt the as-
298 sumptions of Bull (2011). Although our focus is on *maximizing* the objective function, the theoreti-
299 cal framework of Bull (2011) assumes *minimization*. This distinction is immaterial, as maximization
300 can be equivalently reformulated as minimization by considering $-f(\mathbf{x})$. Let \mathcal{H}_k denote the repro-
301 ducing kernel Hilbert space (RKHS) associated with a symmetric positive-definite kernel k . In our
302 analysis, we employ the Matérn kernel (Matérn, 1960), where the smoothness of functions in \mathcal{H}_k is
303 controlled by the parameter ν . We assume that the unknown objective function f lies within a ball
304 B_R in \mathcal{H}_k , i.e., $\|f\|_{\mathcal{H}_k(\mathcal{X})} \leq R$.

305 We define the loss as

$$\mathcal{L}_n(u, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) \triangleq \sup_{\|f\|_{\mathcal{H}_k(\mathcal{X})} \leq R} \mathbb{E}_f^u [f(\mathbf{x}_n^*) - \min f], \quad (9)$$

306 where u denotes the strategy, and \mathbf{x}_n^* is the best point selected after n evaluations. We denote the EI
307 strategy under DynMeanBO as DynMeanBO-EI and the standard BO with EI strategy as BO-EI.
308 Based on the detailed proof in Appendix D, we obtain the following theoretical result.

309 **Theorem 1** (Convergence of DynMeanBO under EI). *Let $\mathcal{X} \subset \mathbb{R}^d$ be compact, $f \in \mathcal{H}_k(\mathcal{X})$, and
310 let DynMeanBO use the dynamic prior mean $m_n(\mathbf{x}) = \gamma_n \cdot m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n) \cdot \mu_0(\mathbf{x})$ with
311 $\gamma_n = \exp(-\lambda(n - N_0))$, $\lambda > 0$. Then, DynMeanBO under EI achieves the same asymptotic
312 convergence rate as standard BO under EI, namely*

$$\mathcal{L}_n(\text{DynMeanBO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) = O(n^{-(\nu \wedge 1)/d} (\log n)^\beta),$$

313 where $\beta \geq 0$ is a constant depending on the kernel k and ν .

314 **Convergence under UCB.** We establish the convergence of DynMeanBO under the UCB strategy
315 by following the proof techniques of Srinivas et al. (2010). Our objective is to maximize the target
316 function f , and at each iteration the next query point is chosen according to the UCB rule:
317 $\mathbf{x}_n = \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{\text{UCB}}(\mathbf{x}) = \arg \max_{\mathbf{x} \in \mathcal{X}} \mu_{n-1}(\mathbf{x}) + \beta_n^{1/2} s_{n-1}(\mathbf{x})$. The resulting convergence
318 guarantee is summarized below, with the complete proof provided in Appendix E.

324 **Theorem 2** (Convergence of DynMeanBO under UCB). *Let $\delta \in (0, 1)$. Assume that the true un-
325 derlying function f lies in the RKHS \mathcal{H}_k associated with the kernel k , with $\|f\|_{\mathcal{H}_k}^2 \leq B$, and let
326 $\beta_n = 2B + 300G_n \log^3(n/\delta)$. Assume further that the observational noise is σ -sub-Gaussian. Let
327 $m_n(\mathbf{x}) = \gamma_n m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n)\mu_0(\mathbf{x})$ be the dynamic prior mean of DynMeanBO at iteration n ,
328 where $\gamma_n \rightarrow 0$. When using the UCB acquisition function with parameters β_n , the cumulative regret
329 of DynMeanBO satisfies, with probability at least $1 - \delta$,*

$$331 \quad \Pr \left\{ R_N \leq C_1 \sqrt{N \beta_N G_N} + C_2 \sum_{n=1}^N \gamma_n \quad \forall N \geq 1 \right\} \geq 1 - \delta,$$

334 where $R_N := \sum_{n=1}^N (f(\mathbf{x}^*) - f(\mathbf{x}_n))$ denotes the cumulative regret, G_N is the maximum infor-
335 mation gain up to N , and $C_1, C_2 > 0$ are constants independent of N . In particular, if $\sum_{n=1}^{\infty} \gamma_n < \infty$,
336 DynMeanBO-UCB achieves the same asymptotic convergence rate as BO-UCB:

$$337 \quad R_N = O(\sqrt{N \beta_N G_N}).$$

340 5 EXPERIMENTS

342 We systematically evaluate the performance of DynMeanBO on diverse tasks under both “good”
343 (informative) and “bad” (misleading) expert priors. The experiments examine its compatibility with
344 different acquisition functions and demonstrate its advantages over other prior-informed BO meth-
345 ods. Section 5.1 describes the experimental setup. Section 5.2 presents the compatibility results,
346 while Section 5.3 provides the comparative analysis. Our implementation is publicly available at
347 <https://anonymous.4open.science/r/DynMeanBO-A7F4/>.

349 5.1 EXPERIMENTAL SETUP

351 **Expert Priors.** We adopt the expert prior settings used in π BO (Hvarfner et al., 2022) and
352 ColaBO (Hvarfner et al., 2024), modeling both “good” and “bad” expert priors as Gaussian dis-
353 tributions. The mean of the “good” prior is located 10% away from the location of the global
354 optimum, with variance set to 20% of the search space width. For the “bad” prior, the mean is
355 shifted 70% away from the location of the global optimum; if this position lies outside the domain,
356 it is clipped to the boundary, with the same variance setting. Detailed configurations are provided
357 in Appendix F. To further investigate how different expert prior configurations influence the perfor-
358 mance of DynMeanBO, we additionally study the effect of varying the prior variance under three
359 prior-quality conditions: strong prior, weak prior, and wrong prior. The definitions and constructions
360 of these prior types are provided in Appendix L, where we also present the corresponding detailed
361 settings and analyses.

362 **Tasks.** We consider two types of tasks: synthetic functions and HPO benchmarks. The synthetic
363 functions span 4D to 7D search spaces, including Hartmann (4D), Levy (5D), Hartmann (6D),
364 Rosenbrock (6D), and Stybtang (7D) (Wang et al., 2020), all implemented in BoTorch¹ (Balan-
365 dat et al., 2020). For HPO, we evaluate three 4D deep learning optimization problems from the
366 PD1 benchmark suite (WMT, CIFAR, and LM1B). Although their true optima are unknown, we
367 leverage expert priors from MF-Prior-Bench² (Mallik et al., 2023). Moreover, we also examine
368 higher-dimensional settings. In Appendix I, we report additional results on two 20-dimensional
369 synthetic tasks — Levy (20D), Rosenbrock (20D).

370 **Comparison Algorithms.** To test the compatibility of DynMeanBO with different acquisition
371 strategies, we evaluate it under seven widely used acquisition functions: PI, EI, LogEI, TS, UCB,
372 KG, and MES. We compare the performance of standard BO and DynMeanBO under each acquisi-
373 tion function. Additionally, we benchmark DynMeanBO in comparison with the prior-informed BO
374 methods, including π BO and ColaBO.

375 **Computational Platform.** All experiments are conducted on a dual-socket Intel Xeon Platinum
376 8575C server (2×48 cores, 192 threads, 2.80 GHz base / 4.00 GHz turbo, 4 NUMA nodes).

377 ¹<https://github.com/pytorch/botorch>

²<https://github.com/automl/mf-prior-bench>

378
379

5.2 DYNMEANBO’S GENERALITY ACROSS ACQUISITION FUNCTIONS

380
381
382
383
384
385

To evaluate the generality of DynMeanBO, we test it with seven widely used acquisition strategies: PI, EI, LogEI, TS, UCB, KG, and MES. Since DynMeanBO incorporates expert priors directly into the GP mean function, it can be seamlessly combined with any acquisition function without requiring algorithmic modifications. We compare DynMeanBO against standard BO under all seven acquisition functions, and additionally include a random sampling baseline (Sampling) as a reference. For this experiment, a “good” expert prior is used to construct the DynMeanBO model.

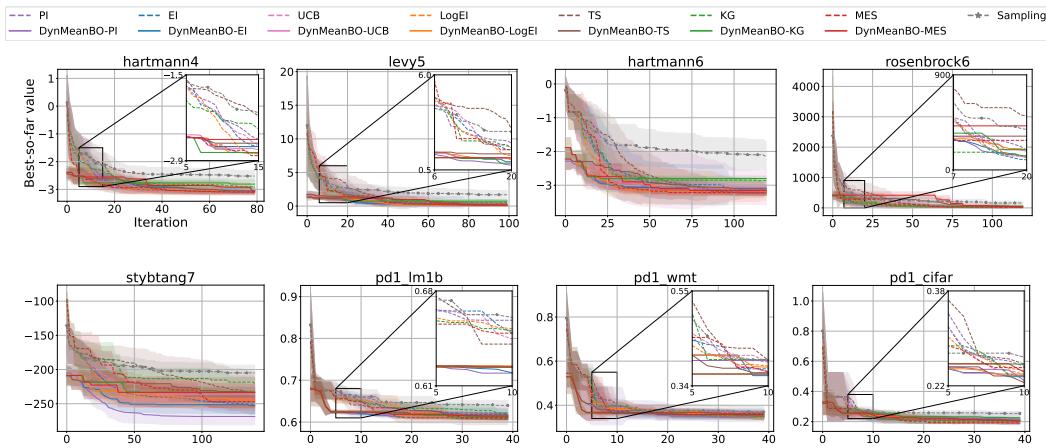
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Figure 2: Performance on synthetic functions and HPO tasks. When a “good” expert prior is incorporated, DynMeanBO consistently finds better solutions faster than the standard BO across different acquisition functions.

401
402
403
404
405
406
407
408
409
410
411
412

The results in Figure 2 show that across all acquisition functions, DynMeanBO consistently accelerates convergence relative to standard BO. These improvements demonstrate its strong compatibility and effectiveness across a diverse set of strategies. In particular, during the early stages of optimization, DynMeanBO can leverage the expert prior to quickly identify better solutions, far more efficiently than standard BO. In practice, the tasks optimized with BO are often very expensive and time-consuming, so only a very limited number of evaluations can typically be performed. By incorporating expert prior knowledge, DynMeanBO is able to achieve substantial gains during these early stages of optimization, demonstrating even greater advantages in real-world scenarios.

413
414
415
416
417

We also compare the per-iteration evaluation time of DynMeanBO and standard BO, as shown in Figure 11 in Appendix G. The results indicate that the computational overhead of DynMeanBO is negligible. When provided with informative expert priors, DynMeanBO achieves faster convergence without sacrificing computational efficiency.

418
419
420

5.3 COMPARATIVE STUDY OF DYNMEANBO AND EXISTING PRIOR-INFORMED BO FRAMEWORKS

421
422
423
424

We now compare DynMeanBO with other prior-informed BO methods. Under a “good” expert prior, DynMeanBO achieves performance comparable to π BO and ColaBO, while requiring lower computational cost. Under a “bad” expert prior, DynMeanBO exhibits strong robustness, maintaining stable performance even in the presence of misleading prior information.

425
426
427
428
429
430

“Good” expert prior. π BO and ColaBO are representative approaches that incorporate expert priors into BO. While π BO employs EI, ColaBO utilizes LogEI and MES, denoted as MC_{pi} -LogEI and MC_{pi} -MES in the figures. For a fair comparison, we evaluate DynMeanBO using the same acquisition functions—EI, LogEI, and MES. As shown in Figure 3, DynMeanBO achieves performance on par with π BO and ColaBO, while consistently accelerating the optimization process across all benchmarks.

431

As discussed in Section 5.2, DynMeanBO introduces negligible computational overhead compared to standard BO. Furthermore, when compared with other prior-informed BO frameworks,

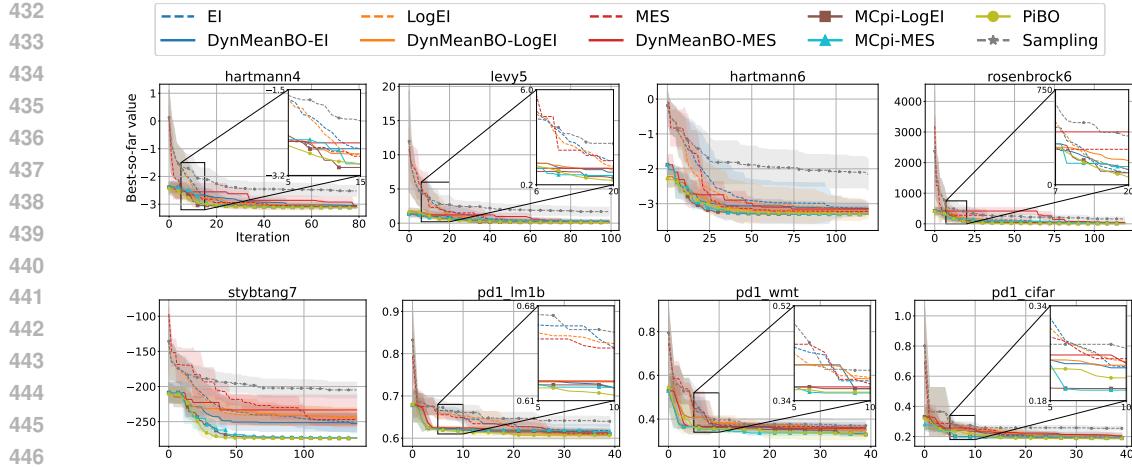


Figure 3: Performance on synthetic functions and HPO tasks under a “good” expert prior. DynMeanBO, π BO, and ColaBO achieve comparable results.

DynMeanBO achieves substantially better computational efficiency. Figure 4 reports per-iteration evaluation time under identical acquisition functions, where DynMeanBO is markedly faster than both π BO and ColaBO.

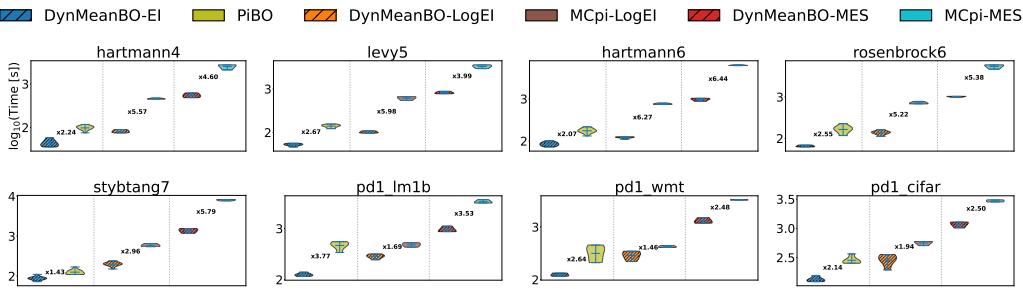


Figure 4: Per-iteration evaluation time (log₁₀ scale) of DynMeanBO, π BO, and ColaBO on synthetic functions and HPO tasks under the “good” expert prior setting.

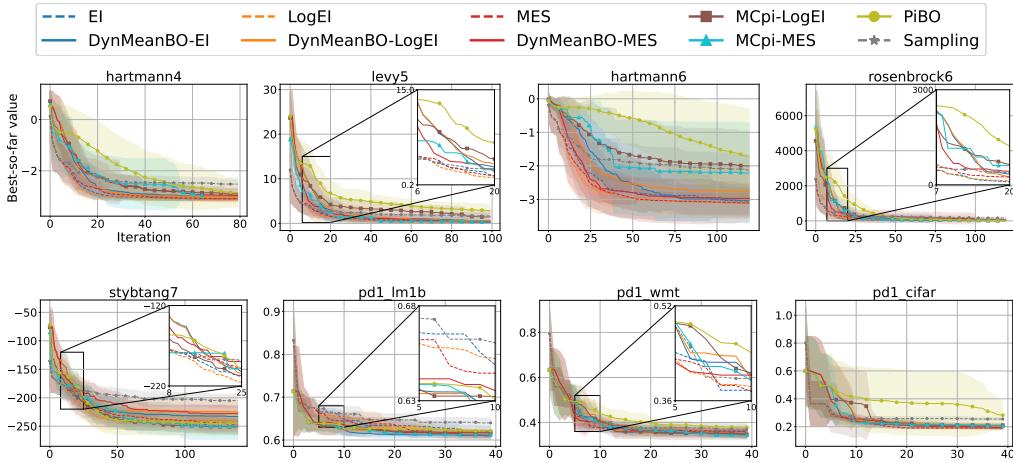


Figure 5: Performance on synthetic functions and HPO tasks under a “bad” expert prior. DynMeanBO demonstrates strong robustness.

486 “Bad” expert prior. In practice, domain experts may provide priors that deviate substantially from
 487 the true optimum. The setup for the “bad” prior is detailed in Section 5.1. As shown in Fig. 5,
 488 DynMeanBO remains highly robust in this scenario, quickly approaching the performance of stand-
 489 ard BO even when guided by an inaccurate prior. In terms of robustness, DynMeanBO clearly
 490 outperforms both ColaBO and π BO, with a particularly large margin over π BO. Interestingly, on the
 491 PD1 (LM1B) task, all prior-informed methods (DynMeanBO, π BO, and ColaBO) converge faster
 492 than vanilla BO despite the misleading prior. This occurs because the “bad” prior, although far from
 493 the global optimum, still points to a high-quality suboptimal region. A comparison of computational
 494 overhead under the “bad” prior is provided in Appendix H.

496 6 CONCLUSION

497 We proposed DynMeanBO, a BO framework that incorporates expert prior knowledge via a dy-
 498 namically decaying mean function. Our approach is compatible with any acquisition function and
 499 introduces negligible computational overhead. Empirically, DynMeanBO accelerates convergence
 500 when expert priors are informative, while remaining robust when priors are inaccurate. These find-
 501 ings demonstrate the practical benefit of integrating expert knowledge into BO and show that dy-
 502 namically modulating the influence of the expert prior can effectively balance expert guidance with
 503 data-driven exploration.

504 For future work, we plan to combine DynMeanBO with complementary techniques, such as multi-
 505 fidelity optimization and parallel evaluation strategies. This combined approach aims to further
 506 accelerate the optimization process and enhance scalability, enabling applications to more complex
 507 models, diverse search spaces, and large-scale HPO tasks.

510 REFERENCES

511 Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
 512 problem. In *25th Annual Conference on Learning Theory (COLT)*, volume 23, pp. 39.1–39.26.
 513 JMLR: Workshop and Conference Proceedings, 2012.

515 Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep kernels for optimizing locomotion
 516 controllers. In *Conference on Robot Learning*, pp. 47–56. PMLR, 2017.

517 Arun Kumar AV, Santu Rana, Alistair Shilton, and Svetha Venkatesh. Human-AI collaborative
 518 Bayesian optimisation. *Advances in Neural Information Processing Systems*, 35:16233–16245,
 519 2022.

521 Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
 522 son, and Eytan Bakshy. Botorch: A framework for efficient Monte-Carlo Bayesian optimization.
 523 *Advances in Neural Information Processing Systems*, 33:21524–21538, 2020.

524 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
 525 optimization. *Advances in Neural Information Processing Systems*, 24:2546–2554, 2011.

527 Xavier Bouthillier and Gaël Varoquaux. Survey of machine-learning experimental methods at
 528 NeurIPS2019 and ICLR2020. Technical report, Inria Saclay Ile de France, 2020.

530 Adam D Bull. Convergence rates of efficient global optimization algorithms. *Journal of Machine
 531 Learning Research*, 12(10), 2011.

532 Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization
 533 for learning gaits under uncertainty: An experimental comparison on a dynamic bipedal walker.
 534 *Annals of Mathematics and Artificial Intelligence*, 76(1):5–23, 2016.

535 Peter I Frazier. A tutorial on Bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.

537 Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential
 538 information collection. *SIAM Journal on Control and Optimization*, 47(5):2410–2439, 2008.

539 Roman Garnett. *Bayesian optimization*. Cambridge University Press, 2023.

540 Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to generalize
 541 well: Theoretical and empirical evidence. *Advances in Neural Information Processing Systems*,
 542 32:1141–1150, 2019.

543

544 Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimiza-
 545 tion. *The Journal of Machine Learning Research*, 13(1):1809–1837, 2012.

546

547 José M Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
 548 search for efficient global optimization of black-box functions. *Advances in Neural Information
 549 Processing Systems*, 27:918–926, 2014.

550

551 Daolang Huang, Louis Filstroff, Petrus Mikkola, Runkai Zheng, Milica Todorovic, and Samuel
 552 Kaski. Augmenting Bayesian optimization with preference-based expert feedback. In *ICML
 553 2023 Workshop The Many Facets of Preference-Based Learning*, 2023.

554

555 Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
 556 for general algorithm configuration. In *International Conference on Learning and Intelligent
 557 Optimization*, pp. 507–523. Springer, 2011.

558

559 Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi. π BO: Ac-
 560 quisition functions with user beliefs for Bayesian optimization. In *Tenth International Conference
 561 of Learning Representations*, 2022.

562

563 Carl Hvarfner, Frank Hutter, and Luigi Nardi. A general framework for user-guided Bayesian opti-
 564 mization. In *12th International Conference on Learning Representations*, 2024.

565

566 Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
 567 black-box functions. *Journal of Global Optimization*, 13(4):455–492, 1998.

568

569 Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
 570 the presence of noise. *Journal of Basic Engineering*, 86(1):97–106, 1964.

571

572 Cheng Li, David Rubín de Celis Leal, Santu Rana, Sunil Gupta, Alessandra Sutti, Stewart Greenhill,
 573 Teo Slezak, Murray Height, and Svetha Venkatesh. Rapid Bayesian optimisation for synthesis of
 574 short polymer fiber materials. *Scientific Reports*, 7(1):5683, 2017.

575

576 Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly, and Svetha Venkatesh.
 577 Incorporating expert prior knowledge into experimental design via posterior sampling. *arXiv
 578 preprint arXiv:2002.11256*, 2020.

579

580 Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu Sun, Hao Wu, Dian Jiao, Weiyang Wang,
 581 Chengjun Liu, Zheng Fang, Jinbao Xue, et al. Surge phenomenon in optimal learning rate and
 582 batch size scaling. *Advances in Neural Information Processing Systems*, 37:132722–132746,
 2024a.

583

584 Yucen Lily Li, Tim GJ Rudner, and Andrew Gordon Wilson. A study of Bayesian neural network
 585 surrogates for Bayesian optimization. In *12th International Conference on Learning Representa-
 586 tions*, 2024b.

587

588 Neeratoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lin-
 589 dauer, Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the
 590 age of deep learning. *Advances in Neural Information Processing Systems*, 36:7377–7391, 2023.

591

592 Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
 593 Small batch size training for language models: When vanilla SGD works, and why gradient
 594 accumulation is wasteful. *arXiv preprint arXiv:2507.07101*, 2025.

595

596 Bertil Matérn. *Spatial Variation*, volume 49. Meddelanden från Statens Skogsforskningsinstitut,
 597 1960.

598

599 Vu Nguyen and Michael A Osborne. Knowing the what but not the where in Bayesian optimization.
 600 In *International Conference on Machine Learning*, pp. 7317–7326. PMLR, 2020.

594 Valerio Perrone, Huibin Shen, Matthias W Seeger, Cedric Archambeau, and Rodolphe Jenatton.
 595 Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer
 596 learning. *Advances in Neural Information Processing Systems*, 32:12751–12761, 2019.
 597

598 Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Incorporating
 599 expert prior in Bayesian optimisation via space warping. *Knowledge-Based Systems*, 195:105663,
 600 2020.

601 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 602 human out of the loop: A review of Bayesian optimization. *Proceedings of the IEEE*, 104(1):
 603 148–175, 2015.

604

605 Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
 606 increase the batch size. In *International Conference on Learning Representations*, 2018.

607

608 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
 609 learning algorithms. *Advances in Neural Information Processing Systems*, 25:2951–2959, 2012.

610 Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank Hutter.
 611 Bayesian optimization with a prior for the optimum. In *Joint European Conference on Machine
 612 Learning and Knowledge Discovery in Databases*, pp. 265–296. Springer, 2021.

613

614 Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization
 615 with robust Bayesian neural networks. *Advances in Neural Information Processing Systems*, 29:
 616 4134–4142, 2016.

617

618 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-
 619 mization in the bandit setting: No regret and experimental design. In *Proceedings of the 27th
 620 International Conference on Machine Learning (ICML)*, pp. 1015–1022, 2010.

621

622 Jialei Wang, Scott C Clark, Eric Liu, and Peter I Frazier. Parallel Bayesian global optimization of
 623 expensive functions. *Operations Research*, 68(6):1850–1865, 2020.

623

624 Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in Bayesian
 625 optimization. *ACM Computing Surveys*, 55(13s):1–36, 2023.

626

627 Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
 628 *International Conference on Machine Learning*, pp. 3627–3635. PMLR, 2017.

629

630 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
 631 volume 2. MIT press Cambridge, MA, 2006.

632

633 Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials design with
 634 mixed quantitative and qualitative variables. *Scientific Reports*, 10(1):4924, 2020.

635

A DETAILED EXPLANATION OF EXPERT PRIORS

637 To complement the discussion in Section 2.4, we provide visual illustrations of several repres-
 638 entative expert prior distributions. These examples highlight how different choices encode domain
 639 knowledge about the likely location of the global optimum.

640 As shown in Figure 6, a unimodal Gaussian prior emphasizes a single promising region, while a
 641 Gaussian mixture prior flexibly represents multiple candidate regions. Preference-based priors can
 642 also be approximated using mixtures of Gaussians, which capture favored regions implied by expert
 643 preferences. Although we display one-dimensional cases for clarity, the same idea naturally extends
 644 to higher-dimensional spaces.

645 Expert priors can naturally be expressed in the form of probability distributions. They are not limited
 646 to Gaussian or Gaussian mixture distributions; any distribution that captures the expert’s belief can
 647 be used. For example, consider an arbitrary function $h(\mathbf{x})$, whose optimum reflects the expert’s

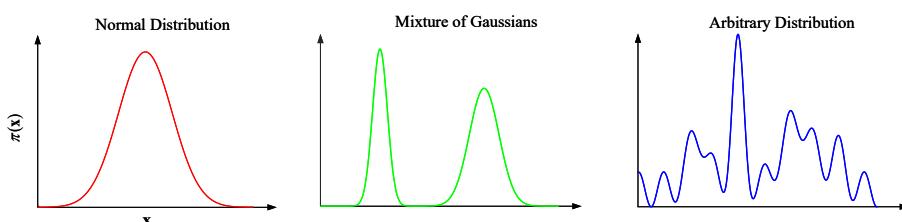


Figure 6: Illustration of different types of expert prior distributions.

belief about where the optimal solution of the current task lies. We can normalize this function to obtain a expert prior distribution:

$$\pi(x) = \frac{h(x)}{\int h(x) dx}.$$

This allows us to incorporate expert knowledge into the optimization process through a probabilistic formulation.

B INTERPRETATION OF PARAMETERS A AND B

We define the prior mean function as $m_{\text{prior}}(x) = A \cdot \pi(x) + B$, where $\pi(x)$ denotes the expert prior distribution. This construction leverages expert knowledge to roughly shape the mean function, thereby highlighting the region where the function f is most likely to achieve its maximum.

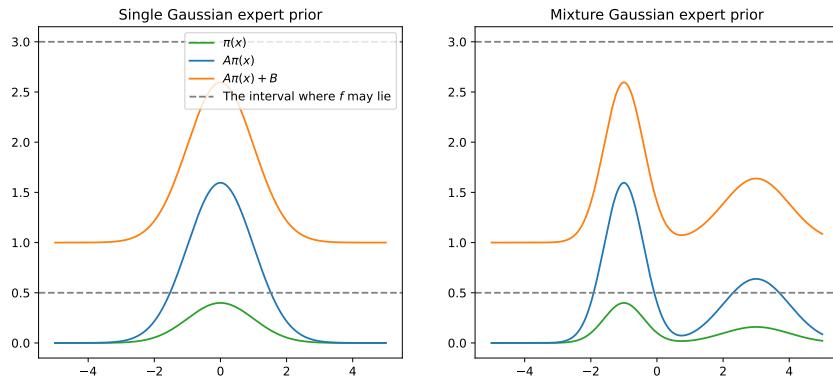


Figure 7: Illustration of the prior mean construction.

In this setup, A serves as a scaling factor to align $\pi(x)$ with the magnitude of f , while B acts as a shift that positions $A\pi(x)$ appropriately (e.g., around the mid-level of f). As illustrated in Figure 7, the two subplots show how A and B influence the mean function when $\pi(x)$ is chosen as a Gaussian distribution and as a Gaussian mixture distribution, respectively.

The selection of A and B is flexible. They can be manually set, for example $A = 1$ and $B = 0$. Alternatively, they can be derived from the initial evaluations. Suppose in the initial set of evaluated points, the maximum and minimum observed values are y_{max} and y_{min} . Then one may set

$$A = \frac{y_{\text{max}} - y_{\text{min}}}{\max_{x \in \mathcal{X}} \pi(x)}, \quad B = \frac{y_{\text{max}} + y_{\text{min}}}{2}. \quad (10)$$

B.1 SENSITIVITY ANALYSIS OF PARAMETERS A

In constructing our mean function, $m_{\text{prior}}(x) = A \cdot \pi(x) + B$, the parameters A and B are primarily used to better approximate the true objective function. However, our main concern is the shape $\pi(x)$ of the mean function, as it is the key factor governing the balance between exploitation and exploration. In principle, the specific values of A and B should not have a major impact on the

optimization process. To investigate the sensitivity of the algorithm to these parameters, we conduct a sensitivity analysis for both A and B .

In this section, we focus on the sensitivity with respect to A . We consider $A = 0.1, 0.5, 1, 2, 10$ while fixing $B = 0$, and study how different values of A affect the optimization process. We use DynMeanBO-EI as the test case, i.e., DynMeanBO with the EI acquisition function, to evaluate the sensitivity to A . The experimental results are shown in Figure 8.

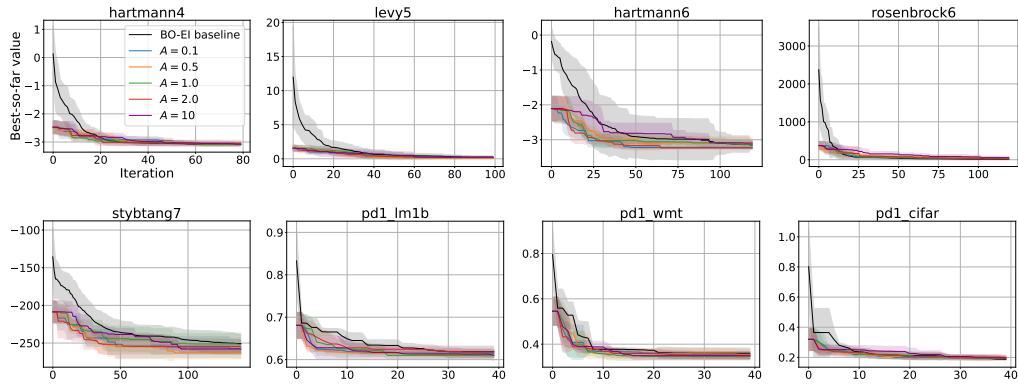


Figure 8: Ablation study of the parameter A under the “good” expert prior setting

From the experimental results, we can see that the optimization process is largely insensitive to different values of A . In other words, the specific choice of A is not critical; what matters most is the shape of the mean function.

B.2 SENSITIVITY ANALYSIS OF PARAMETERS B

In this section, we analyze the sensitivity of the parameter B . Fixing $A = 1$, we examine how different values of $B = 0.0, 0.2, 0.4, 0.6, 0.8$ affect the optimization process within DynMeanBO-EI. The results are presented in Figure 9. From the experimental observations, the optimization process is highly insensitive to the choice of B , further confirming that the most critical factor is the shape of the mean function rather than the specific values of its scaling or shifting parameters.

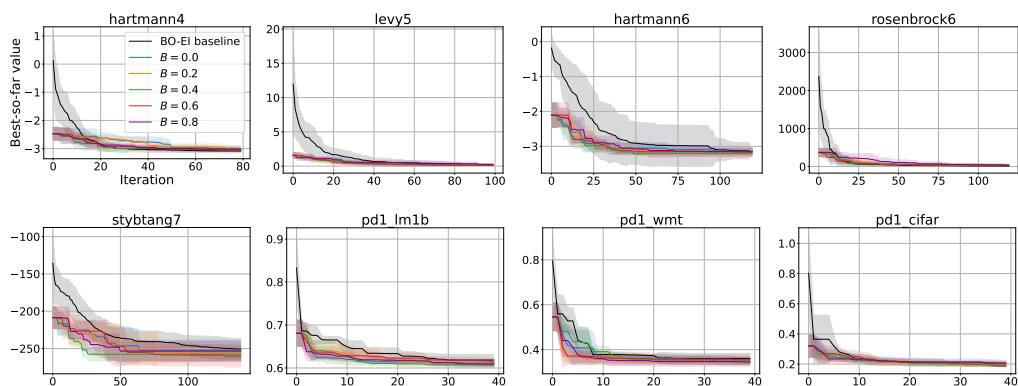


Figure 9: Ablation study of the parameter B under the “good” expert prior setting

C MIXTURE OF GAUSSIAN AS EXPERT PRIOR

Figure 10 illustrates an example where a one-dimensional mixture of Gaussians is used as the expert prior $\pi(\mathbf{x})$ and incorporated into the GP mean function. The mean function $m_{\text{prior}}(\mathbf{x})$ now reflects multiple regions that the expert considers promising.

Samples drawn from the prior $p_{\text{prior}}(f)$ and the posterior $p_{\text{prior}}(f | \mathcal{D})$ show pronounced peaks in these regions (highlighted in green in Figure 10), indicating that the optimum is likely to lie within one or more of these areas. This demonstrates that, even when the expert prior takes the form of a Gaussian mixture model, it can still effectively encode multiple promising regions and significantly shape both the prior and posterior distributions of the objective function f within the BO framework.

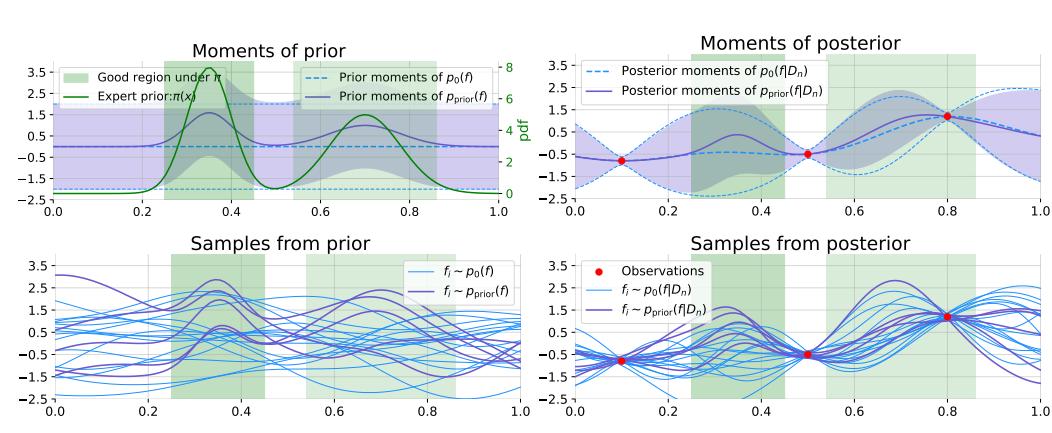


Figure 10: (Top left) Mean function and 95% confidence interval without any observations. $p(f)$ denotes the GP prior with $m(\mathbf{x}) = 0$, i.e., $p(f) = \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, while $p_{\text{prior}}(f) = \mathcal{GP}(m_{\text{prior}}(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$. (Top right) Mean function and 95% confidence interval conditioned on observed data \mathcal{D}_n . $p(f | \mathcal{D}_n)$ uses $m(\mathbf{x}) = 0$, whereas $p_{\text{prior}}(f | \mathcal{D}_n)$ uses $m_{\text{prior}}(\mathbf{x})$. (Bottom left) Samples drawn from the prior distributions $p(f)$ and $p_{\text{prior}}(f)$ without observations. (Bottom right) Samples drawn from the posterior distributions $p(f | \mathcal{D}_n)$ and $p_{\text{prior}}(f | \mathcal{D}_n)$ given \mathcal{D}_n .

D PROOF OF THEOREM 1

Theorem 1 (Convergence of DynMeanBO under EI). *Let $\mathcal{X} \subset \mathbb{R}^d$ be compact, $f \in \mathcal{H}_k(\mathcal{X})$, and let DynMeanBO use the dynamic prior mean $m_n(\mathbf{x}) = \gamma_n \cdot m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n) \cdot \mu_0(\mathbf{x})$ with $\gamma_n = \exp(-\lambda(n - N_0))$, $\lambda > 0$. Then, DynMeanBO under EI achieves the same asymptotic convergence rate as standard BO under EI, namely*

$$\mathcal{L}_n(\text{DynMeanBO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) = O(n^{-(\nu \wedge 1)/d} (\log n)^\beta),$$

where $\beta \geq 0$ is a constant depending on the kernel k and ν .

Proof. The primary difference between DynMeanBO and standard BO lies in their mean functions. To analyze the convergence of DynMeanBO under EI, we first characterize the deviation of the mean function across iterations, which then allows us to study the convergence of the entire algorithm. To this end, we define the perturbation induced by the dynamic prior mean as

$$\delta_n(\mathbf{x}) := m_n(\mathbf{x}) - \mu_0(\mathbf{x}) = \gamma_n(m_{\text{prior}}(\mathbf{x}) - \mu_0(\mathbf{x})),$$

which captures the difference between the dynamic mean and the standard BO mean at iteration n . Since both m_{prior} and μ_0 are bounded, there exists $M > 0$ such that $\sup_{\mathbf{x} \in \mathcal{X}} |\delta_n(\mathbf{x})| \leq M\gamma_n$, which vanishes as $n \rightarrow \infty$.

The GP posterior mean is linear in the prior according to Eq. 2, implying

$$\begin{aligned} \sup_{\mathbf{x} \in \mathcal{X}} |\mu_{\text{prior},n}(\mathbf{x}) - \mu_n(\mathbf{x})| &= \sup_{\mathbf{x} \in \mathcal{X}} |m_n(\mathbf{x}) - \mu_0(\mathbf{x}) + \mathbf{k}_n(\mathbf{x})^\top [\mathbf{K}_n + \sigma^2 \mathbf{I}]^{-1} (\mu_0 - \mathbf{m}_n)| \\ &= \sup_{\mathbf{x} \in \mathcal{X}} |\delta_n(\mathbf{x}) + \mathbf{k}_n(\mathbf{x})^\top [\mathbf{K}_n + \sigma^2 \mathbf{I}]^{-1} \delta_n(\mathbf{x})| \\ &= O(\sup_{\mathbf{x} \in \mathcal{X}} |\delta_n(\mathbf{x})|) \\ &= O(\gamma_n), \end{aligned}$$

810 where $\mu_{\text{prior},n}$ and μ_n denote the posterior means with dynamic prior $m_n(\mathbf{x})$ and base prior $\mu_0(\mathbf{x})$,
 811 respectively. And $\mu_0 = [\mu_0(\mathbf{x}_1), \dots, \mu_0(\mathbf{x}_n)]^\top$, $\mathbf{m}_n = [m_n(\mathbf{x}_1), \dots, m_n(\mathbf{x}_n)]^\top$.
 812

813 According to the definition of EI in Equation 4, if we fix the posterior variance, then $\alpha_{\text{EI}}(\mathbf{x}) =$
 814 $g(u(\mathbf{x}))$, where $g(\cdot)$ is a function determined by the probability density function and the cumula-
 815 tive distribution function of the standard normal distribution. It follows that g is differentiable and
 816 Lipschitz continuous. Therefore, there exists a constant $L > 0$ such that

$$\begin{aligned} \sup_{\mathbf{x} \in \mathcal{X}} |\alpha_{\text{DynMeanBO-EI}}(\mathbf{x}, n) - \alpha_{\text{BO-EI}}(\mathbf{x}, n)| &= \sup_{\mathbf{x} \in \mathcal{X}} |g(u_{\text{prior},n}(\mathbf{x})) - g(u_n(\mathbf{x}))| \\ &\leq L \cdot \sup_{\mathbf{x} \in \mathcal{X}} |u_{\text{prior},n}(\mathbf{x}) - u_n(\mathbf{x})| \\ &= O(\gamma_n). \end{aligned}$$

822 We define $\epsilon_n \triangleq \sup_{\mathbf{x} \in \mathcal{X}} |\alpha_{\text{DynMeanBO-EI}}(\mathbf{x}, n) - \alpha_{\text{BO-EI}}(\mathbf{x}, n)| = O(\gamma_n)$, and let $\mathbf{x}_{n+1} =$
 823 $\arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{\text{BO-EI}}(\mathbf{x}, n)$, $\mathbf{x}_{n+1}^{\text{prior}} = \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}, n)$. Here, we make a reason-
 824 able assumption: there exist constants $c > 0$, $p \geq 1$, and $r > 0$ such that, for the maximizer
 825

$$\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{\text{BO-EI}}(\mathbf{x}, n)$$

826 and any point \mathbf{z} satisfying $\|\mathbf{z} - \mathbf{x}^*\| \leq r$, we have
 827

$$\alpha_{\text{BO-EI}}(\mathbf{x}^*, n) - \alpha_{\text{BO-EI}}(\mathbf{z}, n) \geq c \|\mathbf{x}^* - \mathbf{z}\|^p.$$

828 Since $\mathbf{x}_{n+1} = \mathbf{x}^*$, we have
 829

$$\begin{aligned} c \|\mathbf{x}_{n+1} - \mathbf{x}_{n+1}^{\text{prior}}\|^p &\leq \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}, n) - \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n) \\ &= \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}, n) - \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}, n) + \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}, n) \\ &\quad - \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n) \\ &\leq \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}, n) - \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}, n) + \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n) \\ &\quad - \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n) \\ &\leq |\alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}, n) - \alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}, n)| + |\alpha_{\text{DynMeanBO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n) \\ &\quad - \alpha_{\text{BO-EI}}(\mathbf{x}_{n+1}^{\text{prior}}, n)| \\ &\leq 2\epsilon_n \end{aligned}$$

845 So $\|\mathbf{x}_{n+1} - \mathbf{x}_{n+1}^{\text{prior}}\| \leq \left(\frac{2\epsilon_n}{c}\right)^{1/p}$, under the RKHS radius constraint R , all functions f are Lipschitz
 846 continuous. Let L_f denote a uniform Lipschitz constant. Then, we have
 847

$$|f(\mathbf{x}_{n+1}^{\text{prior}}) - f(\mathbf{x}_{n+1})| \leq L_f \cdot \|\mathbf{x}_{n+1} - \mathbf{x}_{n+1}^{\text{prior}}\| \leq L_f \cdot \left(\frac{2\epsilon_n}{c}\right)^{1/p}.$$

850 Taking the supremum over both the expectation and the worst-case scenario, we obtain the following
 851 bound on the loss difference:
 852

$$|\mathcal{L}_n(\text{DynMeanBO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) - \mathcal{L}_n(\text{BO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R)| \leq C \cdot \left(\frac{2\epsilon_n}{c}\right)^{1/p},$$

853 where the constant C depends on L_f and the RKHS norm R of the function.
 854

855 Combining this with the known convergence rate of standard BO-EI (Bull, 2011):
 856

$$\mathcal{L}_n(\text{BO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) = O(n^{-(\nu \wedge 1)/d} (\log n)^\beta),$$

857 where ν is the smoothness parameter of the kernel k (Matérn kernel), and β is defined as
 858

$$\beta := \begin{cases} \alpha, & \text{if } \nu \leq 1, \\ 0, & \text{if } \nu > 1, \end{cases}$$

864 where α is the logarithmic correction exponent determined by the covering number of the RKHS.
 865 Since $\gamma_n = \exp(-\lambda(n - N_0))$ decays exponentially, so
 866

$$\begin{aligned} 867 \mathcal{L}_n(\text{DynMeanBO-EI}, D_n, \mathcal{H}_k(\mathcal{X}), R) &\leq \mathcal{L}_n(\text{BO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R) + C \cdot \left(\frac{2\epsilon_n}{c}\right)^{1/p} \\ 868 &= O(\mathcal{L}_n(\text{BO-EI}, \mathcal{D}_n, \mathcal{H}_k(\mathcal{X}), R)) + O(C \cdot \left(\frac{2\epsilon_n}{c}\right)^{1/p}) \\ 869 &= O(n^{-(\nu \wedge 1)/d} (\log n)^\beta) \\ 870 & \\ 871 & \\ 872 & \\ 873 \end{aligned}$$

874 Therefore, DynMeanBO achieves the same asymptotic rate of convergence as standard BO. \square
 875

876 E PROOF OF THEOREM 2

877 **Theorem 2** (Convergence of DynMeanBO under UCB). *Let $\delta \in (0, 1)$. Assume that the true un-
 878 derly underlying function f lies in the RKHS \mathcal{H}_k associated with the kernel k , with $\|f\|_{\mathcal{H}_k}^2 \leq B$, and let
 879 $\beta_n = 2B + 300G_n \log^3(n/\delta)$. Assume further that the observational noise is σ -sub-Gaussian. Let
 880 $m_n(\mathbf{x}) = \gamma_n m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n)\mu_0(\mathbf{x})$ be the dynamic prior mean of DynMeanBO at iteration n ,
 881 where $\gamma_n \rightarrow 0$. When using the UCB acquisition function with parameters β_n , the cumulative regret
 882 of DynMeanBO satisfies, with probability at least $1 - \delta$,*

$$883 \Pr \left\{ R_N \leq C_1 \sqrt{N \beta_N G_N} + C_2 \sum_{n=1}^N \gamma_n \ \forall N \geq 1 \right\} \geq 1 - \delta, \\ 884$$

885 where $R_N := \sum_{n=1}^N (f(\mathbf{x}^*) - f(\mathbf{x}_n))$ denotes the cumulative regret, G_N is the maximum infor-
 886 mation gain up to N , and $C_1, C_2 > 0$ are constants independent of N . In particular, if $\sum_{n=1}^{\infty} \gamma_n < \infty$,
 887 DynMeanBO achieves the same asymptotic convergence rate as BO-UCB:

$$888 R_N = O(\sqrt{N \beta_N G_N}). \\ 889$$

890 *Proof.* We follow the analysis of BO-UCB by Srinivas et al. (2010), adapting it to account for the
 891 dynamic prior mean. Similar to the proof of Theorem 1, the key lies in analyzing the deviation
 892 between the mean functions of DynMeanBO and standard BO.

893 Following the proof of Theorem 1, the deviation between the mean functions of DynMeanBO and
 894 standard BO is given by

$$895 \Delta_n := \sup_{\mathbf{x} \in \mathcal{X}} |\mu_{\text{prior},n}(\mathbf{x}) - \mu_n(\mathbf{x})| = O(\gamma_n). \\ 896$$

902 Therefore, there exists a constant $C_{\text{mean}} > 0$ such that $\Delta_n \leq C_{\text{mean}} \cdot \gamma_n$, which implies that the
 903 posterior mean perturbation vanishes as $\gamma_n \rightarrow 0$.

904 For baseline BO-UCB, Srinivas et al. (2010) show that, with probability at least $1 - \delta$,

$$905 |f(\mathbf{x}) - \mu_n(\mathbf{x})| \leq \sqrt{\beta_{n+1}} s_n(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X}. \\ 906$$

907 (See Lemma 5.1 in Srinivas et al. (2010) for details.)

908 Combining this with the bound on Δ_n yields a high-probability confidence bound for DynMeanBO:

$$\begin{aligned} 909 |f(\mathbf{x}) - \mu_{\text{prior},n}(\mathbf{x})| &= |f(\mathbf{x}) - \mu_n(\mathbf{x}) + \mu_n(\mathbf{x}) - \mu_{\text{prior},n}(\mathbf{x})| \\ 910 &\leq |f(\mathbf{x}) - \mu_n(\mathbf{x})| + |\mu_n(\mathbf{x}) - \mu_{\text{prior},n}(\mathbf{x})| \\ 911 &\leq \sqrt{\beta_{n+1}} s_n(\mathbf{x}) + \Delta_n, \quad \forall \mathbf{x} \in \mathcal{X}, \\ 912 & \\ 913 & \\ 914 \end{aligned}$$

915 Here, let $\alpha_{\text{DynMeanBO-UCB}}$ denote the UCB acquisition function in DynMeanBO. According to
 916 Equation (5), we have $\alpha_{\text{DynMeanBO-UCB}}(\mathbf{x}, n) = \mu_{\text{prior},n}(\mathbf{x}) + \sqrt{\beta_{n+1}} s_n(\mathbf{x})$. Therefore, the func-
 917 tion value satisfies

$$918 f(\mathbf{x}) \leq \alpha_{\text{DynMeanBO-UCB}}(\mathbf{x}, n) + \Delta_n.$$

918 Let \mathbf{x}_n be the point chosen by DynMeanBO and $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$. Using the above confidence bound and the fact that \mathbf{x}_n maximizes $\alpha_{\text{DynMeanBO-UCB}}(\mathbf{x}, n-1)$, the instantaneous regret satisfies

$$\begin{aligned}
 r_n &:= f(\mathbf{x}^*) - f(\mathbf{x}_n) \\
 &\leq \alpha_{\text{DynMeanBO-UCB}}(\mathbf{x}^*, n-1) + \Delta_{n-1} - f(\mathbf{x}_n) \\
 &\leq \alpha_{\text{DynMeanBO-UCB}}(\mathbf{x}_n, n-1) + \Delta_{n-1} - f(\mathbf{x}_n) \\
 &= \mu_{\text{prior}, n-1}(\mathbf{x}_n) + \sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) + \Delta_{n-1} - f(\mathbf{x}_n) \\
 &\leq |f(\mathbf{x}_n) - \mu_{\text{prior}, n-1}(\mathbf{x}_n)| + \sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) + \Delta_{n-1} \\
 &\leq 2(\sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) + \Delta_{n-1}) \\
 &\leq 2\sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) + 2C_{\text{mean}}\gamma_{n-1}.
 \end{aligned}$$

931 Summing over $n = 1$ to N gives the cumulative regret

$$R_N := \sum_{n=1}^N r_n \leq 2 \sum_{n=1}^N \sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) + 2C_{\text{mean}} \sum_{n=1}^N \gamma_{n-1}.$$

935 Next, we show that the cumulative regret is upper bounded. Let $\kappa := \sup_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x})$ (the kernel
936 diagonal bound, finite since \mathcal{X} is compact). For each term define $u_n := \sigma^{-2} s_{n-1}^2(\mathbf{x}_n)$; then $0 \leq$
937 $u_n \leq U_{\text{max}} := \kappa/\sigma^2$ and

$$\begin{aligned}
 G_N &:= \max_{\mathcal{D} \subset \mathcal{X}: |\mathcal{D}|=N} I(\mathbf{y}_{\mathcal{D}}; f_{\mathcal{D}}), \\
 &= \max_{\mathcal{D} \subset \mathcal{X}: |\mathcal{D}|=N} \frac{1}{2} \log |\mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}}| \\
 &\geq \frac{1}{2} \log |\mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}_N}| \\
 &= \frac{1}{2} \log |\mathbf{I} + \sigma^{-2} \begin{bmatrix} \mathbf{K}_{\mathcal{D}_{N-1}} & \mathbf{k}_{N-1} \\ \mathbf{k}_{N-1}^\top & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}| \\
 &= \frac{1}{2} \log \left| \begin{bmatrix} \mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}_{N-1}} & \sigma^{-2} \mathbf{k}_{N-1} \\ \sigma^{-2} \mathbf{k}_{N-1}^\top & \mathbf{I} + \sigma^{-2} k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix} \right| \\
 &= \frac{1}{2} \log \{ |\mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}_{N-1}}| (1 + \sigma^{-2} (k(\mathbf{x}_n, \mathbf{x}_n) - \mathbf{k}_{N-1}^\top (\mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}_{N-1}})^{-1} \mathbf{k}_{N-1})) \} \\
 &= \frac{1}{2} \log \{ |\mathbf{I} + \sigma^{-2} \mathbf{K}_{\mathcal{D}_{N-1}}| \cdot (1 + \sigma^{-2} s_{N-1}^2(\mathbf{x}_N)) \} \\
 &= \frac{1}{2} \sum_{n=1}^N \log(1 + \sigma^{-2} s_{n-1}^2(\mathbf{x}_n)) \\
 &= \frac{1}{2} \sum_{n=1}^N \log(1 + u_n).
 \end{aligned}$$

959 Here, $I(\cdot)$ denotes the mutual information, and G_N denotes the maximum information gain after N
960 steps; for its definition and computation, we refer the reader to Srinivas et al. (2010). The covariance
961 matrix $\mathbf{K}_{\mathcal{D}_N}$ and the vector \mathbf{k}_N are defined in Equation (2).

963 Consider the function $g(u) = \log(1+u)/u$ for $u > 0$; g is decreasing, so for all $u \in (0, U_{\text{max}}]$,

$$\frac{\log(1+u)}{u} \geq \frac{\log(1+U_{\text{max}})}{U_{\text{max}}}.$$

966 It then follows that

$$u_n \leq \frac{U_{\text{max}}}{\log(1+U_{\text{max}})} \log(1+u_n),$$

970 and therefore

$$s_{n-1}^2(\mathbf{x}_n) = \sigma^2 u_n \leq \frac{\sigma^2 U_{\text{max}}}{\log(1+U_{\text{max}})} \log(1+u_n) = \frac{\kappa}{\log(1+\kappa/\sigma^2)} \log(1+u_n).$$

972 Summing over n and using $\sum_{n=1}^N \log(1 + u_n) = 2I(y_{1:N}; f_{1:N}) \leq 2G_N$ yields
 973

$$974 \sum_{n=1}^N s_{n-1}^2(\mathbf{x}_n) \leq \frac{\kappa}{\log(1 + \kappa/\sigma^2)} \cdot 2G_N = C_0 G_N,$$

$$975$$

$$976$$

977 where $I(y_{1:N}; f_{1:N})$ denotes the mutual information between the noisy observations $y_{1:N}$ and the
 978 latent function values $f_{1:N}$. And we set
 979

$$980 C_0 := \frac{2\kappa}{\log(1 + \kappa/\sigma^2)}.$$

$$981$$

$$982$$

983 By Cauchy–Schwarz and monotonicity of $\{\beta_n\}$,

$$984 \sum_{n=1}^N \sqrt{\beta_n} s_{n-1}(\mathbf{x}_n) \leq \sqrt{\left(\sum_{n=1}^N \beta_n \right) \left(\sum_{n=1}^N s_{n-1}^2(\mathbf{x}_n) \right)} \leq \sqrt{N\beta_N \cdot C_0 G_N}.$$

$$985$$

$$986$$

$$987$$

988 Hence, for constants $C_1 := 2\sqrt{C_0}$ and $C_2 := 2C_{\text{mean}}$, we obtain (with probability at least $1 - \delta$)
 989

$$990 R_N \leq C_1 \sqrt{N\beta_N G_N} + C_2 \sum_{n=1}^N \gamma_{n-1}.$$

$$991$$

$$992$$

993 In particular, if $\sum_{n=1}^{\infty} \gamma_n < \infty$ then the second term is bounded and we recover the asymptotic rate
 994

$$995 R_N = O(\sqrt{N\beta_N G_N}),$$

$$996$$

997 which matches the BO–UCB rate.

□

1001 F SUPPLEMENTARY EXPERIMENTAL SETUP

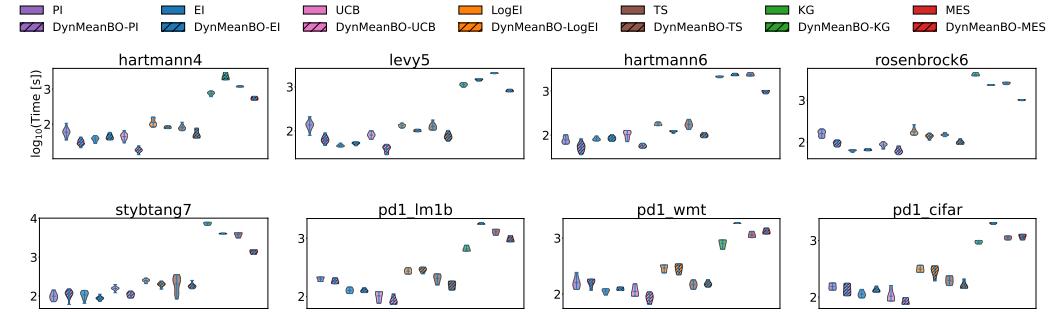
1003 For simplicity, we set the prior mean to $m_{\text{prior}}(\mathbf{x}) = A \cdot \pi(\mathbf{x}) + B$ with $A = 1, B = 0$, use an
 1004 initialization ratio of $\rho = 0.4$, and fix the decay factor in $\gamma_n = \exp(-\lambda(n - N_0))$ to $\lambda = 1$. All
 1005 experiments employ the RBF kernel. For synthetic benchmarks, each experiment is repeated 10
 1006 times with different random seeds, whereas for HPO tasks, due to slower evaluation and higher
 1007 computational cost, each experiment is repeated 5 times. The benchmarks and their respective
 1008 settings are summarized in Table 1. All other parameters not explicitly specified are set to their
 1009 default values in the BoTorch framework (Balandat et al., 2020).

Benchmark	Search space	\mathbf{x}^*	N_0	N
Hartmann (4D)	$[0, 1]^4$	$[0.19, 0.19, 0.56, 0.26]$	5	80
Levy (5D)	$[-5, 5]^5$	$[1]^5$	6	100
Hartmann (6D)	$[0, 1]^6$	$[0.20, 0.15, 0.48, 0.28, 0.31, 0.66]$	7	120
Rosenbrock (6D)	$[-2.048, 2.048]^6$	$[1]^6$	7	120
Stybtang (7D)	$[-4, 4]^7$	$[-2.9]^7$	8	140
PD1-WMT	$[0, 1]^4$	$[0.90, 0.69, 0.02, 0.97]$	5	40
PD1-CIFAR	$[0, 1]^4$	$[1, 0.80, 0.0, 0.0]$	5	40
PD1-LM1B	$[0, 1]^4$	$[0.91, 0.67, 0.36, 0.85]$	5	40
Levy (20D)	$[-5, 5]^{20}$	$[1]^{20}$	8	140
Rosenbrock (20D)	$[-2.048, 2.048]^{20}$	$[1]^{20}$	8	140

1023 Table 1: Experimental benchmarks used in our study. For each benchmark, we specify its search
 1024 space, the location of the global optimum \mathbf{x}^* , the number of initial points (N_0), and the total evalua-
 1025 tion budget (N).

1026 **G COMPUTATIONAL OVERHEAD UNDER DYNMEANBO AND STANDARD BO**
1027

1028 As described in the DynMeanBO algorithm section, DynMeanBO integrates expert priors into the
1029 Gaussian process mean function in the form of a probabilistic distribution, effectively redesigning
1030 the BO mean function rather than introducing additional inference components. Therefore, this
1031 approach does not incur extra computational overhead. Theoretically, the computational complexity
1032 of DynMeanBO is nearly identical to that of standard BO, and our experimental results confirm this.
1033

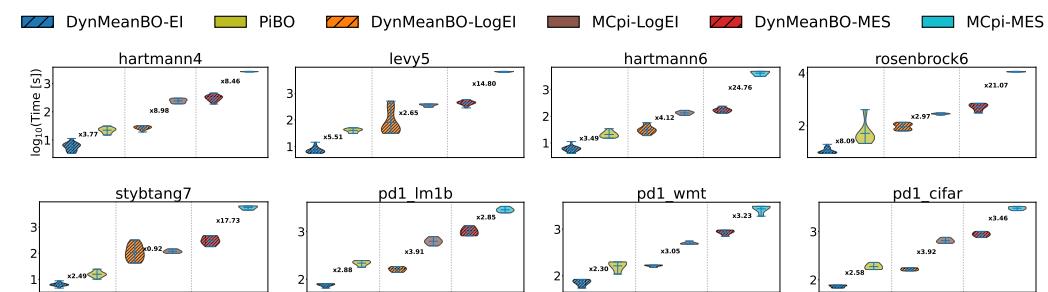


1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046 Figure 11: Per-iteration evaluation time (\log_{10} scale) of DynMeanBO and standard BO on synthetic
1047 functions and HPO tasks.
1048
1049
1050

1051 **H COMPUTATIONAL OVERHEAD UNDER THE “BAD” EXPERT PRIOR**
1052

1053 As shown in Figure 12, when a “bad” expert prior is used, the per-iteration evaluation time of
1054 DynMeanBO remains almost identical to that of standard BO under the same acquisition function,
1055 indicating that our dynamic mean adjustment introduces negligible additional overhead. In sharp
1056 contrast, both π BO and ColaBO are considerably slower due to their reliance on Monte Carlo sam-
1057 pling for incorporating expert prior information into the acquisition function. The computational
1058 burden is particularly pronounced for ColaBO, where employing MES necessitates nested Monte
1059 Carlo sampling to approximate the mutual information between candidate evaluations and the func-
1060 tion maximum, leading to a dramatic runtime increase.

1061 These results highlight that under inaccurate expert priors, π BO not only suffers from poor robust-
1062 ness but also incurs substantially higher computational cost. ColaBO alleviates some of these is-
1063 sues, showing improved robustness over π BO, but it still falls short of DynMeanBO and comes
1064 with considerably higher overhead. In contrast, DynMeanBO delivers both superior robustness and
1065 efficiency.

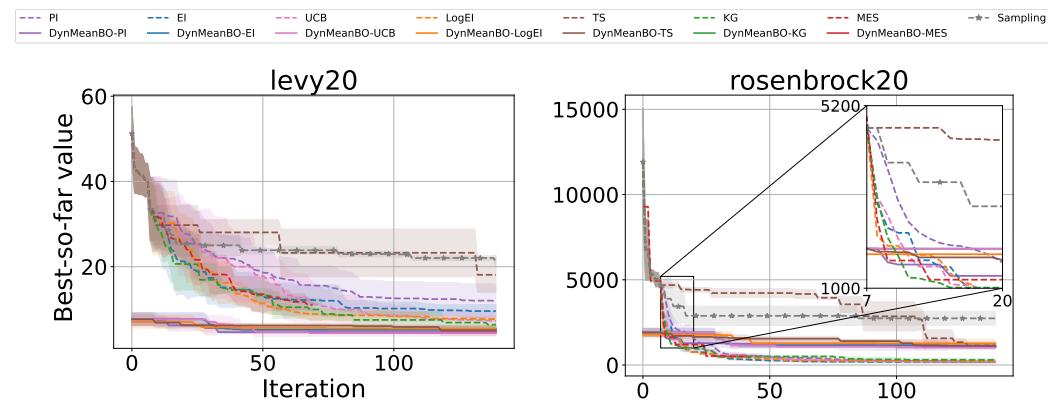


1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079 Figure 12: Per-iteration evaluation time (\log_{10} scale) of DynMeanBO, π BO, and ColaBO on syn-
1078 thetic functions and HPO tasks under the “bad” expert prior setting.
1079

1080 I ADDITIONAL HIGH-DIMENSIONAL EXPERIMENTS

1081
 1082
 1083 In addition to the eight commonly used benchmark tasks reported in the main text, we also eval-
 1084 uated DynMeanBO on higher-dimensional problems. Specifically, we included two 20-dimensional
 1085 tasks—Levy (20D) and Rosenbrock (20D). The corresponding search space settings, optimum lo-
 1086 cations, number of initial points, total evaluation budget, and other relevant details are provided in
 1087 Table 1.

1088 First, we evaluate the performance of DynMeanBO on these two high-dimensional tasks under seven
 1089 commonly used acquisition functions: PI, EI, LogEI, TS, UCB, KG, and MES. In this experiment,
 1090 we use a “good” expert prior. The results are shown in Figure 13. Across all acquisition functions,
 1091 DynMeanBO consistently accelerates convergence, demonstrating that it is not only seamlessly
 1092 compatible with a wide range of acquisition strategies but also highly effective in high-dimensional
 1093 settings.



1109
 1110 Figure 13: Performance on two high dimension tasks. When a “good” expert prior is incorpo-
 1111 rated, DynMeanBO consistently finds better solutions faster than the standard BO across different acqui-
 1112 sition functions.

1113
 1114
 1115 **“Good” expert prior.** Under the “good” expert prior, we compare π BO, ColaBO, and DynMeanBO
 1116 on these two high-dimensional tasks. While π BO employs EI, ColaBO utilizes LogEI and MES,
 1117 denoted as MCpi-LogEI and MCpi-MES in the figures. For a fair comparison, we evaluate
 1118 DynMeanBO using the same acquisition functions—EI, LogEI, and MES. The results are shown
 1119 in Figure 14. Across both tasks, all three prior-based methods (DynMeanBO, π BO, and ColaBO)
 1120 consistently accelerate convergence under the “good” expert prior, and their performance is compa-
 1121 rable.

1122 We also compare the average per-iteration evaluation time of π BO, ColaBO, and DynMeanBO, as
 1123 shown in Figure 15. As discussed in Section 5.2, DynMeanBO introduces negligible computational
 1124 overhead compared to standard BO. The results further show that under the “good” expert prior,
 1125 although all three methods achieve similarly strong optimization performance, DynMeanBO incurs
 1126 noticeably lower computational cost compared to both π BO and ColaBO.

1127 **“Bad” expert prior.** In practice, our expert prior is usually not perfectly accurate, but it rarely
 1128 performs very poorly. In the few cases where the expert prior is indeed poor, we evaluate the
 1129 robustness of DynMeanBO by comparing its performance with π BO and ColaBO under a “bad”
 1130 expert prior. The results on the two high-dimensional tasks are shown in Figure 16, from which we
 1131 can see that DynMeanBO exhibits strong robustness.

1132 We also compare the average per-iteration evaluation time of π BO, ColaBO, and DynMeanBO
 1133 under the “bad” expert prior, as shown in Figure 17.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

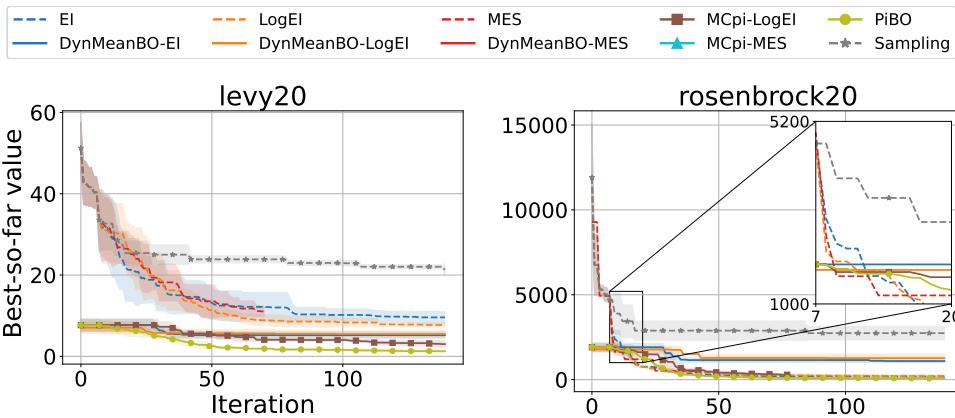


Figure 14: Performance on two high dimension tasks under a “good” expert prior. DynMeanBO, π BO, and ColaBO achieve comparable results.

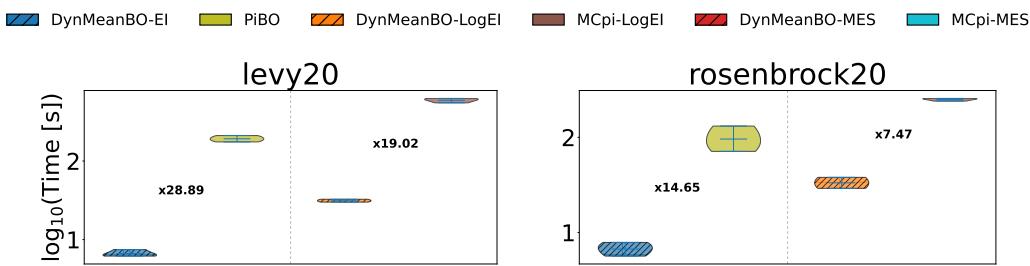


Figure 15: Per-iteration evaluation time (\log_{10} scale) of DynMeanBO, π BO, and ColaBO on two high dimension tasks under the “good” expert prior setting.

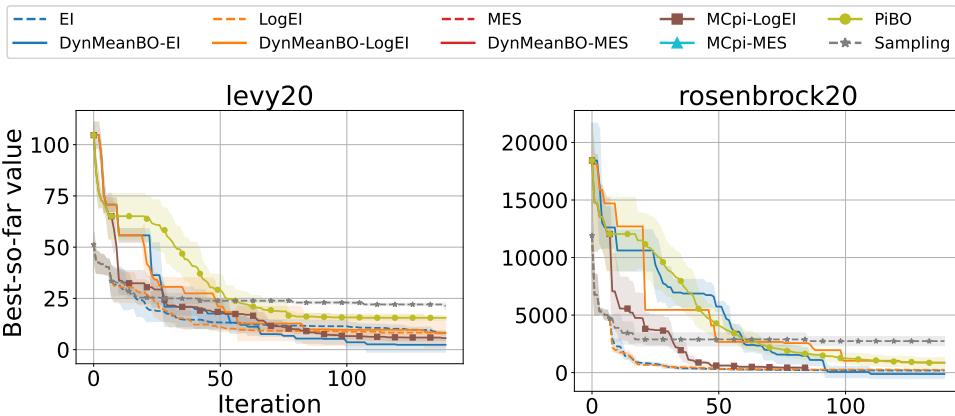


Figure 16: Performance on two high dimension tasks under a “bad” expert prior. DynMeanBO demonstrates strong robustness.

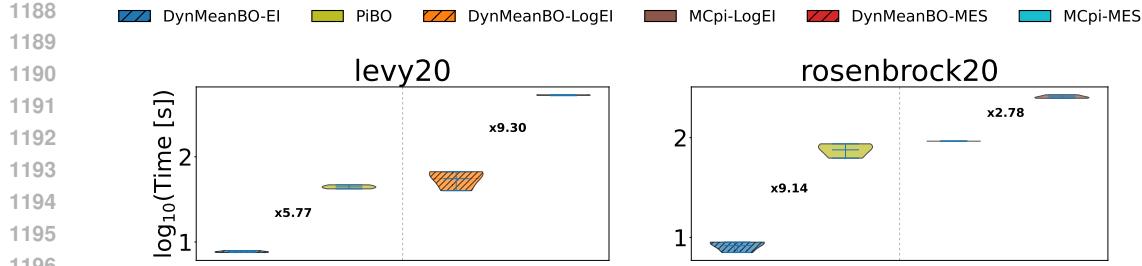


Figure 17: Per-iteration evaluation time (\log_{10} scale) of DynMeanBO, π BO, and ColaBO on two high dimension tasks under the “bad” expert prior setting.

J SENSITIVITY ANALYSIS OF DECAY COEFFICIENT λ

When constructing the mean function, we define it as $m_n(\mathbf{x}) = \gamma_n m_{\text{prior}}(\mathbf{x}) + (1 - \gamma_n) \mu_0(\mathbf{x})$, $\gamma_n = \exp(-\lambda(n - N_0))$, where $m_{\text{prior}}(\mathbf{x}) = A \cdot \pi(\mathbf{x}) + B$. The hyperparameter $\lambda > 0$ controls the decay rate of the expert prior. In principle, a smaller λ slows down the decay, allowing the expert prior to influence the optimization for a longer period and thereby reducing exploration in other regions. Conversely, a larger λ accelerates the decay, diminishing the expert prior’s influence earlier and encouraging broader exploration. To examine the effect of λ , we conducted an ablation study with $\lambda = 0.25, 0.5, 1.0$, and 2.0 using EI as the acquisition function across eight benchmark tasks. In these experiments, we used the “good” expert prior. The results are shown in Figure 18.

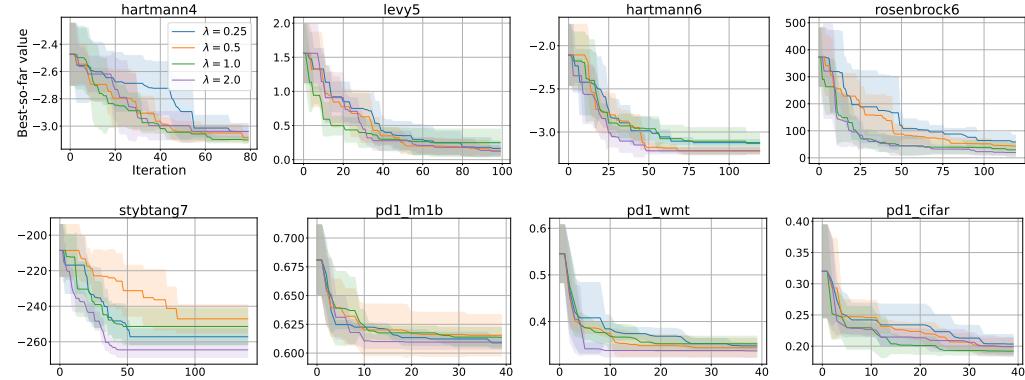
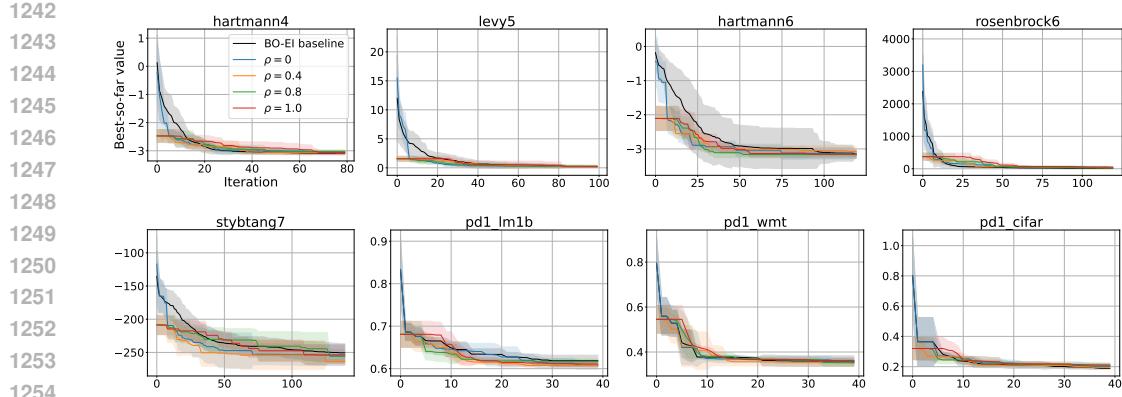


Figure 18: Ablation study of the parameter λ under the “good” expert prior setting

From the experimental results, we observe a pattern consistent with the above analysis. A smaller λ prolongs the influence of the expert prior, leading to less exploration in the early stages of optimization. If the expert prior is believed to be highly reliable, a smaller λ is therefore preferable. In contrast, a larger λ shortens the duration of the prior’s influence and results in more exploration early on. Thus, if the expert prior is considered less reliable, choosing a larger λ is more appropriate.

K SENSITIVITY ANALYSIS OF INITIALIZATION RATIO ρ

In our full algorithm (see Algorithm 1), we generate the initial points N_0 by combining samples from the expert prior distribution with Sobol sequences, which helps achieve a better trade-off between exploitation and exploration. The initialization ratio ρ indicates the proportion of initial points drawn from the expert prior: a larger ρ corresponds to more points sampled from the expert prior, while a smaller ρ corresponds to fewer such points. To investigate the sensitivity to ρ , we conducted an ablation study with $\rho = 0, 0.4, 0.8$, and 1.0 using EI as the acquisition function and the “good” expert prior across eight benchmark tasks. As a baseline, we used standard BO-EI. The experimental results are shown in Figure 19.

Figure 19: Ablation study of the parameter ρ under the “good” expert prior setting

From the results of the ablation study, we observe that sampling entirely from the Sobol sequence ($\rho = 0$) performs worse than sampling some points from the expert prior ($\rho > 0$). This is because, in the initialization phase, if the expert prior is sufficiently reliable, points drawn from it tend to be closer to the optimum than those sampled from Sobol.

We also observe that sampling entirely from the expert prior ($\rho = 1$) performs worse than a combination of Sobol and expert prior sampling ($0 < \rho < 1$).

Finally, even when all initial points are sampled from Sobol ($\rho = 0$) (as can be seen in the Figure 19, where the blue and black lines start from the same position), DynMeanBO-EI still outperforms standard BO-EI, especially on the Hartmann4, Hartmann6, and Stybtang7 tasks. This is because, although both DynMeanBO-EI and BO-EI initialize entirely from Sobol when $\rho = 0$, DynMeanBO incorporates the expert prior into its mean function, which guides subsequent iterations toward better regions and enables faster convergence. These results demonstrate the effectiveness of integrating expert prior knowledge into the mean function.

Therefore, for the choice of the initialization ratio ρ , we recommend $0 < \rho < 1$. If the expert prior is sufficiently reliable, a larger ρ is preferable, whereas if the expert prior is less reliable, a smaller ρ is more appropriate.

L EXPERIMENTS UNDER DIFFERENT PRIOR STRENGTHS

In the main text, we compared a “good” expert prior (offset = 0.1 from the optimum, with a standard deviation equal to 0.2 times the length of the search-space interval) and a “bad” expert prior (offset = 0.7 from the optimum, with the same standard deviation). To more comprehensively characterize different prior conditions, we further examine strong expert priors, weak expert priors, and wrong expert priors, as well as different uncertainty levels with standard deviations set to 0.2, 0.4, 0.6, and 0.8 times the search-space interval. The detailed configurations of the strong, weak, and wrong expert priors are provided in Table 2. Here, we still use the EI acquisition function; that is, this section presents an ablation study of different expert prior settings under DynMeanBO-EI. The experimental results are shown in Figure 20.

Table 2: Settings of strong, weak, and wrong expert priors.

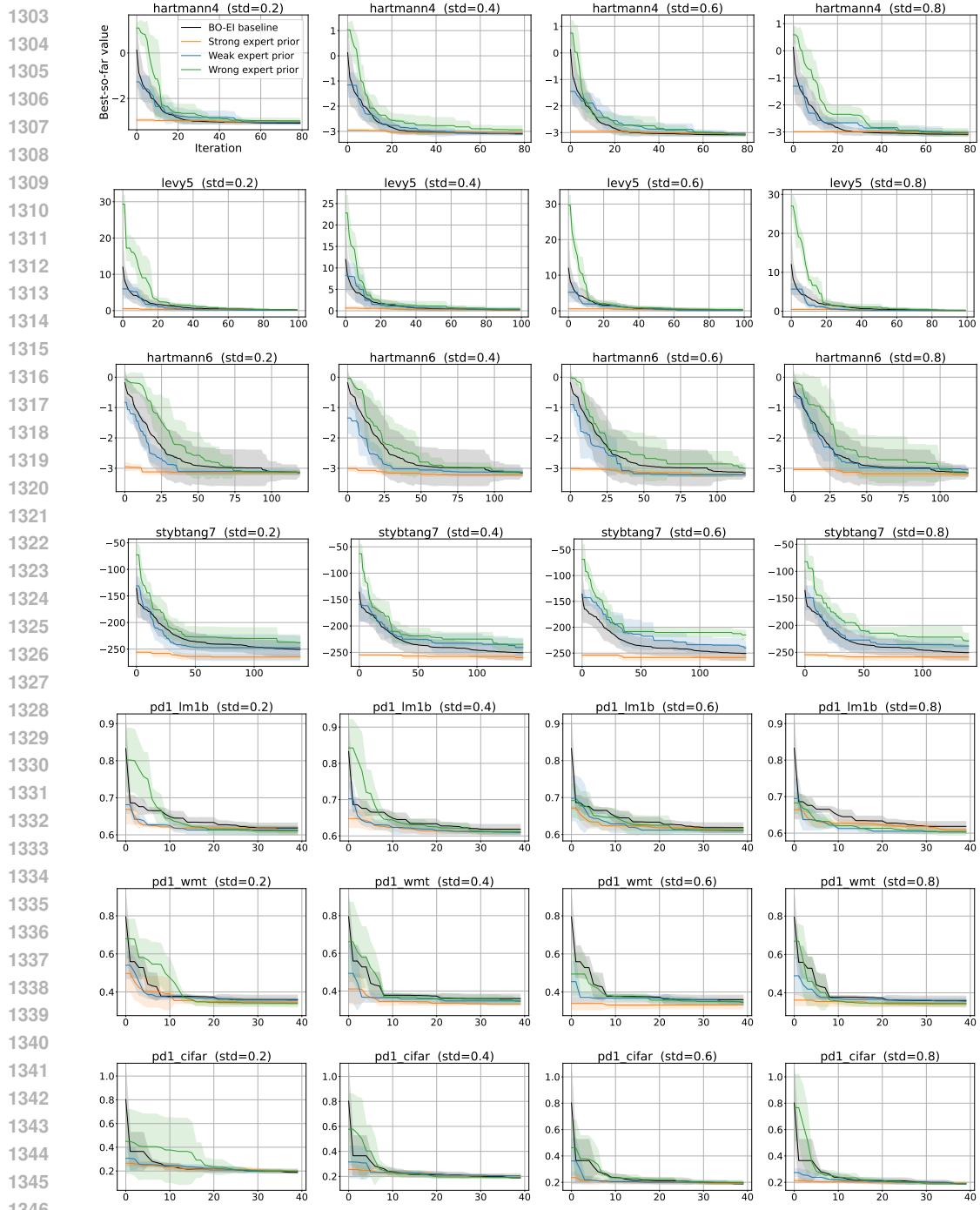
Expert Prior Type	Offset	Std (x search-space length)
Strong Expert Prior	0.05	0.2
Weak Expert Prior	0.20	0.2
Wrong Expert Prior	0.90	0.2

From the experimental results, we observe that the variance of the expert prior has little effect on the optimization performance, whereas the quality of the expert prior has a significant impact. When a

1296 strong expert prior is used, the DynMeanBO algorithm converges to the optimum almost immediately.
 1297 With a weak expert prior, DynMeanBO performs slightly better than standard BO. In the case
 1298 of a wrong expert prior, the initialization phase is initially misled, resulting in worse convergence
 1299 compared to standard BO. However, due to the robustness of DynMeanBO, it eventually converges
 1300 to a performance comparable to that of the original BO.

1301

1302



1347 Figure 20: A comparative analysis of strong, weak, and wrong expert priors under varying prior
 1348 variances.

1349

1350 M USE OF LARGE LANGUAGE MODELS
13511352 We employed the large language model GPT-4 to polish the manuscript. The process mainly in-
1353 volved: (1) checking for grammatical errors; (2) evaluating the appropriateness of voice usage; and
1354 (3) identifying and eliminating redundant expressions.
1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403