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ABSTRACT

Bayesian optimization (BO) is a powerful approach for black-box optimization,
and in many real-world problems, domain experts possess valuable prior knowl-
edge about promising regions of the search space. However, existing prior-
informed BO methods are often overly complex, tied to specific acquisition func-
tions, or highly sensitive to inaccurate priors. We propose DynMeanBO, a sim-
ple and general framework that incorporates expert priors into the Gaussian pro-
cess mean function with a dynamic decay mechanism. This design allows BO
to exploit expert knowledge in the early stages while gradually reverting to stan-
dard BO behavior, ensuring robustness against misleading priors while retaining
the exploratory behavior of standard BO. DynMeanBO is broadly compatible
with acquisition functions, introduces negligible computational cost, and comes
with convergence guarantees under Expected Improvement and Upper Confidence
Bound. Experiments on synthetic benchmarks and hyperparameter optimization
tasks show that DynMeanBO accelerates convergence with informative priors and
remains robust under biased ones.

1 INTRODUCTION

Black-box optimization aims to optimize objective functions that are expensive to evaluate and lack
analytical expressions or gradient information. Among various approaches, Bayesian optimization
(BO) (Jones et al., 1998; Shahriari et al., 2015; Frazier, 2018; Garnett, 2023) has emerged as a
powerful and sample-efficient framework by constructing a probabilistic surrogate model of the
objective function and selecting promising candidates via an acquisition function. BO has found
widespread applications in hyperparameter optimization (HPO) (Bergstra et al., 2011; Snoek et al.,
2012), automated materials discovery (Li et al., 2017; Zhang et al., 2020), and robotics control
optimization (Antonova et al., 2017; Calandra et al., 2016).

While BO has achieved remarkable success, fully automated optimization remains challenging in
many real-world scenarios. In domains where evaluations are costly, practitioners often rely on
prior knowledge to guide the search. For example, in HPO, experts frequently use heuristic rules or
accumulated experience to identify promising hyperparameter regions rather than applying BO from
scratch (Bouthillier & Varoquaux, 2020; Smith et al., 2018; He et al., 2019; Li et al., 2024a; Marek
et al., 2025). Incorporating expert priors into BO can accelerate optimization by complementing
BO’s efficiency with expert insights. However, prior-informed BO methods (Ramachandran et al.,
2020; Souza et al., 2021; AV et al., 2022; Hvarfner et al., 2022; Huang et al., 2023; Hvarfner et al.,
2024) are often complex or difficult to generalize across acquisition functions.

In this paper, we propose Dynamic Mean Bayesian Optimization (DynMeanBO), a framework that
incorporates expert priors into the Gaussian process(GP) mean function and gradually decays their
influence as more data is collected. This design allows the optimizer to exploit prior knowledge in
the early stages of exploration while mitigating potential bias from inaccurate priors in the long run.

Our main contributions are:

• We introduce DynMeanBO, a BO framework that integrates expert priors via a dynamically
decaying mean function.

• The method is lightweight, broadly compatible with acquisition functions, and adds negli-
gible computational overhead.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We provide convergence guarantees for DynMeanBO under Expected Improvement (EI)
and Upper Confidence Bound (UCB).

• Experiments on synthetic functions and HPO tasks show that DynMeanBO accelerates
convergence with accurate expert priors, remains robust under biased expert priors, and
consistently outperforms other prior-informed approaches.

2 BACKGROUND

Notations. Scalars are denoted by lowercase letters (e.g., f ), vectors by bold lowercase letters (e.g.,
x), and matrices by bold uppercase letters (e.g., K). The search space is X ⊆ Rd, and the observed
dataset of n points is Dn = {X,y}. We denote the GP posterior mean and variance as µn(x) and
s2n(x), respectively, and the observation noise variance as σ2. The global optimum location and its
value are denoted by x∗ and f(x∗), expert priors over the optimum location are denoted as π(x),
acquisition functions are denoted as α(x) and E[·] denotes expectation.

2.1 BAYESIAN OPTIMIZATION

BO is a framework for optimizing expensive black-box functions by sequentially selecting evalua-
tion points. Given an unknown objective function f , the goal is to find its global maximizer:

x∗ = argmax
x∈X

f(x). (1)

At iteration n, a point xn is evaluated with noisy observation yn = f(xn) + εn, εn ∼ N (0, σ2).
Conditioned on the observed dataset Dn = Dn−1∪{xn, yn}, a probabilistic surrogate model defines
the posterior p(f | Dn). We adopt a GP as the surrogate model, which naturally provides a posterior
distribution for the objective function; alternatives such as random forests (Hutter et al., 2011) or
Bayesian neural networks (Springenberg et al., 2016; Li et al., 2024b) can also be used. The next
evaluation point is selected by maximizing an acquisition function α(x), which balances exploration
and exploitation.

2.2 GAUSSIAN PROCESS

A GP (Williams & Rasmussen, 2006) places a distribution over functions, enabling Bayesian non-
parametric regression with principled uncertainty estimation. It is fully specified by a mean func-
tion m(x) (m : X → R) and a covariance (kernel) function k(x,x′) (k : X × X → R).
The mean function m(x) can take any form, though it is often set to zero for simplicity in stan-
dard BO. The kernel function k(x,x′) encodes correlations between any two inputs, with com-
mon choices including the squared exponential (SE) and Matérn kernels (Frazier, 2018). The
unknown objective f(x) is modeled as a GP prior, f(x) ∼ GP(m(x), k(x,x′)). Given dataset
Dn = {X,y}, where X = [x1, ...,xn]

⊤ and y = [y1, ..., yn]
⊤, the posterior is also a GP:

p(f | Dn) = GP(µn(x), kn(x,x
′)), with

µn(x) = m(x) + kn(x)
⊤[Kn + σ2I]−1(y −m),

kn(x,x
′) = k(x,x′)− kn(x)

⊤[Kn + σ2I]−1kn(x
′),

(2)

where Kn is the n×n kernel matrix with entries [Kn]ij = k(xi,xj) for i, j ∈ {1, . . . , n}, kn(x) =
[k(x1,x), ..., k(xn,x)]

⊤, m = [m(x1), ...,m(xn)]
⊤ and I is the n×n identity matrix. The posterior

variance is s2n(x) = kn(x,x).

Kernel hyperparameters θ are typically learned by maximizing the marginal likelihood. For a GP
with mean function m, the marginal likelihood is p(y | X,θ) = N

(
y;m,Kn + σ2I

)
, which leads

to the log marginal likelihood

log p(y | X,θ) = − 1
2 (y −m)⊤(Kn + σ2I)−1(y −m)− 1

2 log
∣∣Kn + σ2I

∣∣− n
2 log(2π). (3)

2.3 ACQUISITION FUNCTION

Acquisition functions (AFs) are utility functions that guide the selection of the next evaluation
point in BO, trading off exploitation of high-value regions with exploration of uncertain regions

2
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(Wang et al., 2023). A wide variety of AFs have been proposed, each with distinct characteristics.
Improvement-based methods include Probability of Improvement (PI) (Kushner, 1964), EI (Jones
et al., 1998), and the Knowledge Gradient (KG) (Frazier et al., 2008), which aim to maximize the
respective measures of improvement. Confidence-bound approaches include UCB (Srinivas et al.,
2010); sampling-based methods include Thompson Sampling (TS) (Agrawal & Goyal, 2012); and
information-theoretic strategies include Entropy Search (ES) (Hennig & Schuler, 2012), Predic-
tive Entropy Search (PES) (Hernández-Lobato et al., 2014), and Max-value Entropy Search (MES)
(Wang & Jegelka, 2017). Among these, EI and UCB are most widely used in practice.

EI maximizes the expected improvement over the current best observation f∗
n:

αEI(x) = E [max (0, f(x)− f∗
n)]

= (µn(x)− f∗
n) Φ

(
µn(x)− f∗

n

sn(x)

)
+ sn(x)ϕ

(
µn(x)− f∗

n

sn(x)

)
,

(4)

where Φ(·) and ϕ(·) denote the cumulative distribution function and probability density function of
the standard normal distribution, respectively.

UCB selects the next observation point based on the upper confidence bound of the predictive dis-
tribution. It balances exploration and exploitation as:

αUCB(x) = µn−1(x) + β1/2
n sn−1(x), (5)

where βn > 0 is a parameter controlling the exploration–exploitation trade-off.

2.4 EXPERT PRIOR

In many domains, experts often possess prior knowledge about the likely location of the optimum
x∗ before evaluating a new task or model (Perrone et al., 2019). Such knowledge can be formalized
as a probability distribution over the optimum location:

π(x) = P
(
x = arg max

x′∈X
f(x′)

)
, (6)

which encodes the likelihood that different inputs correspond to the global maximizer. In principle,
the expert prior distribution π(x) can take any form. In practice, the most commonly used distribu-
tions are Gaussian distributions, representing a single promising region, or mixtures of Gaussians,
which can capture multiple promising regions in the search space. Figure 6 in Appendix A il-
lustrates several examples of expert priors in one dimension, and the concept naturally extends to
higher-dimensional search spaces.

Preference-based expert priors can also be constructed using a similar approach: when experts pro-
vide relative or pairwise preferences over candidate inputs, these preferences can be converted into
a probability distribution over the optimum location. A mixture of Gaussians is often a convenient
choice in this setting, as it can flexibly represent multiple favored regions implied by the expert
preferences. In fact, expert priors can be easily converted into a probabilistic form, and this form
is not limited to the Gaussian or Gaussian mixture examples used in the paper. Any probability
distribution that can adequately express the expert’s belief is valid. Further details can be found in
Appendix A

3 RELATED WORK

Incorporating expert prior knowledge into BO has significant practical and theoretical value. Al-
though the related literature remains limited, several representative studies have explored this direc-
tion. Nguyen & Osborne (2020) proposed a Bayesian framework for the scenario where the opti-
mal function value f∗ is known, but its optimal location remains unknown. This approach works
well when experts can precisely provide the optimal value; however, in most real-world tasks, such
knowledge is rarely available, limiting its applicability. Huang et al. (2023) introduced the Prefer-
ence Bayesian Neural Network (PBNN), which leverages a Siamese neural network to incorporate
expert-provided preference feedback, effectively accelerating the BO process. Similarly, AV et al.
(2022) proposed a human-in-the-loop BO framework, where human experts can directly intervene
in the point selection process to improve search efficiency and performance.

3
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The above methods incorporate expert priors in terms of the optimal value f(x∗), preference infor-
mation, or feedback mechanisms. However, a more common and practical setting involves expert
priors on the location of the optimum x∗. BOPro (Souza et al., 2021) integrated expert priors into
the BO-TPE framework (Bergstra et al., 2011), where experts design “good” and “bad” priors over
x∗, which are then combined within the BO-TPE structure to guide the optimization. However,
this method cannot be applied to other more general BO approaches. Ramachandran et al. (2020)
proposed a novel framework that directly embeds the cumulative distribution of expert priors over
x∗ into the kernel function. While interesting, this method is highly sensitive to inaccurate pri-
ors since they affect the entire kernel, potentially degrading performance significantly. Li et al.
(2020) constructed a conditional posterior distribution incorporating expert priors over x∗, defined
as p(x∗ | Dn, π) ∝ p(x∗ | Dn)π(x

∗), and determined the next evaluation point by repeatedly
sampling from this distribution. However, this approach can only be used with specific sampling
strategies and cannot integrate with general acquisition functions, which restricts its flexibility. πBO
(Hvarfner et al., 2022) integrates expert prior distributions into the acquisition function through a
weighting mechanism, where the influence of the prior gradually decreases as more evaluations are
performed. Although πBO is simple and effective and provides convergence guarantees for the EI
acquisition function, it does not explicitly model the prior in the surrogate model and remains essen-
tially heuristic. More recently, ColaBO (Hvarfner et al., 2024) is a highly flexible framework that
injects expert priors as additional priors over the surrogate model, orthogonal to the traditional priors
on kernel hyperparameters. While compatible with Monte Carlo (MC)-based acquisition functions,
ColaBO cannot be used with non-MC acquisition functions and incurs substantial computational
costs.

Despite these advances, existing methods still face several limitations: (1) some approaches are
overly complex and difficult to implement in practice; (2) many rely on specific acquisition func-
tions or sampling strategies, limiting their general applicability; and (3) several methods are highly
sensitive to the quality of expert priors, which reduces robustness. Motivated by these challenges,
we propose DynMeanBO, a simple yet effective framework that directly incorporates expert prior
knowledge into the surrogate model by embedding it in the mean function of the GP. Unlike existing
heuristic-based approaches, DynMeanBO achieves a principled integration of expert knowledge at
the model level, is compatible with arbitrary acquisition functions, and demonstrates strong empiri-
cal performance across diverse benchmarks.

4 METHODOLOGY

We now present the proposed DynMeanBO framework. Unlike existing approaches that either em-
bed priors heuristically or require specific acquisition functions, our method incorporates expert
prior distributions on the location of the optimum by embedding them directly into the GP mean
function. Although the design of DynMeanBO in this paper is implemented using a GP surrogate
model, the method itself is not tied to any specific surrogate. It can equally be combined with other
types of models, such as random forests (Hutter et al., 2011) or Bayesian neural networks (Springen-
berg et al., 2016; Li et al., 2024b). In Section 4.1, we construct a GP mean function based on expert
priors. Section 4.2 details the overall algorithm framework, and Section 4.3 provides a theoretical
analysis.

4.1 EXPERT-PRIOR-BASED MEAN FUNCTION

In BO, we adopt a GP surrogate model, f(x) ∼ GP(m(x), k(x,x′)), where k(x,x′) =
Cov(f(x), f(x′)) denotes the covariance and m(x) = E[f(x)] encodes prior beliefs. In practice,
m(x) is often set to zero when the functional form of f is unknown. When partial knowledge is
available, for example if f is approximately linear, a parametric mean of the form m(x) = ax + b
can be employed. The hyperparameters a and b are estimated from Dn via maximum likelihood, in
the same way as kernel hyperparameters.

In most real-world problems, even domain experts rarely know the explicit form of f(x). Instead,
they may provide a prior distribution π(x) over the likely location of the optimum x∗. We incorpo-
rate this expert knowledge into the GP mean function as

mprior(x) = A · π(x) +B, (7)

4
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where A > 0 is a parameter controlling the scaling of π(x), and B is another parameter introducing
an additive shift to Aπ(x). Further details on the interpretation of A and B, as well as their sensitiv-
ity analysis, can be found in Appendix B. Before any observations, mprior(x) reflects the shape of
the expert prior, providing a coarse estimate of the function landscape consistent with prior beliefs
about x∗.

Figure 1 illustrates an example where a one-dimensional Gaussian prior π(x) is incorporated into
the GP mean function. Using the mean function mprior(x), which encodes expert prior knowledge,
has a pronounced effect on both the prior and posterior distributions of f . Samples drawn from the
prior pprior(f) and posterior pprior(f | Dn) show a clear peak in the region deemed “good” by the
expert (green area in Figure 1), indicating that the optimal values are highly likely to fall within this
region. This confirms that the expert prior knowledge has been effectively integrated into the BO
framework. For an example with a one-dimensional mixture of Gaussians as the expert prior, see
Appendix C.
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Figure 1: (Top left) Mean function and 95% confidence interval without any observations. p(f)
denotes the GP prior with m(x) = 0, i.e., p(f) = GP(m(x), k(x,x′)), while pprior(f) =
GP(mprior(x), k(x,x

′)). (Top right) Mean function and 95% confidence interval conditioned on
observed data Dn. p(f | Dn) uses m(x) = 0, whereas pprior(f | Dn) uses mprior(x). (Bottom left)
Samples drawn from the prior distributions p(f) and pprior(f) without observations. (Bottom right)
Samples drawn from the posterior distributions p(f | Dn) and pprior(f | Dn) given Dn.

4.2 BAYESIAN OPTIMIZATION WITH A DYNAMICALLY DECAYING MEAN FUNCTION

As more points are evaluated in BO, we gain increasing information about the objective function f ,
enabling a more accurate model of f . Thus, the reliance on the expert prior should progressively
decline, which not only reflects the growing confidence in observed data but also preserves robust-
ness in cases where the expert prior is far from the true optimum. Inspired by πBO (Hvarfner et al.,
2022), we incorporate a decay mechanism into the mean function, defining the mean function at
iteration n after initialization as

mn(x) = γn ·mprior(x) +
(
1− γn

)
· µ0(x), γn = exp(−λ(n−N0)), (8)

where λ > 0 controls the decay rate and N0 is the number of initial evaluations. A sensitivity
analysis of λ is provided in Appendix J. The baseline mean function µ0(x) corresponds to the mean
function used in the standard BO setting, which is typically chosen as a constant function—most
commonly the zero mean function. By gradually decaying the influence of the expert prior mean
toward the baseline mean, the method remains robust even when the expert prior is substantially
misaligned with the true optimum.

The complete procedure for incorporating expert prior knowledge into the BO framework is summa-
rized in Algorithm 1. During initialization, we sample a portion of the initial points from the expert
prior distribution π(x), while the remaining points are drawn using Sobol sequences to ensure uni-
form coverage of the search space X . This hybrid initialization strategy facilitates building a more
accurate surrogate model and improves the subsequent optimization performance. Further analysis
regarding the choice of the initialization ratio ρ for sampling from π(x) is presented in Appendix K.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 DynMeanBO: Bayesian Optimization with Dynamic Mean Decay

Require: Search space X , kernel function k(x,x′), expert prior distribution π(x), decay coefficient
λ, initial design size N0, initialization ratio ρ, max iterations N , the parameters A and B

Ensure: Optimized design x∗

1: Initialization:
2: Draw N

(prior)
0 = ⌊ρN0⌋ samples from π(x)

3: Draw N
(Sobol)
0 = N0 −N

(prior)
0 samples via Sobol sequences

4: Set {xi}N0
i=1 = {xi}

N
(prior)
0

i=1 ∪ {xj}
N

(Sobol)
0

j=1

5: Observe yi = f(xi) + εi, and set DN0
= {(xi, yi)}N0

i=1
6: Initialize GP prior mean mprior(x) = A · π(x) +B
7: Fit GP posterior p(f |DN0

) = GP(µN0
(x), kN0

(x,x′)) according to Eq. (2)
8: for n = N0 + 1, . . . , N do
9: xn = argmaxx∈X α(x,Dn−1)

10: yn = f(xn) + εn
11: Dn = Dn−1 ∪ {(xn, yn)}
12: Update mean function: mn(x) according to Eq.(8)
13: Update GP posterior: p(f |Dn) = GP(µn(x), kn(x,x

′)) according to Eq. (2)
14: end for
15: return x∗ = argmax(xi,yi)∈DN

yi

4.3 THEORETICAL ANALYSIS

We provide a theoretical analysis of the convergence properties of DynMeanBO, establishing guar-
antees for the commonly used EI and UCB acquisition functions. Complete proofs are presented
in Appendix D and Appendix E. The analysis can be straightforwardly extended to other standard
acquisition functions, following similar arguments; we omit these extensions for brevity.

Convergence under EI. To analyze the convergence of DynMeanBO under EI, we adopt the as-
sumptions of Bull (2011). Although our focus is on maximizing the objective function, the theoreti-
cal framework of Bull (2011) assumes minimization. This distinction is immaterial, as maximization
can be equivalently reformulated as minimization by considering −f(x). Let Hk denote the repro-
ducing kernel Hilbert space (RKHS) associated with a symmetric positive-definite kernel k. In our
analysis, we employ the Matérn kernel (Matérn, 1960), where the smoothness of functions in Hk is
controlled by the parameter ν. We assume that the unknown objective function f lies within a ball
BR in Hk, i.e., ∥f∥Hk(X ) ≤ R.

We define the loss as

Ln(u,Dn,Hk(X ), R) ≜ sup
∥f∥Hk(X)≤R

Eu
f

[
f(x∗

n)−min f
]
, (9)

where u denotes the strategy, and x∗
n is the best point selected after n evaluations. We denote the EI

strategy under DynMeanBO as DynMeanBO-EI and the standard BO with EI strategy as BO-EI.
Based on the detailed proof in Appendix D, we obtain the following theoretical result.
Theorem 1 (Convergence of DynMeanBO under EI). Let X ⊂ Rd be compact, f ∈ Hk(X ), and
let DynMeanBO use the dynamic prior mean mn(x) = γn · mprior(x) +

(
1 − γn

)
· µ0(x) with

γn = exp(−λ(n − N0)), λ > 0. Then, DynMeanBO under EI achieves the same asymptotic
convergence rate as standard BO under EI, namely

Ln(DynMeanBO-EI,Dn,Hk(X ), R) = O
(
n−(ν∧1)/d(log n)β

)
,

where β ≥ 0 is a constant depending on the kernel k and ν.

Convergence under UCB. We establish the convergence of DynMeanBO under the UCB strategy
by following the proof techniques of Srinivas et al. (2010). Our objective is to maximize the tar-
get function f , and at each iteration the next query point is chosen according to the UCB rule:
xn = argmaxx∈X αUCB(x) = argmaxx∈X µn−1(x) + β

1/2
n sn−1(x). The resulting convergence

guarantee is summarized below, with the complete proof provided in Appendix E.

6
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Theorem 2 (Convergence of DynMeanBO under UCB). Let δ ∈ (0, 1). Assume that the true un-
derlying function f lies in the RKHS Hk associated with the kernel k, with ∥f∥2Hk

≤ B, and let
βn = 2B + 300Gn log

3(n/δ). Assume further that the observational noise is σ-sub-Gaussian. Let
mn(x) = γnmprior(x) + (1− γn)µ0(x) be the dynamic prior mean of DynMeanBO at iteration n,
where γn → 0. When using the UCB acquisition function with parameters βn, the cumulative regret
of DynMeanBO satisfies, with probability at least 1− δ,

Pr
{
RN ≤ C1

√
NβNGN + C2

N∑
n=1

γn ∀N ≥ 1
}
≥ 1− δ,

whereRN :=
∑N

n=1

(
f(x∗)− f(xn)

)
denotes the cumulative regret, GN is the maximum informa-

tion gain up to N , and C1, C2 > 0 are constants independent of N . In particular, if
∑∞

n=1 γn < ∞,
DynMeanBO-UCB achieves the same asymptotic convergence rate as BO-UCB:

RN = O
(√

NβNGN

)
.

5 EXPERIMENTS

We systematically evaluate the performance of DynMeanBO on diverse tasks under both “good”
(informative) and “bad” (misleading) expert priors. The experiments examine its compatibility with
different acquisition functions and demonstrate its advantages over other prior-informed BO meth-
ods. Section 5.1 describes the experimental setup. Section 5.2 presents the compatibility results,
while Section 5.3 provides the comparative analysis. Our implementation is publicly available at
https://anonymous.4open.science/r/DynMeanBO-A7F4/.

5.1 EXPERIMENTAL SETUP

Expert Priors. We adopt the expert prior settings used in πBO (Hvarfner et al., 2022) and
ColaBO (Hvarfner et al., 2024), modeling both “good” and “bad” expert priors as Gaussian dis-
tributions. The mean of the “good” prior is located 10% away from the location of the global
optimum, with variance set to 20% of the search space width. For the “bad” prior, the mean is
shifted 70% away from the location of the global optimum; if this position lies outside the domain,
it is clipped to the boundary, with the same variance setting. Detailed configurations are provided
in Appendix F. To further investigate how different expert prior configurations influence the perfor-
mance of DynMeanBO, we additionally study the effect of varying the prior variance under three
prior-quality conditions: strong prior, weak prior, and wrong prior. The definitions and constructions
of these prior types are provided in Appendix L, where we also present the corresponding detailed
settings and analyses.

Tasks. We consider two types of tasks: synthetic functions and HPO benchmarks. The synthetic
functions span 4D to 7D search spaces, including Hartmann (4D), Levy (5D), Hartmann (6D),
Rosenbrock (6D), and Stybtang (7D) (Wang et al., 2020), all implemented in BoTorch1 (Balan-
dat et al., 2020). For HPO, we evaluate three 4D deep learning optimization problems from the
PD1 benchmark suite (WMT, CIFAR, and LM1B). Although their true optima are unknown, we
leverage expert priors from MF-Prior-Bench2 (Mallik et al., 2023). Moreover, we also examine
higher-dimensional settings. In Appendix I, we report additional results on two 20-dimensional
synthetic tasks — Levy (20D), Rosenbrock (20D).

Comparison Algorithms. To test the compatibility of DynMeanBO with different acquisition
strategies, we evaluate it under seven widely used acquisition functions: PI, EI, LogEI, TS, UCB,
KG, and MES. We compare the performance of standard BO and DynMeanBO under each acquisi-
tion function. Additionally, we benchmark DynMeanBO in comparison with the prior-informed BO
methods, including πBO and ColaBO.

Computational Platform. All experiments are conducted on a dual-socket Intel Xeon Platinum
8575C server (2×48 cores, 192 threads, 2.80 GHz base / 4.00 GHz turbo, 4 NUMA nodes).

1https://github.com/pytorch/botorch
2https://github.com/automl/mf-prior-bench
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5.2 DYNMEANBO’S GENERALITY ACROSS ACQUISITION FUNCTIONS

To evaluate the generality of DynMeanBO, we test it with seven widely used acquisition strategies:
PI, EI, LogEI, TS, UCB, KG, and MES. Since DynMeanBO incorporates expert priors directly
into the GP mean function, it can be seamlessly combined with any acquisition function without
requiring algorithmic modifications. We compare DynMeanBO against standard BO under all seven
acquisition functions, and additionally include a random sampling baseline (Sampling) as a refer-
ence. For this experiment, a “good” expert prior is used to construct the DynMeanBO model.
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Figure 2: Performance on synthetic functions and HPO tasks. When a “good” expert prior is incor-
porated, DynMeanBO consistently finds better solutions faster than the standard BO across different
acquisition functions.

The results in Figure 2 show that across all acquisition functions, DynMeanBO consistently acceler-
ates convergence relative to standard BO. These improvements demonstrate its strong compatibility
and effectiveness across a diverse set of strategies. In particular, during the early stages of opti-
mization, DynMeanBO can leverage the expert prior to quickly identify better solutions, far more
efficiently than standard BO. In practice, the tasks optimized with BO are often very expensive and
time-consuming, so only a very limited number of evaluations can typically be performed. By in-
corporating expert prior knowledge, DynMeanBO is able to achieve substantial gains during these
early stages of optimization, demonstrating even greater advantages in real-world scenarios.

We also compare the per-iteration evaluation time of DynMeanBO and standard BO, as shown in
Figure 11 in Appendix G. The results indicate that the computational overhead of DynMeanBO is
negligible. When provided with informative expert priors, DynMeanBO achieves faster convergence
without sacrificing computational efficiency.

5.3 COMPARATIVE STUDY OF DYNMEANBO AND EXISTING PRIOR-INFORMED BO
FRAMEWORKS

We now compare DynMeanBOwith other prior-informed BO methods. Under a “good” expert prior,
DynMeanBO achieves performance comparable to πBO and ColaBO, while requiring lower com-
putational cost. Under a “bad” expert prior, DynMeanBO exhibits strong robustness, maintaining
stable performance even in the presence of misleading prior information.

“Good“ expert prior. πBO and ColaBO are representative approaches that incorporate expert pri-
ors into BO. While πBO employs EI, ColaBO utilizes LogEI and MES, denoted as MCpi-LogEI
and MCpi-MES in the figures. For a fair comparison, we evaluate DynMeanBO using the same
acquisition functions—EI, LogEI, and MES. As shown in Figure 3, DynMeanBO achieves per-
formance on par with πBO and ColaBO, while consistently accelerating the optimization process
across all benchmarks.

As discussed in Section 5.2, DynMeanBO introduces negligible computational overhead com-
pared to standard BO. Furthermore, when compared with other prior-informed BO frameworks,
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Figure 3: Performance on synthetic functions and HPO tasks under a “good” expert prior.
DynMeanBO, πBO, and ColaBO achieve comparable results.

DynMeanBO achieves substantially better computational efficiency. Figure 4 reports per-iteration
evaluation time under identical acquisition functions, where DynMeanBO is markedly faster than
both πBO and ColaBO.

DynMeanBO-EI PiBO DynMeanBO-LogEI MCpi-LogEI DynMeanBO-MES MCpi-MES

2

3

lo
g 1

0(
Ti

m
e 

[s
])

x2.24 

x5.57 

x4.60 

hartmann4

2

3

x2.67 

x5.98 

x3.99 

levy5

2

3

x2.07 

x6.27 

x6.44 

hartmann6

2

3

x2.55 

x5.22 

x5.38 

rosenbrock6

2

3

4

x1.43 

x2.96 

x5.79 

stybtang7

2

3
x3.77 

x1.69 

x3.53 

pd1_lm1b

2

3

x2.64 
x1.46 

x2.48 

pd1_wmt

2.5

3.0

3.5

x2.14 

x1.94 

x2.50 

pd1_cifar

Figure 4: Per-iteration evaluation time (log10 scale) of DynMeanBO, πBO, and ColaBO on syn-
thetic functions and HPO tasks under the “good” expert prior setting.
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Figure 5: Performance on synthetic functions and HPO tasks under a “bad” expert prior.
DynMeanBO demonstrates strong robustness.
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“Bad“ expert prior. In practice, domain experts may provide priors that deviate substantially from
the true optimum. The setup for the “bad” prior is detailed in Section 5.1. As shown in Fig. 5,
DynMeanBO remains highly robust in this scenario, quickly approaching the performance of stan-
dard BO even when guided by an inaccurate prior. In terms of robustness, DynMeanBO clearly
outperforms both ColaBO and πBO, with a particularly large margin over πBO. Interestingly, on the
PD1 (LM1B) task, all prior-informed methods (DynMeanBO, πBO, and ColaBO) converge faster
than vanilla BO despite the misleading prior. This occurs because the “bad” prior, although far from
the global optimum, still points to a high-quality suboptimal region. A comparison of computational
overhead under the “bad” prior is provided in Appendix H.

6 CONCLUSION

We proposed DynMeanBO, a BO framework that incorporates expert prior knowledge via a dy-
namically decaying mean function. Our approach is compatible with any acquisition function and
introduces negligible computational overhead. Empirically, DynMeanBO accelerates convergence
when expert priors are informative, while remaining robust when priors are inaccurate. These find-
ings demonstrate the practical benefit of integrating expert knowledge into BO and show that dy-
namically modulating the influence of the expert prior can effectively balance expert guidance with
data-driven exploration.

For future work, we plan to combine DynMeanBO with complementary techniques, such as multi-
fidelity optimization and parallel evaluation strategies. This combined approach aims to further
accelerate the optimization process and enhance scalability, enabling applications to more complex
models, diverse search spaces, and large-scale HPO tasks.
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A DETAILED EXPLANATION OF EXPERT PRIORS

To complement the discussion in Section 2.4, we provide visual illustrations of several represen-
tative expert prior distributions. These examples highlight how different choices encode domain
knowledge about the likely location of the global optimum.

As shown in Figure 6, a unimodal Gaussian prior emphasizes a single promising region, while a
Gaussian mixture prior flexibly represents multiple candidate regions. Preference-based priors can
also be approximated using mixtures of Gaussians, which capture favored regions implied by expert
preferences. Although we display one-dimensional cases for clarity, the same idea naturally extends
to higher-dimensional spaces.

Expert priors can naturally be expressed in the form of probability distributions. They are not limited
to Gaussian or Gaussian mixture distributions; any distribution that captures the expert’s belief can
be used. For example, consider an arbitrary function h(x), whose optimum reflects the expert’s
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Figure 6: Illustration of different types of expert prior distributions.

belief about where the optimal solution of the current task lies. We can normalize this function to
obtain a expert prior distribution:

π(x) =
h(x)∫
h(x) dx

.

This allows us to incorporate expert knowledge into the optimization process through a probabilistic
formulation.

B INTERPRETATION OF PARAMETERS A AND B

We define the prior mean function as mprior(x) = A · π(x) + B, where π(x) denotes the expert
prior distribution. This construction leverages expert knowledge to roughly shape the mean function,
thereby highlighting the region where the function f is most likely to achieve its maximum.
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Figure 7: Illustration of the prior mean construction.

In this setup, A serves as a scaling factor to align π(x) with the magnitude of f , while B acts as a
shift that positions Aπ(x) appropriately (e.g., around the mid-level of f ). As illustrated in Figure 7,
the two subplots show how A and B influence the mean function when π(x) is chosen as a Gaussian
distribution and as a Gaussian mixture distribution, respectively.

The selection of A and B is flexible. They can be manually set, for example A = 1 and B = 0.
Alternatively, they can be derived from the initial evaluations. Suppose in the initial set of evaluated
points, the maximum and minimum observed values are ymax and ymin. Then one may set

A =
ymax − ymin

maxx∈X π(x)
, B =

ymax + ymin

2
. (10)

B.1 SENSITIVITY ANALYSIS OF PARAMETERS A

In constructing our mean function, mprior(x) = A ·π(x)+B, the parameters A and B are primarily
used to better approximate the true objective function. However, our main concern is the shape
π(x) of the mean function, as it is the key factor governing the balance between exploitation and
exploration. In principle, the specific values of A and B should not have a major impact on the
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optimization process. To investigate the sensitivity of the algorithm to these parameters, we conduct
a sensitivity analysis for both A and B.

In this section, we focus on the sensitivity with respect to A. We consider A = 0.1, 0.5, 1, 2, 10
while fixing B = 0, and study how different values of A affect the optimization process. We use
DynMeanBO-EI as the test case, i.e., DynMeanBO with the EI acquisition function, to evaluate
the sensitivity to A. The experimental results are shown in Figure 8.
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Figure 8: Ablation study of the parameter A under the “good” expert prior setting

From the experimental results, we can see that the optimization process is largely insensitive to
different values of A. In other words, the specific choice of A is not critical; what matters most is
the shape of the mean function.

B.2 SENSITIVITY ANALYSIS OF PARAMETERS B

In this section, we analyze the sensitivity of the parameter B. Fixing A = 1, we examine how dif-
ferent values of B = 0.0, 0.2, 0.4, 0.6, 0.8 affect the optimization process within DynMeanBO-EI.
The results are presented in Figure 9. From the experimental observations, the optimization process
is highly insensitive to the choice of B, further confirming that the most critical factor is the shape
of the mean function rather than the specific values of its scaling or shifting parameters.
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Figure 9: Ablation study of the parameter B under the “good” expert prior setting

C MIXTURE OF GAUSSIAN AS EXPERT PRIOR

Figure 10 illustrates an example where a one-dimensional mixture of Gaussians is used as the expert
prior π(x) and incorporated into the GP mean function. The mean function mprior(x) now reflects
multiple regions that the expert considers promising.
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Samples drawn from the prior pprior(f) and the posterior pprior(f | D) show pronounced peaks in
these regions (highlighted in green in Figure 10), indicating that the optimum is likely to lie within
one or more of these areas. This demonstrates that, even when the expert prior takes the form of a
Gaussian mixture model, it can still effectively encode multiple promising regions and significantly
shape both the prior and posterior distributions of the objective function f within the BO framework.
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Figure 10: (Top left) Mean function and 95% confidence interval without any observations. p(f)
denotes the GP prior with m(x) = 0, i.e., p(f) = GP(m(x), k(x,x′)), while pprior(f) =
GP(mprior(x), k(x,x

′)). (Top right) Mean function and 95% confidence interval conditioned on
observed data Dn. p(f | Dn) uses m(x) = 0, whereas pprior(f | Dn) uses mprior(x). (Bottom left)
Samples drawn from the prior distributions p(f) and pprior(f) without observations. (Bottom right)
Samples drawn from the posterior distributions p(f | Dn) and pprior(f | Dn) given Dn.

D PROOF OF THEOREM 1

Theorem 1 (Convergence of DynMeanBO under EI). Let X ⊂ Rd be compact, f ∈ Hk(X ), and
let DynMeanBO use the dynamic prior mean mn(x) = γn · mprior(x) +

(
1 − γn

)
· µ0(x) with

γn = exp(−λ(n − N0)), λ > 0. Then, DynMeanBO under EI achieves the same asymptotic
convergence rate as standard BO under EI, namely

Ln(DynMeanBO-EI,Dn,Hk(X ), R) = O
(
n−(ν∧1)/d(log n)β

)
,

where β ≥ 0 is a constant depending on the kernel k and ν.

Proof. The primary difference between DynMeanBO and standard BO lies in their mean functions.
To analyze the convergence of DynMeanBO under EI, we first characterize the deviation of the
mean function across iterations, which then allows us to study the convergence of the entire algo-
rithm. To this end, we define the perturbation induced by the dynamic prior mean as

δn(x) := mn(x)− µ0(x) = γn(mprior(x)− µ0(x)),

which captures the difference between the dynamic mean and the standard BO mean at iteration
n. Since both mprior and µ0 are bounded, there exists M > 0 such that supx∈X |δn(x)| ≤ Mγn,
which vanishes as n → ∞.

The GP posterior mean is linear in the prior according to Eq. 2 , implying

sup
x∈X

|µprior,n(x)− µn(x)| = sup
x∈X

|mn(x)− µ0(x) + kn(x)
⊤[Kn + σ2I]−1(µ0 −mn)|

= sup
x∈X

|δn(x) + kn(x)
⊤[Kn + σ2I]−1δn(X)|

= O(sup
x∈X

|δn(x)|)

= O(γn),
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where µprior,n and µn denote the posterior means with dynamic prior mn(x)and base prior µ0(x),
respectively. And µ0 = [µ0(x1), .., µ0(xn)]

⊤, mn = [mn(x1), ..,mn(xn)]
⊤.

According to the definition of EI in Equation 4, if we fix the posterior variance, then αEI(x) =
g(u(x)), where g(·) is a function determined by the probability density function and the cumula-
tive distribution function of the standard normal distribution. It follows that g is differentiable and
Lipschitz continuous. Therefore, there exists a constant L > 0 such that

sup
x∈X

∣∣αDynMeanBO-EI(x, n)− αBO-EI(x, n)
∣∣ = sup

x∈X

∣∣g(uprior,n(x))− g(un(x))
∣∣

≤ L · sup
x∈X

∣∣uprior,n(x)− un(x)
∣∣

= O(γn).

We define ϵn ≜ supx∈X
∣∣αDynMeanBO-EI(x, n) − αBO-EI(x, n)

∣∣ = O(γn), and let xn+1 =

argmaxx∈X αBO-EI(x, n), xprior
n+1 = argmaxx∈X αDynMeanBO-EI(x, n). Here, we make a reason-

able assumption: there exist constants c > 0, p ≥ 1, and r > 0 such that, for the maximizer

x∗ = argmax
x∈X

αBO-EI(x, n)

and any point z satisfying ∥z− x∗∥ ≤ r, we have

αBO-EI(x
∗, n)− αBO-EI(z, n) ≥ c ∥x∗ − z∥p.

Since xn+1 = x∗, we have

c∥xn+1 − xprior
n+1∥p ≤ αBO-EI(xn+1, n)− αBO-EI(x

prior
n+1, n)

= αBO-EI(xn+1, n)− αDynMeanBO-EI(xn+1, n) + αDynMeanBO-EI(xn+1, n)

− αBO-EI(x
prior
n+1, n)

≤ αBO-EI(xn+1, n)− αDynMeanBO-EI(xn+1, n) + αDynMeanBO-EI(x
prior
n+1, n)

− αBO-EI(x
prior
n+1, n)

≤
∣∣αBO-EI(xn+1, n)− αDynMeanBO-EI(xn+1, n)

∣∣+ ∣∣αDynMeanBO-EI(x
prior
n+1, n)

− αBO-EI(x
prior
n+1, n)

∣∣
≤ 2ϵn

So ∥xn+1 − xprior
n+1∥ ≤

(
2ϵn
c

)1/p
, under the RKHS radius constraint R, all functions f are Lipschitz

continuous. Let Lf denote a uniform Lipschitz constant. Then, we have

|f(xprior
n+1)− f(xn+1)| ≤ Lf · ∥xn+1 − xprior

n+1∥ ≤ Lf ·
(2ϵn

c

)1/p
.

Taking the supremum over both the expectation and the worst-case scenario, we obtain the following
bound on the loss difference:

∣∣Ln(DynMeanBO-EI,Dn,Hk(X ), R)− Ln(BO-EI,Dn,Hk(X ), R)
∣∣ ≤ C ·

(
2ϵn
c

)1/p

,

where the constant C depends on Lf and the RKHS norm R of the function.

Combining this with the known convergence rate of standard BO-EI (Bull, 2011):

Ln(BO-EI,Dn,Hk(X ), R) = O
(
n−(ν∧1)/d(log n)β

)
,

where ν is the smoothness parameter of the kernel k (Matérn kernel), and β is defined as

β :=

{
α, if ν ≤ 1,

0, if ν > 1,
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where α is the logarithmic correction exponent determined by the covering number of the RKHS.
Since γn = exp

(
− λ(n−N0)

)
decays exponentially, so

Ln(DynMeanBO-EI, Dn,Hk(X ), R) ≤ Ln(BO-EI,Dn,Hk(X ), R) + C ·
(
2ϵn
c

)1/p

= O(Ln(BO-EI,Dn,Hk(X ), R)) +O(C ·
(
2ϵn
c

)1/p

)

= O
(
n−(ν∧1)/d(log n)β

)
Therefore, DynMeanBO achieves the same asymptotic rate of convergence as standard BO.

E PROOF OF THEOREM 2

Theorem 2 (Convergence of DynMeanBO under UCB). Let δ ∈ (0, 1). Assume that the true un-
derlying function f lies in the RKHS Hk associated with the kernel k, with ∥f∥2Hk

≤ B, and let
βn = 2B + 300Gn log

3(n/δ). Assume further that the observational noise is σ-sub-Gaussian. Let
mn(x) = γnmprior(x) + (1− γn)µ0(x) be the dynamic prior mean of DynMeanBO at iteration n,
where γn → 0. When using the UCB acquisition function with parameters βn, the cumulative regret
of DynMeanBO satisfies, with probability at least 1− δ,

Pr
{
RN ≤ C1

√
NβNGN + C2

N∑
n=1

γN ∀N ≥ 1
}
≥ 1− δ,

where RN :=
∑N

n=1

(
f(x∗)− f(xn)

)
denotes the cumulative regret, GN is the maximum informa-

tion gain up to N , and C1, C2 > 0 are constants independent of N . In particular, if
∑∞

n=1 γn < ∞,
DynMeanBO achieves the same asymptotic convergence rate as BO-UCB:

RN = O
(√

NβNGN

)
.

Proof. We follow the analysis of BO-UCB by Srinivas et al. (2010), adapting it to account for the
dynamic prior mean. Similar to the proof of Theorem 1, the key lies in analyzing the deviation
between the mean functions of DynMeanBO and standard BO.

Following the proof of Theorem 1, the deviation between the mean functions of DynMeanBO and
standard BO is given by

∆n := sup
x∈X

∣∣µprior,n(x)− µn(x)
∣∣ = O(γn).

Therefore, there exists a constant Cmean > 0 such that ∆n ≤ Cmean · γn, which implies that the
posterior mean perturbation vanishes as γn → 0.

For baseline BO-UCB, Srinivas et al. (2010) show that, with probability at least 1− δ,

|f(x)− µn(x)| ≤
√

βn+1 sn(x), ∀x ∈ X .

(See Lemma 5.1 in Srinivas et al. (2010) for details.)

Combining this with the bound on ∆n yields a high-probability confidence bound for DynMeanBO:

|f(x)− µprior,n(x)| = |f(x)− µn(x) + µn(x)− µprior,n(x)|
≤ |f(x)− µn(x)|+ |µn(x)− µprior,n(x)|
≤

√
βn+1 sn(x) + ∆n, ∀x ∈ X ,

Here, let αDynMeanBO-UCB denote the UCB acquisition function in DynMeanBO. According to
Equation (5), we have αDynMeanBO-UCB(x, n) = µprior,n(x)+

√
βn+1 sn(x). Therefore, the func-

tion value satisfies
f(x) ≤ αDynMeanBO-UCB(x, n) + ∆n.
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Let xn be the point chosen by DynMeanBO and x∗ = argmaxx∈X f(x). Using the above confi-
dence bound and the fact that xn maximizes αDynMeanBO-UCB(x, n − 1), the instantaneous regret
satisfies

rn := f(x∗)− f(xn)

≤ αDynMeanBO-UCB(x
∗, n− 1) + ∆n−1 − f(xn)

≤ αDynMeanBO-UCB(xn, n− 1) + ∆n−1 − f(xn)

= µprior,n−1(xn) +
√

βn sn−1(xn) + ∆n−1 − f(xn)

≤ |f(xn)− µprior,n−1(xn)|+
√
βn sn−1(xn) + ∆n−1

≤ 2
(√

βn sn−1(xn) + ∆n−1

)
≤ 2

√
βn sn−1(xn) + 2Cmeanγn−1.

Summing over n = 1 to N gives the cumulative regret

RN :=

N∑
n=1

rn ≤ 2

N∑
n=1

√
βn sn−1(xn) + 2Cmean

N∑
n=1

γn−1.

Next, we show that the cumulative regret is upper bounded. Let κ := supx∈X k(x,x) (the kernel
diagonal bound, finite since X is compact). For each term define un := σ−2s2n−1(xn); then 0 ≤
un ≤ Umax := κ/σ2 and

GN := max
D⊂X :|D|=N

I(yD; fD),

= max
D⊂X :|D|=N

1

2
log

∣∣I+ σ−2KD
∣∣

≥ 1

2
log

∣∣I+ σ−2KDN

∣∣
=

1

2
log

∣∣I+ σ−2

[
KDN−1

kN−1

k⊤
N−1 k(xn,xn)

] ∣∣
=

1

2
log

∣∣ [I+ σ−2KDN−1
σ−2kN−1

σ−2k⊤
N−1 I+ σ−2k(xn,xn)

] ∣∣
=

1

2
log{

∣∣I+ σ−2KDN−1

∣∣(1 + σ−2
(
k(xn,xn)− k⊤

N−1(I+ σ−2KDN−1
)−1kN−1

))
}

=
1

2
log{

∣∣I+ σ−2KDN−1

∣∣ · (1 + σ−2s2N−1(xN )
)
}

=
1

2

N∑
n=1

log(1 + σ−2s2n−1(xn))

=
1

2

N∑
n=1

log(1 + un).

Here, I(·) denotes the mutual information, and GN denotes the maximum information gain after N
steps; for its definition and computation, we refer the reader to Srinivas et al. (2010). The covariance
matrix KDN

and the vector kN are defined in Equation (2).

Consider the function g(u) = log(1 + u)/u for u > 0; g is decreasing, so for all u ∈ (0, Umax],

log(1 + u)

u
≥ log(1 + Umax)

Umax
.

It then follows that
un ≤ Umax

log(1 + Umax)
log(1 + un),

and therefore

s2n−1(xn) = σ2un ≤ σ2Umax

log(1 + Umax)
log(1 + un) =

κ

log(1 + κ/σ2)
log(1 + un).
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Summing over n and using
∑N

n=1 log(1 + un) = 2I(y1:N ; f1:N ) ≤ 2GN yields

N∑
n=1

s2n−1(xn) ≤
κ

log(1 + κ/σ2)
· 2GN = C0 GN ,

where I(y1:N ; f1:N ) denotes the mutual information between the noisy observations y1:N and the
latent function values f1:N . And we set

C0 :=
2κ

log(1 + κ/σ2)
.

By Cauchy–Schwarz and monotonicity of {βn},

N∑
n=1

√
βn sn−1(xn) ≤

√√√√( N∑
n=1

βn

)( N∑
n=1

s2n−1(xn)
)
≤

√
NβN · C0GN .

Hence, for constants C1 := 2
√
C0 and C2 := 2Cmean, we obtain (with probability at least 1− δ)

RN ≤ C1

√
NβNGN + C2

N∑
n=1

γn−1.

In particular, if
∑∞

n=1 γn < ∞ then the second term is bounded and we recover the asymptotic rate

RN = O
(√

NβNGN

)
,

which matches the BO-UCB rate.

F SUPPLEMENTARY EXPERIMENTAL SETUP

For simplicity, we set the prior mean to mprior(x) = A · π(x) + B with A = 1, B = 0, use an
initialization ratio of ρ = 0.4, and fix the decay factor in γn = exp(−λ(n − N0)) to λ = 1. All
experiments employ the RBF kernel. For synthetic benchmarks, each experiment is repeated 10
times with different random seeds, whereas for HPO tasks, due to slower evaluation and higher
computational cost, each experiment is repeated 5 times. The benchmarks and their respective
settings are summarized in Table 1. All other parameters not explicitly specified are set to their
default values in the BoTorch framework (Balandat et al., 2020).

Benchmark Search space x∗ N0 N

Hartmann (4D) [0, 1]4 [0.19, 0.19, 0.56, 0.26] 5 80
Levy (5D) [−5, 5]5 [1]5 6 100
Hartmann (6D) [0, 1]6 [0.20, 0.15, 0.48, 0.28, 0.31, 0.66] 7 120
Rosenbrock (6D) [−2.048, 2.048]6 [1]6 7 120
Stybtang (7D) [−4, 4]7 [−2.9]7 8 140
PD1-WMT [0, 1]4 [0.90, 0.69, 0.02, 0.97] 5 40
PD1-CIFAR [0, 1]4 [1, 0.80, 0.0, 0.0] 5 40
PD1-LM1B [0, 1]4 [0.91, 0.67, 0.36, 0.85] 5 40
Levy (20D) [−5, 5]20 [1]20 8 140
Rosenbrock (20D) [−2.048, 2.048]20 [1]20 8 140

Table 1: Experimental benchmarks used in our study. For each benchmark, we specify its search
space, the location of the global optimum x∗, the number of initial points (N0), and the total evalu-
ation budget (N ).
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G COMPUTATIONAL OVERHEAD UNDER DYNMEANBO AND STANDARD BO

As described in the DynMeanBO algorithm section, DynMeanBO integrates expert priors into the
Gaussian process mean function in the form of a probabilistic distribution, effectively redesigning
the BO mean function rather than introducing additional inference components. Therefore, this
approach does not incur extra computational overhead. Theoretically, the computational complexity
of DynMeanBO is nearly identical to that of standard BO, and our experimental results confirm this.
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Figure 11: Per-iteration evaluation time (log10 scale) of DynMeanBO and standard BO on synthetic
functions and HPO tasks.

H COMPUTATIONAL OVERHEAD UNDER THE “BAD” EXPERT PRIOR

As shown in Figure 12, when a “bad” expert prior is used, the per-iteration evaluation time of
DynMeanBO remains almost identical to that of standard BO under the same acquisition function,
indicating that our dynamic mean adjustment introduces negligible additional overhead. In sharp
contrast, both πBO and ColaBO are considerably slower due to their reliance on Monte Carlo sam-
pling for incorporating expert prior information into the acquisition function. The computational
burden is particularly pronounced for ColaBO, where employing MES necessitates nested Monte
Carlo sampling to approximate the mutual information between candidate evaluations and the func-
tion maximum, leading to a dramatic runtime increase.

These results highlight that under inaccurate expert priors, πBO not only suffers from poor robust-
ness but also incurs substantially higher computational cost. ColaBO alleviates some of these is-
sues, showing improved robustness over πBO, but it still falls short of DynMeanBO and comes
with considerably higher overhead. In contrast, DynMeanBO delivers both superior robustness and
efficiency.
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Figure 12: Per-iteration evaluation time (log10 scale) of DynMeanBO, πBO, and ColaBO on syn-
thetic functions and HPO tasks under the “bad” expert prior setting.
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I ADDITIONAL HIGH-DIMENSIONAL EXPERIMENTS

In addition to the eight commonly used benchmark tasks reported in the main text, we also evalu-
ated DynMeanBO on higher-dimensional problems. Specifically, we included two 20-dimensional
tasks—Levy (20D) and Rosenbrock (20D). The corresponding search space settings, optimum lo-
cations, number of initial points, total evaluation budget, and other relevant details are provided in
Table 1.

First, we evaluate the performance of DynMeanBO on these two high-dimensional tasks under seven
commonly used acquisition functions: PI, EI, LogEI, TS, UCB, KG, and MES. In this experiment,
we use a “good” expert prior. The results are shown in Figure 13. Across all acquisition functions,
DynMeanBO consistently accelerates convergence, demonstrating that it is not only seamlessly
compatible with a wide range of acquisition strategies but also highly effective in high-dimensional
settings.
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Figure 13: Performance on two high dimension tasks. When a “good” expert prior is incorporated,
DynMeanBO consistently finds better solutions faster than the standard BO across different acqui-
sition functions.

“Good“ expert prior. Under the ”good” expert prior, we compare πBO, ColaBO, and DynMeanBO
on these two high-dimensional tasks. While πBO employs EI, ColaBO utilizes LogEI and MES,
denoted as MCpi-LogEI and MCpi-MES in the figures. For a fair comparison, we evaluate
DynMeanBO using the same acquisition functions—EI, LogEI, and MES. The results are shown
in Figure 14. Across both tasks, all three prior-based methods (DynMeanBO, πBO, and ColaBO)
consistently accelerate convergence under the ”good” expert prior, and their performance is compa-
rable.

We also compare the average per-iteration evaluation time of πBO, ColaBO, and DynMeanBO, as
shown in Figure 15. As discussed in Section 5.2, DynMeanBO introduces negligible computational
overhead compared to standard BO. The results further show that under the ”good” expert prior,
although all three methods achieve similarly strong optimization performance, DynMeanBO incurs
noticeably lower computational cost compared to both πBO and ColaBO.

“Bad“ expert prior. In practice, our expert prior is usually not perfectly accurate, but it rarely
performs very poorly. In the few cases where the expert prior is indeed poor, we evaluate the
robustness of DynMeanBO by comparing its performance with πBO and ColaBO under a “bad”
expert prior. The results on the two high-dimensional tasks are shown in Figure 16, from which we
can see that DynMeanBO exhibits strong robustness.

We also compare the average per-iteration evaluation time of πBO, ColaBO, and DynMeanBO
under the “bad” expert prior, as shown in Figure 17.
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Figure 14: Performance on two high dimension tasks under a “good” expert prior. DynMeanBO,
πBO, and ColaBO achieve comparable results.
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Figure 15: Per-iteration evaluation time (log10 scale) of DynMeanBO, πBO, and ColaBO on two
high dimension tasks under the “good” expert prior setting.
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Figure 16: Performance on two high dimension tasks under a “bad” expert prior. DynMeanBO
demonstrates strong robustness.
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Figure 17: Per-iteration evaluation time (log10 scale) of DynMeanBO, πBO, and ColaBO on two
high dimension tasks under the “bad” expert prior setting.

J SENSITIVITY ANALYSIS OF DECAY COEFFICIENT λ

When constructing the mean function, we define it as mn(x) = γnmprior(x) + (1 − γn)µ0(x),
γn = exp(−λ(n−N0)) ,where mprior(x) = A ·π(x)+B. The hyperparameter λ > 0 controls the
decay rate of the expert prior. In principle, a smaller λ slows down the decay, allowing the expert
prior to influence the optimization for a longer period and thereby reducing exploration in other
regions. Conversely, a larger λ accelerates the decay, diminishing the expert prior’s influence earlier
and encouraging broader exploration. To examine the effect of λ, we conducted an ablation study
with λ = 0.25, 0.5, 1.0, and 2.0 using EI as the acquisition function across eight benchmark tasks.
In these experiments, we used the “good” expert prior. The results are shown in Figure 18.
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Figure 18: Ablation study of the parameter λ under the “good” expert prior setting

From the experimental results, we observe a pattern consistent with the above analysis. A smaller
λ prolongs the influence of the expert prior, leading to less exploration in the early stages of opti-
mization. If the expert prior is believed to be highly reliable, a smaller λ is therefore preferable.
In contrast, a larger λ shortens the duration of the prior’s influence and results in more exploration
early on. Thus, if the expert prior is considered less reliable, choosing a larger λ is more appropriate.

K SENSITIVITY ANALYSIS OF INITIALIZATION RATIO ρ

In our full algorithm (see Algorithm 1), we generate the initial points N0 by combining samples from
the expert prior distribution with Sobol sequences, which helps achieve a better trade-off between
exploitation and exploration. The initialization ratio ρ indicates the proportion of initial points drawn
from the expert prior: a larger ρ corresponds to more points sampled from the expert prior, while
a smaller ρ corresponds to fewer such points. To investigate the sensitivity to ρ, we conducted
an ablation study with ρ = 0, 0.4, 0.8, and 1.0 using EI as the acquisition function and the “good”
expert prior across eight benchmark tasks. As a baseline, we used standard BO-EI. The experimental
results are shown in Figure 19.
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Figure 19: Ablation study of the parameter ρ under the “good” expert prior setting

From the results of the ablation study, we observe that sampling entirely from the Sobol sequence
(ρ = 0) performs worse than sampling some points from the expert prior (ρ > 0). This is because,
in the initialization phase, if the expert prior is sufficiently reliable, points drawn from it tend to be
closer to the optimum than those sampled from Sobol.

We also observe that sampling entirely from the expert prior (ρ = 1) performs worse than a combi-
nation of Sobol and expert prior sampling (0 < ρ < 1).

Finally, even when all initial points are sampled from Sobol (ρ = 0) (as can be seen in the Figure 19,
where the blue and black lines start from the same position), DynMeanBO-EI still outperforms
standard BO-EI, especially on the Hartmann4, Hartmann6, and Stybtang7 tasks. This is because,
although both DynMeanBO-EI and BO-EI initialize entirely from Sobol when ρ = 0, DynMeanBO
incorporates the expert prior into its mean function, which guides subsequent iterations toward better
regions and enables faster convergence. These results demonstrate the effectiveness of integrating
expert prior knowledge into the mean function.

Therefore, for the choice of the initialization ratio ρ, we recommend 0 < ρ < 1. If the expert prior
is sufficiently reliable, a larger ρ is preferable, whereas if the expert prior is less reliable, a smaller ρ
is more appropriate.

L EXPERIMENTS UNDER DIFFERENT PRIOR STRENGTHS

In the main text, we compared a “good” expert prior (offset = 0.1 from the optimum, with a standard
deviation equal to 0.2 times the length of the search-space interval) and a “bad” expert prior (offset
= 0.7 from the optimum, with the same standard deviation). To more comprehensively characterize
different prior conditions, we further examine strong expert priors, weak expert priors, and wrong
expert priors, as well as different uncertainty levels with standard deviations set to 0.2, 0.4, 0.6, and
0.8 times the search-space interval. The detailed configurations of the strong, weak, and wrong
expert priors are provided in Table 2. Here, we still use the EI acquisition function; that is, this
section presents an ablation study of different expert prior settings under DynMeanBO-EI. The
experimental results are shown in Figure 20.

Table 2: Settings of strong, weak, and wrong expert priors.

Expert Prior Type Offset Std (× search-space length)

Strong Expert Prior 0.05 0.2
Weak Expert Prior 0.20 0.2
Wrong Expert Prior 0.90 0.2

From the experimental results, we observe that the variance of the expert prior has little effect on the
optimization performance, whereas the quality of the expert prior has a significant impact. When a
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strong expert prior is used, the DynMeanBO algorithm converges to the optimum almost immedi-
ately. With a weak expert prior, DynMeanBO performs slightly better than standard BO. In the case
of a wrong expert prior, the initialization phase is initially misled, resulting in worse convergence
compared to standard BO. However, due to the robustness of DynMeanBO, it eventually converges
to a performance comparable to that of the original BO.
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Figure 20: A comparative analysis of strong, weak, and wrong expert priors under varying prior
variances.
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M USE OF LARGE LANGUAGE MODELS

We employed the large language model GPT-4 to polish the manuscript. The process mainly in-
volved: (1) checking for grammatical errors; (2) evaluating the appropriateness of voice usage; and
(3) identifying and eliminating redundant expressions.
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