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Abstract: Vision-based robot policy learning, which maps visual inputs to ac-
tions, necessitates a holistic understanding of diverse visual tasks beyond single-
task needs like classification or segmentation. Inspired by this, we introduce
Theia, a vision foundation model for robot learning that distills multiple off-the-
shelf vision foundation models trained on varied vision tasks. Theia’s rich visual
representations encode diverse visual knowledge, enhancing downstream robot
learning. Extensive experiments demonstrate that Theia outperforms its teacher
models and prior robot learning models using less training data and smaller model
sizes. Additionally, we quantify the quality of pre-trained visual representations
and hypothesize that higher entropy in feature norm distributions leads to im-
proved robot learning performance. Code, models, and demo are available here.
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Figure 1: We introduce Theia, a model that distills multiple vision foundation models (VFMs) to
provide better representations for robot learning (left). Theia achieves superior performance on
robot learning tasks with less computation compared to standard VFMs and pre-trained models for
robotics (right). Results shown are from the MuJoCo subset of tasks in CortexBench.

1 Introduction

Visual understanding, i.e., the process of abstracting high-dimensional visual signals like images
and videos, includes many different sub-problems, from depth prediction [1] and vision-language
correspondence [2, 3], to tasks ranging from coarse to fine granularity such as classification [4,
5] and object grounding [6, 7, 8], as well as tasks defined along spatial and temporal axes like
segmentation [9, 10] and tracking [11]. Given this diversity, a long-standing effort in the vision
community has been to develop models tailored to one or a few specific types of visual understanding
tasks. In recent years, several models [4, 5, 10, 2, 3, 12, 13, 6, 14, 15, 10, 7, 16] have achieved
remarkable generalizability to unseen domains and new tasks, and are commonly referred to as
vision foundation models (VFMs).
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Vision-based robot policy learning, which learns action policies from visual inputs, requires strong
and diverse visual comprehension. These policies involve many implicit vision tasks such as object
recognition and semantic grounding, where off-the-shelf VFMs corresponding to some well-defined
tasks can be easily found, but there is no single model for all of vision tasks. Studies have shown that
off-the-shelf VFMs such as CLIP [2] usually under-perform relative to visual representation models
tailored for specific tasks in robot learning [17, 18, 19, 20, 21]. This fact reveals a gap between
the needs of robot learning and the limited visual understanding capabilities of any individual VFM.
Our motivation is different than all prior works on learning visual representation models for robotics,
where those works focused primarily on improving training data [17, 21, 20], designing objective
functions [17, 18], and directly taking advances of vision architectures [19]. We uniquely focus on
improving the visual representation from the angle of solving multiple implicit visual understanding
tasks, which will benefit the downstream robot learning.

In this work, we propose combining multiple large VFMs into a single, smaller model for robot
learning that leverages diverse visual understanding abilities from VFMs. We achieve this via knowl-
edge distillation [22]. Unlike conventional distillation from a larger model to a smaller model on
the same task, we distill VFMs tailored for varied vision tasks to improve visual representation for
robot learning, which is an unseen task for VFMs.

We introduce Theia, a robot vision foundation model that simultaneously distills off-the-shelf VFMs
such as CLIP [2], DINOv2 [7], and ViT [5]. Compared to off-the-shelf VFMs [2, 5, 7] and prior
works [19, 20], Theia offers both better pre-trained visual representations for higher downstream
robot learning performance and reduced computational costs. Furthermore, training Theia only
requires ImageNet [23] and about 150 GPU hours, in contrast to prior works which necessitate
substantially more compute [19, 20, 17, 18]. To understand what makes a good visual representation
for robot learning, we observe multiple factors that relate to the performance of downstream robot
learning tasks. We hypothesize that higher entropy in representation norms [24] correlates with
improved robot learning performance.

In summary, our contributions are:

• We introduce Theia, a model that combines knowledge from multiple VFMs into a single,
smaller model using knowledge distillation with low training cost.

• Through extensive simulated and real-world experiments, we confirm that Theia’s visual repre-
sentations lead to better downstream robot learning with improved computational efficiency.

• We identify key factors relevant to robot learning performance, such as model size, the use of
spatial tokens, and the entropy of representation norms, offering valuable insights for guiding
future research on optimizing visual representations for robot learning.

2 Related Work

2.1 Visual Representations for Robot Learning

Visual representations are important for vision-based robot policies to parse high-dimensional
visual signals. Visual representation learning can happen at different stages, including pre-
training [17, 18, 20, 21], joint-learning with robot tasks [25, 26, 27, 28], or a combination of
both using either trainable or frozen visual representations [29, 30]. Off-the-shelf visual en-
coders [4, 5, 2, 31, 32] can also provide visual representations for robot learning. Additionally, an
important factor in training visual representations is the choice of data. ImageNet [23], as suggested
by Dasari et al. [21], is a particularly effective pre-training dataset, while video datasets [33, 34]
are also widely used. Training objectives and auxiliary tasks for visual representation learning vary,
including data augmentation [25, 26], prediction tasks [28], contrastive learning [27, 35, 36], and
self-supervised learning [19, 20]. Specifically, to handle invariance and equivariance in visual obser-
vations, inductive biases [37, 38] and constraints [39, 40] can be introduced into neural networks to
improve visual representation quality. Unlike prior works, we build a robot vision foundation model
from the perspective of merging the visual understanding abilities of VFMs via distillation. Concur-
rent work OpenVLA [32] uses pre-trained SigLIP [41] and DINOv2 [7] encoders, which suggests
the benefit of diverse visual understanding in robot tasks.
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Figure 2: Theia distills multiple VFM features into one rich representation for robot learning. The
feature translators gi(z) are supervised by the features from pretrained VFMs hi(x) during training
time, then the distilled representation z is used as input to the policy head for robot learning tasks.

2.2 Vision Foundation Models

Vision foundation models trained on large-scale data exhibit strong task-specific performance and
transferability to unseen domains and new tasks. VFMs can focus on single tasks, multiple tasks, or
remain task-agnostic at the pre-training stage. For example, ViT [5], DeiT [42], and ConvNeXt [43]
are designed for image classification, SAM [10] for semantic segmentation, and Depth-Anything [1]
for depth prediction. When combined with Large Language Models (LLMs) [44, 3, 45, 46], these
models can solve multiple visual tasks including referring segmentation, visual question answering
(VQA), and image editing. Task-agnostic models like the DINO series [6, 7] are trained through self-
distillation, while CLIP [2] is trained by aligning image-text pairs. Given the strong generalization
capability of VFMs, robot learning should also benefit from leveraging the latent representations of
pre-trained VFMs. which is the primary motivation for our research.

2.3 Knowledge Distillation in Vision Models

Knowledge distillation [22] compresses the knowledge from one or more larger models into a sin-
gle smaller model. To leverage VFMs, which are usually computationally intensive, several studies
have explored distilling them into more compact models. For example, some works distill a single
VFM like SAM [10] into smaller variants [47, 48, 49]. There are also relevant works on combining
two models: SAM-CLIP [50] merges SAM [10] and CLIP [2] into one model, while ViLD [51]
and GroundingDINO [52] combine vision and language models to perform object detection. RA-
DIO [53] is an agglomerative model that simultaneously distills CLIP, SAM, and DINOv2. These
studies show that combined models can improve performance on downstream tasks or enable new
applications. Similarly, in this work, we investigate whether combining VFMs will benefit robot
learning. Notably, RADIO [53] is the closest approach to ours. The key differences between Theia
and RADIO [53] are that (1) We aim to use our representation for robot learning tasks that none of
the VFMs have covered in their pretraining tasks, (2) we distill only spatial tokens rather than both
spatial and [CLS] tokens, (3) we choose a different set of teacher models, and (4) we show how
each teacher model contributes to robot learning performance.

3 Method
Overview. We introduce Theia, a framework that distills the knowledge of multiple VFMs into a
smaller model, producing rich spatial representations for downstream vision-based robot learning.
Figure 2 shows the overall design of Theia. Our model comprises a visual encoder (backbone) and
a set of feature translators for distillation. Note that only the visual encoder is used to produce latent
representations for downstream robot learning tasks.

Architecture. Given an input image x, the visual encoder f(·) produces a rich representation
z = f(x) (called the Theia-representation), which is utilized for downstream robot learning tasks.
We focus on backbone models that are smaller than typical VFMs, specifically using ViT-Tiny,
Small, and Base [5, 42]1 motivated by the limited computing resources on robotic systems. We use
Theia-Tiny (Theia-T), Theia-Small (Theia-S) and Theia-Base (Theia-B) to refer to Theia models

1For simplicity, we denote DeiT-Tiny and DeiT-Small [42] by ViT-Tiny and ViT-Small. DeiT was intro-
duced by Touvron et al. [42] and the original ViT [5] does not have Tiny and Small models.
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using a vision transformer backbone with the corresponding size. To train the Theia-representation,
we perform feature distillation with the help of feature translators, which will be described below.

3.1 Rich Spatial Representation

The Theia-representation is a set of encoded tokens corresponding to input image patches. We
choose spatial tokens because spatially-dense representations are the foundation for diverse visual
understanding, as evidenced by the powerful per-patch features in DINOv2 [7]. Therefore, we aim
to distill all spatial tokens and leave the [CLS] token untouched.

Feature Translators. Our goal is to supervise Theia-representations with teacher representations
from various VFMs. We extract teacher representations hi(x) of VFMs at the last layer for CLIP [2],
ViT [5] and DINOv2 [7], or before the decoders for SAM [10] and Depth-Anything [1]. Since
a single representation cannot be learned to match all the teacher representations directly, feature
translators gi(·) are used to map the Theia-representation, z, to each teacher representation. Feature
translators are shallow CNNs to ensure that knowledge is distilled primarily into Theia’s visual
encoder. Details are available in the Appendix.

3.2 Training

Distillation Objective. Our training objective is matching the outputs of the feature translators
with their corresponding teacher VFM representations. To achieve this, we use a combination of
cosine and smooth-L1 losses [53] to match each pair of predicted and ground truth representations
for the same image, taking their weighted average. Formally, our loss is

L(x; θ) =
M∑
i

αi

(
βLcos(gi(f(x)), hi(x)) + (1− β)Lsmooth−L1(gi(f(x)), hi(x))

)
, (1)

where x is the input image, M is the number of teacher VFMs, αi is the loss weight for each teacher,
and β is the weight for balancing cosine loss and smooth-L1 loss respectively. In general, we set
αi = 1/M such that the loss weights each teacher equally. We empirically set β = 0.9 [53].

Feature Normalization. To properly accommodate the different scales of teacher representations,
we first perform a normalization step. This helps us scale the loss of different teacher features evenly
and avoid biasing (collapsing) to a teacher model with extremely larger norms. We perform the
normalization on the teacher representations over each latent dimension, where mean and variance
are calculated from all ImageNet training samples. Details are in Appendix A.

Dataset. We train our model on the ImageNet [23] training set for 50 epochs. We opt to use
ImageNet because of its greater diversity compared to human videos [33, 54, 55, 56] and robot
datasets [57, 58, 59, 60, 61] within the same number of images. This diversity has been experimen-
tally shown to improve visual representation learning [21].

4 Experiments
4.1 Benchmark and Settings

To evaluate pre-trained visual representations, we use simulation tasks in CortexBench [20],
which combines MuJoCo tasks (Adroit [62, 63], DeepMind Control Suite (DMC) [64], and Meta-
World [65]), Habitat [66, 67] tasks (ImageNav [68], ObjectNav [69], and MobilePick [70].), and
Trifinger [20] tasks2. ImageNav and MobilePick are reinforcement learning (RL) tasks and others
are imitation learning (IL) tasks. We follow the experiment settings of Majumdar et al. [20] and re-
port aggregated scores for rewards (DMC tasks) and success rates (all other tasks). For DMC tasks,
raw rewards are divided by 10 to be in a scale consistent with the success rate. We also conduct real
robot experiments, introduced in Section 4.3. We use the same policy heads for the each type of
representations (vector or spatial tokens). Full experimental details are available in the Appendix.

2Due to reproducibility issues, we are not able to evaluate Move Cube, ObjectNav, and MobilePick tasks
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Figure 3: Simulation and real-world (labeled in blue) tasks used in this work. For simulated environ-
ments we show one image per task. For real-world tasks, we show images of key steps throughout
the task labeled by numbers. A third-person view image shows the setup in Drawer Opening.

4.2 Simulation Results

We comprehensively evaluate Theia and baseline pre-trained models on the MuJoCo subset of Cor-
texBench [20] to provide an overall assessment of pre-trained visual representations. We consider
prior works on visual representations for robot learning, including R3M [17], VIP [18], MVP [19],
and VC-1 [20], as well as agglomerative models for vision tasks RADIO and E-RADIO [53], and
off-the-shelf vision foundation models ViT [5], DINOv2 [7], and CLIP [2]. We also test a naive con-
catination of three VFMs (CLIP, ViT, and DINOv2) which are used to train Theia, referred as CDV.
All pre-trained representations are frozen in this experiment. Throughout this section, we answer
the following questions:

• How does Theia perform compared to baselines?
• Which is more effective for visual representations: [CLS] or spatial tokens?
• How does robot learning performance scale with the size of the visual encoder?
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Figure 4: Performance on MuJoCo tasks
vs. inference computation. Theia achieves
the best performance with much less com-
pute (MACs (G): Multiply-Accumulate
operations in billions, log-scale).

Theia Performance. As shown in Figure 4, Theia
outperforms all evaluated models, surpassing the per-
formance of the best prior models, R3M and MVP,
as well as agglomerative models for vision tasks RA-
DIO and E-RADIO. We also tested a naive approach
of using multiple VFMs (CLIP, DINOv2, and ViT)
simultaneously by concatenating their spatial tokens
channel-wise (CDV in Figure 4), but this performed
much worse than using just the individual VFMs.
Theia models scale effectively from tiny to base sizes,
with Theia-S and Theia-B being the only models to
break scores of 80 on this subset of CortexBench, even
though they use only a small fraction of the inference
computation required by comparable models. Theia’s
training is very efficient, using only the 1.2M images
in ImageNet with a training time of about 150 GPU
hours on NVIDIA H100 GPUs, compared to approxi-
mately 5M images used in prior works [17, 18, 19, 20]
and 1B images used by RADIO [53].

Spatial Tokens vs. [CLS] Token. We evaluate Transformer-based models (all models in Figure 4
except R3M and VIP) using either their [CLS] token or spatial tokens [5] for downstream robot
learning. To accommodate spatial tokens in the robot policy, we introduce extra shallow CNN layers
at the input of the policy network, known as “compression layer” [71, 20]. Figure 4 shows the results
of all models we evaluated, clearly showing that for Transformer-based models, providing spatial
tokens is consistently better than using the [CLS] token for robot learning. This finding applies to
both off-the-shelf VFMs and prior pre-trained representations, including MVP and VC-1.
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Table 1: Mean CortexBench score across 14 tasks (2 in Adroit, 5 in MetaWorld, 5 in DMC, 1 in
Trifinger (Reach Cube), and 1 in Habitat (ImageNav)).

Model Theia-B (Ours) VC-1-L-sp [20] MVP-L-sp [19] R3M [17] VIP [18] E-RADIO [53]

Score 79.79 ± 0.14 69.56 ± 0.80 77.42 ± 3.14 76.51 ± 0.79 71.18 ± 0.34 73.50 ± 1.69

Table 2: Real robot behavioral cloning results measured by success rate. Door Opening and Toy-
Microwave Cooking are evaluated for 50 trials, and the others are evaluated for 20 trials. We report
results for policies trained with either frozen (`) or fine-tuned ( ) visual encoders. For tasks having
key stages (see Figure 3), we measure the success rates of achieving each stage separately.

Model # Parameters (M) Door Opening` Pick-and-Place` Toy-Microwave Cooking Drawer Opening
1⃝ Open 2⃝ Fully Open 1⃝ Pick 2⃝ Place 1⃝ Pick 2⃝ Place 3⃝ Close the Door ` /

Theia-B (Ours) 86 92% 66% 85% 75% 58% 52% 40% 85% / 100%
E-RADIO [53] 390 72% 46% 75% 55% 58% 54% 42% 15% / 80%
MVP-L-sp [19] 303 32% 2% 55% 35% 40% 26% 18% 30% / 65%
VC-1-L-sp [20] 303 12% 4% 55% 45% 14% 4% 4% 0% / 45%
R3M [17] 24 48% 36% 35% 10% 36% 26% 18% 0% / 55%
DINOv2-L [7] 303 46% 12% 10% 0% 20% 10% 2% 35% / 20%
ViT-H [5] 632 18% 4% 15% 0% 52% 44% 40% 45% / 85%

Scaling with Model Size. We observe that most models, including Theia, achieve better perfor-
mance with larger sizes. The scaling effect is more obvious when using the [CLS] token, probably
because the [CLS] token encodes less information, making the size of the feature vector more crit-
ical. Different models that use spatial tokens also scale at varying rates. VC-1 shows only minor
improvements when scaling from base to large, while ViT shows much larger improvements when
scaling from tiny to huge model.

CortexBench Results. We compare Theia-B against baselines over the CortexBench evaluation
suite 2. The results in Table 1 confirm that Theia-B outperforms all other models.

4.3 Real World Robot Learning

Based on simulation performance, we test Theia-B and the best-performing baseline models: MVP-
L [19], R3M [17], VC-1-L [20], DINOv2-L [7], ViT-H [5], and E-RADIO-L [53] for evaluation
on real-world tasks. We employ four tasks (Figure 3): Door Opening, Pick-and-Place, and Toy-
Microwave Cooking with a WidowX 250s arm, and Drawer Opening with a Boston Dynamics Spot.
We train behavioral cloning policies on top of visual representations using conventional policy net-
works composed of CNNs and MLPs in the WidowX setup and diffusion policy [72] in the Spot
setup. During testing, we vary the robot position for Door Opening and Drawer Opening, random-
ize the object position for Pick-and-Place, and randomize both the object positions and object types
in Toy-Microwave Cooking. Full experimental settings, including details about the number of col-
lected demonstrations, the interface used to collect them, and the policy architecture, are available
in the Appendix (Sec. D.3).

Table 2 shows the success rates on these real-world tasks. Theia-B achieves the highest success
rate across all tasks except Toy-Microwave Cooking. The results also highlight that the Theia-
representation is useful for both conventional and diffusion-based policy heads, and for either freez-
ing or fine-tuning the visual representation. E-RADIO is the most competitive model in this setting
amongst all models compared, likely due to its similar distillation of VFMs and much larger training
dataset. VC-1 has high task variance, performing poorly on Door Opening but adequately on Pick-
and-Place. ViT-H works much better when being fine-tuned but DINOv2 does not, which could be
caused by some fundamental differences in VFMs.

4.4 Ablation Studies
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Figure 5: MuJoCo subset performance with respect to different combinations of teacher models to
train Theia-T. Abbreviations of teacher models: V=ViT-H, C=CLIP-L, S=SAM-H, Di=DINOv2-L,
De=Depth-Anything-L, All=all of five models (CDeDiSV), and All−X=taking X out of All.
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Table 3: Ablation studies on model design. All experiments are based on Theia-T unless otherwise
labeled. Scores are the average performance from the MuJoCo subset of CortexBench.
(a) Distillation losses

MSE Cos + L1

78.2 ± 1.0 78.9 ± 0.8

(b) Number of register tokens (Theia-B)
0 1 4 8

79.2 ± 1.2 80.3 ± 0.7 79.4 ± 0.8 79.6 ± 0.9

(c) Tokens to Distill. SP=Spatial Tokens

Distill SP Distill [CLS] + SP

Use [CLS] — 50.0 ± 0.4
Use SP 78.9 ± 0.8 77.3 ± 2.4

Selection of Teacher Models. Theia is motivated by distilling many vision foundation models,
but not all the models can be effectively integrated into one model nor do they contribute equally
to downstream robot learning. In these experiments, we empirically identify the most effective
combination of teacher models among five candidate VFMs: CLIP (referred to as C) [2], Depth-
Anything (De) [1], DINOv2 (Di) [7], SAM (S) [10], and ViT (V) [5]. We select these candidates
because they have been designed to perform well across various important vision tasks.

To select the best combination, we train Theia-T using different sets of teachers and evaluate the
learned representation on the MuJoCo subset of tasks. Figure 5 shows the results of different teacher
combinations. We start with single VFM teachers and observe that C and V are the most beneficial.
We then distill All teacher models altogether and discover that it performs better than four out
of five single-teacher distillations, but performs worse than only distilling V, suggesting possible
negative effects from some of the teacher models. We then remove each teacher model from All
and distill the remaining four (All−X). The results show that removing V and C from the teachers
causes the most significant performance drops while taking out S and De leads to either similar or
improved performance. Given the (nearly) negative effects observed, we distill the rest of the three
models (CDiV), which results in the best performance. We also try the teacher combination that was
performed in RADIO [53] (CDiS), but it does not outperform CDiV.

Model Design. We conducted ablation studies on distillation loss choices and model architecture.
We compared two kinds of distillation losses: MSE and Cos+L1 from Ranzinger et al. [53]. As
shown in Table 3a, we find that Cos+L1 performs better. For model architecture, we examined the
effect of “register tokens” introduced by Darcet et al. [24]. These extra tokens are introduced at the
input without supervision and are discarded when using the representation. With the same amount
of spatial tokens supervised by distillation, we varied the number of register tokens of between 0, 1,
4, and 8. Note the unsupervised [CLS] token is removed in zero register token case, and it counts
for 1 register token in other cases. According to Table 3b, we find that using 1 register token worked
the best, while having no register tokens performed the worst. Compared to RADIO [53], which
distills both [CLS] and spatial tokens, our use of the [CLS] token as a register token provides an
advantage. We also evaluated distilling both [CLS] and spatial tokens in the Theia model, and the
results shown in Table 3c confirm the advantage of exclusively distilling spatial tokens.

4.5 Qualitative Visualizations

Figure 6: Visualization of VFM outputs from
Theia predicted representations (top) and origi-
nal VFM representations (bottom).

We present qualitative visualizations to demon-
strate how Theia-representations can be trans-
formed into teacher representations through fea-
ture translators. Using Theia trained with all
teachers (CDeDiSV, All), we applied PCA for
visualizing predicted DINOv2 [7] features, used
the SAM [10] decoder to produce segmentation
results, and used the Depth-Anything [1] head to
produce estimated depth. Results are shown in
Figure 6 with more examples in the Appendix.
The visualizations indicate that our predicted rep-
resentations can be decoded by the original VFM and produce reasonable results. Encouragingly,
we find that predicted depth maps from the Theia-predicted representation appear to be more accu-
rate compared to the original Depth-Anything model, particularly in the stove-top area and at the
microwave door. This shows the potential benefit of combining different visual understandings.
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Figure 7: Left: Correlations between feature norm distribution entropy and robot learning perfor-
mance; Right: Visualizations of spatial token feature norms from VC-1-L-sp and Theia-B.

5 What Makes Visual Representations Good for Robot Learning?
Traditionally, the quality of the pre-trained visual representations is evaluated through downstream
robot learning like IL or RL. However, it is unclear why different visual representations lead to
varying robot learning performance outcomes. In this section, we quantify the quality of visual
representations and analyze how they correlate with downstream robot learning performance.

Feature Norm Distributions and Entropy. Darcet et al. [24] analyzed the norm of spatial tokens
in vision Transformers and found that high-norm outlier tokens are detrimental to vision task perfor-
mance. Following this, we investigate whether a similar phenomenon arises in visual representations
for robot learning. We inspect the feature norms of Theia with different teacher combinations and
baseline models evaluated in Section 4.2, and their corresponding performance on the MuJoCo sub-
set tasks. We sample 1% of the MuJoCo task training set and calculate the L2-norm of each spatial
token after encoding images. We measure the entropy of the feature norm distribution across all
samples and patches per model and use it as a quantitative metric. To calculate the entropy of the
distribution, we first discretize the distribution by a histogram. Then, we use the following formula
to obtain the entropy H = −

∑
i(pi ∗ log(pi)), where pi is the probability of each discretized bin.

We confirm that similar outlier tokens also appear in VC-1 corresponding to the image patches
that are not task-relevant, shown in the visualizations of feature norms on the right of Figure 7. In
contrast, Theia has very few or no outlier tokens, and the tokens with higher norms are more task-
relevant even though Theia-representations are not trained on these robot images. In our quantitative
analysis (Figure 7, left), we divide the models into distilled and regular based on the observation that
distilled models generally have higher entropy (fewer outliers, Figure 4(c) in Darcet et al. [24]). We
find that there is a strong correlation (R=0.943) between entropy and robot learning performance
among regular models, and a high correlation (R=0.638) among distilled models. We hypothesize
that spatial token representations with high entropy (better feature diversity) encode more informa-
tion that aids policy learning, while less diverse representations (low entropy) may hinder it. In the
Appendix G, we discuss the results of other quantitative measurements, including feature similarity
and PCA-explained variance ratios, where no strong correlations are found.

6 Conclusion
In this work, we introduced Theia, a novel robot vision foundation model specifically distilled from
multiple VFMs to enhance robot learning tasks. Theia builds a rich visual representation from
diverse VFM teachers, preserving spatial features to ensure detailed visual comprehension. Through
extensive evaluations on CortexBench and in the real world, Theia consistently outperforms state-
of-the-art models, including all prior models for robot learning, off-the-shelf VFMs, and similarly
distilled models for vision tasks. Our results highlight the effectiveness of distilling multiple VFMs
into a compact model for superior performance in a variety of robot learning scenarios. Furthermore,
we answer a key question about what kinds of visual representations lead to better robot learning
by finding a strong correlation between the entropy of feature norms and enhanced downstream
performance, offering insights for future research on optimizing visual representations for robotics.
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A Theia Model Architecture

Backbone. We use the DeiT-Tiny, DeiT-Small, and DeiT-Base models [42] as our backbone archi-
tectures. We keep the [CLS] token in the model and in the forward pass, but there is no supervisory
signal provided for it. As a result, the [CLS] token serves as a “register token” [24], which provides
some benefits for learning high quality representations. We train Theia from scratch (no pre-trained
DeiT [42] weights are applied).

Feature Translators. The feature translators are composed primarily of CNNs, with a linear
layer appended at the end to match the teacher’s representation dimension. Pure linear transforms
might not be able to map Theia-representations to all three teacher representations well, resulting in
a failure of learning (See Table 6a). Thus, we use three CNN layers to account for the fact that each
teacher model’s representations are very different from one another. Details are listed in Table 4,
where we show the architectural details of the translators used for our (student, teacher)-feature
pairs.

Table 4: Feature Translator configurations
Student ds × 14× 14 (Theia backbone=ViT-T, -S, -B) to Teacher dt × 16× 16 (CLIP, DINOv2, ViT)

ConvTranspose2d(ds, ds, kernel size=3, stride=1, output padding=0)
LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Flatten and Linear(ds, dt)

Student ds × 14× 14 to Teacher dt × 64× 64 (SAM and Depth-Anything)

ConvTranspose2d(ds, ds, kernel size=3, stride=2, padding=1
LayerNorm
ConvTranspose2d(ds, ds, kernel size=3, stride=2, output padding=1)
ReLU+LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Flatten and Linear(ds, dt)

Feature Normalization. Formally, the normalization is:

˜h(xj)c =
h(xj)c − µc

σc
, µc =

1

N

∑
j

h(xj)c, σc =

√∑
j (h(xj)c − µ)2

N
, (2)

where c is the channel index for the feature, j is the index of image sample, and N is the number of
samples in ImageNet.

B Training

We train Theia on 8 NVIDIA H100 GPUs. The main bottlenecks in training are the data transfer
speed between devices and the GPU memory bandwidth to load large spatial feature tensors, for
example, of size 1280×16×16 for ViT-H and 256×64×64 for SAM. We pre-compute the features
from all teacher models instead of doing inference on the fly. This approach requires extra storage
space to save all the features extracted from the VFMs, but significantly saves on training time and
avoids loading models with high GPU memory usage during training, such as Depth-Anything or
SAM (a batch size of 16 cannot fit into 80GB of GPU memory). All training configurations are
listed in Table 5.

Teacher VFM Features. We use the output representations at the last layer of ViT [5], CLIP [2],
and DINOv2 [7]. For SAM [10], we use its encoder output. For Depth-Anything [1], since it is
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Table 5: Theia Training Configuration
Hyperparameters

# GPUs 8
Batch size 16 / GPU (128 effective)
Learning rate (LR) 5e-4
LR Schedule Constant
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 50
Warm-up epochs 5
Warm-up LR schedule Linear (1e-2*LR)
Gradient clipping None
Image augmentation None
Total GPU hours 152

Table 6: More ablation studies on model design. All experiments are based on Theia-T. Scores are
the average performance from the MuJoCo subset of CortexBench.

(a) Feature Translator Architecture

CNNs Linear

78.9 ± 0.8 41.7 ± 1.6

(b) Training from Scratch vs Pre-trained Backbone

Training from Scratch Pre-trained Backbone

78.9 ± 0.8 80.8 ± 1.5

initialized from DINOv2, we use the latent representation before the final convolution layer. When
decoding SAM and Depth-Anything results from Theia-predicted representations, we send the pre-
dicted representations through the remaining layers of original models and obtain the output.

C Additional Ablation Studies

We conduct two additional ablation studies to verify design choices in the Theia model. The first
is a comparison between the current CNN-based feature translator and a linear feature translator.
In Table 6a, we find that using a Linear feature translator leads to a significant performance drop.
The second ablation studies whether Theia should be trained from scratch or be initialized using
the pre-trained DeiT [42] weights. In Table 6b, we find that using pre-trained weights improves the
downstream performance. This could be interpreted as the positive effect of incorporating knowl-
edge from an additional useful model into the distillation process. We would expect to see similar
performance improvements as more informative models are included during training.

D Full Experimental Settings

Table 7: Comparison of model architectures, training datasets, total number of images, objectives,
and training duration (epochs or GPU hours) across the models used in this paper. We use the
numbers reported in their original papers and - stands for we could not find such information.

Model Architecture Dataset(s) Total # Images Objective Training Duration

Theia ViT ImageNet-1k [23] 1.2M Distillation 50 epochs / 152 GPU hours on H100s
RADIO / E-RADIO [53] ViT/Self-designed DataComp-1B [73] 1.4B Distillation -

VC-1 [20] ViT/MAE [14] ImageNet-1k [23]+V [33, 54, 56, 55]+N 5.6M MAE [14] 182 epochs / over 10,000 GPU hours
MVP [19] ViT/MAE [14] ImageNet-1k [23]+Video [56, 55, 54] 1.9M MAE [14] 1600 epochs

R3M [17] ResNet [4] Ego4D [33] - Time Contrastive [35]+Vision-Language Alignment 1.5M steps
VIP [18] ResNet [4] Ego4D [33] 4.3M VIP [18] -

DINOv2 [7] ViT LVD-142M [7] 142M Self-distillation 22,016 GPU hours for DINOv2-g
CLIP [2] (Vision Encoder) ViT - 400M image-text contrastive learning [2] 73,728 GPU hours for CLIP ViT-L/14 on V100s

ViT [5] ViT ImageNet-21k [23] / JFT-300M 14M / 300M Classification 90 epochs / 7 epochs
DeiT [42] ViT ImageNet-1k 1.2M Classification+Distillation 300 epochs / 288 GPU hours on V100s
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D.1 Baseline Models

Theia and baseline models are trained on different sizes of datasets using different objectives. We
organize these details in Table 7 to provide a comprehensive comparison between them.

D.2 CortexBench

For all of our CortexBench experiments, we use the original setup [20], except for a few modifica-
tions to produce more reliable results. The modifications include:

• We increase the number of evaluation roll-outs from 10 (original) to 25 (ours) in DMC tasks.
The mean scores reported are from a total of 75 runs (25 per seed x 3).

• We remove the noise added to the policy network output in the CortexBench code base. The
noise causes minor performance degradation (about 1.0 on overall mean score for MuJoCo tasks)
compared to the version without noise.

• We modify the policy networks to take spatial feature inputs for MuJoCo and Trifinger tasks
(details follow and are presented in Table 8).

Note that prior models including R3M, VIP, MVP, and VC-1 are all re-run using the same settings
in MuJoCo tasks for the purposes of making a fair comparison when evaluating against Theia.

Policy Networks. For MuJoCo and Trifinger tasks we utilize a three-layer MLP for vector-based
representations, including ResNet models and Transformer models that use the [CLS] token. For
models that generate spatial feature maps, such as Transformers using spatial tokens, we introduce a
three-layer CNN before the MLP. For Habitat tasks, we exclusively benchmark models that produce
spatial feature maps and adopt the same policy network as used by Majumdar et al. [20]. Details can
be found in Table 8.

Table 8: Policy Networks for MuJoCo Tasks
Spatial Representation dimension d×H ×W

Conv2d(d, 256, kernel size=4, stride=2, padding=1)
ReLU
Conv2d(256, 256, kernel size=3, stride=2)
ReLU
Conv2d(256, 256, kernel size=3, stride=1)
Flatten and Linear(256, 256)
Linear(256, 256)
Linear(256, action dimension)

Vector Representation dimension d

Linear(d, 256)
Linear(256, 256)
Linear(256, action dimension)

For ImageNav task, we use the provided policy network from VC-1 [20] without modification. The
policy network is composed by a compression-layer (a CNN layer) to convert the spatial feature
map into a vector representation, followed by a 2-layer LSTM. Details are available in Appendix
A.2 in [20].

D.3 Real World Robot Learning

D.3.1 WidowX Arm Experiments

WidowX Arm Setup. The robot used for these experiments is a 6-degree-of-freedom (DOF) Wid-
owX 250s arm. The data collection and evaluation framework is based on [59].
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Table 9: Number of demonstrations and data collection method for the real-world experiments.
Task Door-Opening Pick-and-Place Toy-Microwave Cooking Drawer Opening

# Demos 48 63 101 50
Method Teleoperation Teleoperation Teleoperation Scripted Policy

Table 10: WidowX Policy Training Configuration
Hyperparameters

Batch size 16
Learning rate 1e-4
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 400
Loss SmoothL1

We train a behavior-cloning policy for each of the four evaluated setups and for each evaluated
baseline (see Table 2 and Figure 3); the training hyperparameters are shown in Table 10. To train
each of the three tasks performed with the WidowX robot, i.e., Door Opening, Pick-and-Place, and
Toy-Microwave Cooking, we collected human demonstrations by teleoperating the robot with a Vir-
tual Reality (VR) controller using the setup introduced in [59]; the number of collected demonstra-
tions for each of the tasks is reported in Table 9. The policy’s observations are RGB images and
robot joint states. Images are encoded by a pre-trained visual encoder and a randomly initialized,
unfrozen feature neck (“compression layer” [71]). We use the same feature neck as we did for the
previously discussed MuJoCo tasks in Section 4.2. The encoded vector is concatenated with the
robot’s joint states, which is fed into a 3-layer MLP with a hidden dimension of size 256. The policy
outputs end-effector commands, consisting of the end-effector’s delta positions (Cartesian coordi-
nates), delta rotations (Euler angles), and the gripper’s opening/closing command; such commands
are tracked by the robot at a frequency of 5 Hz. In addition to the hyperparameters listed in Table 10,
we vary the policy action prediction horizon depending of the difficulty of the task, i.e., at each step
the policy predicts the next 10, 10 and 5 actions for Door Opening, Toy-Microwave Cooking, and
Pick-and-Place, respectively.

In the following, we give more details about the WidowX tasks showcased in our work.

Door Opening. In this task the robot has to open a fridge door in a toy-kitchen setup; we identify
two stages to evaluate the task’s success: Open and Fully Open (see Figure 3). We place the robot
in front of the fridge and collect 63 demonstrations to train the behavioral cloning policy. We vary
the height (z-axis) of the robot base between 40-46cm, and the position (x-axis, parallel to the toy
kitchen) of the robot base; samples from the initial state distribution of the demonstrations are shown
in Figure 8. At inference time, we vary the height of the robot base among {40, 42, 43, 44, 46} cm,
and select between 5 randomly-picked positions along the x-axis (for all policies). For each robot
position, we evaluate the policy twice, for a total of 50 runs.

Pick-and-Place. In this task, the robot has to pick up a pink cup from a toy-sink and drop it into
a drying rack located on the left of the sink. We collected 48 demonstrations to train the policy,
where we varied the initial pose of the objects, as shown in Figure 8. During evaluation, we vary the
cup’s starting position amongst a total of 10 positions, of which 8 positions are equally distributed
about the perimeter, and 2 are in the center of the sink. We also roughly vary the direction of the
cup handle towards the left or the right. In total, we evaluate this task for 20 runs. There are two key
stages for which we measure the success rate: picking up the cup and successfully releasing it into
the drying rack.

Toy-Microwave Cooking. In this task, the robot has to pick up an object from within the pot on
the stovetop, putting the object into a toy-microwave, and closing the microwave. In each test, we
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Figure 8: Samples from the initial state distribution of the collected demonstrations for fridge door-
opening (top), pick-and-place (middle), and toy-microwave cooking (bottom). For each of these
tasks, the factors of variation are, respectively: the robot height and position with respect to the
door, the initial pose of the cup, and the initial position of the objects and object types.

Figure 9: Samples from the initial state distribution of the collected demonstrations for the Spot
drawer opening experiments. For this task, the factors of variation are the position and orientation
of the robot with respect to the drawer.

initialize the environment with the microwave door open. In this task, we collected 100 demonstra-
tions across 10 different toy-food objects (10 demonstrations per object) with randomized object
positions; examples from the initial state distributions of the collected demonstrations can be seen in
Figure 8. During evaluation, we test 40 runs on 10 seen, in-distribution objects (4 runs per object),
and 10 runs on 5 unseen, out-of-distribution objects (2 each), for a total of 50 runs. Furthermore,
we vary the position of the pot that holds the object. We point out that this task is characterized by a
longer horizon with respect to the other two; in fact, it has three different steps: 1. picking up the ob-
ject, 2. placing the object into the microwave, 3. and closing the microwave. In addition, the policy
needs to generalize to the different poses of the objects on the stove-top and to out-of-distribution
objects. The longer horizon and the variety of objects in this task make it particularly challenging,
so using frozen visual encoders was not effective (0% success rate). However, with fine-tuning, the
policies performed reasonably well.

D.3.2 Spot Experiments

Spot Setup. For the Spot experiments, we train a diffusion policy [72] conditioned on the encoded
image. The diffusion policy outputs the desired absolute positions and rotations of the end-effector
and the gripper state. Hyperparameters for the policies are shown in Table 11.
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Table 11: Spot Policy Training Configuration
Hyperparameters

Batch size 32
Learning rate 3e-4
Weight decay cosine
Optimizer Adam
Betas [0.9, 0.999]
Training Iterations 3000
Loss MSE
Policy Horizon 4

Drawer Opening. In this task, the robot has to open the top drawer of a cabinet. The policy
receives color images from a single forward facing camera mounted on the body of the Spot. A
fiducial marker is used to enable the robot to walk to a random position and orientation for each
trial. Samples from the distribution of random initial states are shown in Figure 9. The starting
locations vary by ±5 cm in x and y and ±0.2 radians in orientation. 50 successful demonstrations
were collected using a scripted policy and we evaluate each policy for 20 trials. A trial is considered
successful if the drawer is opened at least 10 cm. After each trial, a scripted policy uses the fiducial
marker to reset the environment and the robot moves to a new random location.

E More Visualizations of Translating to Teacher Model Features

DINOv2 SAM
Depth-

Anything DINOv2 SAM
Depth-

Anything

Theia

Input

Original 
VFMs

Theia

Original 
VFMs

Input

Figure 10: More examples of decoding Theia-representation to VFM outputs using feature translator
and original VFM decoders. We select robot images from our experiment recordings. Theia and
VFMs are not trained on these images.
We attach examples of decoding Theia-representations of 4 frames from a robot video into VFM
outputs in Figure 10. Note that Theia and VFMs are not trained on the robot images on which we
run this evaluation.

F Per-Task CortexBench Results

In Table 12 we report per-task scores of the models evaluated in Figure 4, over the MuJoCo subset
of tasks. In Table 13, we report per-task scores of all 14 tasks we evaluated in Cortexbench, corre-
sponding to Table 1. Note that we perform the evaluation following the original Cortexbench [20]
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protocol, where there are a total of 75 runs per MuJoCo task (we increased it from 30 to 75 for DMC
tasks), 100 runs in Reach Cube, and 4200 runs in ImageNav.

Table 12: Per-Task Results on the MuJoCo Subset.
Model Assembly Bin-picking Button-press Cheetah-run Finger-spin Reacher-easy Walker-stand Walker-walk Drawer-open Hammer Pen Relocate
Theia-T 90.00±8.49 74.00±8.49 80.00±0.00 63.78±1.65 69.76±0.97 79.18±3.87 90.59±1.60 81.06±1.92 100.00±0.00 98.00±2.83 74.00±2.83 46.00±2.83
Theia-S 94.67±9.24 70.67±11.55 72.00±14.42 67.37±4.25 70.46±0.80 83.25±5.19 92.24±0.75 82.62±1.91 100.00±0.00 97.33±4.62 81.33±2.31 50.67±6.11
Theia-B 93.33±8.33 76.00±4.00 82.67±6.11 67.67±1.92 70.84±1.37 83.23±7.05 92.55±3.67 81.33±3.11 100.00±0.00 98.67±2.31 78.67±2.31 46.67±2.31
DINOv2-L 93.33±8.33 80.00±8.00 61.33±2.31 45.66±5.69 70.95±0.25 74.24±16.02 92.84±4.55 83.70±1.34 100.00±0.00 100.00±0.00 77.33±4.62 36.00±0.00
DINOv2-B 92.00±8.00 76.00±14.42 72.00±4.00 48.02±3.71 70.77±0.59 75.84±2.63 92.64±1.81 83.82±2.26 100.00±0.00 98.67±2.31 68.00±4.00 33.33±2.31
DINOv2-S 93.33±8.33 68.00±8.00 81.33±12.22 45.43±5.33 70.70±0.81 59.86±7.73 88.21±1.90 77.62±6.32 100.00±0.00 98.67±2.31 77.33±4.62 36.00±4.00
CLIP-L 69.33±4.62 76.00±4.00 64.00±8.00 33.63±1.21 69.97±2.02 89.42±3.92 95.12±0.89 75.87±5.33 100.00±0.00 96.00±4.00 73.33±8.33 37.33±6.11
ViT-H 94.67±9.24 76.00±12.00 77.33±9.24 47.89±10.10 69.84±1.16 84.33±6.46 90.97±5.36 79.99±6.24 100.00±0.00 94.67±2.31 56.00±0.00 41.33±4.62
ViT-L 96.00±5.66 54.00±25.46 81.60±3.58 50.32±5.24 69.54±0.80 84.49±3.26 89.43±2.30 77.43±1.80 100.00±0.00 96.00±3.27 68.00±3.27 41.60±8.29
ViT-B 96.00±6.93 74.67±10.07 76.00±10.58 46.28±5.32 72.05±1.23 73.71±0.80 77.13±6.50 69.75±3.36 100.00±0.00 96.00±4.00 68.00±0.00 32.00±4.00
ViT-S 93.33±8.33 77.33±2.31 61.33±6.11 42.99±1.13 70.71±0.68 70.46±2.59 88.34±2.63 67.83±4.00 100.00±0.00 90.67±9.24 68.00±4.00 37.33±4.62
ViT-T 93.33±8.33 82.67±4.62 65.33±10.07 39.02±1.47 71.45±1.07 71.13±3.24 84.05±0.84 70.74±3.03 100.00±0.00 84.00±6.93 60.00±10.58 25.33±4.62
VC-1-L-sp 85.33±8.33 66.67±12.22 56.00±8.00 66.88±6.66 71.19±0.67 70.67±8.36 93.43±6.08 83.28±2.40 100.00±0.00 93.33±2.31 68.00±0.00 24.00±8.00
CDV 73.33±24.44 74.40±11.87 30.67±39.26 50.53±12.08 71.94±1.07 71.60±17.03 94.85±1.27 78.36±5.72 100.00±0.00 93.60±6.07 75.33±5.89 39.33±10.25
RADIO 96.00±6.93 84.00±8.00 82.67±12.86 35.92±1.59 71.98±1.41 78.46±6.50 89.06±2.42 81.33±4.91 100.00±0.00 98.67±2.31 68.00±0.00 40.00±6.93
E-RADIO 94.67±9.24 82.67±2.31 80.00±4.00 57.37±2.27 69.68±1.05 75.59±1.29 91.73±2.03 80.32±2.06 100.00±0.00 100.00±0.00 66.67±12.86 45.33±2.31
MVP-L-sp 93.33±8.33 73.33±4.62 82.67±10.07 68.07±1.71 71.03±2.10 69.87±6.75 88.44±4.21 80.14±1.50 100.00±0.00 97.33±2.31 77.33±12.22 26.67±11.55
MVP-L 94.67±9.24 82.67±9.24 89.33±8.33 34.62±5.83 68.63±2.02 67.95±3.18 74.50±1.65 48.04±1.37 100.00±0.00 88.00±6.93 62.67±6.11 20.00±4.00
R3M 96.00±6.93 92.00±4.00 68.00±4.00 55.88±1.12 70.65±0.34 82.37±3.70 88.88±2.70 69.52±4.94 100.00±0.00 98.67±2.31 73.33±2.31 58.67±4.62
VIP 93.33±8.33 70.67±8.33 76.00±4.00 45.10±4.02 69.02±0.67 68.08±3.45 78.50±2.49 63.52±1.40 98.67±2.31 96.00±4.00 73.33±6.11 29.33±10.07

G Analysis of Visual Representations

Entropy of the Representation Norm Distribution. Given N representations produced by en-
coding N images per model, where each representation contains P spatial tokens, we discretize the
distribution of token norms over all N×P tokens by using a histogram. We normalize the count
of each bin in histogram by the total number of tokens to obtain the probabilities of each bin. We
then calculate the Shannon entropy, given by −

∑
i pi log(pi). We find that the distilled models

have higher entropy than the regular models, so we divide them into two distinct groups. Results
are plotted as model performance vs entropy on the MuJoCo tasks. We attach the full version of
plot presented on the left of Figure 7 here in Figure 11, including two plots corresponding to each
category of models and one plot for all models.

At the top of Figure 12, we find that both CLIP and VC-1 have high-norm outlier tokens. To
better visualize the values of normal tokens, we use the median of norm values to clip the values.
Specifically, we clip the norm values to range [0, 2 ∗ median] and visualize the clipped norm values
on the bottom of Figure 12. We find that the high-norm tokens are still not task-relevant.

In Figure 13, we attach the feature norm map of all other models. Among those, we find that
MVP [19], which performs well on CortexBench, also produces features without outlier tokens.
Feature norms from Depth-Anything [1] and SAM [10], in contrast, have low diversity.

We investigated the distributions of the feature norms that could give more information. Plots in
Figure 14 we show the histogram of the feature norm entropy of 4 selected models: ViT-B, DINOv2-
B, VC-1-B, and Theia-B (refered to as rvfm deit base 4features in the legend).

We find that Theia has the most balanced distribution of the feature norm, while the others are long-
tailed. ViT-B has two peaks in the histogram. VC-1 is extremely centered and heavily long-tailed.
DINOv2 is relatively less long-tailed than ViT-B and VC-1, and has a relatively nicer distribution
around the median value.

PCA Explained-Variance Ratio of Representations. Similar to the entropy analysis, given N×P
spatial token representations, we apply PCA to them and extract the explained-variance ratio (EVR)
of each latent dimension. We calculate and plot the cumulative sum of EVRs, as well as calculate
the Area Under the Curve (AUC) of cumulative sum of the EVR. When comparing Theia-B with
ViT-B, DINOv2-B and VC-1-B (Figure 15), we find that Theia-B has the lowest AUC and the
best MuJoCo performance, while VC-1 has the highest AUC and the worse MuJoCo performance
amongst these 4 models. The higher AUC is caused by one or few principle components that have
very high EVRs, indicating that these components are capturing the majority of the variance of the
feature representations. This means that less information is encoded within such representations. In
contrast, the Theia-representation has a low AUC which we believe is due to the rich information
that has been encoded within the latent space.
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Table 13: Per-task results on CortexBench (excluding Move Cube, ObjectNav, and MobilePick due
to reproducibility issues).

Model Assembly Bin-picking Button-press Cheetah-run Finger-spin Reacher-easy Walker-stand Walker-walk Drawer-open Hammer Pen Relocate Reach-cube ImageNav
Theia-B 93.33±8.33 76.00±4.00 82.67±6.11 67.67±1.92 70.84±1.37 83.23±7.05 92.55±3.67 81.33±3.11 100.00±0.00 98.67±2.31 78.67±2.31 46.67±2.31 86.19±0.11 59.3±0.7
VC-1-L-sp 85.33±8.33 66.67±12.22 56.00±8.00 66.88±6.66 71.19±0.67 70.67±8.36 93.43±6.08 83.28±2.40 100.00±0.00 93.33±2.31 68.00±0.00 24.00±8.00 84.79±0.63 70.3±0.7
E-RADIO 94.67±9.24 82.67±2.31 80.00±4.00 57.37±2.27 69.68±1.05 75.59±1.29 91.73±2.03 80.32±2.06 100.00±0.00 100.00±0.00 66.67±12.86 45.33±2.31 87.81±0.12 53.0±0.7
MVP-L-sp 93.33±8.33 73.33±4.62 82.67±10.07 68.07±1.71 71.03±2.10 69.87±6.75 88.44±4.21 80.14±1.50 100.00±0.00 97.33±2.31 77.33±12.22 26.67±11.55 87.54±0.2 68.1±0.7
R3M 96.00±6.93 92.00±4.00 68.00±4.00 55.88±1.12 70.65±0.34 82.37±3.70 88.88±2.70 69.52±4.94 100.00±0.00 98.67±2.31 73.33±2.31 58.67±4.62 86.5 30.6±0.7
VIP 93.33±8.33 70.67±8.33 76.00±4.00 45.10±4.02 69.02±0.67 68.08±3.45 78.50±2.49 63.52±1.40 98.67±2.31 96.00±4.00 73.33±6.11 29.33±10.07 86.2 48.8±0.8

However, when extending the scope to encompass all the models we evaluated (Figure 16 left), we
find that the AUC of the EVR does not have a strong correlation with robot learning performance.

Cosine Similarity of Representations. We also use cosine similarity to analyze the representa-
tions from different models by first calculating the mean of all representations and then computing
cosine similarity between each representation and this mean representation. Results are shown on
the right of Figure 16, which shows very weak correlation between cosine similarity and perfor-
mance on CortexBench.

H Linear Probing on ImageNet

In addition to robot learning, we evaluate the Theia-representation on vision tasks to show to how
well such abilities are maintained after the distillation process. For example, to evaluate image
classification performance we apply linear probing on the Theia-representation to classify images
from ImageNet-1k [23]. We use mean pooling of the Theia-representation (i.e. spatial tokens) and
the same training schedule as MAE [14]. Results are shown in Table 14, where we find that Theia
outperforms MAE [14] at the same model size, but is not comparable to SOTA results from models
like DINOv2 [7].

Table 14: ImageNet-1k [23] evaluation accuracy using linear probing.
Model Accuracy

Theia-B 72.1%
Theia-B (initialized from DeiT-B [42] weights) 75.2%

MAE (ViT-B) [14] 67.5%
DINOv2 [7] (ViT-L) 84.5%

I Probing 3D-awareness of Theia-representation

We evaluate Theia-representation on 3D awareness to show the learned diverse vision knowledge
in the representation. In particular, we adopt probe3D [74], an evaluation toolbox to investigate the
3D-awareness of pretrained models. This evaluation includes Monocular Depth Estimation, Surface
Normal Estimation, and Multiview Correspondence. We present the evaluation results in Tables 15,
16 and 17, and we summarize them here:

• Theia achieves the third best Depth Estimation performance among over 10 types of vision
models (only worse than DeiT-III and DINOv2 models) (Table 2 in Appendix of probe3D [74],
NYU dataset).

• Theia achieves comparable performance as the best performing model, DINOv2, on Multiview
Correspondence on ScanNet (Table 4, Block3 in Appendix of probe3D [74]).

• Theia has better Surface Normal Estimation performance than CLIP (Table 3 in Appendix of
probe3D [74], NYU dataset).

We note that the Theia model is trained only on ImageNet with 224x224 resolution images, while
many baseline models in this benchmark are trained on billions of images and higher resolutions.
Theia achieves better performance than models with similar training data and resolution.
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Figure 11: Full results of feature norm entropy.

Table 15: Depth Estimation on
NYU dataset

Model δ1 δ2 δ3 RMSE

Theia 0.8420 0.9699 0.9929 0.4465

Table 16: ScanNet Multi-view
Correspondence

Model θ150 θ3015 θ6030 θ18060

Theia 47.88 37.47 24.78 13.18

Table 17: Surface Normal Esti-
mation on NYU dataset

Model 11.25◦ 22.5◦ 30◦ RMSE

Theia 30.22 54.22 65.13 33.59
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Figure 12: Feature norm map visualizations of CLIP and VC1, original (top) and with high-norm
outlier values clipped (bottom)

Figure 13: Feature norm map visualizations of ViT [5], DINOv2 [7], MVP [19], Depth-
Anything [1], SAM [10], RADIO [53], and E-RADIO [53].

J Generalization Evaluation

We evaluate Theia-B and baseline models on a simulated benchmark, Factor-World [75], to test
the generalization ability of the pre-trained visual representations. We use the Door-Open task from
Factor-World benchmark environment, for which we collected 100 trajectories across 20 randomized
environments. We trained the policies using the same policy head that we use in CortexBench
MuJoCo tasks (Table 8), and we evaluated the generalization ability when varying each of 6 factors
of variations over 20 different runs controlled by one factor at a time. In Table 18, we report the
success rates of the baselines when varying each factor. These results show that Theia-B has the best
generalization abilities compared to R3M, E-RADIO, and MVP.
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Figure 14: Distrubtions of feature norms. From top to bottom: 4 models on the same plot, ViT-B,
DINOv2-B, VC-1-B, and Theia-B.
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theia_base

Figure 15: Cumulative sum of PCA Explained Variance Ratio of features from ViT-B, DINOv2-B,
VC-1-B, and Theia-B.

Figure 16: PCA explained variance ratio-AUC (left) and cosine similarity (right) vs MuJoCo per-
formance of many models evaluated.

Table 18: Generalization evaluation on Factor-World.
Model Light Table Texture Table Pose Camera Pose Floor Texture Arm Pose
Theia-B 100% 90% 100% 90% 100% 55%
E-RADIO 100% 85% 80% 90% 100% 40%
MVP-L 100% 50% 20% 70% 100% 45%
R3M 100% 35% 70% 90% 100% 50%

25


	Introduction
	Related Work
	Visual Representations for Robot Learning
	Vision Foundation Models
	Knowledge Distillation in Vision Models

	Method
	Rich Spatial Representation
	Training

	Experiments
	Benchmark and Settings
	Simulation Results
	Real World Robot Learning
	Ablation Studies
	Qualitative Visualizations

	What Makes Visual Representations Good for Robot Learning?
	Conclusion
	Theia Model Architecture
	Training
	Additional Ablation Studies
	Full Experimental Settings
	Baseline Models
	CortexBench
	Real World Robot Learning
	WidowX Arm Experiments
	Spot Experiments


	More Visualizations of Translating to Teacher Model Features
	Per-Task CortexBench Results
	Analysis of Visual Representations
	Linear Probing on ImageNet
	Probing 3D-awareness of Theia-representation
	Generalization Evaluation

