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Abstract

Data distillation and coresets have emerged as popular approaches to generate
a smaller representative set of samples for downstream learning tasks to handle
large-scale datasets. At the same time, machine learning is being increasingly
applied to decision-making processes at a societal level, making it imperative
for modelers to address inherent biases towards subgroups present in the data.
While current approaches focus on creating fair synthetic representative samples
by optimizing local properties relative to the original samples, their impact on
downstream learning processes has yet to be explored. In this work, we present fair
Wasserstein coresets (FWC), a novel coreset approach which generates fair synthetic
representative samples along with sample-level weights to be used in downstream
learning tasks. FWC uses an efficient majority minimization algorithm to minimize
the Wasserstein distance between the original dataset and the weighted synthetic
samples while enforcing demographic parity. We show that an unconstrained
version of FWC is equivalent to Lloyd’s algorithm for k-medians and k-means
clustering. Experiments conducted on both synthetic and real datasets show that
FWC: (i) achieves a competitive fairness-utility tradeoff in downstream models
compared to existing approaches, (ii) improves downstream fairness when added
to the existing training data and (iii) can be used to reduce biases in predictions
from large language models (GPT-3.5 and GPT-4).

1 Introduction

In the last decade, the rapid pace of technological advancement has provided the ability of collecting,
storing and processing massive amounts of data from multiple sources [65]. As the volume of
data continues to surge, it often surpasses both the available computational resources as well as the
capacity of machine learning algorithms. In response to this limitation, dataset distillation approaches
aim to reduce the amount of data by creating a smaller, yet representative, set of samples; see [80, 40]
for comprehensive reviews on the topic. Among those approaches, coresets provide a weighted subset
of the original data that achieve similar performance to the original dataset in (usually) a specific
machine learning task, such as clustering [26, 21], Bayesian inference [11], online learning [9] and
classification [16], among others.

In tandem with these developments, the adoption of machine learning techniques has seen a surge in
multiple decision-making processes that affect society at large [69, 81]. This proliferation of machine
learning applications has highlighted the need to mitigate inherent biases in the data, as these biases
can significantly impact the equity of machine learning models and their decisions [14]. Among many
definitions of algorithmic fairness, demographic parity is one of the most prominently used metric
[29], enforcing the distribution of an outcome of a machine learning model to not differ dramatically
across different subgroups in the data.
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Current methodologies for generating a smaller set of fair representative samples focus on the local
characteristics of these samples with respect to the original dataset. For instance, [13, 30, 4, 24]
obtain representative points by clustering while enforcing each cluster to include the same proportion
of points from each subgroup in the original dataset. In another line of work, [33, 44, 53, 72, 12]
create representative points by ensuring that points in the original dataset each have at least one
representative point within a given distance in the feature space. While these methods can successfully
reduce clustering cost and ensure a more evenly spread-out distribution of representative points in the
feature space, it is unclear whether such representative samples can positively affect performance
or discrimination reduction in downstream learning processes. As the induced distribution of the
representative points might be far away from the original dataset distribution, downstream machine
learning algorithm might lose significant performance due to this distribution shift, without necessarily
reducing biases in the original data (as we also demonstrate empirically in our experiments).

Contributions In this work, we introduce Fair Wasserstein Coresets (FWC), a novel coreset ap-
proach that not only generates synthetic representative samples but also assigns sample-level weights
to be used in downstream learning tasks. FWC generates synthetic samples by minimizing the Wasser-
stein distance between the distribution of the original datasets and that of the weighted synthetic
samples, while simultaneously enforcing an empirical version of demographic parity. The Wasserstein
distance is particularly suitable to this task due to its various connections with downstream learning
processes and coresets generation (Section 2). Our contributions are as follows:

1. we show how the FWC optimization problem can be reduced to a nested minimization
problem in which fairness constraints are equivalent to linear constraints (Section 3);

2. we develop an efficient majority minimization algorithm [56, 39] to solve the reformulated
problem (Section 4). We analyze theoretical properties of our proposed algorithm and FWC
(Section 5) and show that, in the absence of fairness constraints, our algorithm reduces to an
equivalent version of Lloyd’s algorithm for k-means and k-medians clustering, extending its
applicability beyond fairness applications (Section 6);

3. we empirically validate the scalability and effectiveness of FWC by providing experiments
on both synthetic and real datasets (Section 7). In downstream learning tasks, FWC result
in competitive fairness-utility tradeoffs against current approaches, even when we enhance
the fairness of existing approaches using fair pre-processing techniques, with an average
disparity reduction of 53% and 18%, respectively. In addition, we show FWC can correct
biases in large language models when passing coresets as examples to the LLM, reducing
downstream disparities by 75% with GPT-3.5 [55] by 35% with GPT-4 [1]. Finally, we
show FWC can improve downstream fairness-utility tradeoffs in downstream models when
added to the training data (via data augmentation, see Appendix C.2).

Finally, we refer the reader to the Appendix for more details on the optimization problem (Section A),
theoretical proofs (Section B) and further experiments and details (Section C).

2 Background and Related Work

Notation We indicate the original dataset samples {Zi}ni=1, with Zi = (Di, Xi, Yi) ∈ Z =
(D×X ×Y) ⊆ Rd, where X indicates the non-sensitive features, D indicates one or more protected
attributes such as ethnicity or gender, and Y is a decision outcome. In this work, we assume D
and Y to be discrete features, i.e., to have a finite number of levels so that |D| ≪ n and |Y| ≪ n.
For example, Y might indicate a credit card approval decision based on credit history X , with
D denoting sensitive demographic information. Given a set of weights {θ}ni=1, define pZ;θ the
weighted distribution of a dataset {Zi}ni=1 as pZ;θ = 1

n

∑n
i=1 θiδZi , where δx indicates the Dirac

delta distribution, i.e., the unit mass distribution at point x ∈ X . Using this notation, we can
express the empirical distribution of the original dataset by setting θi = ei = 1 for any i, i.e.,
pZ;e = 1

n

∑n
i=1 eiδZi . For a matrix A,A⊤ denotes its transpose. For two vectors (or matrices)

⟨u, v⟩ def.
=
∑
i uivi is the canonical inner product (the Frobenius dot-product for matrices). We define

1m
def.
= (1, . . . , 1) ∈ Rm+ .
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Wasserstein distance and coresets Given two probability distributions p1 and p2 over a metric
space X , the Wasserstein distance, or optimal transport metric, quantifies the distance between the
two distributions as solution of the following linear program (LP):

Wc(p1, p2)
def.
= min

π∈Π(p1,p2)

∫
X×X

c(x1, x2)dπ(x1, x2), (1)

with Π(p1, p2) indicating the set of all joint probability distributions over the product space X × X
with marginals equal to (p1, p2) [35]. The operator c(x, y) represents the “cost” of moving probability
mass from x and y, and reduces to a matrix C if the underlying metric space X is discrete.

The Wasserstein distance has several connections with downstream learning processes and coresets.
Firstly, the higher the Wasserstein distance between the weighted representative samples pẐ;θ and
the original dataset pZ;e, the higher the distribution shift, the more degradation we might expect in
terms of downstream learning performance [62]. Secondly, the Wasserstein distance between two
probability distributions can also be used to bound the deviation of functions applied to samples from
such distributions. Define the following deviation:

d(pẐ;θ, pZ;e)
def.
= sup

f∈F

∣∣∣Ez∼pẐ;θ
f(z)− Ez∼pZ;e

f(z)
∣∣∣ .

WhenF is the class of Lipschitz-continuous functions with Lipschitz constant equal or less than 1, the
deviation d(pẐ;θ, pZ;e) is equal to 1-Wasserstein distanceW1(pẐ;θ, pZ;e) [66, 74]. The connection
with learning processes and the downstream deviation d(p(X̂,D̂);θ, p(X,D);e) is immediate when
considering Lipschitz continuous classifiers with Lipschitz constant less than 1 (such as logistic
regression or Lipschitz-constrained neural networks [2])3. For other classifiers, we note that the
1-Wasserstein distance still bounds the downstream discrepancy: in Proposition 2.1 we show that the
1-Wasserstein distance bounds the downstream discrepancy for ReLu-activated multilayer perceptrons
(MLPs), which we use in our experiments on real datasets (Section 7).

Proposition 2.1. Let gψ ∈ GK be the class of K-layer multilayer perceptrons with ReLu activations.
Then, the downstream discrepancy in downstream performance of gψ applied to samples from
p(X̂,D̂);θ and p(X,D);e is bounded by the 1-Wasserstein distance :

d(p(X̂,D̂);θ,p(X,D);e) =

sup
gψ∈GK

∣∣∣E(x,d)∼p(X̂,D̂);θ
gψ(x, d)− E(x,d)∼p(X,D);e

gψ(x, d)
∣∣∣ ≤ LkW1(pẐ;θ, pZ;e), (2)

where Lk is the MLP Lipschitz constant upper bound defined in [75, Section 6.1, Equation (8)].

We point out that minimizing the Wasserstein distance, hence bounding the downstream performance
as in Equation (2), is equivalent to the definition of a measure coresets proposed by [15]. The
Wasserstein distance is also connected to coresets in the sense of the best discrete approximation
of a continuous distributions. Considering a feature space endowed with a continuous distribution,
minimizing the p-Wasserstein distance across all the distributions of size m is topologically equivalent
to identify the samples of size m that provide the best Voronoi tessellation of the space in Lp sense
[57, 41]. Although other definitions of coresets using Wasserstein distance have been proposed in the
literature, they require either to solve the underlying optimal transport problems or the knowledge
of the downstream classifier and loss function [15, 46, 82, 43]. FWC is agnostic to any downstream
model or loss function, and uses an efficient implementation that does not actually incur in the usual
high cost connected to optimal transport. By adapting the approach proposed by [77], we solve an
equivalent re-formulated linear optimization problem, which is more computationally tractable than
classic approaches such as the simplex or the interior point method (see Section 4.1).

Demographic parity Also known as statistical parity, demographic parity (DP) imposes the
decision outcome and protected attributes to be independent [18]. Using a credit card approval

3In such cases, d(p(X̂,D̂);θ, p(X,D);e) = W1(p(X̂,D̂);θ, p(X,D);e) ≤ W1(pẐ;θ, pZ;e), see Lemma B.1.
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decision example, demographic parity enforces an automatic decision process to approve similar
proportion of applicants across different race demographics. DP is one of the most extensively
analyzed fairness criterion; we refer the reader to [29] for a review. In this work, we use the
demographic parity definition by [10], which enforces the ratio between the conditional distribution
of the decision outcome across each subgroups p(y|D = d) and the marginal distribution of the
decision outcome p(y) to be close to 1 in a given dataset. We refer to the “empirical version” of
demographic parity to indicate that the conditional and marginal distributions are quantities estimated
from the data. Note that the demographic parity definition we adopt enforces a condition on the
weighted average of the conditional distributions across groups, which is different from a more
recent approach of using Wasserstein distance, and specifically Wasserstein barycenters, to enforce
demographic parity [25, 32, 23, 78].

3 FWC: Fair Wasserstein Coresets

Given a dataset {Zi}ni=1, our goal is to find a set of samples {Ẑj}mj=1 and weights {θj}mj=1 such
that m ≪ n and that the Wasserstein distance between pZ;e and pẐ;θ is as small as possible. In
addition, we use the fairness constraints proposed by [10] to control the demographic parity violation
for the pẐ;θ distribution. Let pẐ;θ(y|d) indicate the conditional distribution pẐ;θ(Ŷ = y|D̂ = d).
Imposing a constraint on the demographic disparity violation then reduces to requiring the conditional
distribution under the weights {θi}i∈[n] to be close to a target distribution pYT across all possible
values of the protected attributes D,

J
(
pẐ;θ(y|d), pYT (y)

)
=

∣∣∣∣∣pẐ;θ(y|d)
pYT (y)

− 1

∣∣∣∣∣ ≤ ϵ, ∀ d ∈ D, y ∈ Y, (3)

where ϵ is a parameter that determines the maximum fairness violation, and J(·, ·) is the probability
ratio between distributions as defined in [10].

Using the notation above, our goal can then be formulated as the following optimization problem:

min
θ∈∆m,Ẑ∈Zm

Wc(pẐ;θ, pZ;e)

s.t. J
(
pẐ;θ(y|d), pYT (y)

)
≤ ϵ, ∀ d ∈ D, y ∈ Y,

(4)

where ∆m indicates the set of valid weights {θ ∈ Rm+ :
∑m
i=1 θi = m}. Note that the optimization

problem in (4) shares some similarities with the optimization problem in [77] in using the Wasserstein
distance as a distance metric between distributions and using (3) to enforce demographic parity.
However, [77] only provide sample-level integer weights for the original dataset and do not generate
any new samples, while our approach provides a separate set of samples {Ẑj}mj=1 with associated
real-valued weights {θj}mj=1, with m≪ n.

We now take the following steps to solve the optimization problem in (4): (i) we reduce the dimen-
sionality of the feasible set by fixing Ŷ and D̂ a priori, (ii) we formulate the fairness constraints
as linear constraints, (iii) we add artificial variables to express the objective function and (iv) we
simplify the optimization problem to minimizing a continuous non-convex function of the {X̂j}mj=1.

Step 1. Reduce the feasible set of the optimization problem As in practice all possible Yi and
Di are known a priori, and there are only a limited number of them, we can avoid optimizing over
them and instead manually set the proportion of each combination of Ŷ and D̂. This reduces the
optimization problem feasible set only over ∆m and Xm. The following lemma shows that this in
fact does not affect the optimization problem:

Lemma 3.1. For any m > 0, the best fair Wasserstein coreset formed by m data points {Ẑi : i ∈ [m]}
is no better (i.e., the optimal Wasserstein distance value is no lower) than the best fair Wasserstein
coreset formed by m|D||Y| data points {(d,Xi, y)i : i ∈ [m], d ∈ D, y ∈ Y}.
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Hence, we simply set the proportions of {(D̂i, Ŷ )i}i∈[m] in the coresets to be similar to their
respective proportions in the original dataset. The optimization problem then reduces to

min
θ∈∆m,X̂∈Xm

Wc(pẐ;θ, pZ;e)

s.t. J
(
pẐ;θ(y|d), pYT (y)

)
≤ ϵ, ∀ d ∈ D, y ∈ Y ,

(5)

whose solutions are the features in the coreset {X̂j}mj=1 and the corresponding weights {θj}mj=1.

Step 2. Equivalent linear constraints Following [77], the fairness constraint in Equation (3) can
be expressed as 2|Y||D| linear constraints on the weights θ, as the disparity reduces to the following
for all d ∈ D, y ∈ Y:∑
i∈[m]:D̂i=d,Ŷi=y

θi ≤ (1+ ϵ) · pYT (y) ·
∑

i∈[m]:D̂i=d

θi ,
∑

i∈[m]:D̂i=d,Ŷi=y

θi ≥ (1− ϵ) · pYT (y) ·
∑

i∈[m]:D̂i=d

θi .

We can express these by using a 2|Y||D|-row matrix A as Aθ ≥ 0.

Step 3. Reformulate the objective function by introducing artificial variables When keeping
the samples X̂ fixed, we can follow [60] to derive an equivalent formulation of the Wasserstein
distance in the objective as a linear program with mn variables. By indicating the transportation cost
matrix C(X̂), we define its components as follows,

C(X̂)ij
def.
= c(Zi, Ẑj), for i ∈ [n], j ∈ [m] .

Note that C(X̂) is a convex function of X̂ when, e.g., using any Lp norm to define the transportation
cost. Therefore, now the problem (5) is equivalent to

min
X̂∈Xm,θ∈∆m,P∈Rn×m

⟨C(X̂), P ⟩

s.t. P1m =
1

n
· 1n, P⊤1n =

1

m
· θ, P ≥ 0, Aθ ≥ 0 .

(6)

Step 4. Reduce to an optimization problem of X̂ As from one of the constraints we get θ =
m · P⊤1n, we further simplify problem (6) as:

min
X̂∈Xm,P∈Rn×m

⟨C(X̂), P ⟩

s.t. P1m =
1

n
· 1n, P ≥ 0, AP⊤1n ≥ 0 .

(7)

Let F (C), as a function F of C, denote the optimal objective value of the following optimization
problem

min
P∈Rn×m

⟨C,P ⟩

s.t. P1m =
1

n
· 1n, P ≥ 0, AP⊤1n ≥ 0

(8)

and then problem (7) is equivalent to

min
X̂∈Xm

F (C(X̂)) . (9)

In (9) the objective is continuous but nonconvex with respect to X̂ . Once the optimal X̂⋆ is solved,
then the optimal P ⋆ of the problem (7) is obtained by solving problem (8) with C replaced with
C(X̂⋆). Finally, the optimal θ⋆ follows by the equation θ⋆ = m · (P ⋆)⊤1n. We now provide a
majority minimization algorithm for solving problem (9).
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4 Majority Minimization for Solving the Reformulated Problem

Majority minimization aims at solving nonconvex optimization problems, and refers to the process
of defining a convex surrogate function that upper bounds the nonconvex objective function, so that
optimizing the surrogate function improves the objective function [56, 39]. As the algorithm proceeds,
the surrogate function also updates accordingly, which ensures the value of the original objective
function keeps decreasing. Following this framework, we define the surrogate function g(·; X̂k) as
follows for the k-th iterate X̂k ∈ Xm:

g(X̂; X̂k)
def.
= ⟨C(X̂), P ⋆k ⟩ , (10)

in which P ⋆k is the minimizer of problem (8) with the cost C = C(X̂k)4.

With this surrogate function, Algorithm 1 summarizes the overall algorithm to minimize problem (9).
In each iteration of Algorithm 1, line 3 is straightforward since it only involves computing the new
cost matrix using the new feature vectors X̂k. We separately discuss how to solve the optimization
problems in lines 4 and 5 below.

Algorithm 1 Majority Minimization for Solving (9)

1: Initial feature vectors X̂k and k = 0
2: while True do
3: C ← C(X̂k); ▷ update the cost matrix C
4: P ⋆k ← optimal solution of problem (8); ▷ updating the surrogate function (Section 4.1)
5: X̂k+1 ← argminX̂∈Xm g(X̂; X̂k); ▷ updating feature vectors (Section 4.2)
6: if g(X̂k+1; X̂k) = g(X̂k; X̂k) then
7: θ⋆k ← m · (P ⋆k )⊤1n; ▷ if algorithm has converged, compute optimal weights
8: return X̂k, θ⋆k ▷ return coresets and sample-level weights
9: end if

10: k ← k + 1;
11: end while

4.1 Updating the Surrogate Function (Line 4)

To update the surrogate function, we need to solve problem (8), which is a large-scale linear program.
Rather than solving the computationally prohibitive dual problem we solve a lower-dimensional
dual problem by using a variant of the FairWASP algorithm proposed by [77]. We adapt FairWASP
for cases where m ̸= n to find the solution of (8) via applying the cutting plane methods on
the Lagrangian dual problems with reduced dimension5. We choose FairWASP over established
commercial solvers due to its computational complexity being lower than other state of the art
approaches such as interior-point or simplex method; see Lemma A.2 in Appendix A for more details.

4.2 Updating Feature Vectors (Line 5)

To update the feature vectors, we need to obtain the minimizer of the surrogate function g(X̂; X̂k),
i.e.,

min
X̂∈Xm

g(X̂; X̂k) . (11)

The above can be written as the following problem:

min
X̂j∈X :j∈[m]

∑
i∈[n]

∑
j∈[m]

c(Zi, Ẑj)Pij (12)

for P = P ⋆k , in which each component of P is nonnegative and Ẑj = (d̂j , X̂j , ŷj), for the known
fixed d̂j and ŷj . Furthermore, the matrix P is sparse, containing at most n non-zeros (as when

4We show this surrogate function is adequate, i.e., is convex and an upper bound of the original objective
function, in Section 5.

5As opposed to the scenario where m = n, which was tackled by [77].
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updating P ⋆k for problem (8), see Appendix A). Moreover, problem (12) can be separated into the
following m subproblems,

min
X̂j∈X

∑
i∈[n]

c(Zi, Ẑj)Pij , for j ∈ [m] . (13)

Each subproblem computes the weighted centroid of {Zi : i ∈ [n], Pij > 0} under the distance
function c. Therefore, (11) is suitable for parallel and distributed computing. Additionally, since the
cost matrix C(X̂) is a convex function of X̂ , each subproblem is a convex problem so gradient-based
methods could converge to global minimizers. Furthermore, under some particular conditions, solving
these small subproblems can be computationally cheap:

1. If X is convex and c(Z, Ẑ)
def.
= ∥Z − Ẑ∥22, then the minimizer of (13) is the weighted

average
∑
i∈[n] PijXi/

∑
i∈[n] Pij .

2. If X is convex and c(Z, Ẑ)
def.
= ∥Z − Ẑ∥1, then the minimizer of (13) requires sorting the

costs coordinate-wisely and finding the median.
3. If creating new feature vectors is not permitted and X = {Xi : i ∈ [n]}, solving (13)

requires finding the smallest
∑
i∈[n]:Pij ̸=0 c(Zi, (d̂j , X, ŷj))Pij for X within the finite set

X . The matrix P is highly sparse so this operation is not computationally expensive.

5 Theoretical Guarantees

In this section we provide theoretical insights on FWC complexity, convergence behavior of Algorithm 1
as well as generalizability of FWC performance on unseen test sets.

5.1 Computational Complexity

First, we consider the FairWASP variant used in Algorithm 1, line 4. The initialization requires
O(mn) flops and uses O(n|Y ||D|) space for storing the cost matrix. After that, the per-iteration
time and space complexities are both only O(n|Y ||D|). Lemma 5.1 analyzes the computational
complexity of our adaptation of the FairWASP algorithm when solving problem (8).
Lemma 5.1. With efficient computation and space management, the cutting plane method has a
computational complexity of

Õ
(
nm+ |D|2|Y|2n · log(R/ϵ)

)
(14)

flops and O(n|D||Y|) space. Here R denotes the size of an optimal dual solution of (8), and Õ(·)
absorbs m, n, |D|, |Y| in the logarithm function.

Hence, the overall complexity of FWC is Õ(mn + |D|2|Y|2n · log(R/ϵ)). Note that in practice,
both |D| and |Y| are very small compared with the coreset size m and dataset size n, so the overall
complexity is almost as low as O(mn).

5.2 Convergence Guarantees

First, we establish that our proposed surrogate function is indeed convex and a valid upper bound.
We then show Algorithm 1 converges to a first-order stationary point, within finite iterations if the
minimizer of problem (11) is unique. Note that because g(X̂; X̂k) = ⟨C(X̂), P ⋆k ⟩, the minimizer is
unique whenever the cost matrix C(·) is strongly convex.

Lemma 5.2. The function g(X̂; X̂k) is convex function of X̂ and a valid upper bound, i.e.,
g(X̂; X̂k) ≥ F (C(X̂)). This inequality holds at equality when X̂ = X̂k.

Theorem 5.3. The objective value is monotonically decreasing, i.e., F (C(X̂k+1)) ≤ F (C(X̂k))

for any k ≥ 0. And once the algorithm stops and C(X̂k) is smooth at X̂k, then X̂k is a first-order
stationary point of (9).
Theorem 5.4. When the minimizer of (11) is unique, Algorithm 1 terminates within finite iterations.
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5.3 Generalization Guarantees

Proposition 5.5 below bounds the distance and demographic parity between the FWC samples and the
true underlying distribution of the data, from which the original dataset of size n was observed. This
generalizes the performance of FWC to unseen test sets sampled from the data generating distribution.
Proposition 5.5. Let λ indicate the distance between pẐ;θ and pZ;e after convergence of FWC i.e.,
W(pẐ;θ, pZ;e) = λ. Let qZ be the true underlying distribution of the data supported over Rd, with
marginal distribution over y bounded away from zero, so that ρ = miny∈Y qZ(y) > 0. Then with
probability 1− α:

Wc(pẐ , qZ) ≤ λ+O(log(1/α)1/dn−1/d) (15)

sup
y∈Y,d∈D

J(pẐ(y|d), qY (y)) ≤
ϵ

ρ
+O

(√
log 2/α

nρ2

)
(16)

In addition, in Appendix B.1 we consider the task of learning using FWC samples. We show that the
error in downstream learning tasks can be seen as the sum of (i) the approximation error FWC samples
make with respect to the original dataset and (ii) how well Ŷ can be learnt from X̂ and D̂ from FWC
samples. However, as FWC samples {Ẑj}mj=1 are not i.i.d., standard sample complexity results in
e.g., empirical risk minimization, do not apply, highlighting the hardness in developing finite-sample
learning bounds in this setting.

6 An Alternative View: Generalized clustering algorithm

When the fairness constraints are absent, problem (8) reduces to:
minP∈Rn×m ⟨C,P ⟩
s.t. P1m = 1

n · 1n, P ≥ 0n×m .
(17)

The minimizer P ⋆ of (17) can be written in closed form. For each i ∈ [n], let Cij⋆i denote
a smallest component on the i-th row of C. Then the components of a minimizer P ⋆ can be
written as P ⋆ij = 1

n · I(j = j⋆i ) (where I is the indicator function). Hence, without fairness
constraints, FWC corresponds to Lloyd’s algorithm for clustering. Specifically, Lloyd’s algorithm
iteratively computes the centroid for each subset in the partition and subsequently re-partitions
the input based on the closeness to these centroids [42]; these are the same operations FWC
does in optimizing the surrogate function and solving problem (17). Thus, when c(x, y) is
correspondingly defined as ∥x − y∥1 or ∥x − y∥22, FWC corresponds to Lloyd’s algorithm applied
to k-medians or k-means problems, except the centroids have fixed values for D̂ and Ŷ (see Section 3).

Comparison with k-means and k-medoids FWC and Lloyds’ algorithm for k-means or k-median
share similar per-iteration complexity, with the main difference in complexity due to solving problem
(8). We solve this problem efficiently by utilizing a variant of the FairWASP approach by [77]
(Section 4.1), hence avoiding the usual complexity in solving optimal transport problems. As shown
in Section 5, the leading term in the runtime complexity isO(nm), which comes from calculating and
storing the cost matrix C. This level of complexity is the same as those in k-means and k-medoids. In
addition, from our experiments we also see that the per-iteration complexity of FWC is roughly linear
with the original dataset size n (see the runtime experiment in Section 7 and Appendix C).

7 Experiments

Runtime analysis We evaluate the runtime performance of FWC by creating a synthetic dataset
of dimension n and features of dimension p, with the goal of creating a coreset of size m (see
Appendix C.1 for details). We fix two out of the three parameters to default values (n,m, p) =
(5000, 250, 25) and vary the other across suitable ranges, to analyse the runtime and total number of
iterations. Figure 1, top left, and Table 2, in Appendix C.1, show the runtime and number of iterations
when increasing the dataset size n from 1,000 to 1,000,000, with averages and standard deviations
over 10 separate runs; both the runtime and number of iterations grow proportionally to the sample
size n. Figure 2 in Appendix C.1 also shows that requiring a larger coreset size m implies the need
of fewer iterations but longer iteration runtime, as more representatives need to be computed.
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Real datasets results We evaluate the performance of FWC on 4 datasets widely used in the
fairness literature [19]: (i) Adult [7], (ii) German Credit [28], (iii) Communities and Crime [64]
and (iv) Drug [20]. For each dataset, we consider 3 different coreset sizes m = 5%, 10%, 20%
(apart from the Adult dataset, in which we select m equal to 0.5%, 1% and 2% due to the large
dataset size). We compare our approach with: (a) Fairlets and IndFair, two fair clustering
approaches by [4] and [12], (b) K-Median Coresets, a coreset approach by [3], (c) k-means [42]
and k-medoids [45, 58], two classic clustering approaches and (d) Uniform Subsampling of the
original dataset. For FWC, we consider three different values of the fairness violation hyper-parameters
ϵ for the optimization problem in (5). We compute the fairness-utility tradeoff by first training a
2-layer multilayer perceptron (MLP) classifier with ReLu activations on the coresets created by
each approach and then evaluating the classifier demographic disparity (fairness) and AUC (utility).
Figure 1 shows the model with the best fairness-utility tradeoff across the three coreset sizes m, for
each approach. FWC obtains equal or better fairness-utility tradeoffs (smaller disparity at the same
level of utility, higher utility with the same disparity, or both) across all datasets, and performance
remains competitive even when using a fairness pre-processing approach [34]. Appendix C.2 includes
more experiments and details, which highlight that: (a) FWC consistently achieves coresets that
are closer in distribution to the original dataset with respect to the other methods and, although
not natively minimizing clustering cost, also provide competitive performance for smaller datasets
(Tables 3 and 4); (b) when added to the training data using the data augmentation schema proposed by
[68, Section 2.1] FWC generally either increase the performance or reduce the demographic disparity
in the downstream learning process.
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Figure 1: Top left: FWC runtime when changing the original dataset size n. Others: Fairness-
utility tradeoff on real datasets for a downstream MLP classifier, selecting the model with the best
fairness-utility tradeoff across three different coreset sizes m, with averages taken over 10 runs. FWC
consistently achieves a comparable/better tradeoff as shown by the Pareto frontier (dashed red line,
computed over all models and coreset sizes), even when adjusting the other coresets with a fairness
pre-processing technique [33]. See text and Appendix C.2 for more details.

Using FWC to improve fairness for LLM [76] evaluate GPT-3.5 and GPT-4 for fairness on predic-
tive tasks for the UCI Adult dataset in a zero and few shot setting. We use a similar evaluation setup
and use FWC in the few shot setting as examples and evaluate the results for the gender protected
attribute. Specifically, we transform the tabular data into language descriptions, and ask GPT-3.5
Turbo and GPT-4 to perform classification tasks on it. We select 200 samples to construct the test
set and use a set of 16 samples found using FWC as examples. Further details on this experiment are
provided in the appendix. The results are shown in Table 1. Examples provided by FWC help reduce
demographic disparity more than providing balanced few shot examples, while losing on predictive
accuracy (note that the drop in accuracy is similar to the drop observed in [76] and is representative of
the fairness-utility trade-off). Owing to the token limitation of LLM’s, these representative coresets
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can evidently be valuable to provide a small set of samples that can help mitigate bias. When
accounting for the standard deviations for demographic parity in Table 1, FWC reduces the LLM
bias when compared to zero shot prompting for GPT-4 across all runs. For GPT-3.5 Turbo, while
the average disparity is reduced across runs, such consistency is indeed not observed, owing to a
diverse set of outputs from the large language model. Due to limited availability of computational
resources (associated with querying these models), we leave a more thorough evaluation across
different datasets and models to future work.

Table 1: Using the same setup as in [76], we use GPT-3.5 Turbo and GPT-4 LLM’s for fairness
evaluations, with a test set of 200 samples with 0.5 base parity (bp = 0.5). Few Shot - FWC is used
to provide sixteen examples with weights to the model as examples. Accuracy and demographic
disparity (DP) are based on the resulting predictions from GPT-3.5 and GPT-4 models.

Adult Dataset Zero Shot Few Shot (bp = 0) Few Shot (FWC)
Accuracy DP Accuracy DP Accuracy DP

GPT-3.5 Turbo 53.55 ± 0.87 0.040 ± 0.017 57.99 ± 1.88 0.019 ± 0.015 55.02 ± 1.26 0.010 ± 0.03
GPT-4 76.54 ± 1.63 0.42 ± 0.016 74.39 ± 2.86 0.33 ± 0.09 65.20 ± 0.85 0.27 ± 0.04

8 Discussion and Conclusions

We introduce FWC, a novel coreset approach that generates synthetic representative samples along with
sample-level weights for downstream learning tasks. FWC minimizes the Wasserstein distance between
the distribution of the original datasets and that of the weighted synthetic samples while enforcing
demographic parity. We demonstrate the effectiveness and scalability of FWC through experiments
conducted on both synthetic and real datasets, as well as reducing biases in LLM predictions (GPT 3.5
and GPT 4). Future extensions include: (i) targeting different fairness metrics such as equalized odds
[27, 49] as well as robustness of fairness-performance tradeoff over distribution shifts [48, 67], (ii)
exploring privacy and explainability properties of FWC [50, 51], (iii) utilizing coresets for accelerating
gradient descents algorithms and test their convergence [47, 70] (iv) reformulating the optimization
framework to target deep neural network pruning [52, 54] and (v) investigate applications of fair
synthetic data in the financial sector [61].

Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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Appendix

A Details on Updating the Surrogate Function (line 4 of Algorithm 1)

To update the surrogate function, we need to solve problem (8), which is a huge-scale linear program
with O(n) constraints and O(mn) nonnegative variables. In this work, we adapt FairWASP [77] for
cases where m ̸= n, as opposed to the scenario where m = n, which was tackled by [77]. Before
showing the main idea of the algorithm, we rephrase a useful lemma for doing linear minimization
on Sn,m

def.
= {P ∈ Rn×m : P1m = 1

n · 1n, P ≥ 0}.

Lemma A.1. For the function G(C)
def.
= maxP∈Sn,m⟨C,P ⟩, it is a convex function of C in Rn×m.

For each i ∈ [n], let Cij⋆i denote a largest component on the i-th row of C, then G(C) = 1
n

∑n
i=1 Cij⋆i .

Define the components of P ⋆ as follows:

P ⋆ij =

{
0 if j ̸= j⋆i
1
n if j = j⋆i

(18)

and then P ⋆ ∈ argmaxP∈Sn,m⟨C,P ⟩ and P ⋆ ∈ ∂G(C).

Proof. The proof of the above lemma is equivalent with that of Lemma 1 of [77] in the case when
m ̸= n, which can be extended directly.

With this lemma, now we show how to efficiently solve problem (8) via its dual problem. Although
(8) is of large scale and computationally prohibitive, it is equivalent to the following saddle point
problem on the Lagrangian:

min
P∈Sn,m

max
λ∈Rh+

L(P, λ)
def.
= ⟨C,P ⟩ − λ⊤AP⊤1n (19)

where h is the number of rows of A, which is at most 2|Y||D|. It should be mentioned that h is
significantly smaller than mn; for example, for classification tasks with only two protected variables,
h is no larger than 8, independent of the number of samples or features. Since L(·, ·) is bilinear, the
minimax theorem guarantees that (19) is equivalent to maxλ∈Rh+ minP∈Sn,m L(P, λ). This is further
equal to the dual problem:

max
λ∈Rh+

−
[
G(λ)

def.
= max

P∈Sn,m

〈 h∑
j=1

λj1na
⊤
j − C,P

〉]
, (20)

in which a⊤j denotes the j-th row of A. Note that the problem (20) has much fewer decision variables
than that of (19) and Lemma A.1 ensures the function G(·) is convex and has easily accessible
function values and subgradients. Therefore, directly applying a cutting plane method has low
per-iteration complexity and solves the problem (20) in linear time. We include the details on the
cutting plane method in Section A.1 below. Finally, the primal optimal solution of (8) can be easily
recovered from the dual optimal solution λ⋆ via solving maxP∈Sn,m

〈∑h
j=1 λ

⋆
j1na

⊤
j −C,P

〉
, under

the assumption that this problem has a unique minimizer, which almost always holds in practice for
the computed λ⋆ and is also assumed by [77]. In this way, we have shown how the problem (8) can
be efficiently solved by applying a cutting plane method on its dual problem.

A.1 Details of the Cutting Plane Method for Solving (20)

The cutting plane method is designed for convex problems where a separation oracle can be employed
[36]. For any λ ∈ Rm, a separation oracle operates by generating a vector g which satisfies
g⊤λ ≥ g⊤λ⋆ for all λ⋆ in the set of optimal solutions. By repeatedly applying the separation oracle
to cut down the potential possible feasible set, the cutting plane method progressively narrows down
the feasible solution space until it reaches convergence. The specific steps of the cutting plane
algorithm are detailed in Algorithm 2, with the key distinctions among different versions of this
method lying in how lines 3 and 4 are implemented.
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Algorithm 2 General Cutting Plane Method for (20)
1: Choose a bounded set E0 that contains an optimal solution
2: for k from 0 to n do
3: Choose an interior point λk of Ek;
4: Compute g ∈ Rm such that

g⊤λk ≥ g⊤λ⋆ for any optimal solution λ⋆;

5: Choose the next bounded set Ek+1 ⊇ {λ ∈ Ek : g⊤λ ≤ g⊤λk};
6: end for

For the problem (20), a separation oracle (line 4 in Algorithm 2) can directly use the vector of
subgradients, which are efficiently accessible, as we mentioned in section 4. Given that we have
shown (20) is a low-dimensional convex program with subgradient oracles, there exist many well-
established algorithms that can be used. Suppose that the norm of an optimal λ⋆ is bounded by R, to
the best of our knowledge, the cutting plane method with the best theoretical complexity is given by
[31], who proposed an improved cutting plane method that only needs O((h · SO+h2) · log(hR/ϵ))
flops. Here SO denotes the complexity of the separation oracle. Note that here h is at most 2|D||Y|,
which is far smaller than n or m. Here we restate the Corollary 5 of [77] below for the overall time
and space complexity of applying the cutting plane method in the case m ̸= n.

Lemma A.2 (Essentially Corollary 5 of [77]). With efficient computation and space management,
the cutting plane method solves the problem (20) within

Õ
(
mn+ |D|2|Y|2n · log(Rϵ )

)
(21)

flops and O(n|D||Y|) space. Here we use Õ(·) to hide m, n, |D|, and |Y| in the logarithm function.

The above result is essentially Corollary 5 of [77] by slightly extending the proof to the general case
m ̸= n. Finally, in terms of the implementation, we follow [77] and use the analytic center cutting
plane method.

B Theoretical Proofs

This section includes the theoretical proofs for Section 2 and Section 5. We first show the Wasserstein
distance upper bounds downstream disparity for MLP networks (Proposition 2.1). We then show (i)
the optimization problem can be reduced to optimizing over the X̂ rather than Ẑ (Lemma 3.1), (ii)
the surrogate function is convex and a valid upper bound of the optimization objective (Lemma 5.2),
(iii) our proposed algorithm converges to a first-order stationary point in X̂ (Theorem 5.3), and (iv)
our proposed algorithm terminates in a finite amount of iterations (Theorem 5.4). We also prove the
generalization bound for FWC performance in terms of Wasserstein distance and demographic parity
to unseen datasets coming from the same (unknown) distribution the original dataset was sampled
from. Finally, we include Section B.1 to note how the downstream learning using FWC can be broken
down into two terms, which highlights the challenges in analyzing its theoretical properties.

Lemma B.1. Let Z = (X,Y ), Ẑ = (X̂, Ŷ ) ∈ Z = (X × Y) be two pairs of random variables
with joint distributions pZ and pẐ and marginal distributions pX , pY and pX̂ and pŶ respectively.
Let Π(Z, Ẑ) indicate the set of all joint probability distributions over the product space Z × Z that
admit marginal and conditional distributions over X and Y . For any non-negative cost operator c:

Wc(pX , pX̂) ≤ Wc(pZ , pẐ).

Proof. Proof of Lemma B.1 Let ΠX(X, X̂) indicate the set of all marginal (joint) probability
distributions over the product space X × X . For any π ∈ Π(Z, Ẑ) and the corresponding πx ∈
ΠX(X, X̂) we have that:
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∫
Z×Z

c(z, ẑ)dπ(z, ẑ) ≥
∫
Z×Z

c(x, x̂)dπ(z, ẑ) (22)

=

∫
X×X

c(x, x̂)dπx(x, x̂)

≥ min
πx∈Πx(x,x̂)

c(x, x̂)dπx(x, x̂) =Wc(pX , pX̂)

As this is valid for any π ∈ Π(Z, Ẑ), select:

π⋆ = argmin
π∈Π(Z,Ẑ)

∫
Z×Z

c(z, ẑ)dπ(z, ẑ).

Then the left-hand-side of (22) is equal to Wc(pZ , pẐ), hence proving that Wc(pZ , pẐ) ≥
Wc(pX , pX̂).

Proof. Proof of Proposition 2.1 The proof of the upper bound follows from the first part of the proof
of the Kantorovich-Rubinstein duality [66]. In this work we follow the proof by [6, 71], which
consider the Lagrangian form of the 1-Wasserstein distance and express it in the following form:

W(p(X,D), p(X̂,D̂)) = sup
f,g:f(x)+g(y)≤∥x−y∥2

∣∣∣E(x,d)∼p(X,D)
fθ(x, d)− E(x,d)∼p(X̂,D̂)

fθ(x, d)
∣∣∣ ,

where f, g : X → R are bounded, measurable functional Lagrangian multipliers. Let Lfθ be the
Lipschitz constant of the MLP fθ, and define the following function:

h(x, d) =
fθ(x, d)

Lfθ
.

By definition, h(x, d) is 1-Lipschitz. Again following [6, 71], we know that for 1-Lipschitz functions
the following holds:

∣∣∣E(x,d)∼p(X,D)
fθ(x, d)− E(x,d)∼p(X̂,D̂)

fθ(x, d)
∣∣∣ = Lfθ

∣∣∣E(x,d)∼p(X,D)
h(x, d)− E(x,d)∼p(X̂,D̂)

h(x, d)
∣∣∣

= Lfθ

∣∣∣∣∣
∫
(X×D)×(X×D)

h(x1, d1, x2, d2)dπ
(
p(X,D), p(X̂,D̂)

)∣∣∣∣∣
≤ Lfθ

∫
(X×D)×(X×D)

|h(x1, d1, x2, d2)| dπ
(
p(X,D), p(X̂,D̂)

)
≤ Lfθ

∫
(X×D)×(X×D)

∥(x1, d1)− (x2, d2)∥2 dπ
(
p(X,D), p(X̂,D̂)

)
≤ LfθW1(p(X,D), p(X̂,D̂)) ≤ LfθW1(pZ , pẐ),

where the last inequality is due to Lemma B.1. The result can be obtained by using the upper bound
in [75, Section 6.1], which shows that Lfθ ≤ Lk for K-layer MLPs with ReLu activations.

Proof of Lemma 3.1. Once we generate m|D||Y| data points, the feasible set of the latter Wasserstein
coreset contains the feasible set of the former Wasserstein coreset.
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Proof of Lemma 5.2. The convexity follows directly from the convexity of C(X̂), as the P ⋆k ≥ 0 in
(10).

Before proving it is an upper bound, we show some important properties of F (C) as a function of
C. Firstly, F (C) is concave on C because of the concavity of the minimum LP’s optimal objective
on the objective vector. Secondly, since the feasible set of problem (8) is bounded, the optimal
solution F (C) is continuous with respect to C. Thirdly, due to the sensitivity analysis of LP [8],
a supergradient of F (C) at point C is the corresponding optimal solution P ⋆. Here the definition
of supergradients for concave functions is analogous to the definition of subgradients for convex
functions.

Now we prove g(X̂; X̂k) is an upper bound of F (C(X̂)). Because P kk is a supergradient of F (C)

when C = C(X̂k),
F (C) + ⟨P kk , C(X̂)− C⟩ ≥ F (C(X̂)) ,

in which the left-hand side is equal to g(X̂; X̂k) because F (C) = ⟨P kk , C⟩ and g(X̂; X̂k) =

⟨C(X̂), P ⋆k ⟩. Therefore, the surrogate function is an upper bound of the objective function F (C(X̂)),
i.e., g(X̂; X̂k) ≥ F (C(X̂)). Moreover, due to the definition in (10), g(X̂; X̂k) = F (C(X̂)) when
X̂ = X̂k.

Proof of Theorem 5.3. The monotonically decreasing part of the claim follows by:

F (C(X̂k+1)) ≤ g(X̂k+1; X̂k) = arg min
X̂∈Xm

g(X̂; X̂k) ≤ g(X̂k; X̂k) = F (C(X̂k)) . (23)

Here the first inequality is due to the fact that g(X̂; X̂k) ≥ F (C(X̂)) for any X̂ . The final equality
is because g(X̂; X̂k) = F (C(X̂)) when X̂ = X̂k. Once g(X̂k; X̂k) = g(X̂k+1; X̂k) and thus
X̂k ∈ argminX̂∈Xm g(X̂; X̂k), then X̂k is a global minimizer of the convex upper bound g(·; X̂k)

for F (C(·)) and the upper bound g(X̂k; X̂k) attains the same function value with F (C(X̂k)).
Therefore, if the surrogate function is smooth at X̂k, which could be achieved if C(X̂k) is smooth at
X̂k, then Xk is a first-order stationary point of (9).

Proof of Theorem 5.4. Because (11) has a unique minimizer, the second inequality in (23) holds
strictly when X̂k+1 ̸= X̂k, or equivalently g(X̂k+1; X̂k) ̸= g(X̂k; X̂k). Once X̂k+1 = X̂k, then
the algorithm terminates. Note that there are only finite possible optimal basic feasible solution
P ⋆ that could be generated by FairWASP, as shown in Lemma A.1. However, before the majority
minimization converges, (23) holds strictly and the corresponding P ⋆k keeps changing. Therefore,
after finite iterations, there must be a P ⋆t equal to a previous P ⋆j for j < t. When that happens,
because the surrogate functions are the same and thus have the same minimizer, X̂t+1 = X̂j+1, and
the inequalities (23) then hold at equality when k = j, j+1, . . . , t. This implies that g(X̂j+1; X̂j) =

g(X̂j ; X̂j), so the algorithm terminates within finite iterations.

Proof of Proposition 5.5. For determining the convergence in Wasserstein distance between pẐ and
qZ , we first use the triangle inequality:

Wc(pẐ , qZ) ≤ Wc(pẐ , pZ) +Wc(pZ , qZ) = λ+Wc(pZ , qZ)

Note that the first term is deterministic, as it is the result of the optimization problem (4). For the
second term, we use the result from [22], which implies that with probability 1 − α and for the
1-Wasserstein distance:

P(Wc(pZ , qZ) > ξ) ≤ exp
(
−cnξ1/d

)
,

and so by setting the right-hand side equal to α, or equivalently, setting

ξ =
d

√
c log(1/α)

n
,

we obtain the first result.

For determining the convergence of the disparity between pẐ and pẐ(y, d) and qY (y), we again first
use the triangle inequality from the definition of the disparity J :
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sup
y∈Y,d∈D

J(pẐ(y|d), qY (y)) = sup
y∈Y,d∈D

|pẐ(y|d)− qY (y)|
qY (y)

≤ sup
y∈Y,d∈D

(
|pẐ(y|d)− pY (y)|

qY (y)
+
|pY (y)− qY (y)|

qY (y)

)
≤ sup
y∈Y,d∈D

|pẐ(y|d)− pY (y)|
qY (y)

+ sup
y∈Y

|pY (y)− qY (y)|
qY (y)

As the minimum of the marginal distribution of qY (y) is bounded away from zero miny∈Y qZ(y) =
ρ > 0, and since by the optimization problem (4) we have J(pẐ(y|d), pY (y)) ≤ ϵ for all y ∈ Y, d ∈
D:

sup
y∈Y,d∈D

J(pẐ(y|d), qY (y)) ≤ sup
y∈Y,d∈D

|pẐ(y|d)− pY (y)|
pY (y)

pY (y)

qY (y)
+ sup
y∈Y

|pY (y)− qY (y)|
qY (y)

≤ sup
y∈Y,d∈D

J(pẐ(y|d), pY (y))
1

ρ
+ sup
y∈Y

|pY (y)− qY (y)|
qY (y)

≤ ϵ

ρ
+ sup
y∈Y

|pY (y)− qY (y)|
qY (y)

.

Note that the first term is deterministic, while the second one is not, as we need to account for
the uncertainty of observing n i.i.d. samples {Zi}ni=1. For the second part, we use the Dvoret-
zky–Kiefer–Wolfowitz (DKW, [17]) inequality:

P
(
sup
y∈Y

|pY (y)− qY (y)|
qY (y)

> ξ

)
≤ P

(
sup
y∈Y
|pY (y)− qY (y)| > ξρ

)
≤ 2 exp(−2nρ2ξ2)

By setting the right-hand side equal to α, or equivalently, setting

ξ =

√
log( 2

α )

2nρ2
,

we obtain the second result.

Finally, we note that the assumption on the marginal distribution of qY is bounded away from
zero, i.e., ρ > 0, is reasonable as the outcome is a discrete (usually binary) random variable. This
assumption would be much more restricting in case y was a continuous random variable (e.g., in
regression settings).

B.1 Downstream Learning using FWC

Overall, the hardness of deriving bounds for the synthetic representatives provided by FWC can be
analyzed using the following breakdown, which is adapted from [78]. Consider the given dataset
Z = {(Xi, Yi, Di)}ni=1, the synthetic representatives obtained using FWC Ẑ = {(X̂j , Ŷj , D̂j)}mj=1

and h ∈ H = L2(X ×Y ×D), the set of measurable square-integrable function in L2. If we consider
the downstream learning process using FWC samples over the L2 space:

inf
h∈H

EY |X,D

[
∥Y − h(X̂, D̂)∥22

]
,

then the above can be expanded in two terms, due to the property of the conditional expectation being
an orthogonal operator inH:
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inf
h∈H

EY |X,D

[
∥Y − h(X̂, D̂)∥22

]
=

= EY |X,D

[
∥Y − EX,D[Ŷ |X̂, D̂]∥22

]
︸ ︷︷ ︸

FWC Approximation Error

+ inf
h∈H

EY |X,D

[
∥EX,D[Ŷ |X̂, D̂]− h(X̂, D̂)∥22

]
︸ ︷︷ ︸

Learning with FWC Samples

(24)

The first term corresponds to the loss of information in approximating Y with Ŷ via the FWC approach,
and is actually independent of any downstream learning. This condition requires for the first moment
(which for the binary Y case is equivalent to the joint distribution) of Y and Ŷ to be as close as
possible. Using FWC this is enforced by minimizing the Wasserstein distance. Indeed, if in definition
(1) one restricts to couplings that admit marginal and conditional distributions, then the conditional
distributions of Y |X,D and Ŷ |X̂, D̂ are upper bounded in Wasserstein sense by the Wasserstein
distance between the joint distribution of pZ and pẐ [37].

The second terms refers to the training process using FWC samples Firstly, by using the equivalence
in [78], the second term is equivalent to infh∈H EY |X,D

[
∥Ŷ − f(X̂, D̂∥22

]
, which correspond the

finding the best L2 function to approximate the distribution of Ŷ . This fact implies that using
FWC samples is indeed mathematically equivalent to the learning task for the original Y . However,
this second term also highlights the hardness of developing learning bounds, as the FWC synthetic
representatives Ẑ = {(X̂j , Ŷj , D̂j)}mj=1 are not i.i.d., and hence standard bounds are not applicable.

C Experiment Details

C.1 Runtime Analysis on Synthetic Dataset

As mentioned in Section 7, we generate a synthetic dataset in which one feature is strongly correlated
with the protected attribute D to induce a backdoor dependency on the outcome. We consider a
binary protected attribute, D ∈ {0, 1}, which could indicate e.g., gender or race. The synthetic
dataset contains two features, a feature X1 correlated with the protected attribute and a feature X2

uncorrelated with the protected attribute. For D = 0, X1 is uniformly distributed in [0, 10], while
for D = 1, X1 = 0. Instead, X2 is 5 times a random variable from a normal distribution N (0, 1).
Finally, the outcome Y is binary, so Y = {0, 1}: Yi = 1 when Yi > mx + ϵi and Yi = 0 when
Yi ≤ mx + ϵi, where mx is the mean of {(X1)i + (X2)i}i and the noise ϵi comes from a normal
distribution N (0, 1).

This experiment visualizes the speed of our method with respect to different numbers of overall
samples n, number of samples in the compressed dataset m, and the dimensionality of features p. We
evaluated the performance of the algorithm under the synthetic data with different configurations of n,
p, and m. In this experiment, we set compute the fair Wasserstein coreset under the l1-norm distance
and we use k-means [42] to initialize the starting coreset X̂0. We terminate the algorithm when
X̂k = X̂k−1. The time per iteration and total iterations for varying n, p, and m are shown in the
Figures 1 (top left) and 2. We see that increasing the sample size of the original dataset n increases
the runtime and number of iterations, while increasing the number of coresets m or dimensionality
of the features p reduces the overall numbers of iterations but increases each iteration’s runtime.
Additionally, for the setting of Figure 1 (top left), in which we vary the dataset size n, Table 2
provides FWC average runtimes from n = 500 to n = 1, 000, 000. We compare FWC runtimes with
the runtime at n = 500 (our lowest dataset size in the experiment) extrapolated (i) linearly, with a
factor of 1, (ii) linearly, with a factor of 10 and (iii) quadratically. We can see that the complexity is
near linear and less than quadratic with respect to the dataset size n, although the rate indeed seem to
increase for n at 500, 000 and above, which can be attributed to the increasing number of iterations
required to achieve convergence. This is akin to the phenomenon well-known for k-means, for which
in larger datasets k-means might take an exponentially large number of iterations to terminate [73].
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In practice, a fixed number of overall iterations is set to avoid this case: sklearn sets it to 3006, feiss
to 257 and Matlab to 1008.
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Figure 2: Runtime analysis of FWC when varying the size of the coreset m (left) and the dimensionality
of the features p (right). We report averages and one standard deviation computed over 10 runs.

Table 2: Average runtimes for FWC in the same settings as Figures 1 (top left), varying the dataset size
n while fixing m = 250 and p = 25, compared with the runtimes for the smallest dataset extrapolated
(i) linearly, with a factor of 1, (ii) linearly, with a factor of 10 and (iii) quadratically. FWC enjoys a
near linear time complexity, increasing with the largest dataset sizes; this phenomenon is shared with
other clustering algorithm such as k-means (see text).

Dataset size n Runtime [seconds] Linear (Factor 1) Actual / Linear (Factor 1) Linear (Factor 10) Actual / Linear (Factor 10) Quadratic Actual / Quadratic

500 8.9e-01 - - - - - -

1,000 9.4e-01 1.8e+00 0.52 1.8e+01 0.05 3.6e+00 0.26

2,500 2.2e+00 4.5e+00 0.49 4.5e+01 0.05 2.2e+01 0.10

5,000 1.0e+01 8.9e+00 1.17 8.9e+01 0.12 8.9e+01 0.12

10,500 1.8e+01 1.9e+01 0.95 1.9e+02 0.09 3.9e+02 0.05

24,500 8.7e+01 4.4e+01 1.99 4.4e+02 0.20 2.1e+03 0.04

48,500 3.0e+02 8.6e+01 3.46 8.6e+02 0.35 8.4e+03 0.04

75,000 7.0e+02 1.3e+02 5.25 1.3e+03 0.52 2.0e+04 0.03

100,000 1.0e+03 1.8e+02 5.79 1.8e+03 0.58 3.6e+04 0.03

250,000 3.8e+03 4.5e+02 8.51 4.5e+03 0.85 2.2e+05 0.02

500,000 1.6e+04 8.9e+02 18.34 8.9e+03 1.83 8.9e+05 0.02

750,000 2.9e+04 1.3e+03 21.64 1.3e+04 2.16 2.0e+06 0.01

1,000,000 4.9e+04 1.8e+03 27.58 1.8e+04 2.76 3.6e+06 0.01

C.2 Real Datasets

We consider the following four real datasets widely used in the fairness literature [19]:

• the Adult dataset [7], which reports demographic data from the 1994 US demographic
survey about ∼ 49, 000 individuals. We use all the available features for classification apart
from the “fnlwgt” feature, including gender as the protected attribute D and whether the
individual salary is more than USD50, 000;

• the Drug dataset [20], which contains drug usage history for 1, 885 individuals. Features X
include the individual age, country of origin, education and scores on various psychological
test. We use the individual gender as the protected variable D. The response Y is based on
whether the individual has reported to have ever used the drug “cannabis” or not;

• the Communities and Crime dataset [64] was put together towards the creation of a software
tool for the US police department. The dataset contains socio-economic factors for ∼ 2, 000
communities in the US, along with the proportion of violent crimes in each community.
As protected attribute D, we include whether the percentage of the black population in the
community is above the overall median. For the response Y , we use a binary indicator of
whether the violent crimes percentage level is above the mean across all communities in the
dataset;

6https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
7https://faiss.ai/cpp_api/struct/structfaiss_1_1Clustering.html
8https://www.mathworks.com/help/stats/kmeans.html
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• the German Credit dataset [28] reports a set of 1, 000 algorithmic credit decisions from a
regional bank in Germany. We use all the available features, including gender as protected
attribute D and whether the credit was approved as response Y .

As perfect demographic parity achieves a value of 0 for the discrepancy J , so we have included
demographic “dis”-parity to indicate any deviation from demographic parity. Across all experiments
we compute demographic parity as the following absolute difference:

DD
def.
= |p (h(X,D) = 1|D = 1)− p(h(X,D) = 1|D = 0)| , (25)

for a given classifier h and a protected attribute D with two levels; the larger this difference, the
larger the disparity. We also include the implementation and hyper-parameters of the methods used in
the fairness-utility tradeoffs throughout the experiments in this paper:

• For FWC we set the fairness violation hyper-parameter ϵ of problem in Equation (5) to be
ϵ = [0.01, 0.05, 0.1], hence obtaining three separate FWC models, FWC (0.01), FWC (0.05)
and FWC (0.1);

• For Fairlet [4], we use the implementation available at the following GitHub repository:
https://github.com/talwagner/fair_clustering/tree/master

• For IndFair [12] and K-Median Coresets [3], we use the implementation avail-
able at the following GitHub repository: https://github.com/jayeshchoudhari/
CoresetIndividualFairness/tree/master

• For k-means [42] and k-medoids [45, 58] we use the implementations available in the Python
package Scikit-Learn [59]

All computations are run on an Ubuntu machine with 32GB of RAM and 2.50GHz Intel(R) Xeon(R)
Platinum 8259CL CPU. For all datasets, we randomly split 75% of the data into training/test set, and
change the split during each separate run; the training data are further separated into training and
validation with 90/10 to compute early stopping criteria during training. The downstream classifier
used is a one-layer deep multi-layer perceptron (MLP) with 20 hidden layers, ReLu activation
function in the hidden layer and softmax activation function in the final layer. Unless stated otherwise,
FWC uses the L1 to compute the distance from the original datasets in the optimization problem. For
the downstream classifier, we use Adam optimizer [38] with a learning rate set to 10−3, a batch
size of 32, a maximum number of epochs set to 500 with early stopping evaluated on the separate
validation set with a patience of 10 epochs and both the features X and the protected attribute D are
used for training the classifier. Note that due to the size of the Adult dataset, Fairlet coresets [4]
could not be run due to the RAM memory required exceeding the machine capacity (32GB). Finally,
all uncertainties are reported at ±1σ (one standard deviation) in both figures and tables. Uncertainties
are computed over a set of 10 runs where the random seed for the algorithm initialization and train/test
split was changed, but consistent across all methods (i.e., all methods in the first run were presented
the same train/test split across each datasets).

Table 3: Wasserstein distance of the weighted coresets with respect to the original dataset, with
averages and standard deviations obtained over 10 runs. In bold, coresets with the closest distance to
the original dataset (i.e., smallest Wasserstein distance) in each coreset size and dataset combination.

Wasserstein Distance (↓)
Method Adult (×106) Credit (×106) Crime Drug

Coreset Size m 0.5% 1% 2% 5% 10% 20% 5% 10% 20% 5% 10% 20%

FWC (ϵ: 0.01) 5.72 ± 0.95 3.76 ± 0.80 2.70 ± 0.56 0.40 ± 0.10 0.75 ± 0.21 1.07 ± 0.28 1.65 ± 0.08 1.76 ± 0.09 1.89 ± 0.08 3.23 ± 0.23 3.57 ± 0.24 3.98 ± 0.22

FWC (ϵ: 0.05) 5.57 ± 0.73 3.90 ± 0.82 2.79 ± 0.58 1.07 ± 0.28 0.48 ± 0.24 0.72 ± 0.17 1.87 ± 0.11 1.66 ± 0.12 1.72 ± 0.06 3.95 ± 0.30 3.31 ± 0.34 3.49 ± 0.19

FWC (ϵ: 0.1) 6.18 ± 1.07 4.15 ± 0.82 3.04 ± 0.63 0.71 ± 0.15 1.05 ± 0.30 0.47 ± 0.19 1.70 ± 0.07 1.85 ± 0.11 1.62 ± 0.08 3.50 ± 0.21 3.95 ± 0.29 3.25 ± 0.24

Fairlet (K-Means) - - - 10.02 ± 2.14 7.47 ± 2.77 5.00 ± 2.48 2.10 ± 0.42 2.10 ± 0.44 2.00 ± 0.36 4.29 ± 0.44 4.10 ± 0.45 3.83 ± 0.43

Fairlet (K-Medoids) - - - 3.16 ± 0.81 4.48 ± 0.89 5.47 ± 0.65 4.21 ± 0.17 4.14 ± 0.14 4.10 ± 0.06 6.50 ± 0.45 5.90 ± 0.47 5.17 ± 0.43

Ind. Fair. Cor. 12.96 ± 5.83 23.91 ± 25.39 11.48 ± 8.19 0.41 ± 0.29 0.72 ± 0.46 0.23 ± 0.12 2.35 ± 0.16 2.60 ± 0.25 2.01 ± 0.09 4.84 ± 0.33 5.51 ± 0.50 4.17 ± 0.21

K-Median Cor. 22.11 ± 17.42 9.37 ± 11.27 12.04 ± 9.11 0.66 ± 0.74 0.26 ± 0.17 0.36 ± 0.17 2.58 ± 0.20 2.01 ± 0.11 2.35 ± 0.12 5.38 ± 0.54 4.16 ± 0.22 4.80 ± 0.15

Uniform Subsampling 18.01 ± 18.34 14.39 ± 14.90 7.96 ± 5.42 0.74 ± 0.53 0.30 ± 0.16 0.80 ± 1.15 2.60 ± 0.26 1.95 ± 0.13 2.28 ± 0.24 5.46 ± 0.59 4.01 ± 0.30 4.75 ± 0.42

K-Means 43.96 ± 18.82 77.04 ± 18.06 74.50 ± 12.53 13.23 ± 1.42 10.76 ± 1.55 7.59 ± 1.58 2.00 ± 0.12 1.93 ± 0.11 2.04 ± 0.08 3.94 ± 0.17 3.66 ± 0.20 3.62 ± 0.32

K-Medoids 50.87 ± 4.30 53.31 ± 1.85 51.77 ± 1.86 2.59 ± 0.42 4.25 ± 0.68 5.18 ± 0.07 3.15 ± 0.08 3.12 ± 0.11 2.83 ± 0.06 5.14 ± 0.08 4.53 ± 0.28 3.91 ± 0.09

Closeness to the original dataset and clustering performance Tables 3 and 4 include the
numerical values (means and standard deviations computed over 10 runs) for all methods in
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Table 4: Clustering cost of the coresets with respect to the original dataset, with averages and standard
deviations obtained over 10 runs. In bold, coresets with the smallest clustering cost (i.e., smallest
sum of square distances of original dataset samples from the closest generated coreset sample) in
each coreset size and dataset combination.

Clustering Cost (↓)
Method Adult (×106) Credit (×104) Crime (×102) Drug (×102)

Coreset Size m 0.5% 1% 2% 5% 10% 20% 5% 10% 20% 5% 10% 20%

FWC (ϵ: 0.01) 14.73 ± 6.43 5.44 ± 2.29 2.07 ± 0.39 1.07 ± 0.21 2.61 ± 0.59 4.31 ± 0.92 3.86 ± 0.27 4.44 ± 0.21 4.79 ± 0.19 5.54 ± 0.41 6.45 ± 0.32 7.02 ± 0.31

FWC (ϵ: 0.05) 13.59 ± 4.21 5.81 ± 2.37 2.26 ± 0.30 4.41 ± 1.52 1.39 ± 0.96 2.44 ± 0.21 4.72 ± 0.36 3.96 ± 0.41 4.37 ± 0.14 6.94 ± 0.54 5.70 ± 0.63 6.35 ± 0.24

FWC (ϵ: 0.1) 20.29 ± 12.27 6.31 ± 2.36 2.19 ± 0.29 2.48 ± 0.20 4.00 ± 1.28 1.22 ± 0.41 4.36 ± 0.15 4.72 ± 0.34 3.89 ± 0.30 6.36 ± 0.26 6.94 ± 0.51 5.62 ± 0.45

Fairlet (K-Means) - - - 1.36 ± 0.09 0.76 ± 0.11 0.60 ± 0.31 4.76 ± 0.46 4.36 ± 0.52 3.92 ± 0.56 7.08 ± 0.30 6.45 ± 0.40 5.76 ± 0.63

Fairlet (K-Medoids) - - - 5.79 ± 1.36 5.40 ± 1.08 5.04 ± 0.92 6.27 ± 0.28 6.00 ± 0.27 5.59 ± 0.20 8.58 ± 0.41 7.93 ± 0.42 7.09 ± 0.54

Ind. Fair. Cor. 1.23 ± 0.37 4.67 ± 9.46 0.70 ± 0.04 1.50 ± 0.38 2.46 ± 0.77 0.74 ± 0.10 5.24 ± 0.27 5.64 ± 0.48 4.53 ± 0.22 7.29 ± 0.35 7.92 ± 0.62 6.30 ± 0.41

K-Median Cor. 10.45 ± 14.21 0.70 ± 0.04 1.06 ± 0.19 2.47 ± 0.90 0.76 ± 0.06 1.37 ± 0.29 5.64 ± 0.39 4.55 ± 0.27 5.21 ± 0.16 7.75 ± 0.66 6.26 ± 0.36 7.26 ± 0.20

Uniform Subsampling 10.16 ± 15.13 3.49 ± 1.18 1.93 ± 0.67 3.38 ± 1.42 1.09 ± 0.26 2.74 ± 2.71 5.61 ± 0.45 4.46 ± 0.34 5.07 ± 0.37 7.74 ± 0.73 6.06 ± 0.51 7.02 ± 0.50

K-Means 0.72 ± 0.01 0.58 ± 0.01 0.48 ± 0.01 1.28 ± 0.21 0.68 ± 0.12 0.51 ± 0.29 4.52 ± 0.16 4.09 ± 0.25 3.76 ± 0.39 6.86 ± 0.28 6.13 ± 0.41 5.61 ± 0.67

K-Medoids 83.53 ± 13.86 75.10 ± 7.22 56.95 ± 9.17 4.93 ± 0.53 4.70 ± 0.48 4.19 ± 0.13 5.52 ± 0.07 5.15 ± 0.28 4.49 ± 0.25 7.65 ± 0.12 6.83 ± 0.43 5.93 ± 0.30

terms of Wasserstein distance from the original dataset and clustering cost, for the three core-
set sizes m = [5%, 10%, 20%] (apart from the Adult dataset, in which coreset sizes are set to
m = [0.5%, 1%, 2%] due to the large size of the original dataset). Clustering cost is computed
as the sum of the squared distance of each point in the original dataset from the closest coreset
representative, while the Wasserstein distance is computed solving the optimal transport between
the empirical distribution of the original dataset and the one of the coresets, using the L1 norm as
cost function. FWC consistently provides the closest distributional distance to the original dataset
in Wasserstein distance, with the only exception of the Credit dataset, in which the large number
of discrete features makes the optimization non-smooth in feature space, resulting in a potentially
imprecise solution of Equation (9). In addition, FWC , while not naturally minimizing clustering
costs, seems to achieve competitive clustering costs in smaller datasets while not performing as well
on larger datasets such as Adult. Finally, we note that the Wasserstein distance might not always
decrease with a higher coreset size, which is due to the parity violation constraint ϵ. In other words,
the coreset samples not only have to be close to the original dataset distribution but also respect the
hard fairness constraint; the lower the ϵ, the tighter this constraint is (Equation (4)). Indeed, when ϵ is
the largest (ϵ = 0.1), coresets of size 20% (or 2% for the Adult dataset, i.e., the largest) consistently
has a smaller Wasserstein distance to the original dataset than coresets of size 5% (0.5% for the Adult
dataset, i.e., the smallest).

Fairness-utility tradeoff when using coresets for training downstream models Figure 6 expands
the results provided in Figure 1 and shows all the fairness-utility tradeoffs for all methods across
the four datasets, both with (right column) and without (left column) using a pre-processing fairness
approach [34] (excluding FWC , to which no fairness modification is applied after coresets have
been generated). For each method, the coreset size that achieves the best fairness-utility tradeoff
is shown (which is not necessarily the coreset with the largest size). FWC achieves a competitive
fairness-utility tradeoff with respect to other competing methods, when using the generated coresets
to train a downstream MLP classifier model. FWC consistently reduces disparity in the downstream
classification with respect to other approaches, and often maintains the same utility (indicated by the
AUC). For completeness, Figure 7 also reports standard deviations for the fairness-utility tradeoff;
standard deviations for the Adult and Credit datasets are large due to the MLP classifier becoming
trivial (i.e., always returning 0s or 1s), which yields very low performance but has no demographic
disparity (by definition, as all test samples are assigned the same outcome). Tables 5 and 6 report the
numbers shown in Figures 6 and 7, including one number to quantify the fairness-utility tradeoff,
computed as the Euclidean distance in the Figure from the (0, 1) point (which would be a fair classifier
with perfect performance). In other words, for the k-th method achieving a disparity of dk with
uncertainty ∆dk and performance ak with uncertainty ∆ak, the tradeoff tk and associated uncertainty
∆tk are quantified as:

tk =
√
(1− ak)2 + d2k , ∆tk =

√(
dk
tk

∆dk

)2

+

(
ak − 1

tk
∆ak

)2

(26)

Finally, the average reduction in disparity was computed from Tables 5 and 6, by averaging the
improvement obtained by FWC samples against all methods and across datasets. FWC result in an
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average reduction in disparity of 53% and 18% for the scenario without and with fairness pre-
processing, respectively.

Table 5: Demographic disparity (Equation (25)), AUC and fairness-utility tradeoff (Equation (26))
of downstream MLP classifier trained using all fair coresets/clustering methods across the four real
datasets. The best method across the 3 different coreset sizes is shown, and the best performing
method for each metric in each dataset is bolded. Averages and standard deviations taken over 10
runs. For the Credit dataset, K-means reaches low disparities due to the classifier being trivial, i.e.,
returning the same prediction regardless of input features.

Method Adult Dataset Credit Dataset Crime Dataset Drug Dataset

DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓)

FWC (ϵ: 0.01) 0.02 ± 0.02 0.67 ± 0.10 0.33 ± 0.10 0.03 ± 0.04 0.67 ± 0.11 0.33 ± 0.11 0.13 ± 0.05 0.83 ± 0.02 0.22 ± 0.04 0.05 ± 0.04 0.79 ± 0.02 0.21 ± 0.02

FWC (ϵ: 0.05) 0.07 ± 0.03 0.75 ± 0.08 0.26 ± 0.07 0.02 ± 0.02 0.64 ± 0.11 0.36 ± 0.11 0.15 ± 0.04 0.84 ± 0.02 0.22 ± 0.03 0.06 ± 0.02 0.80 ± 0.02 0.21 ± 0.02

FWC (ϵ: 0.1) 0.06 ± 0.03 0.70 ± 0.08 0.30 ± 0.08 0.03 ± 0.03 0.66 ± 0.12 0.34 ± 0.12 0.16 ± 0.03 0.85 ± 0.01 0.22 ± 0.03 0.08 ± 0.03 0.80 ± 0.01 0.21 ± 0.02

Fairlet (K-Means) - - - 0.01 ± 0.01 0.57 ± 0.11 0.43 ± 0.11 0.38 ± 0.09 0.90 ± 0.02 0.39 ± 0.09 0.16 ± 0.06 0.80 ± 0.02 0.25 ± 0.04

Fairlet (K-Medoids) - - - 0.04 ± 0.06 0.60 ± 0.09 0.41 ± 0.09 0.24 ± 0.16 0.86 ± 0.04 0.28 ± 0.14 0.10 ± 0.09 0.76 ± 0.05 0.26 ± 0.06

Ind. Fair. Cor. 0.08 ± 0.07 0.73 ± 0.08 0.28 ± 0.08 0.05 ± 0.05 0.65 ± 0.11 0.35 ± 0.11 0.39 ± 0.10 0.88 ± 0.02 0.40 ± 0.10 0.21 ± 0.06 0.81 ± 0.02 0.28 ± 0.05

K-Median Cor. 0.12 ± 0.08 0.72 ± 0.09 0.30 ± 0.09 0.07 ± 0.07 0.66 ± 0.12 0.35 ± 0.12 0.45 ± 0.05 0.91 ± 0.01 0.46 ± 0.05 0.16 ± 0.10 0.76 ± 0.06 0.29 ± 0.08

Uniform Subsampling 0.12 ± 0.06 0.71 ± 0.10 0.31 ± 0.10 0.07 ± 0.09 0.69 ± 0.11 0.31 ± 0.11 0.45 ± 0.08 0.89 ± 0.02 0.46 ± 0.08 0.14 ± 0.11 0.78 ± 0.03 0.26 ± 0.06

K-Means 0.08 ± 0.04 0.68 ± 0.10 0.33 ± 0.10 0.00 ± 0.00 ⋆ 0.51 ± 0.02 0.49 ± 0.02 0.40 ± 0.03 0.91 ± 0.01 0.41 ± 0.03 0.15 ± 0.04 0.81 ± 0.02 0.25 ± 0.03

K-Medoids 0.08 ± 0.04 0.71 ± 0.12 0.30 ± 0.11 0.05 ± 0.05 0.60 ± 0.07 0.40 ± 0.07 0.28 ± 0.10 0.88 ± 0.04 0.30 ± 0.09 0.12 ± 0.05 0.80 ± 0.02 0.23 ± 0.03

Table 6: Demographic disparity (Equation (25)), AUC and fairness-utility tradeoff (Equation (26))
of downstream MLP classifier trained using all fair coresets/clustering methods across the four
real datasets. All methods apart from FWC have been corrected for fairness using a preprocessing
fairness technique by [34]. The best method across the 3 different coreset sizes is shown, and the best
performing method for each metric in each dataset is bolded. Averages and standard deviations taken
over 10 runs.

Method Adult Dataset Credit Dataset Crime Dataset Drug Dataset

DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓)

FWC (ϵ: 0.01) 0.02 ± 0.02 0.67 ± 0.10 0.33 ± 0.10 0.03 ± 0.04 0.67 ± 0.11 0.33 ± 0.11 0.13 ± 0.05 0.83 ± 0.02 0.22 ± 0.04 0.05 ± 0.04 0.79 ± 0.02 0.21 ± 0.02

FWC (ϵ: 0.05) 0.07 ± 0.03 0.75 ± 0.08 0.26 ± 0.07 0.02 ± 0.02 0.64 ± 0.11 0.36 ± 0.11 0.15 ± 0.04 0.84 ± 0.02 0.22 ± 0.03 0.06 ± 0.02 0.80 ± 0.02 0.21 ± 0.02

FWC (ϵ: 0.1) 0.06 ± 0.03 0.70 ± 0.08 0.30 ± 0.08 0.03 ± 0.03 0.66 ± 0.12 0.34 ± 0.12 0.16 ± 0.03 0.85 ± 0.01 0.22 ± 0.03 0.08 ± 0.03 0.80 ± 0.01 0.21 ± 0.02

Fairlet (K-Means) - - - 0.02 ± 0.03 0.60 ± 0.08 0.40 ± 0.08 0.23 ± 0.05 0.87 ± 0.02 0.26 ± 0.04 0.12 ± 0.06 0.82 ± 0.02 0.21 ± 0.04

Fairlet (K-Medoids) - - - 0.04 ± 0.05 0.59 ± 0.09 0.41 ± 0.09 0.11 ± 0.14 0.81 ± 0.08 0.22 ± 0.10 0.09 ± 0.07 0.76 ± 0.04 0.26 ± 0.04

Ind. Fair. Cor. 0.05 ± 0.03 0.68 ± 0.08 0.33 ± 0.08 0.04 ± 0.05 0.63 ± 0.09 0.37 ± 0.09 0.17 ± 0.04 0.85 ± 0.02 0.23 ± 0.03 0.08 ± 0.08 0.80 ± 0.03 0.21 ± 0.04

K-Median Cor. 0.04 ± 0.04 0.69 ± 0.08 0.31 ± 0.08 0.01 ± 0.01 0.60 ± 0.09 0.40 ± 0.09 0.23 ± 0.07 0.85 ± 0.02 0.27 ± 0.06 0.10 ± 0.05 0.79 ± 0.02 0.23 ± 0.03

Uniform Subsampling 0.04 ± 0.03 0.68 ± 0.10 0.32 ± 0.10 0.03 ± 0.05 0.68 ± 0.12 0.33 ± 0.12 0.29 ± 0.05 0.88 ± 0.01 0.31 ± 0.05 0.06 ± 0.05 0.79 ± 0.05 0.22 ± 0.05

K-Means 0.06 ± 0.03 0.66 ± 0.09 0.34 ± 0.09 0.02 ± 0.04 0.53 ± 0.04 0.47 ± 0.04 0.23 ± 0.05 0.88 ± 0.01 0.26 ± 0.04 0.09 ± 0.03 0.82 ± 0.01 0.21 ± 0.02

K-Medoids 0.05 ± 0.03 0.70 ± 0.12 0.30 ± 0.11 0.01 ± 0.02 0.61 ± 0.08 0.39 ± 0.08 0.12 ± 0.05 0.85 ± 0.04 0.20 ± 0.04 0.11 ± 0.05 0.81 ± 0.02 0.22 ± 0.03

Fairness-utility tradeoff when using coresets for data augmentation We also evaluate the per-
formance of FWC in reducing the downstream demographic disparity when doing data augmentation,
i.e., adding the synthetic representatives to the training data when training a downstream model. We
use the data augmentation scheme adopted by [68, Section 2.1], which first uses k-means on the
original dataset and then sorts the synthetic representatives based on the distance of each synthetic
representative to the nearest k-mean centroid with the same combination of protected attribute and
outcome D and Y . We generate a set of synthetic datasets of size equal to 50% of the original
dataset and look at the fairness-utility of a downstream model trained augmented with such synthetic
representative in increments of 5% (20% and 2.5% respectively for the Adult dataset, given the large
dataset size). Figures 3 and 4 show the fairness-utility tradeoff of the downstream MLP classifier
when doing data augmentation, selecting the best model across various degrees of data augmentation,
along with the performance of the baseline MLP classifier with no data augmentation (averages
and standard deviations over 10 runs). Table 7 shows the numerical values for the downstream
fairness-utility tradeoff, including the tradeoff value computed as in Equation (26). In all datasets
the data augmentation with FWC seems to either increase the performance or reduce the demographic
disparity, with the only exception being the Drug dataset. Upon further investigation, Figure 5
shows this effect does not appear if the protected attribute D (gender) is not included in the features
used to train the downstream MLP classifier. This phenomenon indicates the protected attribute
provides a strong predictive effect on the outcome (whether the individual has tried cannabis or not),
which might potentially be mediated by unmeasured confounders, i.e., other features regarding the
recorded individuals that are not available in the Drug dataset. This would require either in-training or
post-processing fairness approaches to be alleviated; see [29] for a comprehensive review on different
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potential approaches. Finally, as in Figure 7, the standard deviations for Adult and Credit dataset are
large due to the downstream model becoming trivial.
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Figure 3: Fairness-utility tradeoff of downstream MLP classifier trained using the original training set
augmented with coresets representatives, following the augmentation strategy from [68]. Each point
shows the best model in terms of fairness-utility tradeoff over various degrees of data augmentation,
in addition to the baseline model with no augmentation. Means and standard deviations taken over 10
runs, with the computed Pareto frontier indicated by the dashed red line.
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Figure 4: Fairness-utility tradeoff of downstream MLP classifier trained using the original training set
augmented with coresets representatives, following the augmentation strategy from [68], including all
methods mentioned in Section 7. Each point shows the best model in terms of fairness-utility tradeoff
over various degrees of data augmentation, in addition to the baseline model with no augmentation.
Averages and standard deviations computed over 10 runs, with the top panel showing just means and
the bottom panel combining both means and standard deviations, with the computed Pareto frontier
indicated by the dashed red line.
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Figure 5: Data augmentation fairness-utility tradeoff of downstream MLP classifier for the Drug
dataset when the protected attribute D (gender) is either not included (left) or included (right) as
feature in the learning process. As in Figure 3, the best model across various data augmentation
degrees is reported, with averages and standard deviations obtained over 10 runs. FWC manages to
successfully reduce the demographic disparity when gender is not used as a feature, but fail to do
so when gender is used, indicating that gender provides strong predictive power for the outcome in
question, which would require enforcing fairness either during model training or by post-processing
the outputs.

Table 7: Demographic disparity (Equation (25)), AUC and fairness-utility tradeoff (Equation (26)) of
downstream MLP classifier trained via data augmentation with all fair coresets/clustering methods,
across the four real datasets. The best methods across various degrees of data augmentation is shown.
The best performing methods for every column is bolded, with averages and standard deviations
taken over 10 runs.

Method Adult Dataset Credit Dataset Crime Dataset Drug Dataset

DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓) DD (↓) AUC (↑) Tradeoff (↓)

Baseline (No Aug.) 0.12 ± 0.03 0.66 ± 0.05 0.36 ± 0.05 0.06 ± 0.06 0.66 ± 0.11 0.34 ± 0.11 0.45 ± 0.05 0.924 ± 0.015 0.46 ± 0.04 0.18 ± 0.03 0.84 ± 0.02 0.24 ± 0.03

FWC (ϵ: 0.01) 0.13 ± 0.03 0.68 ± 0.07 0.34 ± 0.06 0.05 ± 0.03 0.77 ± 0.11 0.23 ± 0.11 0.43 ± 0.04 0.919 ± 0.005 0.44 ± 0.04 0.19 ± 0.03 0.84 ± 0.01 0.25 ± 0.02

FWC (ϵ: 0.05) 0.14 ± 0.03 0.70 ± 0.09 0.33 ± 0.08 0.08 ± 0.05 0.76 ± 0.09 0.25 ± 0.09 0.44 ± 0.03 0.919 ± 0.006 0.44 ± 0.03 0.21 ± 0.02 0.84 ± 0.01 0.26 ± 0.02

FWC (ϵ: 0.1) 0.13 ± 0.02 0.70 ± 0.07 0.32 ± 0.06 0.07 ± 0.05 0.77 ± 0.09 0.24 ± 0.09 0.44 ± 0.03 0.917 ± 0.004 0.45 ± 0.03 0.20 ± 0.03 0.84 ± 0.01 0.26 ± 0.02

Fairlet (K-Means) - - - 0.08 ± 0.06 0.77 ± 0.10 0.24 ± 0.10 0.44 ± 0.03 0.919 ± 0.003 0.45 ± 0.03 0.19 ± 0.04 0.83 ± 0.01 0.26 ± 0.03

Fairlet (K-Medoids) - - - 0.11 ± 0.07 0.78 ± 0.10 0.25 ± 0.09 0.45 ± 0.04 0.918 ± 0.002 0.45 ± 0.04 0.18 ± 0.05 0.83 ± 0.00 0.25 ± 0.04

Ind. Fair. Cor. 0.12 ± 0.03 0.68 ± 0.06 0.34 ± 0.06 0.06 ± 0.04 0.78 ± 0.10 0.22 ± 0.10 0.43 ± 0.04 0.919 ± 0.009 0.44 ± 0.04 0.18 ± 0.02 0.84 ± 0.01 0.24 ± 0.02

Uniform Subsampling 0.12 ± 0.02 0.69 ± 0.07 0.33 ± 0.07 0.06 ± 0.05 0.77 ± 0.09 0.24 ± 0.09 0.45 ± 0.04 0.918 ± 0.003 0.45 ± 0.04 0.19 ± 0.03 0.83 ± 0.01 0.25 ± 0.02

K-Medoids 0.12 ± 0.04 0.68 ± 0.06 0.35 ± 0.06 0.08 ± 0.05 0.76 ± 0.10 0.25 ± 0.09 0.44 ± 0.03 0.922 ± 0.004 0.45 ± 0.03 0.19 ± 0.02 0.83 ± 0.01 0.25 ± 0.02

Using FWC to correct biases in LLMs To query GPT models, test data with 200 samples is provided
with a base parity of 0.5 (similar to [76]) and additionally, examples are provided in the case of the
few shot settings. Data is fed in as text. One of the tabular data, for example, is: “A person in 1996 has
the following attributes: Age: 21.0, workclass: Private, education: Some-college, highest education
level: 10.0, marital status: Never-married, occupation: Other-service, relationship: Own-child,
race: White, sex: Female, capital gain: 0.0, capital loss: 0.0, hours per week: 25.0, native country:
United-States".

We use the following prompts:

• Zero shot: “Using the provided data, will this person from 1996 be hired at greater than
50,000 USD per year? You must only respond with the word ’yes’ or ’no’. Here are 0
examples with the correct answer."

• Few shot: “Given the provided data, will this person from 1996 be hired at greater than
50,000 USD per year? You must only respond with the word ’yes’ or ’no’. Here are n
examples with the correct income level for a person in 1996. Make sure you use the examples
as a reference", where n is the number of demographically balanced samples.

• Few shot (FWC): “Given the provided data, will this from 1996 be hired at greater than
50,000 USD per year? You must only respond with the word ’yes’ or ’no’. Here are n
examples with the correct income level for a person in 1996, along with weights in the
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column weight. Weights are between 0 (minimum) and 1 (maximum). The more the weight,
the more important the example is. Make sure you use the examples as a reference."

In the few shot settings, 16 examples are provided in both cases due to the LLM token limitation;
passing fewer examples yields similar results to the ones in Table 1. For FWC, we run a separate
coreset generation run (differently from other experiments in Section 7), where we selected m = 16
and ensured that the positive class (Y = 1) has an equal number of male and female samples. We
also note that while the results from GPT-4 for the zero shot and few shot cases are similar to what
was observed by [76], the accuracies reported for the GPT-3.5 Turbo model appear to be lower in
our experiments, which points to a potential difference in the exact backend LLM model used for
inference.

D Limitations of FWC

Coreset support and non-convex feature spaces FWC representative do not need to be within the
original n samples, but they do need to share the same support. As shown in Section 4.2, solving
line 5 in Algorithm 1 in cases 1. and 2. means the synthetic representatives could fall outside the
original dataset. In case 3., the solution has to be selected from the data points already existing in the
original dataset (akin to k-medoids). In general, non-convex feature spaces X might represent a
challenge, as representatives might be generated in zero-density regions (a simple example could
be a dataset distributed as a hollow circle or two moons). However, this criticism is also more
generally applicable to the existing fair coresets/clustering literature, as well as the k-means algo-
rithms, for which specific adjustments have been developed [63] and could be indeed extended to FWC .

Limiting the total number of iterations FWC is not of polynomial time complexity and the total
number of iterations might grow faster than linear time when the dataset size is very large, as
shown in the synthetic data experiment in Section C.1 and Table 2. This phenomenon is shared
with k-means, which is also not of polynomial time complexity and is known to potentially take an
exponentially large number of iterations to terminate [73]. As mentioned in Section C.1, a common
practice for clustering is set a fixed number of maximum iterations, after which the algorithm is
stopped.

Computational bottlenecks The main complexity term for FWC is O(mn), which comes from
establishing the cost matrix in the beginning of the solution of problem (8). This complexity is
comparable with what occurs in Lloyd’s algorithm for k-means and k-medians. This might be
problematic if the cost matrix is too large to be stored directly in memory. In practice, we do not
actually need to store the entire matrix, as we only need to compute the largest component for each
row of C for solving problem (8) (see Lemma A.1), so one could further improve the cost of storing
the cost matrix. Another option would also be leverage the same approaches used for k-means such
as, e.g., cost matrix sketching [79]. Finally, FWC would also benefit from GPU implementations akin
to k-means and k-medians, which would substantially accelerate the runtime speed of FWC .

Connection between ϵ and downstream learning In our definition of demographic parity in Equation
3, the hyper-parameter ϵ effectively controls how different the outcome rates across sensitive feature
groups D of the weighted coreset distribution pẐ,θ can be from the overall outcome rates in the
original dataset pYT . In our experiments (Section 7), we empirically show that limiting the fairness
violation in the coresets results in a fairer downstream model. However, when training a downstream
model using FWC we induce a distribution shift between the train set and the test set, as the coresets
distribution is never identical to the original dataset distribution. Although we have provided some
results on the generalization properties of FWC (Proposition 5.5) as well as some intuition about
developing downstream learning bounds for FWC in non-i.i.d. settings (Section B.1), theoretically
characterize the connection between the fairness violation parameter ϵ remains an open question. In
essence, the analysis is challenging as the induced distribution shift is dependent on the biases in the
original dataset distribution, the coreset size m, the metric chosen for the cost matrix and, ultimately,
the fairness violation parameter ϵ. For this reason, although we have shown that restricting the fairness
violation improves downstream models fairness, an explicit characterization of the downstream effects
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of ϵ, as well as other hyper-parameters, would require significant further work, beyond the scope of
this paper.

Implications for other fairness measures As highlighted by [5, Chapter 3], fairness notions in
classification settings can be categorized into notions of independence, separation, and sufficiency.
Demographic parity falls in the class of the independence notion, and hence, other measures of
fairness that are closely related, e.g., disparate impact, would also improve when optimizing for
demographic parity. However, other notions of fairness such as separation or sufficiency may
not simultaneously be satisfied [5]. As FWC targets demographic parity, it cannot guarantee an
improvement in these other measures. To test this, we compute the equalized odds, which falls under
the notion of separation, for the downstream classifier in Section 7 and check the performance of FWC
compared to the other approaches. Table 8 indicates the datasets in which FWC is part of the Pareto
frontier for both demographic parity and equalized odds. When considering equalized odds, FWC is
not a part of the Pareto frontier for the Drug dataset, and more generally, FWC performance is not as
competitive. This is in contrast to demographic parity: in Figure 1, FWC sits on the Pareto frontier
across all datasets for fairness-performance trade-off in downstream classification.

Table 8: Presence on the Pareto frontier for FWC across different fairness violation hyper-parameter
values (ϵ = {0.01, 0.05, 0.1}), for both demographic parity (left) and equalized odds (right) in the
downstream learning settings of Section 7. As equalized odds is not an independence notion of
fairness as demographic parity, constraints on demographic parity do not guarantee an improvement
in equalized odds, resulting in FWC not performing as well for downstream performance-fairness
tradeoff when using equalized odds.

Pareto Frontier, Demographic Parity Pareto Frontier, Equalized Odds

Dataset FWC (ϵ = 0.01) FWC (ϵ = 0.05) FWC (ϵ = 0.1) FWC (ϵ = 0.01) FWC (ϵ = 0.05) FWC (ϵ = 0.1)

Adult ✓ ✓ ✓

Drug ✓ ✓ ✓

Crime ✓ ✓ ✓ ✓

Credit ✓ ✓ ✓

E Broader Impact

Our work presents a novel approach to obtain coresets (synthetic representative samples) of a given
dataset while reducing biases and disparities in subgroups of the given dataset. As other approaches
in the field of algorithmic fairness, our efforts may help populations that would otherwise face
disadvantages from a model or decision process. Importantly, our approach refrains from exploiting
biases inherent in the data itself; rather, it seeks to mitigate biases in data-driven decision systems. It
is crucial to note that our method does not claim to address all sources or types of bias. In addition,
while our tools enable a malicious modeler to manipulate algorithmic fairness methods to amplify
disparities instead of reducing them, for instance, by reversing the fairness constraint (replacing ≤
with ≥), the unfairness of a trained model can be detected by assessing it over a separate test set from
the original dataset.

28



0.02 0.04 0.06 0.08 0.10 0.12
Demographic Disparity

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

AU
C

Adult Dataset

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)

FWC ( : 0.1)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.02 0.03 0.04 0.05 0.06 0.07
Demographic Disparity

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

AU
C

Adult Dataset (with Fair Pre-Processing)

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)

FWC ( : 0.1)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Demographic Disparity

0.40

0.45

0.50

0.55

0.60

0.65

0.70

AU
C

Credit Dataset

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Demographic Disparity

0.40

0.45

0.50

0.55

0.60

0.65

0.70

AU
C

Credit Dataset (with Fair Pre-Processing)

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Demographic Disparity

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Crime Dataset

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.15 0.20 0.25 0.30 0.35
Demographic Disparity

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Crime Dataset (with Fair Pre-Processing)

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Demographic Disparity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

AU
C

Drug Dataset

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

0.02 0.04 0.06 0.08 0.10 0.12
Demographic Disparity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

AU
C

Drug Dataset (with Fair Pre-Processing)

Pareto Frontier
FWC ( : 0.01)
FWC ( : 0.05)
FWC ( : 0.1)

Fairlet (K-Means)
Fairlet (K-Medoids)
Ind. Fair. Cor.
K-Median Cor.

Uniform Subsampling
K-Means
K-Medoids

Figure 6: Fairness-utility tradeoff of all methods, indicated by AUC and demographic disparity of a
downstream MLP classifier across all datasets (rows) and without (left column) or with (right column)
fair pre-processing [34] (excluding FWC , to which no fairness modification is applied after coresets
have been generated). The Pareto frontier, indicated with a dashed red-line, is computed across all
models and coreset sizes. We report the averages over 10 separate train/test splits.
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Figure 7: Similarly to Figure 6, we report the means and standard deviations over 10 runs of the
fairness-utility tradeoff of all methods, indicated by AUC and demographic disparity of a downstream
MLP classifier across all datasets (rows) and without (left column) or with (right column) fair pre-
processing [34] (excluding FWC , to which no fairness modification is applied after coresets have been
generated).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 4 includes the details on the majority minimization algorithm for
FWC, with Section 6 showing the equivalence between the unconstrained version of FWC and
Lloyd’s algorithm for k-medians and k-means. Section 7 includes all experiments, which are
presented in the same order as the conclusions presented in the abstract, with the synthetic
data experiment first (Figures 1, top left, 2 and Table 2), downstream learning and data
augmentation using synthetic representatives (Figures 1, 3, 4, 6, 7 and Tables 3, 4, 5, 6, 7)
and reducing biases in prediction from large language models (Table 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Limitation section in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Section 5 and Appendix B for theorems and proposition statements and
proof, respectively. The only exception is Proposition 2.1, which is stated in Section 2,
Lemma A.1, which is stated and proved in Appendix A and Lemma A.2, which proof
follows directly from [77, Corollary 5] by extending to the case in which m ̸= n.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 provides the algorithm outline, with Algorithm 1 providing the step-
by-step breakdown of the algorithm. The variant of FairWASP for line 4 in Algorithm 1 uses
the same algorithm as [77] with m ̸= n, while implementation details for the experiments,
along with hyper-parameters for each methods can be found in Section 7 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Data are openly available and details to reproduce the main experimental
results are provided in Section 7 and Appendix C. The code is not available publicly at the
moment.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details are provided in Section 7, Appendix C.1 for the
runtime analysis with synthetic data and Appendix C.2 for the downstream learning and
data augmentation experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Yes, we provide commentary in Appendix C.2, and include 1σ uncertainty
computed over 10 runs with separate seeds in Figures 1 (top left), 2, 3 (bottom row), 4
(bottom row), 5 and 7 and Tables 1, 2, 3, 4, 5, 6 and 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For non-LLM experiment, the computing environment is reported in Ap-
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• The answer NA means that the paper does not include experiments.
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Guidelines:
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eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
Answer: [Yes]
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Guidelines:
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Justification: All datasets are publicly available, and GPT-3.5 and GPT-4 were access
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Guidelines:

• The answer NA means that the paper does not use existing assets.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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well as details about compensation (if any)?
Answer: [NA]
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: No human subjects were involved in this study.
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