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ABSTRACT

In the field of scene reconstruction with moving objects, recent studies have uti-
lized 3D Gaussian Splatting (3DGS) for spatial representation. This method typ-
ically relies on camera poses and point clouds obtained through the Structure-
from-Motion (SfM) algorithm. However, in scenes captured with monocular view-
points and containing moving objects in each frame, the SfM algorithm struggles
to obtain accurate camera poses and points clouds. As a result, it often either
removes point clouds of dynamic objects or fails to find camera poses for each
frame, thereby leading to sub-optimal rendering of dynamic scenes. We propose a
novel approach, Initial-Free Monocular Dynamic Gaussian Splatting (IF-MoDGS)
which does not require precomputed camera poses and point clouds in dynamic
scenes with moving objects. Our approach estimates camera poses using the static
background, separated from dynamic objects by a motion mask, and generates
point clouds specifically for the dynamic objects. To handle dynamic objects, we
define a canonical space and apply deformation to link it with each viewpoint and
timestamp. Then, to improve quality in complex spatio-temporal scenes, we utilize
a high-dimensional feature loss and an annealing frequency loss. Extensive experi-
mental results demonstrate that our method can effectively render dynamic scenes
without relying on precomputed camera poses and point clouds, achieving the
state-of-the-art performance in dynamic scene rendering tasks using a monocular
camera. Our project will be available at:https://anonymous.4open.science/w/IF-
MODGS-67F5/

1 INTRODUCTION

3D scene reconstruction studies have been a significant topic in the field of computer vision. How-
ever, these tasks often face considerable limitations due to the need for extensive manpower, high
computational resources, and specialized equipment. As a result, various approaches have been ex-
plored to reconstruct 3D spaces using 2D image data obtained from cameras. Neural Radiance Field
(NeRF) (Mildenhall et al., 2021), significantly highlighted the importance of spatial representation.
It constructs a continuous volumetric scene function through a simple multi-layer perceptron to syn-
thesize new views of complex scenes, and it leads to numerous follow-up studies (Barron et al.,
2021; 2022; 2023). Nevertheless, its slow training and rendering speeds have restricted its practical
applications. Subsequently, the 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) was proposed to
reconstruct 2D space by optimizing the parameters of explicit 3D Gaussians and accumulating them.
This leads to a significant improvement in training and rendering speeds for 3D reconstruction tasks,
making it easier to restore high-quality 3D scenes.

Since most real-world captured sequences involve dynamic scenes, reconstructing these scenes re-
mains a significant challenge. While the reconstruction of static scenes is well-developed (Yu et al.,
2024; Lin et al., 2024; Huang et al., 2024a; Hamdi et al., 2024; Lu et al., 2024a), transitioning
to dynamic scene reconstruction presents numerous issues, such as the disappearance of dynamic
objects or overfitting to training views. In static scenes or those captured at a single time step, mod-
els can easily understand the scene because the objects maintain consistent shapes across different
viewpoints. However, in dynamic scenes, the shapes change with each time step, complicating the
model’s understanding of the overall scene. To address this, multi-view dynamic approaches (Wu
et al., 2024; Yang et al., 2024; Lu et al., 2024b; Li et al., 2024; Sun et al., 2024; Guo et al., 2024) cap-
ture synchronized data from multiple cameras, while monocular dynamic approaches (Liang et al.,
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Figure 1: Illustration of differences from existing methods. (a) 3D Gaussian-based methodology
for traditional dynamic scenes relying on SfM algorithm base initial. Since these methods are based
on the SfM algorithm, there is no point for dynamic objects, and camera poses are also required as
inputs. (b) Our method that works without initials.

2023; Shih et al., 2024; Huang et al., 2024b; Guo et al., 2024) reconstruct continuous scenes using
a single camera. Various efforts have been made to move beyond traditional static environments,
resulting in numerous studies showing high performance in reconstruction metrics. However, these
methods still rely on external programs to separately obtain camera parameters and the initial point
cloud. As illustrated in Figure 1(a), obtaining camera parameters and initial point clouds, which are
crucial priors in 3DGS, remains difficult in dynamic scenes.

As seen in Figure 1(a), most 3D reconstruction studies have utilized external programs based on
Structure from Motion (SfM) to estimate camera poses and obtain an initial point cloud before
proceeding with reconstruction. However, challenges arise when acquiring camera parameters from
image collections that include dynamic objects. SfM typically extracts keypoints from the images
during feature extraction, and then, adjusts the feature correspondences between images using the
epipolar geometry. It then estimates 3D coordinates through triangulation and minimizes errors using
the bundle adjustment and outlier filtering. While dynamic features can be ignored and only static
features are utilized during the outlier filtering process, which allows for the acquisition of camera
parameters, this approach leads to the inability to acquire point clouds for dynamic objects due to
the exclusion of unmatched dynamic points. If the dynamic region occupies a large portion of each
frame, the confusion can occur during the filtering process, making it difficult to obtain both camera
parameters and point cloud results. Unlike NeRF-based approaches, where the camera poses are
crucial, 3DGS based methods require both the camera poses and the initial point cloud as important
priors, thereby complicating the reconstruction of dynamic scenes.

To address these issues, we propose a new method called Initial-Free Monocular Dynamic Gaussian
Splatting (IF-MoDGS). It enables the simultaneous estimation of both camera position and initial
point cloud from dynamic scenes captured by single RGB camera, facilitating 3D reconstruction
even in dynamic environments. As seen in Figure 1(b), we utilize a motion mask to separate static
and dynamic regions and explicitly distinguish each region for training. The Static Initial Module
(SIM) estimates the 3D points corresponding to static regions and the camera poses. For dynamic
regions, the Dynamic Initial Module (DIM) estimates point clouds for dynamic objects using depth
floating and the Canonical Space Mapper (CSM). The floating points are transformed into canonical
coordinates through the CSM, resulting in a canonical form that has positions and shapes applicable
to the entire scene. Subsequently, the Dynamic Reconstruction Module (DRM) employs a defor-
mation network to refine the detailed shape and position according to each viewpoint and temporal
information. Through this approach, we can clearly distinguish the Gaussians representing static re-
gions from those representing dynamic objects. The separating loss enables us to optimize the Static
Reconstruction Module (SRM) and DRM independently. When integrating these distinct Gaussians
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Figure 2: Performance comparison with other dynamic scene rendering model. The perfor-
mance diagram present the mPSNR results for both static and dynamic regions, for the test view
rendering outputs of each model. It demonstrates that our model outperforms existing models in
both static and dynamic areas.

to form a unified scene, we use a VGG loss at the high-dimensional feature level to ensure proper
alignment and an annealing frequency loss to effectively manage the complex spatio-temporal re-
construction of dynamic objects.

Our contributions are as follows:

• We propose a novel approach, IF-MoDGS, enabling the high-quality novel view rendering
for dynamic scenes captured by single RGB camera without requiring initial camera poses
and point clouds.

• We estimate 3D points for moving objects by reconstructing dynamic objects through the
canonical space, overcoming challenges faced by previous methods. To handle the canon-
ical space, we employ the CSM along with deformation to transform and align dynamic
objects across different time steps. Through this approach, we explicitly separate dynami-
cally changing objects in complex spatio-temporal scenes from the static regions, enabling
effective reconstruction of the dynamic areas.

• We optimize Gaussians for the static and dynamic regions separately by applying a mask-
based separating loss. This independent optimization of the SRM for static scenes and the
DRM for dynamic objects enhances the rendering quality of both components.

As a result, our method experimentally demonstrated the ability to reconstruct dynamic scenes using
only single RGB camera and achieved high performance in novel view synthesis, as illustrated in
Figure 2, for both dynamic and static regions.

2 RELATED WORKS

2.1 INITIAL-FREE 3D RECONSTRUCTION

NeRF (Mildenhall et al., 2021) generates a continuous volumetric scene function using an MLP,
focusing on novel view synthesis rather than explicit 3D reconstruction. However, its reliance on
MLP makes it prone to overfitting, sensitive to noise, and difficult to edit. Unlike NeRF-based meth-
ods (Mildenhall et al., 2021; Barron et al., 2021; 2022; 2023; Liu et al., 2020; Yu et al., 2021b;
Chen et al., 2022; Yu et al., 2021a), which need to compute large volumes of empty space, 3DGS
employed a more efficient computation, offering faster rendering times by reducing unnecessary
computations in empty space. Despite these advances, both methods still rely heavily on accurate
camera parameters and initial point clouds. Recent efforts to overcome these limitations include
NeRF-based methods like BARF (Lin et al., 2021a) and RoDyNRF (Liu et al., 2023), which esti-
mate camera poses and reconstruct scenes using only RGB images. BARF focuses on static scenes,
jointly optimizing both camera poses and an MLP by calculating optical flow and using the Lucas-
Kanade algorithm to estimate the displacement vectors of pixel coordinates. RoDyNRF, on the other
hand, distinguishes between static and dynamic pixels, adjusting alignment of back-projected points.
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Figure 3: The overall pipeline of our method. It consists of two main parts: the initial module
and the reconstruction module. The initial module jointly optimizes the Gaussian and camera poses,
and the reconstruction module refines the camera poses and point cloud. We then render static and
dynamic separately to allow for optimizations specific to each.

For dynamic regions, RoDyNRF uses a scene flow MLP to estimate the motion of 3D points. As
a result, it successfully reconstructs dynamic scenes and estimates camera poses using only image
data from a single camera. In 3DGS-based research, accurate camera poses and initial point clouds
remain crucial. Approaches like Colmap-free 3DGS (Fu et al., 2024) and COGS (Jiang et al., 2024)
aim to estimate poses using monocular depth and sparse image sets, but prior information is still a
key constraint. Our proposed IF-MoDGS addresses these issues by estimating camera poses and re-
constructing both static and dynamic scenes. We separate Gaussians representing static and dynamic
regions, optimizing camera poses from static regions and reconstructing dynamic regions through a
learned canonical form. This method allows for reconstruction using only image data, overcoming
the limitations of prior 3DGS methods.

2.2 DYNAMIC RENDERING

Unlike static scene reconstruction, dynamic scene reconstruction is a very challenging task as it
involves compositing the desired viewpoint at a specific time. Dynamic scenes can be acquired
in two ways: from multi-view cameras (Fridovich-Keil et al., 2023; Cao & Johnson, 2023; Wang
et al., 2023) or from monocular cameras (Liang et al., 2023; Chen et al., 2024). In addition to this,
there are other assumptions, such as whether the camera positions change over time, or whether
RGB-D cameras are used, but in general, the dataset is constructed in the same way. In the case of
multi-view cameras, there are multiple images for each time step, so there is enough information
to use SfM and other methods. However, if we consider the case of a monocular camera, there is
only one scene captured at each time step. In the case of dynamic objects, the shape and position
change from time to time, so it is very difficult for the model to understand the reconstruction using
only that information. Most of the readily accessible videos are single-camera and were recorded
in dynamic scenes. Therefore, it can be seen that dynamic scene reconstruction is a very important
task. In 3DGS, study of monocular dynamic scene reconstruction exists (Yang et al., 2024). This
study utilizes a scenario where a single camera is used, but it has the disadvantage of using point
clouds acquired using stereo depth. In the case of (Kocabas et al., 2024), the dynamic objects are
limited to humans and an additional initial prior called SMPL (Loper et al., 2023) is provided. We
overcome the aforementioned challenges in monocular dynamic scenes. In a monocular view with
moving objects, we used video frames and corresponding monocular depth to estimate the correct
camera pose. Through backprojection, We generate an initial prior for unspecified dynamic objects,
rather than focusing on a specific dynamic object as SMLP does.
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3 METHOD

Our IF-MoDGS reconstructs and renders dynamic scenes without initial priors. IF-MoDGS consists
of the initial module that estimates the initial 3D points and approximates camera poses, and the re-
construction module that optimizes Gaussians using the initial points and estimates the exact camera
poses as shown in Figure 3. The initial module consists of the SIM, which estimates the initial 3D
points and camera poses for static scene, and the DIM, which estimates the 3D points for dynamic
objects. The reconstruction module consists of the SRM and the DRM. The SRM takes the initial
3D points and camera poses estimated by the SIM as inputs, optimizes the Gaussians, and refines
the camera poses for greater accuracy. The DRM takes as input the initial 3D points estimated by
the DIM and optimizes the Gaussians and deformation. The final rendering result can be obtained
by concatenating the Gaussian from the SRM and DRM.

3.1 PRELIMINARY

3D Gaussian Splatting 3D Gaussian Splatting (Kerbl et al., 2023) represents a 3D scene by defining
a 3D Gaussian for each point in a point cloud. Each 3D Gaussian is a distribution defined by a mean
vector µ ∈ R3 and an anisotropic covariance matrix Σ ∈ R3×3, forming an ellipsoid. The 3D
Gaussian is mathematically defined as follows:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where the mean vector µ corresponds to the 3D coordinate of the point cloud. The covariance matrix
Σ of the 3D Gaussian if further decomposed into a rotation matrix R ∈ R3×3 and a scaling vector
S ∈ R3 of the ellipsoid, expressed as:

Σ = RSSTRT . (2)

The 3D Gaussian is projected into 2D space corresponding to each camera view with the covariance
of the rendered 2D Gaussian described as follows:

Σ′ = JWΣW⊤J⊤, (3)

where J is the Jacobian matrix of the affine approximation for the projective transformation, and W
denotes the transformation matrix from world coordinates to camera coordinates. For final image
rendering, the 3D Gaussian is parameterized by its position x ∈ R3, opacity o ∈ R, and color
c ∈ Rk, where color is expressed through spherical harmonics coefficients. These 2D Gaussians
are rasterized similarly to the volume rendering of NeRF (Mildenhall et al., 2021) technique to
determine the final pixel values. The rasterization process that computes the final pixel values is
performed using alpha-blending, as follows:

C(u, v) =
∑
i∈N

Tiαici, αi = oie
− 1

2 (x−µi)
⊤Σ′(x−µi), Ti =

i−1∏
j=1

(1− αj) (4)

where Ti is the transmittance and µi represents the uv coordinate of the 3D Gaussians projected
onto the 2D image plane.

3.2 INITIAL MODULE

We propose an initial module that estimates the initial 3D points needed for Gaussian optimization,
and in Figure 3(a), the scene is separated into the static scene and the dynamic objects using a motion
mask. The approximate camera poses and 3D points can be obtained from the initial module.

Static Initial Module The SIM, utilizing the 3D Gaussian learning methodology of COGS(Jiang
et al., 2024), reconstructs the initial 3D points and obtains an approximate camera poses, focusing on
the static scene. To focus solely on the static scene, we use a motion mask M generated by the Mask
R-CNN (He et al., 2017) to exclude moving objects from the scene. From the video frame I(u, v)i
and the corresponding monocular depth (Ke et al., 2024) Di, the initial 3D points are obtained as
follows by back-projecting each pixel onto 3D space, which can be expressed as:

pi = [R|t]i ·

d̂i(u, v) ·Mi(u, v) ·K−1
i

(
u
v
1

)
i

 , (5)
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where pi is the back-projected 3D point of the i-th view. The optimization to align the consistency
between views by adjusting the camera pose and depth information is performed as follows:

min
R,t

∥Mi ⊙ Ii −Mi ⊙ Îi∥1, (6)

where ⊙ denotes elementwise multiplication, Îi is the rendered image and [R|t]i is the camera pose
of view i. In Figure 3(a), the depth value for each view is scaled by the scale parameter σi and the
shift parameter µi, which are learned jointly with the camera poses as described below:

d̂i(u, v) = Di(u, v)× σi + µi, (7)

This allows us to remove moving objects that interfere with camera pose estimation and 3D Gaussian
learning, and subsequently reconstruct the camera poses and 3D points.

Dynamic Initial Module As the motion mask is applied in the SIM, information about the dynamic
object is lost. We use an inverse motion mask(1−M ) to reconstruct dynamic object information. A
3D point is initialized using the first video frame and the depth, which is scaled and shifted in the
SIM. The process for floating the 3D point is shown below:

pw = [R|t]0 ·

(
d̂0(u, v) · (1−M0(u, v)) ·K−1

0

(
u
v
1

))
, (8)

where K0 is the intrinsic camera parameter matrix for the first frame, and u, v represent the pixel
coordinates of the frame. [R|t]0 denotes the camera pose, and d̂0(u, v) is the depth value, adjusted
by the depth scale and shift estimated from the SIM to ensure consistency of the monocular depth
for the first view. The dynamic point cloud obtained from the above process is unstable due to
adjustments made with the static scale and shift values. To address this, we applly quantile sampling
to remove the top 5% and bottom 10% of points, followed by the point-wise interpolation to convert
sparse points into dense points. The resulting densified points are as follows:

pdynamic = pw ⊕ interp [quantile(pw)] , (9)

where ⊕ represents the operation of combining the original points with the interpolated values from
the quantile sampling. The resulting densified points pdynamic are represented as 3D Gaussians G =
{p, r, s}, where p is the 3D point coordinate vector derived from pdynamic, r is the rotation matrix,
and s is the scale vector.

3D points floated using depth information still exist in incomplete locations due to inaccuracies
caused by the scaling and shifting from the static depth. Specifically, dynamic objects tend to be
incorrectly positioned too close to the background. To resolve this, the 3D points are initially floated
using depth information and, after refinement through the quantile sampling and interpolation, they
are transformed into the scaled canonical space coordinate via the CSM network. The CSM network
is crucial for adjusting the inaccurate positions of 3D points, as it corrects the errors resulting from
the static depth scaling and shifting. The encoder E = Θfeat of the CSM network is responsible for
extracting features from the 3D points. The decoder D = {θp, θr, θs} of the CSM network consists
of three networks that estimate the position offset vector, rotation offset vector, and scale offset
vector, as follows:

∆p = θP (Θfeat(p)), ∆r = θr(Θfeat(p)), ∆s = θs(Θfeat(p)). (10)

The offset vectors output by the CSM network move the 3D Gaussians G to the canonical space,
forming the 3D Gaussians Gcan in the canonical space as follows:

Gcan{p′, r′, s′} = ∆G+G = {p+∆p, r +∆r, s+∆s}, (11)

where Gcan{p′, r′, s′} is the final canonical Gaussian constructed through the CSM network.

3.3 RECONSTRUCTION MODULE

We propose a reconstruction module where the Gaussians, which are separated into static and dy-
namic, are optimized individually. For static Gaussians, parameters are learned to reconstruct them
in greater detail, and the camera poses from the initial module is further adjusted for greater ac-
curacy. In the dynamic regions, the initial Gaussians for dynamic objects, transferred to canonical
space, are modified at each time step using a Deformation Network Dλ.
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Static Reconstruction Module For the results of the initial module, we obtain explicitly separated
Gaussians for static and canonical Gaussians for dynamic object. In the SRM, only the optimization
of the Gaussian corresponding to the static and the adjustment of the camera poses are done. When
optimizing the Gaussian, we freeze the gradient for the camera poses, and when optimizing the
camera pose, we freeze all parameters other than the camera poses and apply only the photometric
loss, as detailed in the Training setup section of the appendix. The Gaussian corresponding to static is
optimized by separating losses, which is described in detail in the section of Rendering and Objective
Function.

Dynamic Reconstruction Module The DRM converts the shape of the Gaussians Gcan =
{p′, r′, s′} in canonical space into real space for each time. We extract the hex-plane feature hp

for the position p′ of the canonical space Gaussian Gcan = {p′, r′, s′} and the time embedding t,
following the method used in 4DGS (Wu et al., 2024):

hp = HP(PE(p′), PE(t)), (12)

where PE is the positional encoding, and HP represent hex-plane feature function for position and
time. The deformation network Dλ uses hp to output the parameters (∆p′,∆R,∆S) of the deformed
Gaussian:

∆Gcan{∆P,∆R,∆S} = Dλ(hp). (13)
The hex-plane features are combined and passed through the decoder to estimate the offset vectors:

∆P = ΨP (LC(hp)), ∆R = ΨR(LC(hp)), ∆S = ΨS(LC(hp)), (14)

where LC is the linear combination layer. The final 3D Gaussian in the real space is represented as:

Greal{Preal, Rreal, Sreal} = ∆Gcan +Gcan, (15)

where Greal is the 3D Gaussian for a dynamic object deformed in the real space.

3.4 RENDERING AND OBJECTIVE FUNCTION

Rendering From the reconstruction module results, we obtain 3D Gaussians for both static and
dynamic components, explicitly separated in the real space. This separation allows for independent
rendering of both the static and dynamic components. The rendering equation is the same as the
rendering through alpha-blending in 3D Gaussian Splatting (Kerbl et al., 2023).

IStatic(u, v) =

N∑
i=1

pi,S(µS ,ΣS)αi,Sci,S

i−1∏
j=1

(1− pi,S(µS ,ΣS)αi,Sci,S), (16)

where pi,S is the i-th Gaussian corresponding to the static part in real space, and µS and ΣS are
the mean and covariance of the Gaussian, respectively. α is computed based on the opacity of the
Gaussian, and cS is the color value calculated using spherical harmonics.

IDynamic(u, v, t) =

N∑
i=1

pi,D(µt,D,Σt,D)αi,Dci,D

i−1∏
j=1

(1− pi,D(µt,D,Σt,D)αi,Dci,D), (17)

where it has the same form as the static, but with parameters corresponding to the dynamic Gaussian
at time t. By concatenating the Gaussians corresponding to the static and dynamic components, we
can obtain the Gaussians for the entire scene. By rendering the Gaussians for the entire scene, the
final rendering result can be obtained as shown below:

IFusion(u, v, t) =

N∑
i=1

pi(µt,Σt)αici

i−1∏
j=1

(1− pi(µt,Σt)αici), (18)

where all parameters for the Gaussians are the concatenated parameters of the static and dynamic
components.

Objective function We propose a separating loss function that utilizes images rendered with static
and dynamic separation, as shown in the appendix. If the photometric loss is applied solely to the
final image, rendered from the concatenation of static and dynamic components, each Gaussian
will not be optimized independently. The static Gaussians densify and fill the dynamic regions,

7
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Table 1: Comparisons of the results for the overall average and quantitative table for 7 of the NVIDIA dataset.
We report PSNR, LPIPS and color each cell as best and second best

Methods Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Avg
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

COGS 20.72 0.211 23.53 0.127 22.72 0.202 20.06 0.251 19.22 0.233 23.75 0.140 20.67 0.111 21.61 0.182
4DGS 21.98 0.178 26.53 0.072 24.45 0.128 21.77 0.183 21.22 0.154 24.73 0.079 20.97 0.095 23.00 0.127
4DGS+COGS 22.81 0.138 25.03 0.104 25.67 0.055 22.02 0.152 20.05 0.175 25.41 0.067 19.29 0.116 22.90 0.115
D3DGS 21.33 0.213 24.77 0.132 25.33 0.120 22.30 0.133 21.02 0.144 24.63 0.078 22.11 0.075 23.01 0.128
E-D3DGS 21.47 0.158 25.70 0.078 25.97 0.087 21.62 0.166 19.88 0.166 23.53 0.091 19.34 0.133 22.50 0.098
RoDynRF (w/o COLMAP) 23.73 0.100 29.22 0.045 29.00 0.075 23.38 0.115 21.57 0.137 20.94 0.169 24.37 0.067 24.60 0.101

IF-MODGS (Ours w/o initial) 23.45 0.104 28.30 0.046 28.10 0.071 23.33 0.099 23.24 0.092 26.42 0.045 24.92 0.034 25.37 0.070

Figure 4: Qualitative results for Balloon2, Playground scene of NVIDIA dataset. It shows the
clearest novel view rendering result for a moving object compared to other methods.

while the dynamic Gaussians are rendered in the static areas, ultimately resulting in the issue where
no movement occurs. The separating loss is calculated by rendering only the dynamic Gaussians,
multiplying by the inverse motion mask, and computing the photometric loss, then rendering only
the static Gaussians, multiplying by the motion mask, and combining the photometric losses. As
follows:

LossSeparate = M · L1(IGT , IStatic) + (1−M) · L1(IGT , IDynamic). (19)

By applying the separating loss, the static Gaussians are optimized for the static regions, and the dy-
namic Gaussians are optimized for the dynamic objects. Additionally, we calculate the photometric
loss for the concatenated final image, as shown below:

Lossphoto = L1(IGT , IFusion). (20)

Both static and dynamic Gaussians are used to render the final image. To properly blend the static
and dynamic Gaussians, additional training control is applied using the VGG loss and annealing
frequency loss. The VGG loss measures the difference between the feature vectors of the ground
truth image and the rendered image. Minimizing the loss between images solely at the pixel level
such as using L1 loss, tends to produce blurred results in complex spatio-temporal situations. This
is because it is more efficient for model to optimize by enlarging the region occupied by a single
Gaussian and reducing significant temporal changes. Therefore, we additionally employ VGG loss
to preserve the details of the final output. Annealing frequency loss was also introduced for similar
reasons. It is employed to provide additional control over reconstructing high-frequency information
in the scene. Below is the configuration of our final loss. The results of ablation for our methods are
shown in Table 3.

Lossfinal = λ1Lossphoto + λ2LossSeparate + λ3Lossvgg + λ4LossFreq, (21)

where λ1 = 0.2, λ2 = 0.8, λ3 = 0.75, λ4 = 0.1.

4 EXPERIMENTS

Based on the used datasets and evaluation metrics, we compare our model with existing SOTA
models. We used 3D Gaussian models targeting dynamic scene, models that jointly estimate camera
poses and Gaussians, and models that jointly estimate NeRF-based dynamic scene and camera poses
for the comparison.
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Table 2: Comparison of quantitiave and average values for 6 UCSD. We report PSNR, LPIPS and color each
cell as best and second best

Methods Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Avg
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

COGS 20.72 0.211 23.53 0.127 22.72 0.202 20.06 0.251 19.22 0.233 23.75 0.140 20.67 0.111 21.61 0.182
4DGS 21.98 0.178 26.53 0.072 24.45 0.128 21.77 0.183 21.22 0.154 24.73 0.079 20.97 0.095 23.00 0.127
4DGS+COGS 22.81 0.138 25.03 0.104 25.67 0.055 22.02 0.152 20.05 0.175 25.41 0.067 19.29 0.116 22.90 0.115
D3DGS 21.33 0.213 24.77 0.132 25.33 0.120 22.30 0.133 21.02 0.144 24.63 0.078 22.11 0.075 23.01 0.128
E-D3DGS 21.47 0.158 25.70 0.078 25.97 0.087 21.62 0.166 19.88 0.166 23.53 0.091 19.34 0.133 22.50 0.098
RoDynRF (w/o COLMAP) 23.73 0.100 29.22 0.045 29.00 0.075 23.38 0.115 21.57 0.137 20.94 0.169 24.37 0.067 24.60 0.101

IF-MODGS (Ours w/o initial) 23.45 0.104 28.30 0.046 28.10 0.071 23.33 0.099 23.24 0.092 26.42 0.045 24.92 0.034 25.37 0.070

Figure 5: Qualitative results of previous methods and our method. Previous methods fail to
synthesize in novel view, but our method shows perfect novel view synthesis.

4.1 EXPERIMENT SETUP

4.1.1 DATASETS

The Nvidia dataset (Yoon et al., 2020) is a collection of data created by edited video captured in a
multi-view camera setup, but processed under a monocular setting. The frame of each view camera
is continuously connected to reproduce the moving monocular camera environment and use it as
training data. The test the video from the first view camera is used as the GT. The trained model
fixes the input first frame with a fix view and then renders a continuous frames for evaluation.

The UCSD dataset (Lin et al., 2021b), like Nvidia dataset, is a video dataset shot with a multi-view
camera, edited with monocular settings and used for learning and evaluation.

4.2 RESULTS OF NOVEL VIEW SYNTHESIS

We compared our model with 4DGS (Wu et al., 2024), D3DGS (Yang et al., 2024), E-D3DGS (Bae
et al., 2024), which are 3D Gaussian-based models targeting dynamic scenes. We also compared dy-
namic scenes with RoDynRF (Liu et al., 2023), a NeRF-based method that can be rendered without
camera poses. Since the Gaussian-based model requires a Gaussian initial, it used the information
obtained by COLMAP, and our model was driven by receiving only intrinsic as a Gaussian initial.
COGS (Jiang et al., 2024), which operates without an initial for static scenes, was also compared
with the model operated an initial in dynamic scenes by combining 4DGS (Wu et al., 2024) and
COGS (Jiang et al., 2024). Table 1 compares the quantitative results for the NVIDIA dataset, and
Table 2 compares the quantitative results for the UCSD dataset. Our method had the highest av-
erage value for quantitative results in both datasets. Figure 4 shows that models (Wu et al., 2024;
Yang et al., 2024; Bae et al., 2024) using COLMAP did not have a point for dynamic objects, so
the rendering results for moving objects were blurred or the shape was not completed. In Figure 5,
our method maintains the shape of the moving object, but in the case of comparative models, the
shape is not complete and some of them disappear. These results show that our method optimizes
and renders Gaussians well for the dynamic scene without initialization.

4.3 ABLATION STUDIES

Dynamic initial point Existing methods (Wu et al., 2024; Yang et al., 2024; Bae et al., 2024)
fill the dynamic area through densification using static point cloud or create a point by using a
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Table 3: Ablation studies on Nvidia dataset using our proposed method. The best results are denoted by bold

Methods Truck Balloon2 Avg (7 scene)
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

w/o Dynamic initial points 26.10 0.060 25.20 0.073 23.68 0.111
w/o CSM 27.50 0.076 26.64 0.046 25.20 0.073
w/o Separating Loss 23.64 0.142 24.72 0.081 23.39 0.114
w/o Feature Loss 27.24 0.107 26.05 0.088 25.27 0.105

IF-MODGS (Ours) 28.10 0.071 26.42 0.045 25.37 0.070

random point. However, we use a floating method that reconstructs only points corresponding to
dynamic objects using a monocular view. In Section 3.2, we discussed how to initialize the points
corresponding to dynamic objects using monocular depth. In Table 3, PSNR represents rendering
performance decreased by 6.6% when an initial point is randomly generated and used without the
relevant content. Randomly generated points contain very few useful points, as many are located far
from the expected position of the real object. In addition, it took a long time to converge and was
easy to fall into the local minimum because the points have to learn the movement together while
matching the shape.

Canonical Space Mapper We used the Canonical Space Mapper(CSM) to construct canonical
spaces well. Even if the point for the dynamic object is reconstructed through depth floating, there is
a limitation in considering that an accurate canonical space is configured. This is because the scale
shift of the depth corrected in the static area is used. Thus, CSM is used to correct the inaccurate
depth alignment. The point of the dynamic object corrected up to the depth alignment constitutes
a more accurate canonical space. Table 3 shows that CSM better structured the canonical space by
decreasing the PSNR performance by 0.67% when CSM was not applied.

Separating Loss We applied a separating loss to independently optimize 3D Gaussian correspond-
ing to static scene and 3D Gaussian corresponding to dynamic object. If the separating loss is not
applied, the 3D Gaussians corresponding to the static scene will become densified and fill the regions
of dynamic objects, or the 3D Gaussians corresponding to dynamic objects will fill the static scene.
In such cases, the dynamic object ends up remaining still without movement, or the final output will
produce a noisy rendering of the static scene. In Table 3, it can be seen that the PSNR decreases by
7.8% when the Separating Loss is not applied.

Feature Loss We made the rendering results clear by using a feature loss using a pre-trained VGG
network. A photometric loss, which supervises only the difference between pixels, has limitations
in completing the temporal change and shape of 3D Gaussian. The contents of feature loss were
discussed in section 3.4. By using the feature of the rendered image, the texture of the dynamic
object may be clarified, and the 3D Gaussian may be densely cloned in the learning process. Finally,
in Table 3, the effect on feature loss is confirmed by decreasing the PSNR value by 0.39%.

5 CONCLUSION

We proposed a new method, IF-MoDGS, in Gaussian Splatting for dynamic scenes. Unlike other
methodologies that relied on SfM-based algorithms like COLMAP to obtain initial values, we op-
erated without initial point clouds and camera poses. Our method separated static and dynamic
components to generate the initial Gaussian points. The initial point was reconstructed using the
monocular depth, and the depth of the dynamic region with incomplete consistency was compen-
sated using the CSM. It also improved rendering quality by optimizing the Gaussian for static and
dynamic components independently. Finally, we applied a feature loss to induce the segmented static
and dynamic Gaussians to be well combined and rendered. We demonstrated the validity of our new
method by achieving SOTA performance on a dataset targeting monocular dynamic scenes.

REFERENCES

Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-
gaussian embedding-based deformation for deformable 3d gaussian splatting. arXiv preprint
arXiv:2404.03613, 2024.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19697–19705, 2023.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields.
In European conference on computer vision, pp. 333–350. Springer, 2022.

Yufan Chen, Lizhen Wang, Qijing Li, Hongjiang Xiao, Shengping Zhang, Hongxun Yao, and Yebin
Liu. Monogaussianavatar: Monocular gaussian point-based head avatar. In ACM SIGGRAPH
2024 Conference Papers, pp. 1–9, 2024.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, and Xiaolong Wang. Colmap-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 20796–20805, June 2024.

Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and Houqiang Li. Motion-aware 3d gaussian
splatting for efficient dynamic scene reconstruction. arXiv preprint arXiv:2403.11447, 2024.

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick,
Bernard Ghanem, and Andrea Vedaldi. Ges: Generalized exponential splatting for efficient ra-
diance field rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19812–19822, 2024.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH 2024 Conference Papers, pp.
1–11, 2024a.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024b.

Kaiwen Jiang, Yang Fu, Mukund Varma T, Yash Belhe, Xiaolong Wang, Hao Su, and Ravi Ra-
mamoorthi. A construct-optimize approach to sparse view synthesis without camera pose. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Kon-
rad Schindler. Repurposing diffusion-based image generators for monocular depth estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9492–9502, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs:
Human gaussian splats. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 505–515, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024.

Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin,
and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view synthesis.
arXiv preprint arXiv:2312.11458, 2023.

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf: Bundle-adjusting neural
radiance fields. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 5741–5751, 2021a.

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu,
Songcen Xu, Youliang Yan, et al. Vastgaussian: Vast 3d gaussians for large scene reconstruction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5166–5175, 2024.

Kai-En Lin, Lei Xiao, Feng Liu, Guowei Yang, and Ravi Ramamoorthi. Deep 3d mask volume for
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1749–1758, 2021b.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13–23, 2023.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
A skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 851–866. 2023.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024a.

Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Min Yang, Xiao Tang, Feng Zhu, and Yuchao Dai.
3d geometry-aware deformable gaussian splatting for dynamic view synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8900–8910, 2024b.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Meng-Li Shih, Jia-Bin Huang, Changil Kim, Rajvi Shah, Johannes Kopf, and Chen Gao. Modeling
ambient scene dynamics for free-view synthesis. In ACM SIGGRAPH 2024 Conference Papers,
pp. 1–11, 2024.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-
the-fly training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20675–20685, 2024.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural voxels
for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19706–19716, 2023.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024.

Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis of
dynamic scenes with globally coherent depths from a monocular camera. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5336–5345, 2020.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. arXiv preprint arXiv:2112.05131,
2(3):6, 2021a.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021b.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19447–19456, 2024.

A IMPLEMENTATION DETAILS

A.1 TRAINING SETUP

We took the camera intrinsic parameter as input and used it. Also, using the pre-trained relative
depth estimation model (Ke et al., 2024) and Mask R-CNN (He et al., 2017), we use depth maps and
motion masks. Our method performs back-propagation of gradients for camera poses only on the
SRM to jointly learn camera poses and 3D Gaussian, and does not learn gradients for camera poses
on the DRM. In addition, when learning 3D Gaussian and deformation, the next iteration performs
iteration that learns only camera poses in the SRM, as shown below:

Lcam = L1static = (Istatic − IGT ) ·M, (22)

where Istatic is the render result of the SRM, and IGT is the Ground Truth image. The motion mask
M is applied pixel-wise to suppress the effect of the Gaussian on the dynamic object. And the next
iteration repeats the process of learning 3D Gaussian and deformation again. Gaussian rendering
used COGS (Jiang et al., 2024) rasterizer, in which the gradient calculation for the camera poses
are implemented as CUDA. The Canonical Mapping Network consists of MLP. Both encoder and
decoder use the softplus function as an activation function, and each layer has a width of 256. In the
case of the scale decoder, it is output through the sigmoid function, and the output of the rotation
decoder is normalized.

A.2 CANONICAL SPACE MAPPER

The CSM consists of two main components: an CSM encoder E = Θfeat and a CSM decoder
D = {θp, θr, θs}. In the CSM encoder, the information of location is expanded using positional
embedding as used in NeRF (Mildenhall et al., 2021) and passed through two linear layers. The
extracted features are then passed through the CSM decoder D, which has four linear layers. At
this time, first layer of the CSM decoder D fuses the feature dimensions using skip-connection to
prevent the loss of location information. Finally, the generalized canonical field is constructed by
predicting the deformation in position, scale, and rotation. The overall network structure is shown
in Figure 6

A.3 EVALUATION METRICS

PSNR and LPIPS are used as metrics to evaluate the performance of the model. PSNR is an metric
that measures how the pixel values are the same between images. LPIPS is a metric that measures
the similarity between features of two images using layers of a pre-trained network. We leverage the
pre-trained AlexNet for the metric of LPIPS.
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Figure 6: Overall archtecture of the Canonical Space Mapper which map to canonical field
using MLP layers.

Figure 7: Overall pipeline of our method’s objective function during training.
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Figure 8: Qualitative results of moving camera location on Nvidia dataset.
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Figure 9: Qualitative results of point cloud and rendered images on Nvidia dataset.
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