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ABSTRACT

A popular approach of automated mechanism design is to formulate a linear pro-
gram (LP) whose solution gives a mechanism with desired properties. We ana-
lytically derive a class of optimal solutions for such an LP that gives mechanisms
achieving standard properties of efficiency, incentive compatibility, strong budget
balance (SBB), and individual rationality (IR), where SBB and IR are satisfied
in expectation. Notably, our solutions are represented by an exponentially smaller
number of essential variables than the original variables of LP. Our solutions, how-
ever, involve a term whose exact evaluation requires solving a certain optimization
problem exponentially many times as the number of players, N , grows. We thus
evaluate this term by modeling it as the problem of estimating the mean reward
of the best arm in multi-armed bandit (MAB), propose a Probably and Approx-
imately Correct estimator, and prove its asymptotic optimality by establishing a
lower bound on its sample complexity. This MAB approach reduces the number
of times the optimization problem is solved from exponential to O(N logN). Nu-
merical experiments show that the proposed approach finds mechanisms that are
guaranteed to achieve desired properties with high probability for environments
with up to 128 players, which substantially improves upon the prior work.

1 INTRODUCTION

Multi-agent systems can be made efficient by mediators who make system-wide (social) decisions
in a way that maximizes social welfare. For example, in a trading network where firms sell goods
to each other or to external markets (Hatfield et al., 2013), the mediator can ensure that those traded
goods are produced by the firms with the lowest costs and purchased by those with the highest
needs (Osogami et al., 2023). While such mediators could maximize their own profit by charging
participants (e.g., today’s tech giants who operate consumer marketplaces or ads platforms), they
would typically take most of the profit, leaving the participants with only a small portion.

We instead envision an open platform whose purpose is to provide maximal benefits to the partic-
ipants in multi-agent systems. This is similar to the purpose of designing an auction mechanism
for public resources, which should be given to those who need them most, and there should be nei-
ther budget deficits nor surpluses on the mediator (Bailey, 1997; Cavallo, 2006; Dufton et al., 2021;
Gujar & Narahari, 2011; Guo, 2012; Guo & Conitzer, 2009; Manisha et al., 2018; Tacchetti et al.,
2022). However, such mechanisms exploit the particular structure of single-sided auctions, where all
participants are buyers, and it may be impossible to achieve desired properties in other multi-agent
systems such as double-sided auctions (Hobbs et al., 2000; Zou, 2009; Widmer & Leukel, 2016;
Stößer et al., 2010; Kumar et al., 2018; Chichin et al., 2017), matching markets (Zhang & Zhu,
2020), and trading networks (Osogami et al., 2023; Wasserkrug & Osogami, 2023) even if those
properties could be guaranteed for single-sided auctions.

Here, we design mechanisms for general environments that include all these multi-agent systems,
with the primary objectives of efficiency and strong budget balance (SBB). Specifically, we require
that the mediator chooses a social decision such that its total value to the players (or participants)
is maximized (decision efficiency; DE) and that the expected revenue of the mediator is equal to a
target value, ρ ∈ R (SBB when ρ = 0). As is standard in Bayesian mechanism design (Shoham &
Leyton-Brown, 2009), we assume that the value of each social decision to a player depends on the
player’s type that is only known to that player, but a joint probability distribution of the players’ types
is a common knowledge. Since it would be difficult to achieve DE without knowing the types, we
also require that the optimal strategy of each player is to truthfully declare its type regardless of the
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strategies of the others (dominant strategy incentive compatibility; DSIC). To promote participation,
we also require that the expected utility of each player is no less than a target value, θ(tn) ∈ R, that
can depend on the type tn of the player (individual rationality or IR when θ ≡ 0).

Although these properties are standard in the literature of mechanism design (Shoham & Leyton-
Brown, 2009), here we have introduced parameters, ρ and θ, to generalize the standard definitions
of SBB (ρ = 0) and IR (θ ≡ 0) with three motivations. First, it is not always possible to achieve
the four desired properties with the standard definitions of IR and SBB (Green & Laffont, 1977;
Myerson & Satterthwaite, 1983; Osogami et al., 2023), while the generalization will enable the
exact characterization of when those properties can be satisfied. Second, this generalization will
allow us to develop a principled approach of learning a mechanism, where some of the quantities are
estimated from samples, with theoretical guarantees. The mechanism designed with our learning
approach can be shown to satisfy the four desired properties with high probability. Finally, the
additional parameters will allow us to model practical requirements. For example, the mediator
might need positive revenue to cover the cost of maintaining the platform or might want to guarantee
positive expected utility to players to encourage participation in this platform rather than others.

We require SBB and IR in expectation (ex ante or interim) with respect to the distribution of types,
while DE and DSIC are satisfied for any realization of types (ex post). While these assumptions
are similar to those in Osogami et al. (2023); Wasserkrug & Osogami (2023) for trading networks,
the in expectation properties are certainly weaker than the ex post properties usually assumed for
auctions (Bailey, 1997; Cavallo, 2006; Dufton et al., 2021; Gujar & Narahari, 2011; Guo, 2012;
Guo & Conitzer, 2009; Manisha et al., 2018; Tacchetti et al., 2022). With the weaker properties,
however, we derive analytical solutions of the mechanisms that satisfy all the four desired properties
in the general environments (and characterize when those properties can be satisfied). This is in stark
contrast to the prior work, where mechanisms are analytically derived only for auctions with a single
type of goods (Bailey, 1997; Cavallo, 2006; Guo, 2011; Guo & Conitzer, 2007; 2009; Moulin, 2009)
or with unit demand (Gujar & Narahari, 2011; Guo, 2012). For more complex auctions (Dufton
et al., 2021; Manisha et al., 2018; Tacchetti et al., 2022) or trading networks (Osogami et al., 2023;
Wasserkrug & Osogami, 2023), mechanisms are computed by numerically solving optimization
problems, whose size often grows exponentially with the number of players.

While the numerical approaches proposed in Osogami et al. (2023) have been applied only to the
trading networks with two players, our analytical solutions can be evaluated numerically with ∼ 10
players, depending on the number of types. The key bottleneck in our analytical solutions lies in the
evaluation of the minimum expected value over possible types of each player. Exact evaluation of
this quantity would require computing an efficient social decision for all the KN combinations of
types, where K is the number of possible types of each player, and N is the number of players.

To overcome this bottleneck, we model the problem of evaluating this minimum expected value in
a multi-armed bandit (MAB) approach (Lattimore & Szepesvári, 2020) and propose an asymptoti-
cally optimal learning algorithm for this problem. While the standard objectives of MAB are regret
minimization (Auer et al., 1995; 2002) and best arm identification (Audibert et al., 2010; Maron &
Moore, 1993; Mnih et al., 2008; Bubeck et al., 2009), our objective is to estimate the mean reward of
the best arm. We propose a probably approximately correct (PAC) algorithm, which approximately
(with error at most ε) estimates the best mean with high probability (at least 1− δ), and proves that
its sample complexity, O((K/ε2) log(1/δ)), matches the lower bound that we derive. This learn-
ing approach substantially reduces the number of computing efficient social decisions from KN to
O(KN logN), enabling us to numerically find mechanisms for ∼ 100 players, depending on K.

Our contributions thus revolve around the optimization problem whose solution gives the mechanism
that satisfies DE, SBB, DSIC, and IR (see Section 3-4). First, we establish a sufficient condition that
ensures the optimization problem has feasible solutions, and prove that this sufficient condition is
also necessary when the players have independent types (see Section 5). Second, for cases where
this sufficient condition holds, we analytically derive a class of optimal solutions to this optimization
problem, which in turn gives mechanisms that satisfy DE, SBB, DSIC, and IR for general environ-
ments including auctions and trading networks (see Section 5). Third, we model the problem of
evaluating a quantity in the above analytical expressions as best mean estimation in MAB, propose
a PAC algorithm for this problem, and prove its asymptotic optimality (see Section 6). Finally, we
empirically validate the effectiveness of the proposed approach (see Section 7). In Section 2, we
start by positioning our contributions to the prior work.
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2 RELATED WORK

The prior work most related to ours is Osogami et al. (2023), which formulates and numerically
solves the LP whose solution gives the mechanism for a trading network that satisfies DE, DSIC,
IR, and weak budget balance (WBB; expected revenue of the mediator is nonnegative). While the
objective of the LP is rather arbitrary and SBB is given just as an example in Osogami et al. (2023),
we focus on SBB and drive analytical solutions for this particular objective. Our formulation extends
Osogami et al. (2023) with additional parameters and notations that cover environments beyond
trading networks, but these extensions are relatively straightforward.

In the rest of this section, we discuss related work on mechanism design, with a focus on those
aiming to achieve SBB, as well as related work on MAB with a focus on PAC algorithms. In
particular, we will see that our learning approach is unique in that we estimate a particular quantity
in the optimal solution that we derive analytically, and this leads us to propose a new PAC algorithm
and establish its optimality for an underexplored objective of best mean estimation in MAB.

In single-sided auctions where only buyers make strategic decisions, Vickrey–Clarke–Groves (VCG)
mechanisms with Clark’s pivot rule (also called VCG auction) satisfy ex post DE (called allocative
efficiency in auctions), DSIC, IR, and WBB (Nisan, 2007). However, the Green-Laffont Impossibil-
ity Theorem implies that no mechanism can guarantee DE, DSIC, and SBB simultaneously for all
environments (Green & Laffont, 1977; 1979). This has led to a series of work on redistributing the
revenue of the mediator to the players as much as possible (i.e., to make budget balance as strong
as possible), while satisfying DSIC, DE, IR, and WBB. For auctions with single or homogeneous
goods (Bailey, 1997; Cavallo, 2006; Guo, 2011; Guo & Conitzer, 2007; 2009; Moulin, 2009) or for
auctions where players have unit demand (Gujar & Narahari, 2011; Guo, 2012), researchers have
derived analytical solutions that optimally redistribute the payment to the players. For auctions with
multi-unit demands on heterogeneous goods, the prior work has proposed numerical approaches that
seek to find the piecewise linear functions (Dufton et al., 2021) or neural networks (Manisha et al.,
2018; Tacchetti et al., 2022) that best approximate the optimal redistribution functions.

We consider the environments that not only allow heterogeneous goods and multi-unit demands
but also are more general than single-sided auctions. In particular, our players may have negative
valuation on a social decision. The Myerson-Satterthwaite Impossibility Theorem (Myerson & Sat-
terthwaite, 1983) thus implies that, unlike VCG auctions, no mechanism can guarantee ex post DE,
DSIC, IR, and WBB simultaneously for all the environments that we consider. We thus derive mech-
anisms that achieve DE, DSIC, IR, and SBB in the best possible manner. A limitation of our results
is that IR and SBB are satisfied only in expectation. Such a guarantee in expectation can however be
justified for risk-neutral mediator and players (Osogami et al., 2023). Our model can also guarantee
strictly positive expected utility, which in turn can ensure nonnegative utility with high probability
when the player repeatedly participate in the mechanism.

For auctions, there also exists a large body of the literature on maximizing the revenue of the me-
diator (Myerson, 1981) with recent focus on automated mechanism design (AMD) with machine
learning (Duetting et al., 2019; Rahme et al., 2021; Ivanov et al., 2022; Curry et al., 2020) and anal-
ysis of its sample complexity (Balcan et al., 2016; Morgenstern & Roughgarden, 2015; Syrgkanis,
2017). Similar to these and other studies of AMD (Sandholm, 2003; Conitzer & Sandholm, 2002),
we formulate an optimization problem whose solution gives the mechanism with desired properties.
However, instead of solving it numerically, we analytically derive optimal solutions. Also, while
the prior work analyzes the sample complexity for finding the mechanism that maximizes the ex-
pected revenue, we analytically find optimal mechanisms and characterize the sample complexity of
evaluating a particular expression in the analytically designed mechanisms.

We evaluate our analytical expression through best mean estimation (BME) in MAB, where the
standard objectives are regret minimization (Auer et al., 1995; 2002) and best arm identification
(BAI) (Audibert et al., 2010; Maron & Moore, 1993; Mnih et al., 2008; Bubeck et al., 2009). The
prior work on MAB that is most relevant to ours is PAC learning for BAI and analysis of its sample
complexity. We reduce the problem of BME to BAI and prove the lower bound on the sample
complexity of BME using a technique known for BAI (Even-Dar et al., 2002). However, while this
technique does not give tight lower bound for BAI (Mannor & Tsitsiklis, 2004), we show that it
gives tight lower bound for BME. Notice that the problem of estimating the best mean frequently
appears in reinforcement learning (van Hasselt, 2010) and machine learning (Kajino et al., 2023),
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but there the focus is on how best to estimate the best mean with a given set of samples (van Hasselt,
2013), while our focus is on how best to collect samples to estimate the best mean.

3 SETTINGS

The goal of mechanism design is to specify the rules of a game in a way that an outcome desired by
the mechanism designer is achieved when rational players (i.e., players whose goal it is to maximize
their individual utility) participate in that game (Jackson, 2014; Shoham & Leyton-Brown, 2009).
Formally, let N := [1, N ] be the set of players and O be the set of possible outcomes. For each
player n ∈ N , let An be the set of available actions and Tn be the set of possible types. Let
A := A1 × . . .×AN and T := T1 × . . .× TN be the corresponding product spaces. A mechanism
µ : A → O determines an outcome depending of the actions taken by the players. Let un :
O × Tn → R be the utility function of each player n ∈ N .

We consider Bayesian games where the players’ types follow a probability distribution that is known
to all players and the mediator. Before selecting actions, the players know their own types but not
the types of the other players. A strategy of each player n ∈ N is thus a function from Tn to An.

We assume that an outcome is determined by a social decision and payment; hence, a mechanism
µ consists of a decision rule and a payment rule. Let D be the set of possible social decisions.
Given the actions of the players, the decision rule ϕ : A → D determines a social decision, and the
payment rule τ : A → RN determines the amount of (possibly negative) payment to the mediator
from each player. Let v : D × (T1 ∪ . . . ∪ TN ) → R specify the value of a given social decision to
the player of a given type. Then the utility of player i when players take actions a ∈ A is

un(µ(a); tn) = un((ϕ(a), τ(a)); tn) = v(ϕ(a); tn)− τn(a). (1)
Throughout, we assume that N , D, and Tn,∀n ∈ N are finite sets.

Without loss of generality by the revelation principle (Shoham & Leyton-Brown, 2009), we consider
only direct mechanisms, where the action available to each player is to declare which type the player
belongs to from the set of possible types (i.e., An = Tn,∀n ∈ N ). We will thus use Tn for An.

Then we seek to achieve the following four properties with our mechanisms. The first property is
Dominant Strategy Incentive Compatibility (DSIC), which ensures that the optimal strategy of each
player is to truthfully reveal its type regardless of the strategies of the other players. Formally,
[DSIC] v(ϕ(tn, t′−n); tn)− τn(tn, t

′
−n) ≥ v(ϕ(t′); tn)− τn(t

′),∀t′ ∈ T ,∀tn ∈ Tn,∀n ∈ N , (2)
where the left-hand side represents the utility of the player having type tn when it declares the same
tn, and the other players declare arbitrary types t′−n.

The second property is Decision Efficiency (DE), which requires that the mediator chooses the social
decision that maximizes the total value to the players. With DSIC, we can assume that the players
declare true types, and hence we can write DE as a condition on the decision rule:

[DE] ϕ(t) ∈ argmax
d∈D

∑
n∈N

v(d; tn) ∀t ∈ T . (3)

As the third property, we generalize individual rationality and require that the expected utility of
each player is at least as large as a target value that can depend on its type. We refer to this property
as θ-IR. Again, assuming that players declare true types due to DSIC, we can write θ-IR as follows:

[θ-IR] E[v(ϕ(t); tn)− τn(t) | tn] ≥ θ(tn) ∀tn ∈ Tn,∀n ∈ N , (4)
where θ : T1∪. . .∪TN → R determines the target expected utility for each type. Throughout (except
in Section 6, where we discuss general MAB models), E denotes the expectation with respect to the
probability distribution P of types, which is the only probability that appears in our mechanisms.

The last property is a generalization of Budget Balance (BB), which we refer to as ρ-WBB and ρ-
SBB. Specifically, ρ-WBB requires that the expected revenue of the mediator is no less than a given
constant ρ ∈ R, and ρ-SBB requires that it is equal to ρ. Again, assuming that the players declare
true types due to DSIC, these properties can be written as follows:

[ρ-WBB]
∑
n∈N

E [τn(t)] ≥ ρ. [ρ-SBB]
∑
n∈N

E [τn(t)] = ρ. (5)

While ρ-SBB is stronger than ρ-WBB, we will see that ρ-SBB is satisfiable iff ρ-WBB is satisfiable.
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4 OPTIMIZATION PROBLEM FOR AUTOMATED MECHANISM DESIGN

Following Osogami et al. (2023), we seek to find optimal mechanisms in the class of VCG mecha-
nisms. A VCG mechanism is specified by a pair (ϕ⋆, h). Specifically, after letting player take the
actions of declaring their types t ∈ T , the mechanism first finds a social decision ϕ⋆(t) using a
decision rule ϕ = ϕ⋆ that satisfies DE (3). It then determines the amount of payment from each
player n ∈ N to the mediator by

τn(t) = hn(t−n)−
∑

m∈N−n

v(ϕ⋆(t); tm), (6)

where we define N−n := N \ {n}, and hn : T−n → R is an arbitrary function of the types of
the players other than n and referred to as a pivot rule. The decision rule ϕ⋆ guarantees DE (3) by
construction, and the payment rule (6) then guarantees DSIC (2) (Nisan, 2007).

Our problem is now reduced to find the pivot rule, h = {hn}n∈N , that minimizes the expected
revenue of the mediator, while satisfying θ-IR and ρ-WBB. This may lead to satisfying ρ-SBB if the
revenue is maximally reduced. To represent this reduced problem, let

w⋆(t) :=
∑
n∈N

v(ϕ⋆(t); tn) (7)

be the total value of the efficient social decision when the players have types t. Then we can rewrite
θ-IR (for the player having type tn) and ρ-WBB as follows (see Appendix A.1 for full derivation):

E[v(ϕ⋆(t); tn)− τn(t) | tn] ≥ θ(tn)⇐⇒ E [w⋆(t) | tn]− E [hn(t−n) | tn] ≥ θ(tn) (8)∑
n∈N

E [τn(t)] ≥ ρ⇐⇒
∑
n∈N

E [hn(t−n)]− (N − 1)E [w⋆(t)] ≥ ρ. (9)

Therefore, we arrive at the following linear program (LP):

min
h

∑
n∈N

E[hn(t−n)] (10)

s.t. E [w⋆(t) | tn]− E [hn(t−n) | tn] ≥ θ(tn) ∀tn ∈ Tn,∀n ∈ N (11)∑
n∈N

E [hn(t−n)]− (N − 1)E [w⋆(t)] ≥ ρ. (12)

The approach of Osogami et al. (2023) is to numerically solve this LP possibly with approximations.
Since hn(t−n) is a variable for each t−n ∈ T−n and each n ∈ N , the LP has N KN−1 variables
and N K + 1 constraints, when each player has K possible types. When this LP is feasible, let h⋆

be its optimal solution; then the VCG mechanism (ϕ⋆, h⋆) guarantees DSIC, DE, θ-IR, and ρ-WBB
(formalized as Proposition 4 in Appendix A.1). Otherwise, no VCG mechanisms can guarantee
them all. In the next section, we characterize exactly when the LP is feasible and provide analytical
solutions to the LP.

5 ANALYTICAL SOLUTION TO THE OPTIMIZATION PROBLEM

We first establish a sufficient condition and a necessary condition for the LP to have feasible solu-
tions. Note that complete proofs for all theoretical statements are provided in Appendix B.
Lemma 1. The LP (10)-(12) is feasible if∑

n∈N
min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} ≥ (N − 1)E[w⋆(t)] + ρ. (13)

Lemma 2. When types are independent (tm and tn are independent for any m ̸= n under P), the
LP (10)-(12) is feasible only if (13) holds.

These two lemmas establish the following necessary and sufficient condition.
Corollary 1. When types are independent, the LP (10)-(12) is feasible if and only if (13) holds.
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While the LP is not necessarily feasible, one may choose θ and ρ in a way that it is guaranteed to be
feasible. For example, the feasibility is guaranteed (i.e., (13) is satisfied) by setting

θ ≡ 0 and ρ =

[∑
n∈N

min
tn∈Tn

E[w⋆(t) | tn]− (N − 1)E[w⋆(t)]

]−
, (14)

where [x]− := min{x, 0} for x ∈ R. When ρ < 0, the mediator might get negative expected
revenue, but the expected loss of the mediator is at most |ρ|. Appendix A.2 provides alternative ρ
and θ that guarantee feasibility, but some of the players might incur negative expected utility.

Finally, we derive a class of optimal solutions to the LP when it is feasible.
Lemma 3. A pivot rules is said to be constant if and only if, for each n ∈ N , there exists a constant
ηn such that hn(t−n) = ηn,∀t−n ∈ T−n. LetH be the set of constant pivot rules that satisfy:

ηn = min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} − δn ∀n ∈ N (15)

where δ lies on the following simplex:

δn ≥ 0 ∀n ∈ N (16)∑
n∈N

δn =
∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} − (N − 1)E[w⋆(t)]− ρ. (17)

Then, when (13) holds,H is nonempty, and any h ∈ H is an optimal solution to the LP (10)-(12).

When types are independent, the condition (13) is necessary for the existence of a feasible solution;
hence, we do not lose optimality by considering only the solutions in H. On the other hand, when
types are dependent, the condition (13) may still be satisfied, where the solutions in H remain
optimal. However, dependent types no longer necessitate (13) to satisfy (11)-(12); hence the space
of constant pivot rules may not suffice to find an optimal solution if (13) does not hold.
Proposition 1. The LP (10)-(12) may be feasible even if (13) is violated (when types are dependent).

Corollary 2. Feasible solutions to the LP (10)-(12) include at least one constant pivot rule (defined
in Lemma 3) if and only if (13) holds (whether types are dependent or not).

In deriving the optimal solutions, we have substantially reduced the essential number of variables
(from N TN−1 to N when each player has T types). Our approach can therefore not only find but
also represent or store solutions exponentially more efficiently than Osogami et al. (2023).

It turns out that the solutions inH not only satisfy ρ-WBB but also ρ-SBB (in addition to DE, DSIC,
and θ-IR) regardless of whether the types are independent or not:
Corollary 3. Any VCG mechanism given with a pivot rule inH satisfies ρ-SBB.

When the LP is infeasible, we can construct a mechanism that satisfies one of ρ-SBB and θ-IR (in
addition to DE and DSIC) regardless of whether the types are independent or not:
Corollary 4. Any VCG mechanism with a pivot rule given by (15) and (17) satisfies ρ-SBB.
Corollary 5. Any VCG mechanism with a pivot rule given by (15) and (16) satisfies θ-IR for any
tn ∈ Tn and n ∈ N .

For example, for any tn ∈ Tn and n ∈ N , the following pivot rule always satisfies θ-IR:
ηn = min

tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} −max{δ, 0}, (18)

where we define (see also (58) in the appendix)

δ :=
1

N

( ∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} − (N − 1)E[w⋆(t)]− ρ

)
. (19)

So far, we have analytically derived the class of optimal solutions for the LP. Although these an-
alytical solutions substantially reduce the computational cost of solving the LP compared to the
numerical solutions in Osogami et al. (2023), they still need to evaluate

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} (20)
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for each n ∈ N . Since E is the expectation with respect to the distribution P over T , this would
require evaluating w⋆(t) for all t ∈ T . Recall that w⋆(t) defined with (7) is the total value of the
efficient decision ϕ⋆(t), which is given by a solution to an optimization problem (3). Without any
structure in D and v, this would require evaluating the total value for all decisions in D.

6 ONLINE LEARNING FOR EVALUATING THE ANALYTICAL SOLUTION

To alleviate the computational complexity associated with (20), we propose a learning approach. A
key observation is that the problem of estimating (20) can be considered as a variant of a multi-armed
bandit (MAB) problem whose objective is to estimate the mean reward of the best arm. Specifically,
the MAB gives the reward θ(tn) − w⋆(t) when we pull an arm tn ∈ Tn, where t is a sample from
the conditional distribution P[· | tn]. Following the relevant prior work on MAB (Even-Dar et al.,
2002; 2006; Hassidim et al., 2020; Mannor & Tsitsiklis, 2004), we maximize reward in this section.

Since we assume that N , D, and Tn,∀n ∈ N are finite, there exist constants, θ̄ and v̄, such that
|θ(t′)| ≤ θ̄ and |v(d; t′)| ≤ v̄,∀d ∈ D,∀t′ ∈ ∪n∈NTn. Then we can also bound |θ(tn)− w⋆(t)| ≤
θ̄ +N v̄,∀t ∈ T ,∀n ∈ N . Namely, the reward in the MAB is bounded. We assume that we know
the bounds on the reward and can scale it such that the scaled reward is in [0, 1] surely.

We also assume that we have access to an arbitrary size of the sample that is independent and
identically distributed (i.i.d.) according to P[· | tn] for any tn ∈ Tn, n ∈ N . When players have
independent types, such sample can be easily constructed as long as we have access to i.i.d. sample
{t(i)}i=1,2,... from T , because {(tn, t(i)−n)}i is the sample from P[· | tn] for any tn ∈ Tn, n ∈ N .

Consider the general K-armed bandit where the reward of each arm is bounded in [0, 1]. For each
k ∈ [1,K], let µk be the true mean of arm k. Let µ⋆ := maxk µk be the best mean-reward, which we
want to estimate. We say that the sample complexity of an algorithm for a MAB is T if the sample
size needed by the algorithm is bounded by T (i.e., arms are pulled at most T times).

A standard Probably Approximately Correct (PAC) algorithm for MAB returns an ε-optimal arm
with probability at least 1− δ for given ε, δ (Even-Dar et al., 2006; Hassidim et al., 2020). We will
use the following definition:
Definition 1 ((ε, δ)-PAC Best Arm Identifier (Even-Dar et al., 2006)). For ε, δ > 0, we say that an
algorithm is (ε, δ)-PAC Best Arm Identifier (BAI) if the arm Î identified by the algorithm satisfies

Pr
(
µÎ ≥ µ⋆ − ε

)
≥ 1− δ. (21)

Definition 1 is different from what we need to evaluate (20). Formally, we need
Definition 2 ((ε, δ)-PAC Best Mean Estimator). For ε, δ > 0, we say that an algorithm is (ε, δ)-PAC
Best Mean Estimator (BME) if the best mean µ̂ estimated by the algorithm satisfies

Pr (|µ̂− µ⋆| ≤ ε) ≥ 1− δ. (22)

BAI and BME are related but different. For example, consider the case where the best arm has
large variance and µ⋆ = 1/2, and the other arms always give zero reward µn = 0,∀n ̸= ⋆. Then
relatively small sample would suffice for BAI due to the large gap µ⋆ − µn = 1/2,∀n ̸= ⋆, while
BME would require relatively large sample due to the large variance of the best arm ⋆. As another
example, consider the case where we have many arms whose rewards follow Bernoulli distributions.
Suppose that half of the arms have an expected value of 1, and the other half have an expected value
of 1− (3/2) ε. Then by pulling sufficiently many arms (once for each arm), we can estimate that the
best mean is at least 1− ε with high probability (by Hoeffding’s inequality), but BAI would require
pulling arms sufficiently many times until we pull one of the best arms sufficiently many times (to
be able to say that this particular arm has an expected value at least 1− ε).

For (ε, δ)-PAC BAI, the following lower and upper bounds on the sample complexity are known:
Proposition 2 (Mannor & Tsitsiklis (2004)). There exists a (ε, δ)-PAC BAI with sample com-
plexity O((K/ε2) log(1/δ)), and any (ε, δ)-PAC BAI must have the sample complexity at least
Ω((K/ε2) log(1/δ)).
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We establish the same lower and upper bounds for (ε, δ)-PAC BME:
Theorem 1. There exists a (ε, δ)-PAC BME with sample complexity O((K/ε2) log(1/δ)), and any
(ε, δ)-PAC BME must have the sample complexity at least Ω((K/ε2) log(1/δ)).

Our upper bound is established by reducing BME to BAI. Suppose that we have access to an arbitrary
(ε, δ)-PAC BAI with sample complexity M (Algorithm 2 in Appendix A.3). We can construct a
( 32ε, 2δ)-PAC BME by first running the (ε, δ)-PAC BAI and then sampling from the arm Î that is
identified as the best until we have a sufficient number, m⋆, of samples from Î (Algorithm 3 in
Appendix A.3). When m⋆ is appropriately selected, the following lemma holds:
Lemma 4. When a (ε, δ)-PAC BAI with sample complexity M is used, Algorithm 3 has sample
complexity M +m⋆, where m⋆ :=

⌈
(2/ε2) log(1.22/δ)

⌉
, and returns µ̂Î that satisfies

Pr

(
|µ̂Î − µ⋆| >

3

2
ε

)
≤ 2 δ. (23)

By Proposition 2, this establishes the upper bound on the sample complexity in Theorem 1.

Our lower bound is established by showing that an arbitrary (ε, δ)-PAC BME can be used to solve
the problem of identifying whether a given coin is negatively or positively biased (precisely, ε-
Biased Coin Problem of Definition 3 in Appendix A.3), for which any algorithm is known to require
expected sample complexity at least Ω((1/ε2) log(1/δ)) to solve correctly with probability at least
1−δ (Chernoff, 1972; Even-Dar et al., 2002) (see Lemma 7 in Appendix A.3). The following lemma,
together with Lemma 7, establishes the lower bound on the sample complexity in Theorem 1:
Lemma 5. If there exists an (ε/2, δ/2)-PAC BME with sample complexity M for K-armed bandit,
then there also exists an algorithm, having expected sample complexity M/K, that can solve the
ε-Biased Coin Problem correctly with probability at least 1− δ.

We prove Lemma 5 by reducing the ε-Biased Coin Problem to BME. This proof technique was also
used in Even-Dar et al. (2002) to prove a lower bound on the sample complexity of BAI. What is
interesting, however, is that the lower bound in Even-Dar et al. (2002) is not tight when δ < 1/K,
and a tight lower bound is established by a different technique in Mannor & Tsitsiklis (2004). On the
other hand, our proof gives a tight lower bound on the sample complexity of BME. In Appendix A.3,
we further discuss where this difference in the derived lower bounds comes from.

Finally, we connect the results on BME back to our mechanism in Section 5 and provide a guarantee
on the properties of the mechanism when the term (20) is estimated with BME. To this end, we
define the terms involving expectations in Lemma 3 as follows:

κn(θ) := min
tn∈TN

{E[w⋆ | tn]− θ(tn)} (24)

λ(ρ) := E[w⋆(t)] + ρ/(N − 1). (25)

Then, recalling that N is the number of players, we have the following lemma:

Lemma 6. Let κ̃n(θ) for n ∈ N and λ̃(ρ) be independent estimates of κn(θ) and λ(ρ) respectively
given by an (ε′, δ′)-PAC Best Mean Estimator and a standard (ε′′, δ′)-PAC estimator of expectation.
Also, let d̃ := d(κ̃(θ), λ̃(ρ), ε′′′, ε′′′′) be a point on the following simplex (here, we change the
notation from δ in Lemma 3 to d̃ to avoid confusion):

d̃n ≥ ε′′′,∀n ∈ N (26)∑
n∈N

d̃n =
∑
n∈N

κ̃n(θ)− (N − 1) (λ̃(θ) + ε′′′′) (27)

Then the VCG mechanism with the constant pivot rule hn(t−n) = ηn = κ̃n(θ) − d̃n satisfies
(θ − (ε′ − ε′′′))-IR and (ρ− (N − 1) (ε′′ − ε′′′′))-WBB with probability (1− δ′)N+1.

Notice that the sufficient condition of Lemma 1 states that the simplex in Lemma 3 is nonempty.
Analogously, when the simplex in Lemma 6 is empty, we cannot provide the solution that guarantees
the properties stated in Lemma 6. Since DSIC and DE remain satisfied regardless of whether κn for
n ∈ N and λ are estimated or exactly computed, Lemma 6 immediately establishes the following
theorem by appropriately choosing the parameters:
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Figure 1: (a) Representative sample path that shows the estimated values of E[w⋆(t) | tn] for
tn ∈ Tn against sample size used by a (0.25, 0.1)-PAC BME with Successive Elimination (SE-
BME; Algorithm 4) for 8 players, each with 8 types. (b)-(c) The unique sample size (the number of
unique t which w⋆(t) is evaluated with) required by the exact computation of mintn∈Tn

E[w⋆(t) |
tn],∀n ∈ N (dashed curves) and by SE-BME (solid curves).

Theorem 2. In Lemma 6, let ε′′′ = ε′, ε′′′′ = ε′′, and δ′ = 1 − (1 − δ)1/(N+1). Then the VCG
mechanism with the constant pivot rule hn(t−n) = κ̃n(θ)−d̃n satisfies DSIC, DE, θ-IR, and ρ-WBB
with probability 1− δ.

Recall that the exact computation of our mechanism in Lemma 3 requires evaluating w⋆(t) for all
t ∈ T , whose size grows exponentially with the number of players, N . Our BME algorithm reduces
this requirement to O(N logN), as is formally proved in the following proposition:

Proposition 3. The sample complexity to learn the constant pivot rule in Theorem 2 is
O((N K/ε2) log(N/δ)), where N = |N | is the number of players, and K = maxn∈N Tn is the
maximum number of types of each player.

7 NUMERICAL EXPERIMENTS

We conduct several numerical experiments to validate the effectiveness of the proposed approach and
to understand its limitations. Specifically, we design our experiments to investigate the following
questions. i) BME studied in Section 6 has asymptotically optimal sample complexity, but how well
can we estimate the best mean when there are only a moderate number of arms? ii) How much can
BME reduce the number of times w⋆(t) given by (7) is evaluated? iii) How well θ-IR and ρ-SBB
are satisfied when (20) is estimated by BME rather than calculated exactly? In this section, we only
provide a brief overview of our experiments; for full details, see Appendix A.4. In particular, we
find the key empirical property of BME that it can reduce the computational complexity by many
orders of magnitude when the number of players is moderate (∼ 10) to large but is relatively less
effective against the increased number of types.

For question i), we compare Successive Elimination for BAI (SE-BAI), which is known to perform
well for a moderate number of arms (Hassidim et al., 2020; Even-Dar et al., 2006), against the corre-
sponding algorithm for BME (SE-BME) and summarize the results in Appendix A.4.1. Overall, we
find that SE-BME generally requires smaller sample size than SE-BAI, except when there are only
a few arms and their means have large gaps. The efficiency of SE-BAI for this case makes intuitive
sense, since the best arm can be identified without estimating the means with high accuracy.

For question ii), we quantitatively validate the effectiveness of SE-BME in reducing the number of
times w⋆(t) is computed when we evaluate (20) in a setting of mechanism design, as is detailed
in Appendix A.4.2. Figure 1 summarizes the results. Panel (a) shows that the means close to the
minimum value are estimated with high accuracy, while others are eliminated by SE-BME after a
small number of samples. Panels (b)-(c) show that SE-BME (solid curves) evaluates w⋆(t) by orders
of magnitude smaller number of times than what is required by exact computation (dashed curves).
The effectiveness of SE-BME is particularly striking when N (the number of players) grows. While
exact computation evaluates w⋆(t) exponentially many times as N grows, SE-BME has only linear
dependency on N . This insensitivity of the sample complexity of SE-BME to N makes intuitive
sense, since N only affects the distribution of the reward and keeps the number of arms unchanged.
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Figure 2: The red dot shows expected utility in (a) and (c) and expected revenue in (b) and (d), when
analytical solutions are evaluated exactly (horizontal) or estimated with (0.25, 0.1)-PAC SE-BME
(vertical) for environments with 8 players, each having 8 possible types. The analytical solution
guarantees IR in (a) and (b) and SBB in (c) and (d). Results are plotted for 10 random seeds.

For question iii), we quantitatively evaluate how well θ-IR and ρ-SBB are guaranteed when we
estimate (20) with SE-BME, where we continue to use the same setting of mechanism design. In
Figure 2, we study two analytical solutions: one guarantees to satisfy θ-IR (with θ ≡ 0), and the
other guarantees to satisfy ρ-SBB (with ρ = 0). The red dots show the expected utility of the players
in (a) and (c) as well as the expected revenue of the mediator in (b) and (d), when (20) is evaluated
either exactly (horizontal axes) or estimated with SE-BME (vertical axes). Overall, the expected
revenue of the mediator is more sensitive than the expected utility of the players to the error in the
estimation of (20), because (12) involves the summation

∑
n∈N ηn, while (11) only involves ηn

for a single n ∈ N . We can however ensure that ρ-WBB (instead of SBB) is satisfied with high
probability by replacing the ρ with a ρ′ > ρ when we compute ηn after (20) is estimated. As we
show and explain with Figure 8 in Appendix A.4.3, this will simply shift the dots in the figure, and
we can guarantee ρ-WBB with high probability with an appropriate selection of ρ′.

We have run all of the experiments on a single core with at most 66 GB memory without GPUs in a
cloud environment, as is detailed in Appendix A.4.4. The associated source code is submitted as a
supplementary material and will be open-sourced upon acceptance.

8 CONCLUSION

We have analytically derived optimal solutions for the LP that gives mechanisms that guarantee the
desired properties of DE, DSIC, ρ-SBB, and θ-IR. When there are N players, each with T possible
types, the LP involves N TN−1 variables, while our analytical solutions are represented by only N
essential variables. While Osogami et al. (2023) numerically solves this LP only for N = T = 2,
we have exactly evaluated our analytical solutions for N = T = 8 (see Figure 1). The analytical
solution, however, involves a term whose exact evaluation requires finding efficient social decisions
TN times. We have modeled the problem of evaluating this term as best mean estimation in multi-
armed bandit, proposed a PAC estimator, and proved its asymptotic optimality by establishing a
lower bound on the sample complexity. Our experiments show that our PAC estimator enables
finding mechanism for N = 128 and T = 8 with a guarantee on the desired properties.

The proposed approach makes a major advancement in the field and can positively impact society by
providing guarantees on desired properties for large environments, which existing approaches are
unable to handle. However, it presents certain limitations and potential challenges, which inspire
several directions for further research. Regarding limitations, one should keep in mind that our
mechanisms guarantee ρ-SBB and θ-IR only in expectation, and that the our approaches have only
been applied to the environments up to 128 players and up to 16 types in our experiments. Regarding
societal impacts, our approach might result in the mechanisms that are unfair to some of the players,
because DE does not mean that all of the players are treated fairly. These limitations and societal
impacts are further discussed in Appendix A.5.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES
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A DETAILS

In this section, we provide full details of derivations and other details skipped in the body of the
paper.

A.1 DETAILS OF SECTION 4

Equivalence in (8) follows from
E[v(ϕ⋆(t); tn)− τn(t) | tn] ≥ θ(tn)

⇐⇒ E

[∑
m∈N

v(ϕ⋆(t); tm)

∣∣∣∣∣ tn
]
− E [hn(t−n) | tn] ≥ θ(tn) (28)

⇐⇒ E [w⋆(t) | tn]− E [hn(t−n) | tn] ≥ θ(tn). (29)

Equivalence in (9) follows from∑
n∈N

E [τn(t)] ≥ ρ⇐⇒
∑
n∈N

E [hn(t−n)]−
∑
n∈N

∑
m∈N−n

E [v(ϕ⋆(t); tm)] ≥ ρ (30)

⇐⇒
∑
n∈N

E [hn(t−n)]− (N − 1)E [w⋆(t)] ≥ ρ, (31)

where the last equivalence follows from the definition of w⋆(t) in (7).
Proposition 4. Let the decision rule ϕ⋆ be the one that satisfies (3) and the payment rule τ = (τn)n
be in the form of (6) where h = (hn)n = (h⋆

n)n = h⋆ is given by the solution to the LP (10)-(12).
Then the VCG mechanism (ϕ⋆, τ⋆) satisfies DSIC, DE, θ-IR, and ρ-WBB.

Proof. With the equivalences (8)-(9), the constraints (11)-(12) in the LP guarantee that θ-IR and
ρ-WBB are satisfied by feasible solutions. Since we consider the class of VCG mechanisms, DE is
trivially satisfied by the definition of ϕ⋆, and DSIC is satisfied when the payment rule is in the form
of (6). Hence, all of DSIC, DE, θ-IR, and ρ-WBB are satisfied by (ϕ⋆, θ⋆).

Algorithm 1 summarizes the protocol under the VCG mechanism discussed Section 4. In Step 3, the
optimal strategy of each player is to truthfully declare its type t̂n = tn. In Step 5, the LP may not be
feasible, in which case the protocol may fail, or we may use another payment rule to proceed.

Algorithm 1 Protocol under the VCG mechanism
1: Sample the type profile t from the common prior P
2: Each player n ∈ N gets to know its own type tn
3: Each player n ∈ N declare their type t̂n
4: Determine the social decision: ϕ⋆(t̂)← argmax

d∈D

∑
n∈N

v(d; t̂n)

5: h⋆ ← Find the optimal solution to the LP (10)-(12)
6: Determine the payment from each player n ∈ N to the mediator:

τn(t̂)← h⋆
n(t̂−n)−

∑
m∈N−n

v(ϕ⋆(t̂); t̂m)

7: Each player n ∈ N gets utility v(ϕ⋆(t̂); tn)− τn(t̂)

A.2 DETAILS OF SECTION 5

A.2.1 SOLUTIONS THAT GUARANTEE WBB

Alternatively, one may set

θ(tn) =

[
E[w⋆(t) | tn]−

N − 1

N
E[w⋆(t)]

]−
∀tn ∈ Tn,∀n ∈ N (32)

ρ = 0 (33)
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Algorithm 2 PAC-BAI(ε, δ, T )
1: Run an arbitrary (ε, δ)-PAC BAI with sample complexity T

2: Let Î be the ε-optimal arm identified by the algorithm
3: Let MÎ be the number of times the algorithm has pulled arm Î; if no such information is avail-

able, set MÎ = 0

4: Let µ̂Î be the sample average of the MÎ rewards obtained from arm Î; if MÎ = 0, set µ̂Î = 0

5: return Î ,MÎ , µ̂Î

Algorithm 3 Best Mean Estimator

1: Î ,MÎ , µ̂Î ← PAC-BAI(ε, δ, T )
2: if MÎ < m⋆, where m⋆ is defined in Lemma 4 then
3: Pull arm Î for m⋆ −MÎ times
4: Update the sample average µ̂Î of arm Î
5: end if
6: return µ̂Î

to guarantee the feasibility, since∑
n∈N

min
tn∈Tn

{
E[w | tn]−

[
E[w⋆(t) | tn]−

N − 1

N
E[w⋆(t)]

]−}
− (N − 1)E[w⋆(t)]

=
∑
n∈N

(
min
tn∈Tn

{
E[w | tn]−

N − 1

N
E[w⋆(t)]−

[
E[w⋆(t) | tn]−

N − 1

N
E[w⋆(t)]

]−})
(34)

≥ 0. (35)

In this case, player n may incur negative utility when it has type tn with θ(tn) < 0, although the
loss is guaranteed to be bounded by |θ(tn)|.

A.2.2 ON DEPENDENT TYPES

The condition (13) may be satisfied even when types are dependent, and the optimality of our an-
alytic solutions in Lemma 3 is guaranteed as long as (13) is satisfied. When types are dependent,
however, there are cases where feasible solutions exist even when (13) is violated (Proposition 1).

In the proof of Proposition 1, we construct such a case with an extreme example of completely de-
pendent types. However, (13) is often satisfied even in such extreme cases of completely dependent
types. For example, as long as

x1 ≤ x2 ≤
2− p

1− p
x1, (36)

condition (13) is satisfied in the example in the proof of Proposition 1, since then (x1, x2) satisfies
(63), which corresponds to (13) in this example.

A.3 DETAILS OF SECTION 6

A.3.1 UPPER BOUND

For effective use of sample, we consider Algorithm 2, which wraps an arbitrary (ε, δ)-PAC BAI.
Specifically, Algorithm 2 not only returns the arm Î that is identified as best by the (ε, δ)-PAC BAI
but also returns the number MÎ of i.i.d. samples that the (ε, δ)-PAC BAI has taken from Î as well as
the corresponding sample average µÎ . However, if no such information is available, it is perfectly
fine, and Algorithm 2 simply returns MÎ = 0 and µÎ = 0 in such a case.

Notice that the naive approach of sampling each arm Θ((1/ε2) log(1/δ)) times, which also trivially
falls within the upper bound in Theorem 1, would only guarantee that the best mean is estimated
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with the error bound of ε with probability at least (1− δ)K . Conversely, it would require sampling
each arm Ω((1/ε2) log(K/δ)) times to obtain the same error bound with probability 1− δ.

A.3.2 LOWER BOUND

The lower bound established in Lemma 4 reduces BME to the ε-Biased Coin Problem defined as
follows:

Definition 3 (ε-Biased Coin Problem). For 0 < ε < 1, consider a Bernoulli random variable B
whose mean α is known to be either α+ := (1 + ε)/2 or α− := (1 − ε)/2. The ε-Biased Coin
Problem asks to correctly identify whether α = α+ or α = α−.

A lower bound on the sample complexity for solving the ε-Biased Coin Problem is known as the
following lemma, for which we provide a proof in Appendix B for completeness:

Lemma 7 (Chernoff (1972); Even-Dar et al. (2002)). For 0 < δ < 1/2, any algorithm that solves
the ε-Biased Coin Problem correctly with probability at least 1− δ has expected sample complexity
at least Ω((1/ε2) log(1/δ)).

In Lemma 5, we have derived the lower bound for BME using the technique used for a lower bound
for BAI in Even-Dar et al. (2002); however, as we have discussed at the end of Section 6, while
our lower bound for BME is tight, the lower bound for BAI in Even-Dar et al. (2002) is not. The
difference in the derived lower bound stems from the following behavior of BME and BAI when all
of the arms have mean reward of α− and hence are indistinguishable. The algorithm constructed in
Even-Dar et al. (2002) determines that B has mean α+ when either arm i+ or arm i− is identified
as the best arm. When the arms are indistinguishable, a PAC BAI would correctly identify each
of the K arms, including i+ or i−, as the best arm uniformly at random, which induces an error
with probability 1/K. On the other hand, the mean reward estimated by a PAC BME would be
approximately correct with high probability, even when the arms are indistinguishable.

A.4 DETAILS OF SECTION 7

In this section, we conduct several numerical experiments to validate the effectiveness of the pro-
posed approach and to understand its limitations. Specifically, we design our experiments to inves-
tigate the following three questions:

1. BME studied in Section 6 has asymptotically optimal sample complexity, but how well can
we estimate the best mean when there are only a moderate number of arms?

2. How much can BME reduce the number of times w⋆(t) given by (7) is evaluated?

3. How well θ-IR and ρ-SBB are satisfied when (20) is estimated by BME rather than calcu-
lated exactly?

A.4.1 BEST MEAN ESTIMATION WITH MODERATE NUMBER OF ARMS

For BAI, existing algorithms that have asymptotically optimal sample complexity often perform
poorly with moderate number of arms (Hassidim et al., 2020). As a result, Approximate Best Arm
(Hassidim et al., 2020), which has optimal sample complexity, runs Naive Elimination, which has
asymptotically suboptimal sample complexity, when the number of arms is below 105 or after suf-
ficient number of suboptimal arms is eliminated. The BME algorithm studied in Section 6 has
asymptotically optimal sample complexity but relies on BAI, and thus its sample complexity for
moderate number of arms is not well characterized by Theorem 1. Similar to BAI, BME relies on
an algorithm that performs well when there are only moderate number of arms.

In this section, we compare the performance of Successive Elimination algorithms for BAI and
BME. Successive Elimination has suboptimal sample complexity, similar to Naive Elimination, but
often outperforms Naive Elimination for moderate number of arms (Even-Dar et al., 2006). Specif-
ically, we compare the performance of (ε, δ)-PAC Successive Elimination for BME (SE-BME; Al-
gorithm 4) against the corresponding (ε, δ)-PAC Successive Elimination for BAI (SE-BAI; Algo-
rithm 5). For completeness, in Appendix B, we provide standard proofs on the correctness of these
algorithms, as stated in Proposition 5 and Proposition 6:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 4 Successive Elimination for Best Mean Estimation ((ε, δ)-PAC SE-BME)
Require: ε, δ

1: LetR ← {1, . . . ,K} be the set of remaining arms
2: Let t← 0;α← 1
3: while α > ε do
4: Pull each arm k ∈ R once and update the sample average µ̂k

5: t← t+ 1

6: α←
√

1
2 t log

(
π2 K t2

3 δ

)
7: for all k ∈ R do
8: Remove k fromR if maxℓ∈R µ̂ℓ − µ̂k ≥ 2α
9: end for

10: end while
11: return maxk∈R µ̂k

Algorithm 5 Successive Elimination for Best Arm Identification ((ε, δ)-PAC SE-BAI)
Require: ε, δ

1: LetR ← {1, . . . ,K} be the set of remaining arms
2: Let t← 0;α← 1
3: while |R| > 1 and α > ε

2 do
4: Pull each arm k ∈ R once and update the sample average µ̂k

5: t← t+ 1

6: α←
√

1
2 t log

(
π2 K t2

6 δ

)
7: for all k ∈ R do
8: Remove k fromR if maxℓ∈R µ̂ℓ − µ̂k ≥ 2α
9: end for

10: end while
11: return argmax

k∈R
µ̂k

Proposition 5. Algorithm 4 is an (ε, δ)-PAC BME.

Proposition 6. Algorithm 5 is an (ε, δ)-PAC BAI.

There are three differences between SE-BME and SE-BAI. First, SE-BME exits the while-loop when
α < ε (while SE-BAI needs to wait until α < ε/2), since it can return an overestimated mean of a
suboptimal arm as long as the estimated value is within ε from the best mean. Second, SE-BAI exits
the while-loop when only one arm remains, since it does not need to precisely estimate the mean
of the identified arm. Finally, SE-BAI uses smaller αt, since it only need to consider one-sided
estimation error (underestimation for best arms and overestimation for other arms).

Figure 3 shows the total sample size required by SE-BME and by SE-BAI for varying values of ε
and δ, and for varying number K of arms. Here, the arms have Bernoulli rewards, and their means
are selected in a way they are equally separated (i.e., µk = (k − 0.5)/K for k = 1, . . . ,K). For
each datapoint, the experiments are repeated 10 times. The standard deviation of the total sample
size is plotted but too small to be visible in the figure.

Overall, it can be observed that SE-BME generally requires smaller sample size than SE-BAI, except
when there are only a few arms (and the means have large gaps in the setting under consideration).
The efficiency of SE-BAI for a small number of arms makes intuitive sense, because the best arm
can be identified without estimating the means with high accuracy.

A.4.2 EFFECTIVENESS OF BEST MEAN ESTIMATION IN MECHANISM DESIGN

In this section, we quantitatively validate the effectiveness of BME in reducing the number of times
w⋆(t) is computed when we evaluate (20). We use (ε, δ)-PAC SE-BME (Algorithm 4) as BME.

To this end, we consider the following mechanism design, motivated by the double-sided auctions
for electricity (Zou, 2009; Hobbs et al., 2000), where we have N = |N | players, each player n ∈ N

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

δ = 0.05

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

δ = 0.1

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

δ = 0.2

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

(a) ε = 0.05

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

(b) ε = 0.1

101 102 103

Number of arms
102

104

106

To
ta

l s
am

pl
e 

siz
e Arm

Mean

(c) ε = 0.2

Figure 3: The total sample size required by (ε, δ)-PAC BME (Mean; Algorithm 4) and by (ε, δ)-
PAC BAI (Arm; Algorithm 5) when arms have Bernoulli rewards with equally separated means for
varying values of ε and δ.

has K possible types (i.e., |Tn| = K), with varying values of N and K. The K possible types of
each player are selected uniformly at random from integers, [−K,K], without replacement. We then
assume, as the common prior P, that the type of each player is distributed uniformly among the K
possible types and independent of the types of other players. Each player is a buyer or a seller of a
single item, depending on its type. When a player n has a positive type tn, the player is a buyer who
wants to buy a unit, whose valuation to the player is tn (i.e., v(d; tn) = tn if player n buys a unit of
the item with social decision d). When the player has a negative type tn, the player is a seller who
wants to sell a unit, which incurs cost |tn| (i.e., v(d; tn) = tn if player n sells a unit of the item with
social decision d). The player does not participate in the market, when its type is zero. For a given
profile of types t, a social decision is given by a bipartite matching between buyers and sellers. In
this setting, we can immediately obtain the efficient social decision (3) by greedily matching buyers
of high valuations to sellers of low costs as long as the value of the buyers are higher than the costs
of the sellers.

Figure 4 shows representative sample paths of the estimated values of E[w⋆(t) | tn] for each tn ∈ Tn
when (0.25, 0.1)-PAC SE-BME1 is used to evaluate mintn∈Tn E[w⋆(t) | tn] (i.e., (20) with θ(tn) =
0). Each panel in Figure 4 shows |Tn| curves, where the red curve corresponds to the one with
minimum E[w⋆(t) | tn].
Observe that the types tn (arms) that have close to the minimum mean, mintn∈Tn

E[w⋆(t) | tn],
survive until SE-BME terminates, and their means are evaluated with sufficient accuracy. On the
other hand, the types that have large means are eliminated after a relatively small number of samples
without being estimated precisely, which contributes to reducing the number of evaluating the value
of the efficient social decision w⋆(t).

In Figure 5, we study how much SE-BME can reduce the number of evaluations of w⋆(t) needed
to estimate mintn∈Tn

E[w⋆(t) | t] for all n ∈ N with the accuracy that is shown in Figure 4 (i.e.,
using the same values of ε = 0.25 and δ = 0.1). Recall that K = |Tn|,∀n ∈ N in the setting
under consideration. Hence, the exact computation of mintn∈Tn

E[w⋆(t) | tn] for a single n ∈ N
1Minimization in Algorithm 4 is translated into maximization.
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Figure 4: Representative sample paths that show the estimated values of E[w⋆(t) | tn] for tn ∈ Tn
against sample size used by (0.25, 0.1)-PAC SE-BME.
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Figure 5: The unique sample size (the number of unique t which w⋆(t) is evaluated with) required
by the exact computation of mintn∈Tn E[w⋆(t) | tn],∀n ∈ N (dashed curves) and by (0.25, 0.1)-
PAC SE BME (solid curves).

would require evaluating w⋆(t) for KN different values of t, but KN evaluations of w⋆(t) are also
sufficient to exactly compute mintn∈Tn

E[w⋆(t) | tn] for all n ∈ N , because we can cache the
value of w⋆(t) and reuse it when it is needed. Since the computational complexity associated with
evaluating w⋆(t) with (7) is the bottleneck, the unique sample size is what we should be interested in.
Similar to exact computation, SE-BME also benefits from caching and reusing the values of w⋆(t).
Figure 5 compares the unique sample size required by the exact computation and (0.25, 0.1)-PAC
SE-BME.

Figure 5(a) implies that SE-BME (shown with solid curves) evaluates the total value of the efficient
social decision, w⋆(t), by orders of magnitude smaller number of times than what is required by

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

4 8 16 32 64 128
Number of players

103

106

109

1012

To
ta

l s
am

pl
e 

siz
e 4 types

8 types

(a) against number of players

4 8 12 16
Number of types

103

106

109

1012

To
ta

l s
am

pl
e 

siz
e 4 players

8 players

(b) against number of types

Figure 6: The total sample size (the number of t which w⋆(t) is evaluated with) required by the exact
computation of mintn∈Tn E[w⋆(t) | tn],∀n ∈ N (dashed curves) and by (0.25, 0.1)-PAC SE-BME
(solid curves).

exact computation (shown with dashed curves). While the number of evaluations of w⋆(t) grows
exponentially with the number of players (specifically, KN ) when exact computation is used, it
grows only polynomially (in fact, slightly slower than linearly) when SE-BME is used. This relative
insensitivity of the sample complexity of SE-BME to the number of players makes intuitive sense,
because the number of players only affects the distribution of the reward and keeps the number of
arms unchanged.

Figure 5(b) shows the number of evaluations of w⋆(t) against the number of types K = |Tn| for any
n ∈ N . The advantage of SE-BME over exact computation is relatively minor when we increase
the number of types instead of the number of players, since increasing the number of types directly
increases the number of arms. In all cases, however, we can observe that SE-BME can significantly
reduce the unique sample size.

Figure 6 shows the total sample size, rather than the unique sample size, required by exact compu-
tation (dashed curves) and SE-BME (solid curves). The total sample size with exact computation is
N KN . While w⋆(t) is evaluated N times for each t with exact computation, SE-BME may waste
evaluating the same w⋆(t) more often particularly when there are only a small number of players.
This reduces benefits of SE-BME for total sample size, as compared to the unique sample size.

A.4.3 INDIVIDUAL RATIONALITY AND BUDGET BALANCE WITH BEST MEAN ESTIMATION

We next address the question of how well θ-IR and ρ-SBB are guaranteed when we estimate
mintn∈Tn{E[w⋆(t) | tn] − θ(tn)} with BME rather than computing it exactly. We continue to
use the setting of mechanism design introduced in Section A.4.2. Recall that θ-IR is guaranteed
when ηn is given by (57) and (18), and ρ-SBB is guaranteed when ηn is given by (57) and (58).
However, these are guaranteed only when the expected values, E[w⋆(t)] and E[w⋆(t) | tn], are ex-
actly computed. In this section, we quantitatively evaluate how well θ-IR and ρ-SBB are satisfied
when those expected values are estimated from samples. Throughout this section, we study the case
with ρ = 0 and θ ≡ 0 (i.e., θ(tn) = 0,∀tn ∈ Tn,∀n ∈ N ).

In Figure 7, we first evaluate the best mean, mintn∈Tn E[w⋆(t) | t], either with exact computation
or with BME, then compute ηn with (57) and (18) for Columns (a)-(b) and with (57) and (58) for
Columns (c)-(d), and finally evaluate the expected utility of each player (the left-hand side of (11))
for Columns (a) and (c) and the expected revenue of the mediator (the left-hand side of (12)) for
Columns (b) and (d) by setting hn(t−n) = ηn,∀t−n ∈ T−n,∀n ∈ N . Even if the best mean is
estimated with BME, we evaluate the expectations on the left-hand side of (11) and (12) with exact
computation, because these are the expected utility and the expected revenue that the players and the
mediator will experience. Here, we repeat the experiment with 10 different random seeds, so that
there are 10 data-points in Columns (b) and (d), and each of Columns (a) and (c) has 10×8×8 = 640
data-points, where each data-point corresponds to a player of a particular type with a particular
random seed.
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Figure 7: The red dots show the expected utility of the players in Columns (a) and (c) and the ex-
pected revenue of the mediator in Columns (b) and (d), where analytical solutions are evaluated ex-
actly (horizontal axes) or estimated with (0.25, 0.1)-PAC SE-BME (vertical axes) for environments
with |N | = 8 players, each having |Tn| = 8 possible types. The analytical solution guarantees θ-IR
with θ ≡ 0 in Columns (a) and (b) and ρ-SBB with ρ = 0 in Columns (c) and (d). Results are
plotted for 10 random seeds. Diagonal lines are also plotted to help understand where the horizontal
and vertical axes are equal.

Overall, Columns (a) and (c) of Figure 7 show that the expected utility experienced by the players is
relatively insensitive to whether the best mean is evaluated with exact computation (horizontal axes)
or with BME (vertical axes). Taking a closer look, we can observe that, in this particular setting,
0-IR is violated for some of the players in Column (c) even if the best mean is computed exactly,
while it is guaranteed for any player of any type in Column (a) if the best mean is computed exactly.

On the other hand, as is shown in Columns (b) and (d), the mediator experiences non-negligible
difference in its expected revenue depending on whether the best mean is evaluated with exact com-
putation or with BME. It is to be expected that the mediator experiences relatively larger variance
in its expected revenue, because (12) involves the summation

∑
n∈N ηn, while (11) only involves

ηn for a single n ∈ N . In particular, it is evident in Column (d) that 0-WBB (let alone 0-SBB) is
violated when the best mean is estimated with BME (vertical axes), while it is always guaranteed
with exact computation (horizontal axes). In Column (b), 0-WBB is violated regardless of whether
the best mean is computed exactly or with BME, since satisfying 0-WBB and 0-IR for all players
(together with DE and DSIC) is impossible in this particular setting.

A simple remedy to this violation of ρ-WBB is to replace the ρ with a ρ′ > ρ when we compute the
ηn from the best means, mintn∈Tn

E[w⋆(t) | tn] for n ∈ N , estimated with BME. By considering
the (ε, δ)-PAC guarantee for the error in the estimation, we can guarantee that ρ-WBB is satisfied
with high probability by setting an appropriate value of ρ′. Analogously, we may replace the θ(tn)
with a θ′(tn) > θ(tn) to provide a guaranteed that θ-IR is satisfied with high probability when the
best mean is estimated with BME. See Theorem 2.

As an example, we set ρ′ = 0.1 in Figure 8. The consequence of replacing ρ = 0 with ρ′ = 0.1 is
as expected. In Columns (b) and (d), the expected revenue of the mediator when the best mean is
estimated with BME (Proposed approach) is shifted to the above by ρ′ − ρ = 0.1. Although it may
be unclear from Columns (a) and (c), the corresponding expected utility of each player is shifted to
the left by (ρ′ − ρ)/|N | = 0.0125. In practice, we may choose ρ′ and θ′ by taking into account
these shifts as well as the condition on the feasibility of LP (Corollary 1).

In Figure 9, we show the Root Mean Squared Error (RMSE) in the expected utility of each player (a)
and the expected revenue of the mediator (b) that are estimated with BME for the case with |N | = 8
players, each with |Tn| = 4 types. Here, we fix δ = 0.1 and vary ε from 1.0 to 0.15 in the BME.
For each pair of (δ, ε), the experiments are repeated 10 times with different random seeds. The total
sample size increases as the value of ε decreases. Hence, the purple dots correspond to ε = 1.0, and
the red dots are ε = 0.15. Overall, we can observe that RMSE can be reduced by using small ε at
the expense of increased sample size, that relatively large values such as ε = 0.5 gives reasonably
small RMSE, and that larger values of ε have diminishing effects on RMSE.
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Figure 8: The red dots show the expected utility of the players in Columns (a) and (c) and the ex-
pected revenue of the mediator in Columns (b) and (d), where analytical solutions are evaluated ex-
actly (horizontal axes) or estimated with (0.25, 0.1)-PAC SE-BME (vertical axes) for environments
with |N | = 8 players, each having |Tn| = 8 possible types. The analytical solution guarantees θ-IR
with θ ≡ 0 in Columns (a) and (b) and ρ′-SBB with ρ′ = 0.1 in Columns (c) and (d). Results are
plotted for 10 random seeds. Diagonal lines are also plotted to help understand where the horizontal
and vertical axes are equal.
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Figure 9: Root mean squared error in (a) the expected utility of each player and (b) the expected
revenue of the mediator against the total sample size, when there are |N | = 8 players, each with
|Tn| = 4 possible types. Here, we set δ = 0.1 and vary ε from 1.0 (purple), 0.5, 0.4, 0.3, 0.25, 0.2,
to 0.15 (red).

A.4.4 COMPUTATIONAL REQUIREMENTS

We have run all of the experiments on a single core with at most 66 GB memory without GPUs in a
cloud environment. The associated source code is submitted as a supplementary material and will be
open-sourced upon acceptance. Table 1 summarizes the CPU time and maximum memory require
to generate each figure. For example, CPU time for Figure 3(a) is the time to generate three panels
in Column (a) of Figure 3. Note that the CPU time and maximum memory reported in Table 1 are
not optimized and include time and memory for storing intermediate results and other processing
for debugging purposes; these should be understood as the computational requirements to execute
the source code as is.
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Table 1: CPU time and maximum memory required to generate figures

Figure CPU Time (seconds) Max Memory (GB)

Figure 3(a) 413.1 < 1
Figure 3(b) 81.9 < 1
Figure 3(c) 40.4 < 1
Figure 4(a)† 0.7 < 1
Figure 4(b)† 1.1 < 1
Figure 4(c)† 80.1 1.9
Figure 5(a) and Figure 6(a) 7,883.0 65.5
Figure 5(b) and Figure 6(b) 2,935.2 17.0
Figure 7(a)-(b) and Figure 8(a)-(b)‡ 17,531.6 1.6
Figure 7(c)-(d) and Figure 8(c)-(d)‡ 17,416.3 1.6
Figure 9 527.9 < 1

† Figure 4 shows the results with one random seed, but here the CPU Time reports
the average over 10 seeds, and Max Memory reports the maximum over 10 seeds.

‡ Figure 8 could have been obtained by simply reusing and shifting Figure 7, but
here the CPU time reports the time to generate the two figures without reuse.

A.5 DETAILS OF SECTION 8

A.5.1 LIMITATIONS

While the proposed approach makes major advancement in the field, it certainly has limitations.
Here, we discuss four major limitations of this work as well as interesting directions of research
motivated by those limitations.

First, when types are not independent between players, the sufficient condition in Lemma 1 may not
be necessary (Proposition 1). This means that the LP may be feasible even when the condition in the
lemma is violated, and our results do not provide optimal solutions for those cases. Further research
is needed to understand exactly when the sufficient condition is also necessary. It is also important
to develop efficient methods for solving the LP when the types are dependent.

Second, our mechanisms guarantee strong budget balance (SBB) and individual rationality (IR) in
expectation with respect to the distribution of the players’ types, but this does not guarantee that
those properties are satisfied ex post (for any realization of the types). Although the satisfaction in
expectation is often sufficient for risk-neutral decision makers, it is important to let the mediator and
the participants aware that they may experience negative utilities even if their expected utilities are
nonnegative. It would also be an interesting direction of research to extend the proposed approach
towards achieving these properties ex post.

Finally, our experiments have considered environments with up to 128 players, each with at most 16
types. Although these are substantially larger than the environment studied in Osogami et al. (2023),
they certainly do not cover the scale needed for all applications. While (10-100 times) larger en-
vironments could be handled with improved implementation and greater computational resources,
essentially new ideas would be needed for substantially (over 103 times) larger environments or
continuous type space. It would be an interesting direction of research to identify and exploit struc-
tures of particular environments for designing scalable approaches of mechanism design for those
environments.

A.5.2 SOCIETAL IMPACTS

We expect that the proposed approach has several positive impacts on trading networks in particular
and the society in general. In particular, the proposed approach enables mechanisms that can max-
imize the efficiency of a trading network and minimize the fees that the participants need to pay to
the mediator. Also, the DSIC guaranteed by the proposed approach would make it more difficult for
malicious participants to manipulate the outcome of a trading network.
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On the other hand, the proposed approach might have negative impacts depending on where and
how it is applied. For example, although the proposed approach guarantees individual rationality,
some of the participants might get less benefits from the mechanism designed with our approach
than other participants. This can happen, because maximizing the social welfare does not mean that
all the participants are treated fairly. Before applying the mechanisms designed with the proposed
approach, it is thus recommended to assess whether such fairness needs to be considered and to take
any actions that mitigate the bias if needed.

B PROOFS

B.1 PROOFS ON THE LEMMAS AND COROLLARIES IN SECTION 5

Proof of Lemma 1. We will show that

hn(t−n) = ηn := min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} ∀t−n ∈ T−n (37)

is a feasible solution when (13) holds.

The θ-IR (11) is satisfied with (37), because for any n ∈ N we have

E[hn(t−n) | tn] = ηn (38)

= min
t′n∈Tn

{E[w⋆(t′) | t′n]− θ(t′n)} (39)

≤ E[w⋆(t) | tn]− θ(tn). (40)

The ρ-WBB (12) is satisfied with (37), because∑
n∈N

E[hn(t−n)] =
∑
n∈N

ηn (41)

=
∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} (42)

≥ (N − 1)E[w⋆(t)] + ρ, (43)

where the inequality follows from (13).

Proof of Lemma 2. By independence, (11) is reduced to

E[w⋆(t) | tn]− E[hn(t−n)] ≥ θ(tn) ∀tn ∈ Tn,∀n ∈ N (44)
⇐⇒ min

tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} ≥ E[hn(t−n)] ∀n ∈ N . (45)

This together with (12) establishes the necessity of

(N − 1)E[w⋆(t)] + ρ ≤
∑
n∈N

E[hn(t−n)] (46)

≤
∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} . (47)

Proof of Lemma 3. We first rewrite the LP (10)-(12) in the following equivalent form:

min
h

∑
n∈N

∑
tn∈Tn

P[tn]E[hn(t−n) | tn] (48)

s.t. E[w⋆(t) | tn]− E[hn(t−n) | tn] ≥ θ(tn) ∀tn ∈ Tn,∀n ∈ N (49)∑
n∈N

∑
tn∈Tn

P[tn]E[hn(t−n) | tn]− (N − 1)E[w⋆(t)] ≥ ρ. (50)
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Then it can be easily observed that the optimal objective value must be equal to (N−1)E[w⋆(t)]+ρ
(i.e., when equality holds in (50)), since changing h in a way it decreases the value of E[hn(t−n) |
tn] only makes (49) more satisfiable2.

Hence, to prove that any h ∈ H is an optimal solution, it suffices to show that (50) is satisfied with
equality and (49) is satisfied with any h ∈ H. When h ∈ H, we have, for any tn, that

E[hn(t−n) | tn] = ηn (51)

≤ min
t′n∈Tn

{E[w⋆(t) | t′n]− θ(t′n)} (52)

≤ E[w⋆(t) | tn]− θ(tn), (53)

where the first inequality follows from (16). We also have∑
n∈N

∑
tn∈Tn

P[tn]E[hn(t−n) | tn] =
∑
n∈N

∑
tn∈Tn

P[tn] ηn (54)

=
∑
n∈N

ηn (55)

= (N − 1)E[w⋆(t)] + ρ, (56)

where the last equality follows from (15) and (17).

Finally, when (13) holds,H is nonempty, because the following ηn satisfies the conditions (15)-(17):

ηn = min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} − δ (57)

where

δ :=
1

N

( ∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} − (N − 1)E[w⋆(t)]− ρ

)
. (58)

Notice that δ ≥ 0 follows from (13).

Proof of Proposition 1. We construct an example that satisfies (11)-(12) but violates (13). Let N =
{1, 2}; Tn = T := {1, 2},∀n ∈ N ; ρ = 0; θ(m) = 0,∀m ∈ T . We assume that the types are
completely dependent (namely, t1 = t2 surely) and let p be the probability that t1 = t2 = 1 (hence,
t1 = t2 = 2 with probability 1− p).

For this example, we rewrite (11)-(12) and (13) by using xm := w⋆((m,m)) and ynm := hn(m)
for m ∈ T and n ∈ N . Notice that, for any m ∈ T and n ∈ N , we have

E[w⋆(t) | tn = m] = xm (59)
E[hn(t−n) | tn = m] = ynm, (60)

since types are completely dependent. Hence, (11) is reduced to

xm − ynm ≥ 0 ∀m ∈ T ,∀n ∈ N (61)

and (12) is reduced to

p (y11 + y21 − x1) + (1− p) (y12 + y22 − x2) ≥ 0. (62)

On the other hand, (13) is reduced to

2 min{x1, x2} ≥ p x1 + (1− p)x2. (63)

Consider the case where xm > 0,∀m ∈ T . In this case, (61)-(62) suggest that (11)-(12) are satisfied
as long as ynm satisfies

xm

2
≤ ynm ≤ xm ∀m ∈ T ,∀n ∈ N , (64)

whether (63) is satisfied or not. Indeed, (64) can be met even if (63) is violated, for example when
p = 1

2 , x1 = 1, x2 = 4, ynm = 2
3xm,∀m ∈ T ,∀n ∈ N ; this serves as an desired example,

concluding the proof.
2This implies that ρ-SBB is satisfied whenever ρ-WBB is satisfied
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Proof of Corollary 2. The sufficiency follows from Lemma 3. The necessity follows in exactly the
same way as the proof of Lemma 2.

Proof of Corollary 3. By (15), we have∑
n∈N

ηn − (N − 1)E[w⋆(t)]− ρ

=
∑
n∈N

min
tn∈Tn

{E[w⋆(t) | tn]− θ(tn)} −
∑
n∈N

δn − (N − 1)E[w⋆(t)]− ρ (65)

= 0, (66)

where the last equality follows from (17). Hence, (12) is satisfied with equality.

Proof of Corollary 4. This corollary can be proved analogously to Corollary 3.

Proof of Corollary 5. By (15), for any tn ∈ Tn and n ∈ N , we have

E[w⋆(t) | tn]− ηn − θ(tn)

= E[w⋆(t) | tn]− θ(tn)−
(

min
t′n∈Tn

{E[w⋆(t) | t′n]− θ(t′n)}
)
+ δn, (67)

which is nonnegative by (16), and hence (11) holds.

B.2 PROOFS OF THE LEMMAS, THEOREM, AND PROPOSITION IN SECTION 6

Proof of Lemma 4. Since the sample complexity of PAC-BAI in Step 1 is M and Step 3 pulls an
arm at most m⋆ times, the sample complexity of Algorithm 3 is at most M +m⋆. Hence, it remains
to prove (23).

Recall that Î is a random variable representing the index of the best arm returned by Algorithm 2
(PAC-BAI). Then we have the following bound:

Pr

(
|µ̂Î − µ⋆| >

3

2
ε

)
= Pr

(
µ̂Î > µ⋆ +

3

2
ε

)
+ Pr

(
µ̂Î < µ⋆ −

3

2
ε

)
(68)

≤ Pr

(
µ̂Î > µÎ +

3

2
ε

)
+ Pr

({
µ̂Î < µ⋆ −

3

2
ε

}
∩
{
µÎ < µ⋆ − ε

})
+ Pr

({
µ̂Î < µ⋆ −

3

2
ε

}
∩
{
µÎ ≥ µ⋆ − ε

})
(69)

≤ Pr

(
µ̂Î > µÎ +

3

2
ε

)
+ Pr

(
µÎ < µ⋆ − ε

)
+ Pr

({
µ̂Î < µ⋆ −

3

2
ε

}
∩
{
µÎ ≥ µ⋆ − ε

})
(70)

≤ Pr

(
µ̂Î > µÎ +

3

2
ε

)
+ Pr

(
µÎ < µ⋆ − ε

)
+ Pr

(
µ̂Î < µÎ −

1

2
ε

)
(71)

≤ Pr

(
µ̂Î > µÎ +

3

2
ε

)
+ δ + Pr

(
µ̂Î < µÎ −

1

2
ε

)
, (72)

where the last inequality follows from PAC(ε, δ) of BAI.

Since µ̂Î is the average of M ′ := max{MÎ ,m
⋆} samples from arm Î , where MÎ is the number of

times Algorithm 2 (PAC-BAI) has pulled arm Î , we have M ′ ≥ m⋆. Hence, applying Hoeffding’s
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inequality to the last term of (72), we obtain

Pr

(
µ̂Î < µÎ −

1

2
ε

)
=

∑
n≥m⋆,k∈[1,K]

Pr

(
µ̂k < µk −

1

2
ε

∣∣∣∣M ′ = n, Î = k

)
Pr(M ′ = n, Î = k)

(73)

≤
∑

n≥m⋆,k∈[1,K]

exp

(
−2
(
1

2
ε

)2

n

)
Pr(M ′ = n, Î = k) (74)

≤ exp

(
−2
(
1

2
ε

)2

m⋆

)
, (75)

where the first inequality is obtained by applying Hoeffding’s inequality to the sample mean µ̂k of
n independent random variables having support in [0, 1], and the second inequality follows from
n ≥ m⋆. We can also show the following inequality in an analogous manner:

Pr

(
µ̂Î > µÎ +

3

2
ε

)
≤ exp

(
−2
(
3

2
ε

)2

m⋆

)
. (76)

By applying (75)-(76) to (72), we finally establish the bound to be shown:

Pr

(
|µ̂Î − µ⋆| >

3

2
ε

)
≤ δ + exp

(
−2

(
3

2
ε

)2

m⋆

)
+ exp

(
−2

(
1

2
ε

)2

m⋆

)
(77)

≤ δ + exp

(
−2

(
3

2
ε

)2
2

ε2
log

1.22

δ

)
+ exp

(
−2

(
1

2
ε

)2
2

ε2
log

1.22

δ

)
by the definition of m⋆ (78)

= δ +

(
δ

1.22

)9

+
δ

1.22
(79)

≤
(
1 +

1

1.229
+

1

1.22

)
δ (80)

≤ 2 δ. (81)

Proof of Lemma 7. Although the lemma is stated in Even-Dar et al. (2002) with reference to Cher-
noff (1972), this specific lemma is neither stated nor proved explicitly in Chernoff (1972). For
completeness, here, we prove the lemma following the general methodology provided in Chernoff
(1972). Specifically, we derive the expected sample size required by the sequential probability-ratio
test (SPRT; Section 10 of Chernoff (1972)), whose optimality (Theorem 12.1 of Chernoff (1972))
will then establish the lemma.

Consider two hypotheses, θ1 and θ2, for the probability distribution P of a random variable X , which
takes either the value of 1 or −1, where

P(X = 1 | θ1) =
1 + ε

2
(82)

P(X = 1 | θ2) =
1− ε

2
(83)

Consider the SPRT procedure that takes i.i.d. samples, X1, X2, . . . , XN , from P until the stopping
time N when

λN :=

N∏
n=1

P(Xn | θ1)
P(Xn | θ2)

=

N∏
n=1

(
ε+ 1

ε− 1

)Xn

(84)

hits either A ∈ R or 1/A. When λN hits A, we identify θ1 as the correct hypothesis. When λN hits
1/A, we identify θ2 as the correct hypothesis.
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Let

SN := log λN =

N∑
n=1

Xn log
1 + ε

1− ε
. (85)

Since N is a stopping time, by Wald’s lemma, we have

E[SN | θ1] = E[N | θ1]E[X | θ1] log
1 + ε

1− ε
(86)

= E[N | θ1] ε log
1 + ε

1− ε
(87)

E[SN | θ2] = −E[N | θ2] ε log
1 + ε

1− ε
. (88)

Let δ be the probability of making the error in identifying the correct hypothesis. Then we must
have

E[SN | θ1] = (1− δ) logA+ δ log(1/A) (89)
E[SN | θ2] = δ logA+ (1− δ) log(1/A). (90)

By (86)-(90), we have

E[N | θ1] = E[N | θ2] =
1− 2 δ

ε log 1+ε
1−ε

logA. (91)

Now, notice that SN hits logA when we have

|{n : Xn = 1}| − |{n : Xn = −1}| ≥ logA

log 1+ε
1−ε

(92)

for the first time and hits − logA when we have

|{n : Xn = −1}| − |{n : Xn = 1}| ≥ logA

log 1+ε
1−ε

(93)

for the first time. Hence, by the gambler’s ruin probability, we have

δ =
1−

(
1+ε
1−ε

) log A

log 1+ε
1−ε

1−
(

1+ε
1−ε

)2 log A

log 1+ε
1−ε

=
1

1 +
(

1+ε
1−ε

) log A

log 1+ε
1−ε

, (94)

which implies

A =
1− δ

δ
. (95)

Plugging the last expression into (91), we obtain

E[N | θ1] = E[N | θ2] =
1− 2 δ

ε log 1+ε
1−ε

log
1− δ

δ
= O

(
1

ε2
log

1

δ

)
. (96)

Proof of Lemma 5. We will construct an algorithm that correctly identifies the mean α of B with
probability at least δ using at most M/K samples of B in expectation given the access to an
(ε/2, δ/2)-PAC BME with sample complexity M . The algorithm first draws i+ and i− indepen-
dently from a uniformly distribution over [1,K].

Consider two environments of K-armed bandit, E+ and E−, where every arm gives the reward
according to the Bernoulli distribution with mean α− = (1 − ε)/2 except that the reward of arm
i+ in E+ has the same distribution as B and the reward of arm i− in E− has the same distribution
as 1 − B. Note that the algorithm can simulate the reward with the known mean α− using the
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algorithm’s internal random number generators. Only when the algorithm pulls arm i+ of E+ or
arm i− of E−, it uses the sample of B, which contributes to the sample complexity of the algorithm.

The algorithm then runs two copies of the (ε/2, δ/2)-PAC BME with sample complexity M in
parallel: one referred to as BME+ is run on T +, and the other referred to as BME− is run on T −.
At each step, let M+ be the number of samples BME+ has taken from arm i+ by that step and M−

be the corresponding number BME− has taken from arm i−. If M+ < M−, the algorithm lets
BME+ pull an arm; otherwise, the algorithm lets BME− pull an arm. Therefore, |M+ −M−| ≤ 1
at any step.

This process is continued until one of BME+ and BME− terminates and returns an estimate µ̂ of
the best mean. If BME+ terminates first, then the algorithm determines that α = α− if µ̂ < 1/2
and that α = α+ otherwise. If BME− terminates first, then the algorithm determines that α = α+

if µ̂ < 1/2 and that α = α− otherwise. Due to the (ε/2, δ/2)-PAC property of BME+ and BME−,
the algorithm correctly identifies the mean of B with probability at least 1−δ. Formally, if α = α+,
we have

Pr

(
µ̂ <

1

2

)
= Pr

(
µ̂ <

1

2

∣∣∣∣BME+ terminates first
)

Pr(BME+ terminates first)

+ Pr

(
µ̂ <

1

2

∣∣∣∣BME− terminates first
)

Pr(BME− terminates first) (97)

≤ δ

2
+

δ

2
(98)

= δ. (99)

Analogously, Pr
(
µ̂ < 1

2

)
≤ δ can be shown if α = α−.

What remains to prove is the sample complexity of the algorithm. Recall that each of BME+ and
BME− pulls arms at most M times before it terminates due to their sample complexity. Notice
that the arms in E− are indistinguishable when α = α−, and the arms in E+ are indistinguishable
when α = α+. Therefore, at least one of BME+ and BME− is run on the environment where the
arms are indistinguishable. Since i− and i− are sampled uniformly at random from [1,K], BME
(either BME+ or BME−) would take at most M/n samples from B in expectation if the arms are
indistinguishable. Since |M+−M−| ≤ 1, we establish that the sample complexity of the algorithm
is O(M/n) in expectation.

Proof of Lemma 6. Note that the PAC estimators can give independent estimates, κ̃n(θ) for n ∈ N
and λ̃, such that

Pr (|κ̃n(θ)− κn(θ)| ≤ ε′) ≥ 1− δ′ ∀n ∈ N (100)

Pr
(
|λ̃(θ)− λ(θ)| ≤ ε′′

)
≥ 1− δ′, (101)

which imply

Pr
(
|λ̃(θ)− λ(θ)| ≤ ε′′, |κ̃n(θ)− κn(θ)| ≤ ε′,∀n ∈ N

)
≥ (1− δ′)N+1. (102)

Hence, with probability at least (1− δ′)N+1, the expected utility of player n given its type tn (recall
(8)) is

E[w⋆(t) | tn]− (κ̃n(θ)− d̃n) ≥ E[w⋆(t) | tn]− κn(θ)− ε′ + ε′′′ (103)

≥ θ(tn)− (ε′ − ε′′′), (104)

where the first inequality follows from the PAC bound on κ̃n(θ) and the definition of d̃n, and the last
inequality follows from the original guarantee when κn(θ) is exactly computed, and the expected
revenue of the mediator (recall (9)) is∑

n∈N
(κ̃n(θ)− d̃n)− (N − 1) E[w⋆(t)] = (N − 1) (λ̃+ ε′′′)− (N − 1) E[w⋆(t)] (105)

≥ ρ+ (N − 1) (ε′′′ − ε′′), (106)

where the equality follows from the definition of d̃, and the inequality follows from the PAC bound
on λ̃.
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Proof of Theorem 2. With the choice of the parameters in the theorem, we have

θ − (ε′ − ε′′′) = θ (107)

(ρ− (N − 1) (ε′′ − ε′′′′)) = ρ (108)

(1− δ′)1/(N+1) = 1− δ. (109)

Hence, Lemma 6 guarantees that the constant pivot rule hn(t−n) = κ̃n(θ)− d̃n satisfies DSIC, DE,
θ-IR, and ρ-WBB with probability 1− δ.

Proof of Proposition 3. The constant pivot rule in Theorem 2 can be learned with N independent
runs of an (ε, δ′)-PAC BME and a single run of an (ε, δ′)-PAC estimator for an expectation, whose
overall sample complexity is O(N (K/ε2) log(1/δ′)). The proposition can then be established by
substituting δ′ = 1− (1− δ)1/(N+1).

B.3 PROOF OF THE PROPOSITIONS IN SECTION 7

Proof of Proposition 5. Let µ⋆ := maxk∈[1,K] µk be the best mean, µ̂ be the best mean estimated by

Algorithm 4, and µ̂
(t)
k be the average of the first t samples from arm k. Let αt :=

√
1
2 t log

(
π2 K t2

3 δ

)
.

Then we have

Pr(|µ̂− µ⋆| ≤ ε)

≥ Pr(At every iteration, the error in the estimated mean is less than αt for any arm inR.3)
(110)

= Pr

 ∞⋂
t=1

⋂
k∈[1,K]

{|{µ̂(t)
k − µk| < αt}

 (111)

= 1− Pr

 ∞⋃
t=1

⋃
k∈[1,K]

{|{µ̂(t)
k − µk| ≥ αt}

 (112)

≥ 1−
∞∑
t=1

∑
k∈[1,K]

Pr
(
{|{µ̂(t)

k − µk| ≥ αt}
)

by union bound (113)

≥ 1− 2K

∞∑
t=1

exp
(
−2α2

t t
)

by Hoeffding’s inequality (114)

= 1− δ
6

π2

∞∑
t=1

1

t2
by definition of αt (115)

= 1− δ. (116)

3This condition suffices because it ensures that the best arms always remain in R.
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Proof of Proposition 6. Let αt :=
√
log
(
π2 K t2

6 δ

)
/(2 t). Let B be the set of the (strictly) best arms.

Let µ̂(t)
k be the average of the first t samples from arm k. Then we have

Pr(Algorithm 5 selects an ε-best arm.)

≥ Pr(At every iteration, all arms in B remain inR and any arm inR is 2αt-best.4) (117)

≥ Pr

 ∞⋂
t=1

⋂
k∈B

{µ̂(t)
k > µk − αt}

⋂
ℓ ̸∈B

{µ̂(t)
ℓ < µℓ + αt}

 (118)

= 1− Pr

 ∞⋃
i=1

⋃
k∈B

{µ̂(t)
k ≤ µk − αt}

⋃
ℓ ̸∈B

{µ̂(t)
ℓ ≥ µℓ + αt}

 (119)

≥ 1−
∞∑
t=1

∑
k∈B

Pr(µ̂
(t)
k ≤ µk − αt) +

∑
ℓ̸∈B

Pr(µ̂
(t)
ℓ ≥ µℓ + αt)

 by union bound (120)

≥ 1−
∞∑
t=1

K exp(−2α2
t t) by Hoeffding’s inequality (121)

= 1− δ
6

π2

∞∑
t=1

1

t2
by the definition of αt (122)

= 1− δ. (123)

4This condition sufficies because the algorithm stops either when |R| = 1 or when αt ≤ ε/2, which implies
that only ε-best arms are in R when the algorithm stops.
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