Offline Primal-Dual Reinforcement Learning for Linear MDPs

Anonymous Author(s) Affiliation Address email

Abstract

Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from 1 a fixed dataset of transitions collected by another policy. This problem has at-2 tracted a lot of attention recently, but most existing methods with strong theoretical 3 guarantees are restricted to finite-horizon or tabular settings. In constrast, few 4 algorithms for infinite-horizon settings with function approximation and minimal 5 assumptions on the dataset are both sample and computationally efficient. Another 6 gap in the current literature is the lack of theoretical analysis for the average-reward 7 setting, which is more challenging than the discounted setting. In this paper, we 8 address both of these issues by proposing a primal-dual optimization method based 9 on the linear programming formulation of RL. Our key contribution is a new 10 reparametrization that allows us to derive low-variance gradient estimators that can 11 be used in a stochastic optimization scheme using only samples from the behavior 12 policy. Our method finds an ε -optimal policy with $O(\varepsilon^{-4})$ samples, improving 13 on the previous $O(\varepsilon^{-5})$, while being computationally efficient for infinite-horizon 14 discounted and average-reward MDPs with realizable linear function approxima-15 tion and partial coverage. Moreover, to the best of our knowledge, this is the first 16 theoretical result for average-reward offline RL. 17

18 1 Introduction

¹⁹ We study the setting of Offline Reinforcement Learning (RL), where the goal is to learn an ε -optimal ²⁰ policy without being able to interact with the environment, but only using a fixed dataset of transitions ²¹ collected by a *behavior policy*. Learning from offline data proves to be useful especially when ²² interacting with the environment can be costly or dangerous [16].

In this setting, the quality of the best policy learnable by any algorithm is constrained by the quality of the data, implying that finding an optimal policy without further assumptions on the data is not feasible. Therefore, many methods [23, 33] make a *uniform coverage* assumption, requiring that the behavior policy explores sufficiently well the whole state-action space. However, recent work [17, 31] demonstrated that *partial coverage* of the state-action space is sufficient. In particular, this means that the behavior policy needs only to sufficiently explore the state-actions visited by the optimal policy.

²⁹ Moreover, like its online counterpart, modern offline RL faces the problem of learning efficiently in ³⁰ environments with very large state spaces, where function approximation is necessary to compactly ³¹ represent policies and value functions. Although function approximation, especially with neural ³² networks, is widely used in practice, its theoretical understanding in the context of decision-making

is still rather limited, even when considering *linear* function approximation.

³⁴ In fact, most existing sample complexity results for offline RL algorithms are limited either to the ³⁵ tabular and finite horizon setting, by the uniform coverage assumption, or by lack of computational

³⁶ efficiency — see the top section of Table 1 for a summary. Notable exceptions are the recent works of

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Algorithm	Partial Coverage	Polynomial Sample Complexity	Polynomial Computational Complexity	Function Approximation	Infinite Horizon	
					Discounted	Average-Reward
FQI [23]	×	1	1	1	1	×
Rashidinejad et al. [31]	1	1	1	×	1	×
Jin et al. [14] Zanette et al. [38]	1	1	1	1	×	×
Uehara & Sun [32]	1	1	×	1	1	×
Cheng et al. [9]	1	$O(\varepsilon^{-5})$	superlinear	1	1	×
Xie et al. [36]	1	$O(\varepsilon^{-5})$	$O(n^{7/5})$	1	1	×
Ours	1	$O(\varepsilon^{-4})$	O(n)	1	1	1

Table 1: Comparison of existing offline RL algorithms. The table is divided horizontally in two sections. The upper section qualitatively compares algorithms for easier settings, that is, methods for the tabular or finite-horizon settings or methods which require uniform coverage. The lower section focuses on the setting considered in this paper, that is computationally efficient methods for the infinite horizon setting with function approximation and partial coverage.

³⁷ Xie et al. [36] and Cheng et al. [9] who provide computationally efficient methods for infinite-horizon ³⁸ discounted MDPs under realizable linear function approximation and partial coverage. Despite ³⁹ being some of the first implementable algorithms, their methods work only with discounted rewards, ⁴⁰ have superlinear computational complexity and find an ε -optimal policy with $O(\varepsilon^{-5})$ samples – see ⁴¹ the bottom section of Table 1 for more details. Therefore, this work is motivated by the following ⁴² research question:

43 Can we design a linear-time algorithm with polynomial sample complexity for the discounted and
 44 average-reward infinite-horizon settings, in large state spaces under a partial-coverage assumption?
 45

We answer this question positively by designing a method based on the linear-programming (LP) 46 formulation of sequential decision making [20]. Albeit less known than the dynamic-programming 47 formulation [3] that is ubiquitous in RL, it allows us to tackle this problem with the powerful tools 48 of convex optimization. We turn in particular to a relaxed version of the LP formulation [21, 2] 49 that considers action-value functions that are linear in known state-action features. This allows to 50 reduce the dimensionality of the problem from the cardinality of the state space to the number of 51 features. This relaxation still allows to recover optimal policies in *linear MDPs* [37, 13], a structural 52 assumption that is widely employed in the theoretical study of RL with linear function approximation. 53

Our algorithm for learning near-optimal policies from offline data is based on primal-dual optimization 54 of the Lagrangian of the relaxed LP. The use of saddle-point optimization in MDPs was first proposed 55 by Wang & Chen [34] for *planning* in small state spaces, and was extended to linear function 56 approximation by Chen et al. [8], Bas-Serrano & Neu [1], and Neu & Okolo [26]. We largely take 57 inspiration from this latter work, which was the first to apply saddle-point optimization to the *relaxed* 58 LP. However, primal-dual planning algorithms assume oracle access to a transition model, whose 59 samples are used to estimate gradients. In our offline setting, we only assume access to i.i.d. samples 60 generated by a possibly unknown behavior policy. To adapt the primal-dual optimization strategy 61 to this setting we employ a change of variable, inspired by Nachum & Dai [24], which allows easy 62 computation of unbiased gradient estimates. 63

Notation. We denote vectors with bold letters, such as $\boldsymbol{x} \doteq [x_1, \dots, x_d]^\top \in \mathbb{R}^d$, and use \boldsymbol{e}_i to denote the *i*-th standard basis vector. We interchangeably denote functions $f : \mathcal{X} \to \mathbb{R}$ over a finite 64 65 set \mathcal{X} , as vectors $\mathbf{f} \in \mathbb{R}^{|\mathcal{X}|}$ with components f(x), and use \geq to denote element-wise comparison. We denote the set of probability distributions over a measurable set \mathcal{S} as $\Delta_{\mathcal{S}}$, and the probability simplex 66 67 in \mathbb{R}^d as Δ_d . We use $\sigma : \mathbb{R}^d \to \Delta_d$ to denote the softmax function defined as $\sigma_i(\boldsymbol{x}) \doteq e^{x_i} / \sum_{j=1}^d e^{x_j}$. We use upper-case letters for random variables, such as S, and denote the uniform distribution over a 68 69 finite set of n elements as $\mathcal{U}(n)$. In the context of iterative algorithms, we use \mathcal{F}_{t-1} to denote the 70 sigma-algebra generated by all events up to the end of iteration t - 1, and use the shorthand notation 71 $\mathbb{E}_t [\cdot] = \mathbb{E} [\cdot | \mathcal{F}_{t-1}]$ to denote expectation conditional on the history. For nested-loop algorithms, we write $\mathcal{F}_{t,i-1}$ for the sigma-algebra generated by all events up to the end of iteration i-1 of round t, and $\mathbb{E}_{t,i} [\cdot] = \mathbb{E} [\cdot | \mathcal{F}_{t,i-1}]$ for the corresponding conditional expectation. 72 73 74

2 **Preliminaries** 75

We study discounted Markov decision processes [MDP, 29] denoted as $(\mathcal{X}, \mathcal{A}, p, r, \gamma)$, with discount 76 factor $\gamma \in [0,1]$ and finite, but potentially very large, state space \mathcal{X} and action space \mathcal{A} . For 77 every state-action pair (x, a), we denote as $p(\cdot \mid x, a) \in \Delta_{\mathcal{X}}$ the next-state distribution, and as 78 $r(x, a) \in [0, 1]$ the reward, which is assumed to be deterministic and bounded for simplicity. The 79 transition function p is also denoted as the matrix $P \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times |\mathcal{X}|}$ and the reward as the vector 80 $r \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}|}$. The objective is to find an *optimal policy* $\pi^* : \mathcal{X} \to \Delta_{\mathcal{A}}$. That is, a stationary policy that maximizes the normalized expected return $\rho(\pi^*) \doteq (1 - \gamma)\mathbb{E}_{\pi^*}[\sum_{t=0}^{\infty} r(X_t, A_t)]$, where the initial state X_0 is sampled from the initial state distribution ν_0 , the other states according to \mathcal{X} 81 82 83 $X_{t+1} \sim p(\cdot|X_t, A_t)$ and where the notation $\mathbb{E}_{\pi}[\cdot]$ is used to denote that the actions are sampled 84 From policy π as $A_t \sim \pi(\cdot|X_t)$ and where the notation $\mathbb{D}_{\pi}[]$ is used to denote that the actions are sampled from policy π as $A_t \sim \pi(\cdot|X_t)$. Moreover, we define the following quantities for each policy π : its state-action value function $q^{\pi}(x, a) \doteq \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t r(X_t, A_t) | X_0 = x, A_0 = a]$, its value function $v^{\pi}(x) \doteq \mathbb{E}_{\pi}[q^{\pi}(x, A_0)]$, its state occupancy measure $\nu^{\pi}(x) \doteq (1 - \gamma)\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \mathbb{1}\{X_t = x\}]$, and its state-action occupancy measure $\mu^{\pi}(x, a) \doteq \pi(a|x)\nu^{\pi}(x)$. These quantities are known to satisfy 85 86 87 88 the following useful relations, more commonly known respectively as Bellman's equation and flow 89 constraint for policy π [4]: 90

$$\boldsymbol{q}^{\pi} = \boldsymbol{r} + \gamma \boldsymbol{P} \boldsymbol{v}^{\pi} \qquad \boldsymbol{\nu}^{\pi} = (1 - \gamma) \boldsymbol{\nu}_0 + \gamma \boldsymbol{P}^{\mathsf{T}} \boldsymbol{\mu}^{\pi}$$
(1)

Given this notation, we can also rewrite the normalized expected return in vector form as $\rho(\pi) =$ 91

 $(1-\gamma)\langle \boldsymbol{\nu}_0, \boldsymbol{v}^{\pi} \rangle$ or equivalently as $\rho(\pi) = \langle \boldsymbol{r}, \boldsymbol{\mu}^{\pi} \rangle$. 92

Our work is based on the linear programming formulation due to Manne [19] (see also 29) which 93 transforms the reinforcement learning problem into the search for an optimal state-action occupancy

94 measure, obtained by solving the following Linear Program (LP): 95

maximize
$$\langle \boldsymbol{r}, \boldsymbol{\mu} \rangle$$

subject to $\boldsymbol{E}^{\mathsf{T}} \boldsymbol{\mu} = (1 - \gamma) \boldsymbol{\nu}_0 + \gamma \boldsymbol{P}^{\mathsf{T}} \boldsymbol{\mu}$ (2)
 $\boldsymbol{\mu} \ge 0$

where $E \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times |\mathcal{X}|}$ denotes the matrix with components $E_{(x,a),x'} \doteq \mathbb{1}\{x = x'\}$. The constraints 96 of this LP are known to characterize the set of valid state-action occupancy measures. Therefore, 97 98 an optimal solution μ^* of the LP corresponds to the state-action occupancy measure associated to a policy π^* maximizing the expected return, and which is therefore optimal in the MDP. This policy 99 can be extracted as $\pi^*(a|x) \doteq \mu^*(x,a) / \sum_{\bar{a} \in \mathcal{A}} \mu^*(x,\bar{a})$. However, this linear program cannot be 100 directly solved in an efficient way in large MDPs due to the number of constraints and dimensions 101 of the variables scaling with the size of the state space \mathcal{X} . Therefore, taking inspiration from the 102 previous works of Bas-Serrano et al. [2], Neu & Okolo [26] we assume the knowledge of a feature 103 map φ , which we then use to reduce the dimension of the problem. More specifically we consider the 104 setting of Linear MDPs [13, 37]. 105

Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions 106 can be expressed as a linear function of a given feature map $\varphi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$. That is, there exist 107 $\psi: \mathcal{X} \to \mathbb{R}^d$ and $\omega \in \mathbb{R}^d$ such that, for every $x, x' \in \mathcal{X}$ and $a \in \mathcal{A}$: 108

$$r(x,a) = \langle \varphi(x,a), \omega \rangle, \qquad p(x' \mid x,a) = \langle \varphi(x,a), \psi(x') \rangle.$$

We assume that for all x, a, the norms of all relevant vectors are bounded by known constants as 109 $\|\varphi(x,a)\|_2 \leq D_{\varphi}, \|\sum_{x'} \psi(x')\|_2 \leq D_{\psi}, \text{ and } \|\omega\|_2 \leq D_{\omega}.$ Moreover, we represent the feature map with the matrix $\Phi \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times d}$ with rows given by $\varphi(x,a)^{\mathsf{T}}$, and similarly we define $\Psi \in \mathbb{R}^{d \times |\mathcal{X}|}$ 110 111 as the matrix with columns given by $\psi(x)$. 112

With this notation we can rewrite the transition matrix as $P = \Phi \Psi$. Furthermore, it is convenient 113 to assume that the dimension d of the feature map cannot be trivially reduced, and therefore that 114 the matrix Φ is full-rank. An easily verifiable consequence of the Linear MDP assumption is that 115 state-action value functions can be represented as a linear combinations of φ . That is, there exist 116 $\boldsymbol{\theta}^{\pi} \in \mathbb{R}^d$ such that: 117

$$\boldsymbol{q}^{\pi} = \boldsymbol{r} + \gamma \boldsymbol{P} \boldsymbol{v}^{\pi} = \boldsymbol{\Phi}(\boldsymbol{\omega} + \boldsymbol{\Psi} \boldsymbol{v}^{\pi}) = \boldsymbol{\Phi} \boldsymbol{\theta}^{\pi}.$$
(3)

It can be shown that for all policies π , the norm of θ^{π} is at most $D_{\theta} = D_{\omega} + \frac{D_{\psi}}{1-\gamma}$ (cf. Lemma B.1 in 13). We then translate the linear program (2) to our setting, with the addition of the new variable 118

119

 $\lambda \in \mathbb{R}^d$, resulting in the following new LP and its corresponding dual: 120

maximize
$$\langle \boldsymbol{\omega}, \boldsymbol{\lambda} \rangle$$
 minimize $(1 - \gamma) \langle \boldsymbol{\nu}_0, \boldsymbol{v} \rangle$
subject to $\boldsymbol{E}^{\mathsf{T}} \boldsymbol{\mu} = (1 - \gamma) \boldsymbol{\nu}_0 + \gamma \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{\lambda}$ subject to $\boldsymbol{\theta} = \boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v}$
 $\boldsymbol{\lambda} = \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\mu}$ (4) $\boldsymbol{E} \boldsymbol{v} \ge \boldsymbol{\Phi} \boldsymbol{\theta}$ (5)
 $\boldsymbol{\mu} \ge 0.$

It can be immediately noticed how the introduction of λ did not change neither the set of admissible μ s nor the objective, and therefore did not alter the optimal solution. The Lagrangian associated to this set of linear programs is the function:

$$\begin{split} \mathfrak{L}(\boldsymbol{v},\boldsymbol{\theta},\boldsymbol{\lambda},\boldsymbol{\mu}) &= (1-\gamma)\langle\boldsymbol{\nu}_0,\boldsymbol{v}\rangle + \langle\boldsymbol{\lambda},\boldsymbol{\omega} + \gamma\boldsymbol{\Psi}\boldsymbol{v} - \boldsymbol{\theta}\rangle + \langle\boldsymbol{\mu},\boldsymbol{\Phi}\boldsymbol{\theta} - \boldsymbol{E}\boldsymbol{v}\rangle \\ &= \langle\boldsymbol{\lambda},\boldsymbol{\omega}\rangle + \langle\boldsymbol{v},(1-\gamma)\boldsymbol{\nu}_0 + \gamma\boldsymbol{\Psi}^{\mathsf{T}}\boldsymbol{\lambda} - \boldsymbol{E}^{\mathsf{T}}\boldsymbol{\mu}\rangle + \langle\boldsymbol{\theta},\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu} - \boldsymbol{\lambda}\rangle. \end{split}$$
(6)

It is known that finding optimal solutions (λ^*, μ^*) and (v^*, θ^*) for the primal and dual LPs is equivalent to finding a saddle point $(v^*, \theta^*, \lambda^*, \mu^*)$ of the Lagrangian function [5]. In the next section, we will develop primal-dual methods that aim to find approximate solutions to the above saddle-point problem, and convert these solutions to policies with near-optimality guarantees.

128 3 Algorithm and Main Results

¹²⁹ This section introduces the concrete setting we study in this paper, and presents our main contributions.

We consider the offline-learning scenario where the agent has access to a dataset $\mathcal{D} = (W_t)_{t=1}^n$, collected by a behavior policy π_B , and composed of n random observations of the form $W_t = (X_t^0, X_t, A_t, R_t, X_t')$. The random variables $X_t^0, (X_t, A_t)$ and X_t' are sampled, respectively, from the initial-state distribution ν_0 , the discounted occupancy measure of the behavior policy, denoted as μ_B , and from $p(\cdot|X_t, A_t)$. Finally, R_t denotes the reward $r(X_t, A_t)$. We assume that all observations W_t are generated independently of each other, and will often use the notation $\varphi_t = \varphi(X_t, A_t)$.

Our strategy consists in finding approximately good solutions for the LPs (4) and (5) using stochastic optimization methods, which require access to unbiased gradient estimates of the Lagrangian (Equation 6). The main challenge we need to overcome is constructing suitable estimators based only on observations drawn from the behavior policy. We address this challenge by introducing the matrix $\Lambda = \mathbb{E}_{X,A \sim \mu_B} [\varphi(X, A)\varphi(X, A)^{\mathsf{T}}]$ (supposed to be invertible for the sake of argument for now), and rewriting the gradient with respect to λ as

$$\nabla_{\boldsymbol{\lambda}} \mathfrak{L}(\boldsymbol{\lambda}, \boldsymbol{\mu}; \boldsymbol{v}, \boldsymbol{\theta}) = \boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v} - \boldsymbol{\theta} = \boldsymbol{\Lambda}^{-1} \boldsymbol{\Lambda} \left(\boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v} - \boldsymbol{\theta} \right)$$

= $\boldsymbol{\Lambda}^{-1} \mathbb{E} \left[\boldsymbol{\varphi}(X_t, A_t) \boldsymbol{\varphi}(X_t, A_t)^{\mathsf{T}} \left(\boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v} - \boldsymbol{\theta} \right) \right]$
= $\boldsymbol{\Lambda}^{-1} \mathbb{E} \left[\boldsymbol{\varphi}(X_t, A_t) \left(R_t + \gamma \boldsymbol{v}(X_t') - \langle \boldsymbol{\theta}, \boldsymbol{\varphi}(X_t, A_t) \rangle \right) \right].$

142 This suggests that the vector within the expectation can be used to build an unbiased estimator of the

- desired gradient. A downside of using this estimator is that it requires knowledge of Λ . However, this can be sidestepped by a reparametrization trick inspired by Nachum & Dai [24]: introducing the
- parametrization $\beta = \Lambda^{-1} \lambda$, the objective can be rewritten as

$$\mathfrak{L}(oldsymbol{eta},oldsymbol{\mu};oldsymbol{v},oldsymbol{ heta}) = (1-\gamma)\langle oldsymbol{
u}_0,oldsymbol{v}
angle + \langleoldsymbol{eta},oldsymbol{\Lambda}igl(oldsymbol{\omega}+\gammaoldsymbol{\Psi}oldsymbol{v}-oldsymbol{ heta})
angle + \langleoldsymbol{\mu},oldsymbol{\Phi}oldsymbol{ heta}-oldsymbol{E}oldsymbol{v}
angle.$$

146 This can be indeed seen to generalize the tabular reparametrization of Nachum & Dai [24] to the case

of linear function approximation. Notably, our linear reparametrization does not change the structure

of the saddle-point problem, but allows building an unbiased estimator of $\nabla_{\beta} \mathfrak{L}(\beta, \mu; v, \theta)$ without

149 knowledge of Λ as

$$\tilde{\boldsymbol{g}}_{\boldsymbol{\beta}} = \boldsymbol{\varphi}(X_t, A_t) \left(R_t + \gamma \boldsymbol{v}(X_t') - \langle \boldsymbol{\theta}, \boldsymbol{\varphi}(X_t, A_t) \rangle \right)$$

In what follows, we will use the more general parametrization $\beta = \Lambda^{-c}\lambda$, with $c \in \{1/2, 1\}$, and construct a primal-dual stochastic optimization method that can be implemented efficiently in the offline setting based on the observations above. Using c = 1 allows to run our algorithm without knowledge of Λ , that is, without knowing the behavior policy that generated the dataset, while using c = 1/2 results in a tighter bound, at the price of having to assume knowledge of Λ .

Our algorithm (presented as Algorithm 1) is inspired by the method of Neu & Okolo [26], originally designed for planning with a generative model. The algorithm has a double-loop structure, where

Algorithm 1 Offline Primal-Dual RL

Input: Learning rates α, ζ, η , initial points $\boldsymbol{\theta}_0 \in \mathbb{B}(D_{\boldsymbol{\theta}}), \boldsymbol{\beta}_1 \in \mathbb{B}(D_{\boldsymbol{\beta}}), \pi_1$, and data $\mathcal{D} = (W_t)_{t=1}^n$ for t = 1 to T do Initialize $\boldsymbol{\theta}_{t,1} = \boldsymbol{\theta}_{t-1}$ for k = 1 to K - 1 do Obtain sample $W_{t,k} = (X_{t,k}^0, X_{t,k}, A_{t,k}, X'_{t,k})$ $\mu_{t,k} = \pi_t \circ [(1 - \gamma)\boldsymbol{e}_{X_{t,k}^0} + \gamma\langle \boldsymbol{\varphi}(X_{t,k}, A_{t,k}), \boldsymbol{\Lambda}^{c-1}\boldsymbol{\beta}_t\rangle \boldsymbol{e}_{X'_{t,k}}]$ $\tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,i} = \boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu}_{t,k} - \boldsymbol{\Lambda}^{c-1}\boldsymbol{\varphi}(X_{t,k}, A_{t,k}), \langle \boldsymbol{\varphi}(X_{t,k}, A_{t,k}), \boldsymbol{\beta}_t \rangle$ $\boldsymbol{\theta}_{t,k+1} = \Pi_{\mathbb{B}(D_{\boldsymbol{\theta}})}(\boldsymbol{\theta}_{t,k} - \eta \tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,i})$ // Stochastic gradient descent end for $\boldsymbol{\theta}_t = \frac{1}{K} \sum_{k=1}^K \boldsymbol{\theta}_{t,k}$ Obtain sample $W_t = (X_t^0, X_t, A_t, X'_t)$ $\boldsymbol{v}_t = \boldsymbol{E}^{\mathsf{T}}(\pi_t \circ \boldsymbol{\Phi}\boldsymbol{\theta}_t)$ $\tilde{\boldsymbol{g}}_{\boldsymbol{\beta},t} = \boldsymbol{\varphi}(X_t, A)(R_t + \gamma \boldsymbol{v}_t(X'_t) - \langle \boldsymbol{\varphi}(X_t, A_t), \boldsymbol{\theta}_t \rangle)$ $\boldsymbol{\beta}_{t+1} = \Pi_{\mathbb{B}(D_{\boldsymbol{\beta}})}(\boldsymbol{\beta}_t + \zeta \tilde{\boldsymbol{g}}_{\boldsymbol{\beta},t})$ // Stochastic gradient ascent $\pi_{t+1} = \sigma(\alpha \sum_{i=1}^t \boldsymbol{\Phi}\boldsymbol{\theta}_i)$ // Policy update end for return π_J with $J \sim \mathcal{U}(T)$.

at each iteration t we run one step of stochastic gradient ascent for β , and also an inner loop 157 which runs K iterations of stochastic gradient descent on θ making sure that $\langle \varphi(x,a), \theta_t \rangle$ is a 158 good approximation of the true action-value function of π_t . Iterations of the inner loop are indexed 159 by k. The main idea of the algorithm is to compute the unbiased estimators $\tilde{g}_{\theta,t,k}$ and $\tilde{g}_{\beta,t}$ of 160 the gradients $\nabla_{\theta} \mathfrak{L}(\beta_t, \mu_t; \cdot, \theta_{t,k})$ and $\nabla_{\beta} \mathfrak{L}(\beta_t, \cdot; v_t, \theta_t)$, and use them to update the respective 161 variables iteratively. We then define a softmax policy π_t at each iteration t using the θ parameters as 162 $\pi_t(a|x) = \sigma\left(\alpha \sum_{i=1}^{t-1} \langle \varphi(x,a), \theta_i \rangle\right)$. The other higher-dimensional variables (μ_t, v_t) are defined 163 symbolically in terms of β_t , θ_t and π_t , and used only as auxiliary variables for computing the 164 estimates $\tilde{g}_{\theta,t,k}$ and $\tilde{g}_{\beta,t}$. Specifically, we set these variables as 165

$$v_t(x) = \sum_a \pi_t(a|x) \langle \varphi(x,a), \theta_t \rangle, \tag{7}$$

$$\mu_{t,k}(x,a) = \pi_t(a|x) \big((1-\gamma) \mathbb{1}\{X_{t,k}^0 = x\} + \gamma \langle \varphi_{t,k}, \mathbf{\Lambda}^{c-1} \beta_t \rangle \mathbb{1}\{X_{t,k}' = x\} \big).$$
(8)

¹⁶⁶ Finally, the gradient estimates can be defined as

$$\tilde{\boldsymbol{g}}_{\boldsymbol{\beta},t} = \boldsymbol{\Lambda}^{c-1} \boldsymbol{\varphi}_t \left(R_t + \gamma v_t(X_t') - \langle \boldsymbol{\varphi}_t, \boldsymbol{\theta}_t \rangle \right), \tag{9}$$

$$\tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,k} = \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\mu}_{t,k} - \boldsymbol{\Lambda}^{c-1} \boldsymbol{\varphi}_{t,k} \langle \boldsymbol{\varphi}_{t,k}, \boldsymbol{\beta}_t \rangle.$$
(10)

These gradient estimates are then used in a projected gradient ascent/descent scheme, with the ℓ_2 projection operator denoted by II. The feasible sets of the two parameter vectors are chosen as ℓ_2 balls of radii D_{θ} and D_{β} , denoted respectively as $\mathbb{B}(D_{\theta})$ and $\mathbb{B}(D_{\beta})$. Notably, the algorithm does not need to compute $v_t(x)$, $\mu_{t,k}(x, a)$, or $\pi_t(a|x)$ for all states x, but only for the states that are accessed during the execution of the method. In particular, π_t does not need to be computed explicitly, and it can be efficiently represented by the single d-dimensional parameter vector $\sum_{i=1}^{t} \theta_i$.

Due to the double-loop structure, each iteration t uses K samples from the dataset \mathcal{D} , adding up to a total of n = KT samples over the course of T iterations. Each gradient update calculated by the method uses a constant number of elementary vector operations, resulting in a total computational complexity of $O(|\mathcal{A}|dn)$ elementary operations. At the end, our algorithm outputs a policy selected uniformly at random from the T iterations.

178 3.1 Main result

We are now almost ready to state our main result. Before doing so, we first need to discuss the quantities appearing in the guarantee, and provide an intuitive explanation for them.

Similarly to previous work, we capture the partial coverage assumption by expressing the rate of 181 convergence to the optimal policy in terms of a coverage ratio that measures the mismatch between

182 the behavior and the optimal policy. Several definitions of coverage ratio are surveyed by Uehara & 183

Sun [32]. In this work, we employ a notion of *feature* coverage ratio for linear MDPs that defines 184

- coverage in feature space rather than in state-action space, similarly to Jin et al. [14], but with a 185 smaller ratio. 186
- **Definition 3.1.** Let $c \in \{1/2, 1\}$. We define the generalized coverage ratio as 187

$$C_{\varphi,c}(\pi^*;\pi_B) = \mathbb{E}_{(X^*,A^*)\sim\mu^{\pi^*}}[\varphi(X^*,A^*)]^{\top} \mathbf{\Lambda}^{-2c} \mathbb{E}[\varphi(X^*,A^*)].$$

- We defer a detailed discussion of this ratio to Section 6, where we compare it with similar notions in 188 the literature. We are now ready to state our main result. 189
- **Theorem 3.2.** Given a linear MDP (Definition 2.1) such that $\theta^{\pi} \in \mathbb{B}(D_{\theta})$ for any policy π . Assume 190
- that the coverage ratio is bounded $C_{\varphi,c}(\pi^*;\pi_B) \leq D_{\beta}$. Then, for any comparator policy π^* , the 191
- policy output by an appropriately tuned instance of Algorithm 1 satisfies $\mathbb{E}\left[\langle \mu^{\pi^*} \mu^{\pi_{out}}, r \rangle\right] \leq \varepsilon$ 192
- with a number of samples n_{ϵ} that is $O\left(\varepsilon^{-4}D^4_{\theta}D^{8c}_{\varphi}D^4_{\beta}d^{2-2c}\log|\mathcal{A}|\right)$. 193

The concrete parameter choices are detailed in the full version of the theorem in Appendix A. The 194 main theorem can be simplified by making some standard assumptions, formalized by the following 195 corollary. 196

- **Corollary 3.3.** Assume that the bound of the feature vectors D_{φ} is of order O(1), that $D_{\omega} = D_{\psi} =$ 197
- \sqrt{d} and that $D_{\beta} = c \cdot C_{\varphi,c}(\pi^*; \pi_B)$ for some positive universal constant c. Then, under the same assumptions of Theorem 3.2, n_{ε} is of order $O\left(\frac{d^4 C_{\varphi,c}(\pi^*; \pi_B)^2 \log |\mathcal{A}|}{d^{2c}(1-\gamma)^{4}\varepsilon^4}\right)$. 198
- 199

4 Analysis 200

This section explains the rationale behind some of the technical choices of our algorithm, and sketches 201 the proof of our main result. 202

First, we explicitly rewrite the expression of the Lagrangian (6), after performing the change of 203 variable $\lambda = \Lambda^c \beta$: 204

$$\mathfrak{L}(\boldsymbol{\beta},\boldsymbol{\mu};\boldsymbol{v},\boldsymbol{\theta}) = (1-\gamma)\langle\boldsymbol{\nu}_{0},\boldsymbol{v}\rangle + \langle\boldsymbol{\beta},\boldsymbol{\Lambda}^{c}(\boldsymbol{\omega}+\gamma\boldsymbol{\Psi}\boldsymbol{v}-\boldsymbol{\theta})\rangle + \langle\boldsymbol{\mu},\boldsymbol{\Phi}\boldsymbol{\theta}-\boldsymbol{E}\boldsymbol{v}\rangle$$
(11)

$$= \langle \boldsymbol{\beta}, \boldsymbol{\Lambda}^{c} \boldsymbol{\omega} \rangle + \langle \boldsymbol{v}, (1-\gamma) \boldsymbol{\nu}_{0} + \gamma \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{\Lambda}^{c} \boldsymbol{\beta} - \boldsymbol{E}^{\mathsf{T}} \boldsymbol{\mu} \rangle + \langle \boldsymbol{\theta}, \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\mu} - \boldsymbol{\Lambda}^{c} \boldsymbol{\beta} \rangle.$$
(12)

We aim to find an approximate saddle-point of the above convex-concave objective function. One 205 challenge that we need to face is that the variables v and μ have dimension proportional to the size of 206 the state space $|\mathcal{X}|$, so making explicit updates to these parameters would be prohibitively expensive 207 in MDPs with large state spaces. To address this challenge, we choose to parametrize μ in terms of a 208 policy π and β through the symbolic assignment $\mu = \mu_{\beta,\pi}$, where 209

$$\mu_{\boldsymbol{\beta},\pi}(x,a) \doteq \pi(a|x) \Big[(1-\gamma)\nu_0(x) + \gamma \langle \boldsymbol{\psi}(x), \boldsymbol{\Lambda}^c \boldsymbol{\beta} \rangle \Big].$$
(13)

This choice can be seen to satisfy the first constraint of the primal LP (4), and thus the gradient of the 210

Lagrangian (12) evaluated at $\mu_{\beta,\pi}$ with respect to v can be verified to be 0. This parametrization 211 makes it possible to express the Lagrangian as a function of only θ , β and π as 212

$$f(\boldsymbol{\theta},\boldsymbol{\beta},\pi) \doteq \mathfrak{L}(\boldsymbol{\beta},\boldsymbol{\mu}_{\boldsymbol{\beta},\pi};\boldsymbol{v},\boldsymbol{\theta}) = \langle \boldsymbol{\beta},\boldsymbol{\Lambda}^{c}\boldsymbol{\omega} \rangle + \langle \boldsymbol{\theta},\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu}_{\boldsymbol{\beta},\pi} - \boldsymbol{\Lambda}^{c}\boldsymbol{\beta} \rangle.$$
(14)

For convenience, we also define the quantities $\nu_{\beta} = E^{\mathsf{T}} \mu_{\beta,\pi}$ and $v_{\theta,\pi}(s) \doteq \sum_{a} \pi(a|s) \langle \theta, \varphi(x,a) \rangle$, 213 which enables us to rewrite f as 214

$$f(\boldsymbol{\theta},\boldsymbol{\beta},\pi) = \langle \boldsymbol{\Lambda}^{c}\boldsymbol{\beta},\boldsymbol{\omega}-\boldsymbol{\theta}\rangle + \langle \boldsymbol{v}_{\boldsymbol{\theta},\pi},\boldsymbol{\nu}_{\boldsymbol{\beta}}\rangle = (1-\gamma)\langle \boldsymbol{\nu}_{0},\boldsymbol{v}_{\boldsymbol{\theta},\pi}\rangle + \langle \boldsymbol{\Lambda}^{c}\boldsymbol{\beta},\boldsymbol{\omega}+\gamma\Psi\boldsymbol{v}_{\boldsymbol{\theta},\pi}-\boldsymbol{\theta}\rangle.$$
(15)

The above choices allow us to perform stochastic gradient / ascent over the low-dimensional parame-215 ters θ and β and the policy π . In order to calculate an unbiased estimator of the gradients, we first 216

observe that the choice of $\mu_{t,k}$ in Algorithm 1 is an unbiased estimator of μ_{β_t,π_t} :

$$\begin{split} \mathbb{E}_{t,k}\left[\mu_{t,k}(x,a)\right] &= \pi_t(a|x) \Big((1-\gamma)\mathbb{P}(X_{t,k}^0 = x) + \mathbb{E}_{t,k}\left[\mathbbm{1}\{X_{t,k}' = x\}\langle\varphi_t, \mathbf{\Lambda}^{c-1}\boldsymbol{\beta}_t\rangle\right]\Big) \\ &= \pi_t(a|x) \Big((1-\gamma)\nu_0(x) + \gamma \sum_{\bar{x},\bar{a}} \mu_B(\bar{x},\bar{a})p(x|\bar{x},\bar{a})\boldsymbol{\varphi}(\bar{x},\bar{a})^{\mathsf{T}}\mathbf{\Lambda}^{c-1}\boldsymbol{\beta}_t\Big) \\ &= \pi_t(a|x) \Big((1-\gamma)\nu_0(x) + \gamma \boldsymbol{\psi}(x)^{\mathsf{T}}\mathbf{\Lambda}\mathbf{\Lambda}^{c-1}\boldsymbol{\beta}_t\Big) = \mu_{\boldsymbol{\beta}_t,\pi_t}(x,a), \end{split}$$

where we used the fact that $p(x|\bar{x},\bar{a}) = \langle \psi(x), \varphi(\bar{x},\bar{a}) \rangle$, and the definition of Λ . This in turn facilitates proving that the gradient estimate $\tilde{g}_{\theta,t,k}$, defined in Equation 10, is indeed unbiased:

$$\mathbb{E}_{t,k}\left[\tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,k}\right] = \boldsymbol{\Phi}^{\mathsf{T}}\mathbb{E}_{t,k}\left[\boldsymbol{\mu}_{t,k}\right] - \boldsymbol{\Lambda}^{c-1}\mathbb{E}_{t,k}\left[\boldsymbol{\varphi}_{t,k}\boldsymbol{\varphi}_{t,k}^{\mathsf{T}}\right]\boldsymbol{\beta}_{t} = \boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu}_{\boldsymbol{\beta}_{t},\pi_{t}} - \boldsymbol{\Lambda}^{c}\boldsymbol{\beta}_{t} = \nabla_{\boldsymbol{\theta}}\mathfrak{L}(\boldsymbol{\beta}_{t},\boldsymbol{\mu}_{t};\boldsymbol{v}_{t},\cdot)$$

A similar proof is used for $\tilde{g}_{\beta,t}$ and is detailed in Appendix B.3.

221 Our analysis is based on arguments by Neu & Okolo [26], carefully adapted to the reparametrized

version of the Lagrangian presented above. The proof studies the following central quantity that we refer to as *dynamic duality gap*:

$$\mathcal{G}_T(\boldsymbol{\beta}^*, \pi^*; \boldsymbol{\theta}_{1:T}^*) \doteq \frac{1}{T} \sum_{t=1}^T (f(\boldsymbol{\beta}^*, \pi^*; \boldsymbol{\theta}_t) - f(\boldsymbol{\beta}_t, \pi_t; \boldsymbol{\theta}_t^*)).$$
(16)

Here, $(\theta_t, \beta_t, \pi_t)$ are the iterates of the algorithm, $\theta_{1:T}^* = (\theta_t^*)_{t=1}^T$ a sequence of comparators for θ , and finally β^* and π^* are fixed comparators for β and π , respectively. Our first key lemma relates the suboptimality of the output policy to \mathcal{G}_T for a specific choice of comparators.

Lemma 4.1. Let $\theta_t^* \doteq \theta^{\pi_t}$, π^* be any policy, and $\beta^* = \Lambda^{-c} \Phi^\top \mu^{\pi^*}$. Then, $\mathbb{E}\left[\langle \mu^{\pi^*} - \mu^{\pi_{out}}, r \rangle\right] = \mathcal{G}_T(\beta^*, \pi^*; \theta_{1:T}^*)$.

- The proof is relegated to Appendix B.1. Our second key lemma rewrites the gap G_T for *any* choice of comparators as the sum of three regret terms:
- Lemma 4.2. With the choice of comparators of Lemma 4.1

$$\mathcal{G}_{T}(\boldsymbol{\beta}^{*}, \pi^{*}; \boldsymbol{\theta}_{1:T}^{*}) = \frac{1}{T} \sum_{t=1}^{T} \langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{t}^{*}, g_{\boldsymbol{\theta},t} \rangle + \frac{1}{T} \sum_{t=1}^{T} \langle \boldsymbol{\beta}^{*} - \boldsymbol{\beta}_{t}, g_{\boldsymbol{\beta},t} \rangle \\ + \frac{1}{T} \sum_{t=1}^{T} \sum_{s} \nu^{\pi^{*}}(s) \sum_{a} (\pi^{*}(a|s) - \pi_{t}(a|s)) \langle \boldsymbol{\theta}_{t}, \boldsymbol{\varphi}(x, a) \rangle$$

232 where $g_{\boldsymbol{\theta},t} = \boldsymbol{\Phi}^{\top} \boldsymbol{\mu}_{\boldsymbol{\beta}_t,\pi_t} - \boldsymbol{\Lambda}^c \boldsymbol{\beta}_t$ and $g_{\boldsymbol{\beta},t} = \boldsymbol{\Lambda}^c (\boldsymbol{\omega} + \gamma \boldsymbol{\Psi} v_{\boldsymbol{\theta}_t,\pi_t} - \boldsymbol{\theta}_t).$

The proof is presented in Appendix B.2. To conclude the proof we bound the three terms appearing in Lemma 4.2. The first two of those are bounded using standard gradient descent/ascent analysis (Lemmas B.1 and B.2), while for the latter we use mirror descent analysis (Lemma B.3). The details of these steps are reported in Appendix B.3.

237 5 Extension to Average-Reward MDPs

In this section, we briefly explain how to extend our approach to offline learning in *average reward MDPs*, establishing the first sample complexity result for this setting. After introducing the setup, we outline a remarkably simple adaptation of our algorithm along with its performance guarantees for this setting. The reader is referred to Appendix C for the full details, and to Chapter 8 of Puterman [29] for a more thorough discussion of average-reward MDPs.

In the average reward setting we aim to optimize the objective $\rho^{\pi}(x) = \lim_{t \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r(x_t, a_t) \mid x_1 = x \right]$, representing the long-term average reward of policy π when started from state $x \in \mathcal{X}$. Unlike the discounted setting, the average reward criterion prioritizes long-term frequency over proximity of good rewards due to the absence of discounting which expresses a preference for earlier rewards. As is standard in the related literature, we will assume that ρ^{π} is well-defined for any policy and is independent of the start state, and thus will

use the same notation to represent the scalar average reward of policy π . Due to the boundedness of the rewards, we clearly have $\rho^{\pi} \in [0, 1]$. Similarly to the discounted setting, it is possible to define quantities analogous to the value and action value functions as the solutions to the Bellman equations $q^{\pi} = r - \rho^{\pi} \mathbf{1} + P v^{\pi}$, where v^{π} is related to the action-value function as $v^{\pi}(x) = \sum_{a} \pi(a|x)q^{\pi}(x,a)$. We will make the following standard assumption about the MDP (see, e.g., Section 17.4 of Meyn & Tweedie [22]):

Assumption 5.1. For all stationary policies π , the Bellman equations have a solution q^{π} satisfying sup_{x,a} $q^{\pi}(x, a) - \inf_{x,a} q^{\pi}(x, a) < D_q$.

Furthermore, we will continue to work with the linear MDP assumption of Definition 2.1, and will additionally make the following minor assumption:

Assumption 5.2. The all ones vector 1 is contained in the column span of the feature matrix Φ . Furthermore, let $\boldsymbol{\varrho} \in \mathbb{R}^d$ such that for all $(x, a) \in \mathcal{Z}, \langle \boldsymbol{\varphi}(x, a), \boldsymbol{\varrho} \rangle = 1$.

²⁶¹ Using these insights, it is straightforward to derive a linear program akin to (2) that characterize the

²⁶² optimal occupancy measure and thus an optimal policy in average-reward MDPs. Starting from this

formulation and proceeding as in Sections 2 and 4, we equivalently restate this optimization problem

as finding the saddle-point of the reparametrized Lagrangian defined as follows:

$$\mathfrak{L}(\boldsymbol{\beta},\boldsymbol{\mu};\rho,\boldsymbol{v},\boldsymbol{\theta}) = \rho + \langle \boldsymbol{\beta}, \boldsymbol{\Lambda}^{c}[\boldsymbol{\omega} + \boldsymbol{\Psi}\boldsymbol{v} - \boldsymbol{\theta} - \rho\boldsymbol{\varrho}] \rangle + \langle \boldsymbol{\mu}, \boldsymbol{\Phi}\boldsymbol{\theta} - \boldsymbol{E}\boldsymbol{v} \rangle.$$

As previously, the saddle point can be shown to be equivalent to an optimal occupancy measure under the assumption that the MDP is linear in the sense of Definition 2.1. Notice that the above Lagrangian slightly differs from that of the discounted setting in Equation (11) due to the additional optimization parameter ρ , but otherwise our main algorithm can be directly generalized to this objective. We present details of the derivations and the resulting algorithm in Appendix C. The following theorem states the performance guarantees for this method.

Theorem 5.3. Given a linear MDP (Definition 2.1) satisfying Assumption 5.2 and such that $\theta^{\pi} \in \mathbb{B}(D_{\theta})$ for any policy π . Assume that the coverage ratio is bounded $C_{\varphi,c}(\pi^*; \pi_B) \leq D_{\beta}$. Then, for any comparator policy π^* , the policy output by an appropriately tuned instance of Algorithm 2 satisfies $\mathbb{E}\left[\langle \mu^{\pi^*} - \mu^{\pi_{out}}, \mathbf{r} \rangle\right] \leq \varepsilon$ with a number of samples n_{ϵ} that is $O\left(\varepsilon^{-4}D_{\theta}^4 D_{\varphi}^{12c-2}D_{\beta}^4 d^{2-2c} \log |\mathcal{A}|\right)$.

As compared to the discounted case, this additional dependence of the sample complexity on D_{φ} is due to the extra optimization variable ρ . We provide the full proof of this theorem along with further discussion in Appendix C.

278 6 Discussion and Final Remarks

In this section, we compare our results with the most relevant ones from the literature. Our Table 1 can be used as a reference. As a complement to this section, we refer the interested reader to the recent work by Uehara & Sun [32], which provides a survey of offline RL methods with their coverage and structural assumptions. Detailed computations can be found in Appendix E.

An important property of our method is that it only requires partial coverage. This sets it apart from classic batch RL methods like FQI [11, 23], which require a stronger uniform-coverage assumption. Algorithms working under partial coverage are mostly based on the principle of pessimism. However, our algorithm does not implement any form of explicit pessimism. We recall that, as shown by Xiao et al. [35], pessimism is just one of many ways to achieve minimax-optimal sample efficiency.

Let us now compare our notion of coverage ratio to the existing notions previsouly used in the literature. Jin et al. [14] (Theorem 4.4) rely on a *feature* coverage ratio which can be written as

$$C^{\diamond}(\pi^*;\pi_B) = \mathbb{E}_{X,A\sim\mu^*} \left[\boldsymbol{\varphi}(X,A)^{\mathsf{T}} \boldsymbol{\Lambda}^{-1} \boldsymbol{\varphi}(X,A) \right].$$
(17)

By Jensen's inequality, our $C_{\varphi,1/2}$ (Definition 3.1) is never larger than C^{\diamond} . Indeed, notice how the random features in Equation (17) are coupled, introducing an extra variance term w.r.t. $C_{\varphi,1/2}$. Specifically, we can show that $C_{\varphi,1/2}(\pi^*; \pi_B) = C^{\diamond}(\pi^*; \pi_B) - \mathbb{V}_{X,A \sim \mu^*} [\Lambda^{-1/2}\varphi(X, A)]$, where $\mathbb{V}[Z] = \mathbb{E}[||Z - \mathbb{E}[Z]||^2]$ for a random vector Z. So, besides fine comparisons with existing notions of coverage ratios, we can regard $C_{\varphi,1/2}$ as a low-variance version of the standard feature coverage ratio. However, our sample complexity bounds do not fully take advantage of this low-variance 296 property, since they scale quadratically with the ratio itself, rather than linearly, as is more common 297 in previous work.

To scale with $C_{\varphi,1/2}$, our algorithm requires knowledge of Λ , hence of the behavior policy. However, so does the algorithm from Jin et al. [14]. Zanette et al. [38] remove this requirement at the price of a computationally heavier algorithm. However, both are limited to the finite-horizon setting.

³⁰¹ Uehara & Sun [32] and Zhang et al. [39] use a coverage ratio that is conceptually similar to Equa-³⁰² tion (17),

$$C^{\dagger}(\pi^*; \pi_B) = \sup_{y \in \mathbb{R}^d} \frac{y^{\mathsf{T}} \mathbb{E}_{X, A \sim \mu^*} \left[\varphi(X, A) \varphi(X, A)^{\mathsf{T}} \right] y}{y^{\mathsf{T}} \mathbb{E}_{X, A \sim \mu_B} \left[\varphi(X, A) \varphi(X, A)^{\mathsf{T}} \right] y}.$$
(18)

Some linear algebra shows that $C^{\dagger} \leq C^{\diamond} \leq dC^{\dagger}$. Therefore, chaining the previous inequalities we know that $C_{\varphi,1/2} \leq C^{\diamond} \leq dC^{\dagger}$. It should be noted that the algorithm from Uehara & Sun [32] also works in the representation-learning setting, that is, with unknown features. However, it is far from being efficiently implementable. The algorithm from Zhang et al. [39] instead is limited to the finite-horizon setting.

In the special case of tabular MDPs, it is hard to compare our ratio with existing ones, because in 308 this setting, error bounds are commonly stated in terms of $\sup_{x,a} \mu^*(x,a)/\mu_B(x,a)$, often introducing 309 an explicit dependency on the number of states [e.g., 17], which is something we carefully avoided. 310 However, looking at how the coverage ratio specializes to the tabular setting can still provide 311 some insight. With known behavior policy, $C_{\varphi,1/2}(\pi^*;\pi_B) = \sum_{x,a} \mu^*(x,a)^2 / \mu_B(x,a)$ is smaller than the more standard $C^{\diamond}(\pi^*;\pi_B) = \sum_{x,a} \mu^*(x,a) / \mu_B(x,a)$. With unknown behavior, $C_{\varphi,1}(\pi^*;\pi_B) = \sum_{x,a} (\mu^*(x,a) / \mu_B(x,a))^2$ is non-comparable with C^{\diamond} in general, but larger than $C_{\varphi,1/2}$. Interestingly, 312 313 314 $C_{\varphi,1}(\pi^*;\pi_B)$ is also equal to $1 + \mathcal{X}^2(\mu^* \| \mu_B)$, where \mathcal{X}^2 denotes the chi-square divergence, a crucial 315 quantity in off-distribution learning based on importance sampling [10]. Moreover, a similar quantity 316 to $C_{\varphi,1}$ was used by Lykouris et al. [18] in the context of (online) RL with adversarial corruptions. 317

We now turn to the works of Xie et al. [36] and Cheng et al. [9], which are the only practical 318 methods to consider function approximation in the infinite horizon setting, with minimal assumption 319 on the dataset, and thus the only directly comparable to our work. They both use the coverage 320 ratio $C_{\mathcal{F}}(\pi^*; \pi_B) = \max_{f \in \mathcal{F}} \|f - \mathcal{T}_f\|_{\mu^*}^2 / \|f - \mathcal{T}_f\|_{\mu_B}^2$, where \mathcal{F} is a function class and \mathcal{T} is Bellman's 321 operator. This can be shown to reduce to Equation (18) for linear MDPs. However, the specialized 322 bound of Xie et al. [36] (Theorem 3.2) scales with the potentially larger ratio from Equation (17). 323 Both their algorithms have superlinear computational complexity and a sample complexity of $O(\varepsilon^{-5})$. 324 Hence, in the linear MDP setting, our algorithm is a strict improvement both for its $O(\varepsilon^{-4})$ sample 325 complexity and its O(n) computational complexity. However, It is very important to notice that no 326 practical algorithm for this setting so far, including ours, can match the minimax optimal sample 327 complexity rate of $O(\varepsilon^2)$ [35, 31]. This leaves space for future work in this area. In particular, by 328 inspecting our proofs, it should be clear the the extra $O(\varepsilon^{-2})$ factor is due to the nested-loop structure 329 of the algorithm. Therefore, we find it likely that our result can be improved using optimistic descent 330 methods [6] or a two-timescale approach [15, 30]. 331

As a final remark, we remind that when Λ is unknown, our error bounds scales with $C_{\varphi,1}$, instead of the smaller $C_{\varphi,1/2}$. However, we find it plausible that one can replace the Λ with an estimate that is built using some fraction of the overall sample budget. In particular, in the tabular case, we could simply use all data to estimate the visitation probabilities of each-state action pairs and use them to build an estimator of Λ . Details of a similar approach have been worked out by Gabbianelli et al. [12]. Nonetheless, we designed our algorithm to be flexible and work in both cases.

To summarize, our method is one of the few not to assume the state space to be finite, or the dataset 338 to have global coverage, while also being computationally feasible. Moreover, it offers a significant 339 advantage, both in terms of sample and computational complexity, over the two existing polynomial-340 time algorithms for discounted linear MDPs with partial coverage [36, 9]; it extends to the challenging 341 average-reward setting with minor modifications; and has error bounds that scale with a low-variance 342 version of the typical coverage ratio. These results were made possible by employing algorithmic 343 principles, based on the linear programming formulation of sequential decision making, that are new 344 in offline RL. Finally, the main direction for future work is to develop a single-loop algorithm to 345 achieve the optimal rate of ε^{-2} , which should also improve the dependence on the coverage ratio 346 from $C_{\varphi,c}(\pi^*;\pi_B)^2$ to $C_{\varphi,c}(\pi^*;\pi_B)$. 347

348 **References**

- Bas-Serrano, J. and Neu, G. Faster saddle-point optimization for solving large-scale markov
 decision processes. In *L4DC*, volume 120 of *Proceedings of Machine Learning Research*, pp.
 413–423. PMLR, 2020.
- Bas-Serrano, J., Curi, S., Krause, A., and Neu, G. Logistic q-learning. In Banerjee, A. and Fukumizu, K. (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp. 3610–3618. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/bas-serrano21a.html.
- [3] Bellman, R. Dynamic programming. Technical report, RAND CORP SANTA MONICA CA, 1956.
- ³⁵⁸ [4] Bellman, R. Dynamic programming. *Science*, 153(3731):34–37, 1966.
- [5] Bertsekas, D. P. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
 1982. ISBN 978-0-12-093480-5.
- [6] Borkar, V. S. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5):
 291–294, 1997.
- [7] Cesa-Bianchi, N. and Lugosi, G. *Prediction, Learning, and Games*. Cambridge University
 Press, New York, NY, USA, 2006.
- [8] Chen, Y., Li, L., and Wang, M. Scalable bilinear learning using state and action features. In
 ICML, volume 80 of *Proceedings of Machine Learning Research*, pp. 833–842. PMLR, 2018.
- [9] Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. Adversarially trained actor critic for offline
 reinforcement learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and
 Sabato, S. (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
 volume 162 of *Proceedings of Machine Learning Research*, pp. 3852–3878. PMLR, 17–23 Jul
 2022. URL https://proceedings.mlr.press/v162/cheng22b.html.
- [10] Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In *NeurIPS*,
 pp. 442–450. Curran Associates, Inc., 2010.
- [11] Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. *J. Mach. Learn. Res.*, 6:503–556, 2005.
- [12] Gabbianelli, G., Neu, G., and Papini, M. Online learning with off-policy feedback. In Agrawal,
 S. and Orabona, F. (eds.), *ALT*, volume 201 of *Proceedings of Machine Learning Research*,
 pp. 620–641. PMLR, 20 Feb–23 Feb 2023. URL https://proceedings.mlr.press/v201/
 gabbianelli23a.html.
- [13] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably efficient reinforcement learning with
 linear function approximation. In *COLT*, volume 125 of *Proceedings of Machine Learning Research*, pp. 2137–2143. PMLR, 2020.
- [14] Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pp. 5084–5096. PMLR, 2021.
- [15] Korpelevich, G. The extragradient method for finding saddle points and other problems.
 Matecon, 12:747–756, 1976.
- [16] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review,
 and perspectives on open problems. 2020.
- [17] Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. Provably good batch off-policy
 reinforcement learning without great exploration. In *NeurIPS*, 2020.
- [18] Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W. Corruption-robust exploration in
 episodic reinforcement learning. In *COLT*, volume 134 of *Proceedings of Machine Learning Research*, pp. 3242–3245. PMLR, 2021.
- [19] Manne, A. S. Linear programming and sequential decisions. *Manage. Sci.*, 6(3):259–267, apr 1960. ISSN 0025-1909. doi: 10.1287/mnsc.6.3.259. URL https://doi.org/10.1287/ mnsc.6.3.259.
- [20] Manne, A. S. Linear programming and sequential decisions. *Management Science*, 6(3):
 259–267, 1960.

- [21] Mehta, P. G. and Meyn, S. P. Q-learning and pontryagin's minimum principle. In *CDC*, pp. 3598–3605. IEEE, 2009.
- 401 [22] Meyn, S. and Tweedie, R. Markov Chains and Stochastic Stability. Springer-Verlag, 1996.
- 402 [23] Munos, R. and Szepesvári, C. Finite-time bounds for fitted value iteration. J. Mach. Learn.
 403 Res., 9:815–857, 2008.
- 404 [24] Nachum, O. and Dai, B. Reinforcement learning via fenchel-rockafellar duality. 2020.
- [25] Nemirovski, A. and Yudin, D. *Problem Complexity and Method Efficiency in Optimization*.
 Wiley Interscience, 1983.
- [26] Neu, G. and Okolo, N. Efficient global planning in large mdps via stochastic primal-dual
 optimization. In *ALT*, volume 201 of *Proceedings of Machine Learning Research*, pp. 1101–1123. PMLR, 2023.
- [27] Neu, G., Jonsson, A., and Gómez, V. A unified view of entropy-regularized Markov decision
 processes. *arXiv preprint arXiv:1705.07798*, 2017.
- 412 [28] Orabona, F. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.
- [29] Puterman, M. L. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 Wiley & Sons, Inc., USA, 1994. ISBN 0471619779.
- [30] Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences.
 In *Advances in Neural Information Processing Systems*, pp. 3066–3074, 2013.
- [31] Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. Bridging offline reinforcement learning
 and imitation learning: A tale of pessimism. *IEEE Trans. Inf. Theory*, 68(12):8156–8196, 2022.
- [32] Uehara, M. and Sun, W. Pessimistic model-based offline reinforcement learning under partial
 coverage. In *ICLR*. OpenReview.net, 2022.
- [33] Uehara, M., Huang, J., and Jiang, N. Minimax weight and q-function learning for off-policy
 evaluation. In III, H. D. and Singh, A. (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 9659–
 9668. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/uehara20a.
 html.
- [34] Wang, M. and Chen, Y. An online primal-dual method for discounted markov decision processes.
 In *CDC*, pp. 4516–4521. IEEE, 2016.
- [35] Xiao, C., Wu, Y., Mei, J., Dai, B., Lattimore, T., Li, L., Szepesvári, C., and Schuurmans, D. On
 the optimality of batch policy optimization algorithms. In *ICML*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11362–11371. PMLR, 2021.
- [36] Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. Bellman-consistent pessimism
 for offline reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
 and Vaughan, J. W. (eds.), *Advances in Neural Information Processing Systems*, volume 34,
- 434 pp. 6683-6694. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
 435 paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf.
- [37] Yang, L. and Wang, M. Sample-optimal parametric q-learning using linearly additive features.
 In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6995–7004. PMLR, 2019.
- [38] Zanette, A., Wainwright, M. J., and Brunskill, E. Provable benefits of actor-critic methods for
 offline reinforcement learning. In *NeurIPS*, pp. 13626–13640, 2021.
- [39] Zhang, X., Chen, Y., Zhu, X., and Sun, W. Corruption-robust offline reinforcement learning. In
 AISTATS, volume 151 of *Proceedings of Machine Learning Research*, pp. 5757–5773. PMLR, 2022.
- [40] Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In
 Proceedings of the Twentieth International Conference on Machine Learning (ICML), 2003.