Offline Primal-Dual Reinforcement Learning for Linear MDPs

Anonymous Author(s) Affiliation Address email

Abstract

 Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from a fixed dataset of transitions collected by another policy. This problem has at- tracted a lot of attention recently, but most existing methods with strong theoretical guarantees are restricted to finite-horizon or tabular settings. In constrast, few algorithms for infinite-horizon settings with function approximation and minimal assumptions on the dataset are both sample and computationally efficient. Another gap in the current literature is the lack of theoretical analysis for the average-reward setting, which is more challenging than the discounted setting. In this paper, we address both of these issues by proposing a primal-dual optimization method based on the linear programming formulation of RL. Our key contribution is a new reparametrization that allows us to derive low-variance gradient estimators that can be used in a stochastic optimization scheme using only samples from the behavior 13 policy. Our method finds an ε -optimal policy with $O(\varepsilon^{-4})$ samples, improving 14 on the previous $O(\varepsilon^{-5})$, while being computationally efficient for infinite-horizon discounted and average-reward MDPs with realizable linear function approxima- tion and partial coverage. Moreover, to the best of our knowledge, this is the first theoretical result for average-reward offline RL.

1 Introduction

19 We study the setting of Offline Reinforcement Learning (RL), where the goal is to learn an ε -optimal policy without being able to interact with the environment, but only using a fixed dataset of transitions collected by a *behavior policy*. Learning from offline data proves to be useful especially when

22 interacting with the environment can be costly or dangerous $[16]$.

 In this setting, the quality of the best policy learnable by any algorithm is constrained by the quality of the data, implying that finding an optimal policy without further assumptions on the data is not feasible. Therefore, many methods [\[23,](#page-10-0) [33\]](#page-10-1) make a *uniform coverage* assumption, requiring that the behavior policy explores sufficiently well the whole state-action space. However, recent work [\[17,](#page-9-1) [31\]](#page-10-2) demonstrated that *partial coverage* of the state-action space is sufficient. In particular, this means that

the behavior policy needs only to sufficiently explore the state-actions visited by the optimal policy.

Moreover, like its online counterpart, modern offline RL faces the problem of learning efficiently in

 environments with very large state spaces, where function approximation is necessary to compactly represent policies and value functions. Although function approximation, especially with neural networks, is widely used in practice, its theoretical understanding in the context of decision-making

is still rather limited, even when considering *linear* function approximation.

 In fact, most existing sample complexity results for offline RL algorithms are limited either to the tabular and finite horizon setting, by the uniform coverage assumption, or by lack of computational efficiency — see the top section of Table [1](#page-0-0) for a summary. Notable exceptions are the recent works of

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Algorithm	Partial Coverage	Polynomial Sample Complexity	Polynomial Computational Complexity	Function Approximation	Infinite Horizon	
					Discounted	Average-Reward
FQI [23]	Х					
Rashidinejad et al. [31]						
Jin et al. $[14]$ Zanette et al. $\lceil 38 \rceil$						
Uehara & Sun $\lceil 32 \rceil$						
Cheng et al. $[9]$		$O(\varepsilon^{-5})$	superlinear			
Xie et al. $[36]$		$O(\varepsilon^{-5})$	$O(n^{7/5})$			
Ours		$O(\varepsilon^{-4})$	O(n)			

Table 1: Comparison of existing offline RL algorithms. The table is divided horizontally in two sections. The upper section qualitatively compares algorithms for easier settings, that is, methods for the tabular or finite-horizon settings or methods which require uniform coverage. The lower section focuses on the setting considered in this paper, that is computationally efficient methods for the infinite horizon setting with function approximation and partial coverage.

 Xie et al. [\[36\]](#page-10-5) and Cheng et al. [\[9\]](#page-9-3) who provide computationally efficient methods for infinite-horizon discounted MDPs under realizable linear function approximation and partial coverage. Despite being some of the first implementable algorithms, their methods work only with discounted rewards, 40 have superlinear computational complexity and find an ε -optimal policy with $O(\varepsilon^{-5})$ samples – see [1](#page-0-0) the bottom section of Table 1 for more details. Therefore, this work is motivated by the following research question:

⁴³ *Can we design a linear-time algorithm with polynomial sample complexity for the discounted and* ⁴⁴ *average-reward infinite-horizon settings, in large state spaces under a partial-coverage assumption?* 45

 We answer this question positively by designing a method based on the linear-programming (LP) formulation of sequential decision making [\[20\]](#page-9-4). Albeit less known than the dynamic-programming formulation [\[3\]](#page-9-5) that is ubiquitous in RL, it allows us to tackle this problem with the powerful tools of convex optimization. We turn in particular to a relaxed version of the LP formulation [\[21,](#page-10-6) [2\]](#page-9-6) that considers action-value functions that are linear in known state-action features. This allows to reduce the dimensionality of the problem from the cardinality of the state space to the number of features. This relaxation still allows to recover optimal policies in *linear MDPs* [\[37,](#page-10-7) [13\]](#page-9-7), a structural assumption that is widely employed in the theoretical study of RL with linear function approximation.

 Our algorithm for learning near-optimal policies from offline data is based on primal-dual optimization of the Lagrangian of the relaxed LP. The use of saddle-point optimization in MDPs was first proposed by Wang & Chen [\[34\]](#page-10-8) for *planning* in small state spaces, and was extended to linear function 57 approximation by Chen et al. [\[8\]](#page-9-8), Bas-Serrano & Neu [\[1\]](#page-9-9), and Neu & Okolo [\[26\]](#page-10-9). We largely take inspiration from this latter work, which was the first to apply saddle-point optimization to the *relaxed* LP. However, primal-dual planning algorithms assume oracle access to a transition model, whose samples are used to estimate gradients. In our offline setting, we only assume access to i.i.d. samples generated by a possibly unknown behavior policy. To adapt the primal-dual optimization strategy 62 to this setting we employ a change of variable, inspired by Nachum & Dai $[24]$, which allows easy computation of unbiased gradient estimates.

64 **Notation.** We denote vectors with bold letters, such as $\mathbf{x} \doteq [x_1, \dots, x_d]^\top \in \mathbb{R}^d$, and use e_i to 65 denote the *i*-th standard basis vector. We interchangeably denote functions $f : \mathcal{X} \to \mathbb{R}$ over a finite set X, as vectors $f \in \mathbb{R}^{|\mathcal{X}|}$ with components $f(x)$, and use \geq to denote element-wise comparison. We 67 denote the set of probability distributions over a measurable set S as $\Delta_{\mathcal{S}}$, and the probability simplex 68 in \mathbb{R}^d as Δ_d . We use $\sigma : \mathbb{R}^d \to \Delta_d$ to denote the softmax function defined as $\sigma_i(\boldsymbol{x}) \doteq e^{x_i}/\sum_{j=1}^d e^{x_j}$. 69 We use upper-case letters for random variables, such as S , and denote the uniform distribution over a 70 finite set of n elements as $\mathcal{U}(n)$. In the context of iterative algorithms, we use \mathcal{F}_{t-1} to denote the 71 sigma-algebra generated by all events up to the end of iteration $t - 1$, and use the shorthand notation $\mathbb{E}_{t}[\cdot]=\mathbb{E}[\cdot|\mathcal{F}_{t-1}]$ to denote expectation conditional on the history. For nested-loop algorithms, we 73 write $\mathcal{F}_{t,i-1}$ for the sigma-algebra generated by all events up to the end of iteration $i-1$ of round t, and $\mathbb{E}_{t,i}$ $[\cdot] = \mathbb{E} [\cdot | \mathcal{F}_{t,i-1}]$ for the corresponding conditional expectation.

⁷⁵ 2 Preliminaries

76 We study discounted Markov decision processes [MDP, [29\]](#page-10-11) denoted as $(\mathcal{X}, \mathcal{A}, p, r, \gamma)$, with discount 77 factor $\gamma \in [0,1]$ and finite, but potentially very large, state space X and action space A. For 78 every state-action pair (x, a) , we denote as $p(\cdot | x, a) \in \Delta_{\mathcal{X}}$ the next-state distribution, and as $r(x, a) \in [0, 1]$ the reward, which is assumed to be deterministic and bounded for simplicity. The so transition function p is also denoted as the matrix $P \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times |\mathcal{X}|}$ and the reward as the vector 81 $r \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}|}$. The objective is to find an *optimal policy* $\pi^* : \mathcal{X} \to \Delta_{\mathcal{A}}$. That is, a stationary bolicy that maximizes the normalized expected return $\rho(\pi^*) = (1 - \gamma) \mathbb{E}_{\pi^*}[\sum_{t=0}^{\infty} r(X_t, A_t)]$, where 83 the initial state X_0 is sampled from the initial state distribution ν_0 , the other states according to 84 $X_{t+1} \sim p(\cdot|X_t, A_t)$ and where the notation $\mathbb{E}_{\pi}[\cdot]$ is used to denote that the actions are sampled 85 from policy π as $A_t \sim \pi(\cdot | X_t)$. Moreover, we define the following quantities for each policy π : its so from poncy *n* as $A_t \sim n(\cdot | A_t)$. Moreover, we define the following quantities for each poncy *n*: its
so state-action value function $q^{\pi}(x, a) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t r(X_t, A_t) | X_0 = x, A_0 = a]$, its value function $v^{\pi}(x) \doteq \mathbb{E}_{\pi}[q^{\pi}(x, A_0)],$ is state occupancy measure $v^{\pi}(x) \doteq (1 - \gamma)\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \mathbb{1}\{X_t = x\}],$ and $\begin{array}{lll}\n\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\text{if } & \text{if } x \in \mathbb{R} \\
\$ ⁸⁹ the following useful relations, more commonly known respectively as Bellman's equation and flow 90 constraint for policy π [\[4\]](#page-9-10):

$$
\boldsymbol{q}^{\pi} = \boldsymbol{r} + \gamma \boldsymbol{P} \boldsymbol{v}^{\pi} \qquad \boldsymbol{\nu}^{\pi} = (1 - \gamma) \boldsymbol{\nu}_0 + \gamma \boldsymbol{P}^{\tau} \boldsymbol{\mu}^{\pi} \tag{1}
$$

91 Given this notation, we can also rewrite the normalized expected return in vector form as $\rho(\pi)$ =

92 $(1 - \gamma)\langle v_0, v^{\pi} \rangle$ or equivalently as $\rho(\pi) = \langle r, \mu^{\pi} \rangle$.

⁹³ Our work is based on the linear programming formulation due to Manne [\[19\]](#page-9-11) (see also [29\)](#page-10-11) which ⁹⁴ transforms the reinforcement learning problem into the search for an optimal state-action occupancy

⁹⁵ measure, obtained by solving the following Linear Program (LP):

maximize
$$
\langle \mathbf{r}, \mathbf{\mu} \rangle
$$

subject to $\mathbf{E}^{\mathsf{T}} \mathbf{\mu} = (1 - \gamma)\mathbf{\nu}_0 + \gamma \mathbf{P}^{\mathsf{T}} \mathbf{\mu}$
 $\mathbf{\mu} \ge 0$ (2)

96 where $\mathbf{E} \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times |\mathcal{X}|}$ denotes the matrix with components $\mathbf{E}_{(x,a),x'} \doteq \mathbb{I}\{x = x'\}$. The constraints ⁹⁷ of this LP are known to characterize the set of valid state-action occupancy measures. Therefore, 98 an optimal solution μ^* of the LP corresponds to the state-action occupancy measure associated to a 99 • policy π^* maximizing the expected return, and which is therefore optimal in the MDP. This policy Figure 2.1. This policy is the extracted as $\pi^*(a|x) \doteq \mu^*(x, a)/\sum_{\bar{a} \in A} \mu^*(x, \bar{a})$. However, this linear program cannot be ¹⁰¹ directly solved in an efficient way in large MDPs due to the number of constraints and dimensions 102 of the variables scaling with the size of the state space \mathcal{X} . Therefore, taking inspiration from the ¹⁰³ previous works of Bas-Serrano et al. [\[2\]](#page-9-6), Neu & Okolo [\[26\]](#page-10-9) we assume the knowledge of a *feature* 104 *map* φ , which we then use to reduce the dimension of the problem. More specifically we consider the ¹⁰⁵ setting of Linear MDPs [\[13,](#page-9-7) [37\]](#page-10-7).

¹⁰⁶ Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions 107 can be expressed as a linear function of a given feature map $\varphi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$. That is, there exist 108 $\psi: \mathcal{X} \to \mathbb{R}^d$ and $\omega \in \mathbb{R}^d$ such that, for every $x, x' \in \mathcal{X}$ and $a \in \mathcal{A}$:

$$
r(x,a) = \langle \boldsymbol{\varphi}(x,a), \boldsymbol{\omega} \rangle, \qquad p(x' \mid x,a) = \langle \boldsymbol{\varphi}(x,a), \boldsymbol{\psi}(x') \rangle.
$$

109 We assume that for all x, a , the norms of all relevant vectors are bounded by known constants as 110 $\|\varphi(x, a)\|_2 \leq D_{\varphi}, \|\sum_{x'} \psi(x')\|_2 \leq D_{\psi}$, and $\|\omega\|_2 \leq D_{\omega}$. Moreover, we represent the feature map 111 with the matrix $\Phi \in \mathbb{R}^{|\mathcal{X} \times \mathcal{A}| \times d}$ with rows given by $\varphi(x, a)^\dagger$, and similarly we define $\Psi \in \mathbb{R}^{d \times |\mathcal{X}|}$ 112 as the matrix with columns given by $\psi(x)$.

113 With this notation we can rewrite the transition matrix as $P = \Phi \Psi$. Furthermore, it is convenient ¹¹⁴ to assume that the dimension d of the feature map cannot be trivially reduced, and therefore that 115 the matrix Φ is full-rank. An easily verifiable consequence of the Linear MDP assumption is that 116 state-action value functions can be represented as a linear combinations of φ . That is, there exist 117 $\theta^{\pi} \in \mathbb{R}^d$ such that:

$$
q^{\pi} = r + \gamma P v^{\pi} = \Phi(\omega + \Psi v^{\pi}) = \Phi \theta^{\pi}.
$$
 (3)

118 It can be shown that for all policies π , the norm of θ^{π} is at most $D_{\theta} = D_{\omega} + \frac{D_{\psi}}{1-\gamma}$ (cf. Lemma B.1)

¹¹⁹ in [13\)](#page-9-7). We then translate the linear program [\(2\)](#page-2-0) to our setting, with the addition of the new variable

120 $\lambda \in \mathbb{R}^d$, resulting in the following new LP and its corresponding dual:

maximize
$$
\langle \omega, \lambda \rangle
$$

\nsubject to $E^{\mathsf{T}} \mu = (1 - \gamma) \nu_0 + \gamma \Psi^{\mathsf{T}} \lambda$
\n $\lambda = \Phi^{\mathsf{T}} \mu$
\n $\mu \ge 0$.
\n $\mu \ge 0$ (4)

121 It can be immediately noticed how the introduction of λ did not change neither the set of admissible μ s nor the objective, and therefore did not alter the optimal solution. The Lagrangian associated to ¹²³ this set of linear programs is the function:

$$
\mathfrak{L}(\mathbf{v},\boldsymbol{\theta},\boldsymbol{\lambda},\boldsymbol{\mu})=(1-\gamma)\langle\boldsymbol{\nu}_0,\boldsymbol{v}\rangle+\langle\boldsymbol{\lambda},\boldsymbol{\omega}+\gamma\Psi\boldsymbol{v}-\boldsymbol{\theta}\rangle+\langle\boldsymbol{\mu},\boldsymbol{\Phi}\boldsymbol{\theta}-\boldsymbol{E}\boldsymbol{v}\rangle
$$

=\langle\boldsymbol{\lambda},\boldsymbol{\omega}\rangle+\langle\boldsymbol{v},(1-\gamma)\boldsymbol{\nu}_0+\gamma\Psi^{\mathsf{T}}\boldsymbol{\lambda}-\boldsymbol{E}^{\mathsf{T}}\boldsymbol{\mu}\rangle+\langle\boldsymbol{\theta},\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu}-\boldsymbol{\lambda}\rangle. (6)

124 It is known that finding optimal solutions (λ^*, μ^*) and (v^*, θ^*) for the primal and dual LPs is 125 equivalent to finding a saddle point $(v^*, \theta^*, \lambda^*, \mu^*)$ of the Lagrangian function [\[5\]](#page-9-12). In the next ¹²⁶ section, we will develop primal-dual methods that aim to find approximate solutions to the above ¹²⁷ saddle-point problem, and convert these solutions to policies with near-optimality guarantees.

¹²⁸ 3 Algorithm and Main Results

¹²⁹ This section introduces the concrete setting we study in this paper, and presents our main contributions.

130 We consider the offline-learning scenario where the agent has access to a dataset $\mathcal{D} = (W_t)_{t=1}^n$, 131 collected by a behavior policy π_B , and composed of n random observations of the form W_t = 132 $(X_t^0, X_t, A_t, R_t, X_t')$. The random variables $\tilde{X}_t^0, (X_t, A_t)$ and X_t' are sampled, respectively, from 133 the initial-state distribution ν_0 , the discounted occupancy measure of the behavior policy, denoted as 134 μ_B , and from $p(\cdot|X_t, A_t)$. Finally, R_t denotes the reward $r(X_t, A_t)$. We assume that all observations 135 W_t are generated independently of each other, and will often use the notation $\varphi_t = \varphi(X_t, A_t)$.

 Our strategy consists in finding approximately good solutions for the LPs [\(4\)](#page-3-0) and [\(5\)](#page-3-1) using stochastic optimization methods, which require access to unbiased gradient estimates of the Lagrangian (Equa- tion [6\)](#page-3-2). The main challenge we need to overcome is constructing suitable estimators based only on observations drawn from the behavior policy. We address this challenge by introducing the matrix $\Lambda = \mathbb{E}_{X,A\sim \mu_B} [\varphi(X,A)\varphi(X,A)^T]$ (supposed to be invertible for the sake of argument for now), 141 and rewriting the gradient with respect to λ as

$$
\nabla_{\mathbf{\lambda}} \mathfrak{L}(\mathbf{\lambda}, \mu; v, \theta) = \boldsymbol{\omega} + \gamma \Psi v - \theta = \boldsymbol{\Lambda}^{-1} \boldsymbol{\Lambda} \left(\boldsymbol{\omega} + \gamma \Psi v - \theta \right) \n= \boldsymbol{\Lambda}^{-1} \mathbb{E} \left[\boldsymbol{\varphi} (X_t, A_t) \boldsymbol{\varphi} (X_t, A_t)^{\top} \left(\boldsymbol{\omega} + \gamma \Psi v - \theta \right) \right] \n= \boldsymbol{\Lambda}^{-1} \mathbb{E} \left[\boldsymbol{\varphi} (X_t, A_t) \left(R_t + \gamma v (X_t') - \langle \boldsymbol{\theta}, \boldsymbol{\varphi} (X_t, A_t) \rangle \right) \right].
$$

¹⁴² This suggests that the vector within the expectation can be used to build an unbiased estimator of the

143 desired gradient. A downside of using this estimator is that it requires knowledge of Λ . However, ¹⁴⁴ this can be sidestepped by a reparametrization trick inspired by Nachum & Dai [\[24\]](#page-10-10): introducing the

145 parametrization $\beta = \Lambda^{-1}\lambda$, the objective can be rewritten as

$$
\mathfrak{L}(\boldsymbol{\beta},\boldsymbol{\mu};\boldsymbol{v},\boldsymbol{\theta})=(1-\gamma)\langle\boldsymbol{\nu}_0,\boldsymbol{v}\rangle+\langle\boldsymbol{\beta},\boldsymbol{\Lambda}\big(\boldsymbol{\omega}+\gamma\Psi\boldsymbol{v}-\boldsymbol{\theta}\big)\rangle+\langle\boldsymbol{\mu},\boldsymbol{\Phi}\boldsymbol{\theta}-\boldsymbol{E}\boldsymbol{v}\rangle.
$$

146 This can be indeed seen to generalize the tabular reparametrization of Nachum & Dai $[24]$ to the case

¹⁴⁷ of linear function approximation. Notably, our linear reparametrization does not change the structure 148 of the saddle-point problem, but allows building an unbiased estimator of $\nabla_{\beta} \mathfrak{L}(\beta, \mu; v, \theta)$ without

149 knowledge of Λ as

$$
\tilde{\mathbf{g}}_{\boldsymbol{\beta}} = \boldsymbol{\varphi}(X_t, A_t) (R_t + \gamma \boldsymbol{v}(X_t') - \langle \boldsymbol{\theta}, \boldsymbol{\varphi}(X_t, A_t) \rangle).
$$

150 In what follows, we will use the more general parametrization $\beta = \Lambda^{-c} \lambda$, with $c \in \{1/2, 1\}$, and ¹⁵¹ construct a primal-dual stochastic optimization method that can be implemented efficiently in the 152 offline setting based on the observations above. Using $c = 1$ allows to run our algorithm without 153 knowledge of Λ , that is, without knowing the behavior policy that generated the dataset, while using 154 $c = 1/2$ results in a tighter bound, at the price of having to assume knowledge of Λ .

155 Our algorithm (presented as Algorithm [1\)](#page-4-0) is inspired by the method of Neu & Okolo [\[26\]](#page-10-9), originally ¹⁵⁶ designed for planning with a generative model. The algorithm has a double-loop structure, where

Algorithm 1 Offline Primal-Dual RL

Input: Learning rates α, ζ, η , initial points $\theta_0 \in \mathbb{B}(D_\theta), \beta_1 \in \mathbb{B}(D_\beta), \pi_1$, and data $\mathcal{D} = (W_t)_{t=1}^n$ for $t = 1$ to T do Initialize $\theta_{t,1} = \theta_{t-1}$ for $k = 1$ to $K - 1$ do Obtain sample $W_{t,k} = (X_{t,k}^0, X_{t,k}, A_{t,k}, X_{t,k}')$ $\boldsymbol{\mu}_{t,k} = \pi_t \circ \big[(1-\gamma) \boldsymbol{e}_{X_{t,k}^0} + \ \gamma \langle \boldsymbol{\varphi}(X_{t,k}, A_{t,k}), \boldsymbol{\Lambda}^{c-1} \boldsymbol{\beta}_t \rangle \boldsymbol{e}_{X_{t,k}'} \big]$ $\tilde{\bm{g}_{\bm{\theta},t,i}} = \bm{\Phi}^{\scriptscriptstyle \sf T} \bm{\mu}_{t,k} - \bm{\Lambda}^{c-1} \bm{\varphi}(X_{t,k}, A_{t,k}) \langle \bm{\varphi}(X_{t,k}, A_{t,k}), \bm{\beta}_t \rangle$ $\bm{\theta}_{t,k+1} = \Pi_{\mathbb{B}(D_{\theta})}(\bm{\theta}_{t,k} - \eta \tilde{\bm{g}}_{\bm{\theta},t,i})$ *// Stochastic gradient descent* end for $\bm{\theta}_t = \frac{1}{K}\sum_{k=1}^K \bm{\theta}_{t,k}$ Obtain sample $W_t = (X_t^0, X_t, A_t, X_t')$ $\boldsymbol{v}_t = \boldsymbol{E}^\intercal \big(\pi_t \circ \boldsymbol{\Phi} \boldsymbol{\theta}_t\big)$ $\tilde{\mathbf{g}}_{\boldsymbol{\beta},t} = \boldsymbol{\varphi}(X_t, A)\big(R_t + \gamma \boldsymbol{v}_t(X_t') - \langle\boldsymbol{\varphi}(X_t, A_t), \boldsymbol{\theta}_t\rangle\big)$ $\beta_{t+1} = \Pi_{\mathbb{B}(D_{\beta})}(\hat{\beta}_t + \zeta \tilde{g}_{\beta,t})$ *// Stochastic gradient ascent* $\pi_{t+1} = \sigma(\alpha \sum_{i=1}^t \mathbf{\Phi} \boldsymbol{\theta}_i)$ *// Policy update* end for return π_J with $J \sim \mathcal{U}(T)$.

157 at each iteration t we run one step of stochastic gradient ascent for β , and also an inner loop 158 which runs K iterations of stochastic gradient descent on θ making sure that $\langle \varphi(x, a), \theta_t \rangle$ is a 159 good approximation of the true action-value function of π_t . Iterations of the inner loop are indexed 160 by k. The main idea of the algorithm is to compute the unbiased estimators $\tilde{g}_{\theta,t,k}$ and $\tilde{g}_{\theta,t}$ of 161 the gradients $\nabla_{\theta} \mathfrak{L}(\beta_t, \mu_t; \cdot, \theta_{t,k})$ and $\nabla_{\beta} \mathfrak{L}(\beta_t, \cdot; v_t, \theta_t)$, and use them to update the respective 162 variables iteratively. We then define a softmax policy π_t at each iteration t using the θ parameters as 163 $\pi_t(a|x) = \sigma\left(\alpha \sum_{i=1}^{t-1} \langle \varphi(x, a), \theta_i \rangle\right)$. The other higher-dimensional variables (μ_t, v_t) are defined 164 symbolically in terms of β_t , θ_t and π_t , and used only as auxiliary variables for computing the 165 estimates $\tilde{g}_{\theta,t,k}$ and $\tilde{g}_{\beta,t}$. Specifically, we set these variables as

$$
v_t(x) = \sum_a \pi_t(a|x) \langle \varphi(x, a), \theta_t \rangle,
$$
\n(7)

$$
\mu_{t,k}(x,a) = \pi_t(a|x) \big((1-\gamma) \mathbb{1}\{ X_{t,k}^0 = x \} + \gamma \langle \varphi_{t,k}, \mathbf{\Lambda}^{c-1} \beta_t \rangle \mathbb{1}\{ X_{t,k}' = x \} \big). \tag{8}
$$

¹⁶⁶ Finally, the gradient estimates can be defined as

$$
\tilde{\mathbf{g}}_{\boldsymbol{\beta},t} = \boldsymbol{\Lambda}^{c-1} \boldsymbol{\varphi}_t \left(R_t + \gamma v_t(X_t') - \langle \boldsymbol{\varphi}_t, \boldsymbol{\theta}_t \rangle \right), \tag{9}
$$

$$
\tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,k} = \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\mu}_{t,k} - \boldsymbol{\Lambda}^{c-1} \boldsymbol{\varphi}_{t,k} \langle \boldsymbol{\varphi}_{t,k}, \boldsymbol{\beta}_t \rangle.
$$
 (10)

167 These gradient estimates are then used in a projected gradient ascent/descent scheme, with the ℓ_2 168 projection operator denoted by Π. The feasible sets of the two parameter vectors are chosen as ℓ_2 169 balls of radii D_θ and D_β , denoted respectively as $\mathbb{B}(D_\theta)$ and $\mathbb{B}(D_\beta)$. Notably, the algorithm does not 170 need to compute $v_t(x)$, $\mu_{t,k}(x, a)$, or $\pi_t(a|x)$ for all states x, but only for the states that are accessed 171 during the execution of the method. In particular, π_t does not need to be computed explicitly, and it 172 can be efficiently represented by the single d-dimensional parameter vector $\sum_{i=1}^{t} \theta_i$.

173 Due to the double-loop structure, each iteration t uses K samples from the dataset D , adding up to 174 a total of $n = KT$ samples over the course of T iterations. Each gradient update calculated by the ¹⁷⁵ method uses a constant number of elementary vector operations, resulting in a total computational 176 complexity of $O(|A|dn)$ elementary operations. At the end, our algorithm outputs a policy selected 177 uniformly at random from the T iterations.

¹⁷⁸ 3.1 Main result

¹⁷⁹ We are now almost ready to state our main result. Before doing so, we first need to discuss the ¹⁸⁰ quantities appearing in the guarantee, and provide an intuitive explanation for them.

- ¹⁸¹ Similarly to previous work, we capture the partial coverage assumption by expressing the rate of
- ¹⁸² convergence to the optimal policy in terms of a *coverage ratio* that measures the mismatch between ¹⁸³ the behavior and the optimal policy. Several definitions of coverage ratio are surveyed by Uehara &
-
- ¹⁸⁴ Sun [\[32\]](#page-10-4). In this work, we employ a notion of *feature* coverage ratio for linear MDPs that defines ¹⁸⁵ coverage in feature space rather than in state-action space, similarly to Jin et al. [\[14\]](#page-9-2), but with a
- ¹⁸⁶ smaller ratio.
- 187 **Definition 3.1.** Let $c \in \{1/2, 1\}$. We define the generalized coverage ratio as

$$
C_{\varphi,c}(\pi^*; \pi_B) = \mathbb{E}_{(X^*, A^*) \sim \mu^{\pi^*}}[\varphi(X^*, A^*)]^\top \Lambda^{-2c} \mathbb{E}[\varphi(X^*, A^*)].
$$

- ¹⁸⁸ We defer a detailed discussion of this ratio to Section [6,](#page-7-0) where we compare it with similar notions in
- ¹⁸⁹ the literature. We are now ready to state our main result.
- **190 Theorem 3.2.** *Given a linear MDP (Definition [2.1\)](#page-2-1) such that* $\theta^{\pi} \in \mathbb{B}(D_{\theta})$ *for any policy* π *. Assume*
- 191 *that the coverage ratio is bounded* $C_{\varphi,c}(\pi^*; \pi_B) \leq D_{\beta}$. Then, for any comparator policy π^* , the
- *policy output by an appropriately tuned instance of Algorithm [1](#page-4-0) satisfies* $\mathbb{E} \left[\langle \mu^{\pi^*} \mu^{\pi_{out}}, r \rangle \right] ≤ ε$
- 193 *with a number of samples* n_{ϵ} *that is* $O\left(\varepsilon^{-4}D^4_{\bm{\theta}}D^{\rm 8c}_{\bm{\varphi}}D^4_{\bm{\beta}}d^{2-2c}\log|\mathcal{A}|\right)$ *.*

¹⁹⁴ The concrete parameter choices are detailed in the full version of the theorem in Appendix [A.](#page--1-0) The ¹⁹⁵ main theorem can be simplified by making some standard assumptions, formalized by the following ¹⁹⁶ corollary.

-
- 197 **Corollary 3.3.** Assume that the bound of the feature vectors D_{φ} is of order $O(1)$, that $D_{\omega} = D_{\psi} = \sqrt{d}$ and that $D_{\mathcal{B}} = c \cdot C_{\varphi}(\pi^*; \pi_R)$ for some positive universal constant c. Then, under the same 198 \sqrt{d} and that $D_{\beta} = c \cdot C_{\varphi,c}(\pi^*; \pi_B)$ for some positive universal constant c. Then, under the same
- assumptions of Theorem [3.2,](#page-5-0) n_{ε} is of order $O\left(\frac{d^4C_{\varphi,c}(\pi^*; \pi_B)^2 \log |\mathcal{A}|}{d^{2c}(1-\gamma)^4 \varepsilon^4}\right)$ 199 *assumptions of Theorem 3.2,* n_{ε} is of order $O\Big(\frac{d^4C_{\varphi,c}(\pi^*; \pi_B)^2 \log|\mathcal{A}|}{d^{2c}(1-\gamma)^4\varepsilon^4}\Big)$.

²⁰⁰ 4 Analysis

²⁰¹ This section explains the rationale behind some of the technical choices of our algorithm, and sketches ²⁰² the proof of our main result.

²⁰³ First, we explicitly rewrite the expression of the Lagrangian [\(6\)](#page-3-2), after performing the change of 204 variable $\lambda = \Lambda^c \beta$:

$$
\mathfrak{L}(\boldsymbol{\beta}, \boldsymbol{\mu}; \boldsymbol{v}, \boldsymbol{\theta}) = (1 - \gamma) \langle \boldsymbol{\nu}_0, \boldsymbol{v} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{\Lambda}^c (\boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v} - \boldsymbol{\theta}) \rangle + \langle \boldsymbol{\mu}, \boldsymbol{\Phi} \boldsymbol{\theta} - \boldsymbol{E} \boldsymbol{v} \rangle \tag{11}
$$

$$
= \langle \boldsymbol{\beta}, \boldsymbol{\Lambda}^c \boldsymbol{\omega} \rangle + \langle \boldsymbol{v}, (1 - \gamma) \boldsymbol{\nu}_0 + \gamma \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{\Lambda}^c \boldsymbol{\beta} - \boldsymbol{E}^{\mathsf{T}} \boldsymbol{\mu} \rangle + \langle \boldsymbol{\theta}, \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\mu} - \boldsymbol{\Lambda}^c \boldsymbol{\beta} \rangle. \tag{12}
$$

²⁰⁵ We aim to find an approximate saddle-point of the above convex-concave objective function. One 206 challenge that we need to face is that the variables v and μ have dimension proportional to the size of 207 the state space $|\mathcal{X}|$, so making explicit updates to these parameters would be prohibitively expensive 208 in MDPs with large state spaces. To address this challenge, we choose to parametrize μ in terms of a 209 policy π and β through the symbolic assignment $\mu = \mu_{\beta,\pi}$, where

$$
\mu_{\boldsymbol{\beta},\pi}(x,a) \doteq \pi(a|x) \Big[(1-\gamma)\nu_0(x) + \gamma \langle \boldsymbol{\psi}(x), \boldsymbol{\Lambda}^c \boldsymbol{\beta} \rangle \Big]. \tag{13}
$$

²¹⁰ This choice can be seen to satisfy the first constraint of the primal LP [\(4\)](#page-3-0), and thus the gradient of the

211 Lagrangian [\(12\)](#page-5-1) evaluated at $\mu_{\beta,\pi}$ with respect to v can be verified to be 0. This parametrization 212 makes it possible to express the Lagrangian as a function of only θ , β and π as

$$
f(\theta,\beta,\pi) \doteq \mathfrak{L}(\beta,\mu_{\beta,\pi};\nu,\theta) = \langle \beta,\Lambda^c\omega \rangle + \langle \theta,\Phi^{\mathsf{T}}\mu_{\beta,\pi} - \Lambda^c\beta \rangle. \tag{14}
$$

213 For convenience, we also define the quantities $\nu_{\beta} = \mathbf{E}^{\dagger} \mu_{\beta,\pi}$ and $v_{\theta,\pi}(s) \doteq \sum_{a} \pi(a|s) \langle \theta, \varphi(x, a) \rangle$, 214 which enables us to rewrite f as

$$
f(\boldsymbol{\theta}, \boldsymbol{\beta}, \pi) = \langle \mathbf{\Lambda}^c \boldsymbol{\beta}, \boldsymbol{\omega} - \boldsymbol{\theta} \rangle + \langle \boldsymbol{v}_{\boldsymbol{\theta}, \pi}, \boldsymbol{\nu}_{\boldsymbol{\beta}} \rangle = (1 - \gamma) \langle \boldsymbol{\nu}_0, \boldsymbol{v}_{\boldsymbol{\theta}, \pi} \rangle + \langle \mathbf{\Lambda}^c \boldsymbol{\beta}, \boldsymbol{\omega} + \gamma \boldsymbol{\Psi} \boldsymbol{v}_{\boldsymbol{\theta}, \pi} - \boldsymbol{\theta} \rangle. \tag{15}
$$

²¹⁵ The above choices allow us to perform stochastic gradient / ascent over the low-dimensional parame-216 ters θ and β and the policy π. In order to calculate an unbiased estimator of the gradients, we first

2[1](#page-4-0)7 observe that the choice of $\mu_{t,k}$ in Algorithm 1 is an unbiased estimator of μ_{β_t,π_t} :

$$
\mathbb{E}_{t,k} \left[\mu_{t,k}(x,a) \right] = \pi_t(a|x) \Big((1-\gamma) \mathbb{P}(X_{t,k}^0 = x) + \mathbb{E}_{t,k} \left[\mathbb{1} \{ X_{t,k}' = x \} \langle \varphi_t, \mathbf{\Lambda}^{c-1} \beta_t \rangle \right] \Big)
$$

\n
$$
= \pi_t(a|x) \Big((1-\gamma)\nu_0(x) + \gamma \sum_{\bar{x}, \bar{a}} \mu_B(\bar{x}, \bar{a}) p(x|\bar{x}, \bar{a}) \varphi(\bar{x}, \bar{a})^\mathsf{T} \mathbf{\Lambda}^{c-1} \beta_t \Big)
$$

\n
$$
= \pi_t(a|x) \Big((1-\gamma)\nu_0(x) + \gamma \psi(x)^\mathsf{T} \mathbf{\Lambda} \mathbf{\Lambda}^{c-1} \beta_t \Big) = \mu_{\beta_t, \pi_t}(x, a),
$$

218 where we used the fact that $p(x|\bar{x}, \bar{a}) = \langle \psi(x), \varphi(\bar{x}, \bar{a}) \rangle$, and the definition of Λ. This in turn 219 facilitates proving that the gradient estimate $\tilde{g}_{\theta, t, k}$, defined in Equation [10,](#page-4-1) is indeed unbiased:

$$
\mathbb{E}_{t,k}\left[\tilde{\boldsymbol{g}}_{\boldsymbol{\theta},t,k}\right] = \boldsymbol{\Phi}^{\mathsf{T}}\mathbb{E}_{t,k}\left[\boldsymbol{\mu}_{t,k}\right] - \boldsymbol{\Lambda}^{c-1}\mathbb{E}_{t,k}\left[\boldsymbol{\varphi}_{t,k}\boldsymbol{\varphi}_{t,k}^{\mathsf{T}}\right]\boldsymbol{\beta}_{t} = \boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\mu}_{\boldsymbol{\beta}_{t},\pi_{t}} - \boldsymbol{\Lambda}^{c}\boldsymbol{\beta}_{t} = \nabla_{\boldsymbol{\theta}}\mathfrak{L}(\boldsymbol{\beta}_{t},\boldsymbol{\mu}_{t};\boldsymbol{v}_{t},\cdot).
$$

220 A similar proof is used for $\tilde{q}_{\beta,t}$ and is detailed in Appendix [B.3.](#page--1-1)

221 Our analysis is based on arguments by Neu & Okolo $[26]$, carefully adapted to the reparametrized

²²² version of the Lagrangian presented above. The proof studies the following central quantity that we ²²³ refer to as *dynamic duality gap*:

$$
\mathcal{G}_T(\boldsymbol{\beta}^*, \pi^*; \boldsymbol{\theta}_{1:T}^*) \doteq \frac{1}{T} \sum_{t=1}^T (f(\boldsymbol{\beta}^*, \pi^*; \boldsymbol{\theta}_t) - f(\boldsymbol{\beta}_t, \pi_t; \boldsymbol{\theta}_t^*)).
$$
\n(16)

- 224 Here, $(\theta_t, \beta_t, \pi_t)$ are the iterates of the algorithm, $\theta_{1:T}^* = (\theta_t^*)_{t=1}^T$ a sequence of comparators for θ, 225 and finally β^* and π^* are fixed comparators for β and π , respectively. Our first key lemma relates 226 the suboptimality of the output policy to \mathcal{G}_T for a specific choice of comparators.
- **Lemma 4.1.** Let $\theta_t^* \doteq \theta^{\pi_t}$, π^* be any policy, and $\beta^* = \Lambda^{-c} \Phi^{\top} \mu^{\pi^*}$. Then, $\mathbb{E} \left[\langle \mu^{\pi^*} - \mu^{\pi_{out}}, r \rangle \right] =$ 228 $\mathcal{G}_T(\boldsymbol{\beta}^*,\pi^*;\boldsymbol{\theta}_{1:T}^*).$
- 229 The proof is relegated to Appendix **B.1**. Our second key lemma rewrites the gap \mathcal{G}_T for *any* choice of ²³⁰ comparators as the sum of three regret terms:
- ²³¹ Lemma 4.2. *With the choice of comparators of Lemma [4.1](#page-6-0)*

$$
\mathcal{G}_{T}(\beta^*, \pi^*; \theta_{1:T}^*) = \frac{1}{T} \sum_{t=1}^{T} \langle \theta_t - \theta_t^*, g_{\theta, t} \rangle + \frac{1}{T} \sum_{t=1}^{T} \langle \beta^* - \beta_t, g_{\theta, t} \rangle + \frac{1}{T} \sum_{t=1}^{T} \sum_s \nu^{\pi^*}(s) \sum_a (\pi^*(a|s) - \pi_t(a|s)) \langle \theta_t, \varphi(x, a) \rangle,
$$

232 where $g_{\theta,t} = \Phi^{\top} \mu_{\beta_t, \pi_t} - \Lambda^c \beta_t$ and $g_{\beta,t} = \Lambda^c (\omega + \gamma \Psi v_{\theta_t, \pi_t} - \theta_t)$.

²³³ The proof is presented in Appendix [B.2.](#page--1-3) To conclude the proof we bound the three terms appearing ²³⁴ in Lemma [4.2.](#page-6-1) The first two of those are bounded using standard gradient descent/ascent analysis 235 (Lemmas [B.1](#page--1-4) and [B.2\)](#page--1-5), while for the latter we use mirror descent analysis (Lemma [B.3\)](#page--1-6). The details 236 of these steps are reported in Appendix $B.3$.

237 5 Extension to Average-Reward MDPs

 In this section, we briefly explain how to extend our approach to offline learning in *average reward MDPs*, establishing the first sample complexity result for this setting. After introducing the setup, we outline a remarkably simple adaptation of our algorithm along with its performance guarantees for this setting. The reader is referred to Appendix [C](#page--1-1) for the full details, and to Chapter 8 of Puterman [\[29\]](#page-10-11) for a more thorough discussion of average-reward MDPs.

243 In the average reward setting we aim to optimize the objective $\rho^{\pi}(x)$ = 244 $\liminf_{T\to\infty}\frac{1}{T}\mathbb{E}_{\pi}\left[\sum_{t=1}^T r(x_t, a_t)\right] \left| x_1 = x \right|$, representing the long-term average reward of 245 policy π when started from state $x \in \mathcal{X}$. Unlike the discounted setting, the average reward criterion ²⁴⁶ prioritizes long-term frequency over proximity of good rewards due to the absence of discounting ²⁴⁷ which expresses a preference for earlier rewards. As is standard in the related literature, we will 248 assume that ρ^{π} is well-defined for any policy and is independent of the start state, and thus will 249 use the same notation to represent the scalar average reward of policy π . Due to the boundedness 250 of the rewards, we clearly have $\rho^{\pi} \in [0,1]$. Similarly to the discounted setting, it is possible ²⁵¹ to define quantities analogous to the value and action value functions as the solutions to the 252 Bellman equations $q^{\pi} = r - \rho^{\pi} 1 + P v^{\pi}$, where v^{π} is related to the action-value function as 253 $v^{\pi}(x) = \sum_{a}^{\infty} \pi(a|x) \overline{q^{\pi}(x, a)}$. We will make the following standard assumption about the MDP (see, ²⁵⁴ e.g., Section 17.4 of Meyn & Tweedie [\[22\]](#page-10-12)):

255 Assumption 5.1. For all stationary policies π , the Bellman equations have a solution q^{π} satisfying 256 $\sup_{x,a} q^{\pi}(x,a) - \inf_{x,a} q^{\pi}(x,a) < D_q.$

²⁵⁷ Furthermore, we will continue to work with the linear MDP assumption of Definition [2.1,](#page-2-1) and will ²⁵⁸ additionally make the following minor assumption:

259 **Assumption 5.2.** The all ones vector 1 is contained in the column span of the feature matrix Φ . 260 Furthermore, let $\boldsymbol{Q} \in \mathbb{R}^d$ such that for all $(x, a) \in \mathcal{Z}, \langle \boldsymbol{\varphi}(x, a), \boldsymbol{Q} \rangle = 1$.

²⁶¹ Using these insights, it is straightforward to derive a linear program akin to [\(2\)](#page-2-0) that characterize the

²⁶² optimal occupancy measure and thus an optimal policy in average-reward MDPs. Starting from this

²⁶³ formulation and proceeding as in Sections [2](#page-2-2) and [4,](#page-5-2) we equivalently restate this optimization problem

²⁶⁴ as finding the saddle-point of the reparametrized Lagrangian defined as follows:

$$
\mathfrak{L}(\beta,\mu;\rho,v,\theta)=\rho+\langle\beta,\Lambda^c[\omega+\Psi v-\theta-\rho\varrho]\rangle+\langle\mu,\Phi\theta-Ev\rangle.
$$

 As previously, the saddle point can be shown to be equivalent to an optimal occupancy measure under the assumption that the MDP is linear in the sense of Definition [2.1.](#page-2-1) Notice that the above Lagrangian slightly differs from that of the discounted setting in Equation [\(11\)](#page-5-3) due to the additional optimization 268 parameter ρ , but otherwise our main algorithm can be directly generalized to this objective. We present details of the derivations and the resulting algorithm in Appendix [C.](#page--1-1) The following theorem states the performance guarantees for this method.

Theorem 5.3. *Given a linear MDP (Definition [2.1\)](#page-2-1) satisfying Assumption* [5.2](#page-7-1) *and such that* $\theta^{\pi} \in$ 272 $\mathbb{B}(D_\theta)$ for any policy π . Assume that the coverage ratio is bounded $C_{\varphi,c}(\pi^*; \pi_B) \leq D_\beta$. Then, for *any comparator policy* π ∗ ²⁷³ *, the policy output by an appropriately tuned instance of Algorithm [2](#page--1-7) satisfies* 274 $\mathbb{E}\left[\left\langle \boldsymbol{\mu}^{\pi^*}-\boldsymbol{\mu}^{\boldsymbol{\pi}_{out}},\boldsymbol{r}\right\rangle\right]\leq\varepsilon$ with a number of samples n_ϵ that is $O\left(\varepsilon^{-4}D_{\boldsymbol{\theta}}^4D_{\boldsymbol{\varphi}}^{12c-2}D_{\boldsymbol{\beta}}^4d^{2-2c}\log|\mathcal{A}|\right)$.

275 As compared to the discounted case, this additional dependence of the sample complexity on D_{φ} is 276 due to the extra optimization variable ρ . We provide the full proof of this theorem along with further 277 discussion in Appendix [C.](#page--1-1)

²⁷⁸ 6 Discussion and Final Remarks

 In this section, we compare our results with the most relevant ones from the literature. Our Table [1](#page-0-0) can be used as a reference. As a complement to this section, we refer the interested reader to the recent work by Uehara & Sun [\[32\]](#page-10-4), which provides a survey of offline RL methods with their coverage and 282 structural assumptions. Detailed computations can be found in Appendix E .

 An important property of our method is that it only requires partial coverage. This sets it apart from classic batch RL methods like FQI [\[11,](#page-9-13) [23\]](#page-10-0), which require a stronger uniform-coverage assumption. Algorithms working under partial coverage are mostly based on the principle of pessimism. However, our algorithm does not implement any form of explicit pessimism. We recall that, as shown by Xiao et al. [\[35\]](#page-10-13), pessimism is just one of many ways to achieve minimax-optimal sample efficiency.

²⁸⁸ Let us now compare our notion of coverage ratio to the existing notions previsouly used in the ²⁸⁹ literature. Jin et al. [\[14\]](#page-9-2) (Theorem 4.4) rely on a *feature* coverage ratio which can be written as

$$
C^{\diamond}(\pi^*; \pi_B) = \mathbb{E}_{X, A \sim \mu^*} \left[\varphi(X, A)^{\sf T} \Lambda^{-1} \varphi(X, A) \right]. \tag{17}
$$

290 By Jensen's inequality, our $C_{\varphi,1/2}$ (Definition [3.1\)](#page-5-4) is never larger than C° . Indeed, notice how 291 the random features in Equation [\(17\)](#page-7-2) are coupled, introducing an extra variance term w.r.t. $C_{\varphi,1/2}$. 292 Specifically, we can show that $C_{\varphi,1/2}(\pi^*; \pi_B) = C^{\circ}(\pi^*; \pi_B) - \mathbb{V}_{X,A\sim \mu^*} [\mathbf{\Lambda}^{-1/2} \varphi(X,A)],$ where 293 $\mathbb{V}[Z] = \mathbb{E}[\|Z - \mathbb{E}[Z]\|^2]$ for a random vector Z. So, besides fine comparisons with existing notions 294 of coverage ratios, we can regard $C_{\varphi,1/2}$ as a low-variance version of the standard feature coverage ²⁹⁵ ratio. However, our sample complexity bounds do not fully take advantage of this low-variance

²⁹⁶ property, since they scale quadratically with the ratio itself, rather than linearly, as is more common ²⁹⁷ in previous work.

298 To scale with $C_{\varphi,1/2}$, our algorithm requires knowledge of Λ , hence of the behavior policy. However, ²⁹⁹ so does the algorithm from Jin et al. [\[14\]](#page-9-2). Zanette et al. [\[38\]](#page-10-3) remove this requirement at the price of a ³⁰⁰ computationally heavier algorithm. However, both are limited to the finite-horizon setting.

³⁰¹ Uehara & Sun [\[32\]](#page-10-4) and Zhang et al. [\[39\]](#page-10-14) use a coverage ratio that is conceptually similar to Equa-³⁰² tion [\(17\)](#page-7-2),

$$
C^{\dagger}(\pi^*; \pi_B) = \sup_{y \in \mathbb{R}^d} \frac{y^{\dagger} \mathbb{E}_{X, A \sim \mu^*} \left[\varphi(X, A) \varphi(X, A)^{\dagger} \right] y}{y^{\dagger} \mathbb{E}_{X, A \sim \mu_B} \left[\varphi(X, A) \varphi(X, A)^{\dagger} \right] y}.
$$
\n(18)

303 Some linear algebra shows that $C^{\dagger} \leq C^{\diamond} \leq dC^{\dagger}$. Therefore, chaining the previous inequalities 304 we know that $C_{\varphi,1/2} \leq C^{\diamond} \leq dC^{\dagger}$. It should be noted that the algorithm from Uehara & Sun [\[32\]](#page-10-4) ³⁰⁵ also works in the representation-learning setting, that is, with unknown features. However, it is far ³⁰⁶ from being efficiently implementable. The algorithm from Zhang et al. [\[39\]](#page-10-14) instead is limited to the ³⁰⁷ finite-horizon setting.

³⁰⁸ In the special case of tabular MDPs, it is hard to compare our ratio with existing ones, because in 309 this setting, error bounds are commonly stated in terms of $\sup_{x,a} \mu^*(x,a)/\mu_B(x,a)$, often introducing ³¹⁰ an explicit dependency on the number of states [e.g., [17\]](#page-9-1), which is something we carefully avoided. ³¹¹ However, looking at how the coverage ratio specializes to the tabular setting can still provide 312 some insight. With known behavior policy, $C_{\varphi,1/2}(\pi^*; \pi_B) = \sum_{x,a} \mu^*(x,a)^2 / \mu_B(x,a)$ is smaller than 313 the more standard $C^{\circ}(\pi^*; \pi_B) = \sum_{x,a} \mu^*(x,a)/\mu_B(x,a)$. With unknown behavior, $C_{\varphi,1}(\pi^*; \pi_B) =$ 314 $\sum_{x,a} (\mu^*(x,a)/\mu_B(x,a))^2$ is non-comparable with C^{\diamond} in general, but larger than $C_{\varphi,1/2}$. Interestingly, 315 $C_{\varphi,1}(\pi^*; \pi_B)$ is also equal to $1 + \mathcal{X}^2(\mu^* \| \mu_B)$, where \mathcal{X}^2 denotes the chi-square divergence, a crucial ³¹⁶ quantity in off-distribution learning based on importance sampling [\[10\]](#page-9-14). Moreover, a similar quantity 317 to $C_{\varphi,1}$ was used by Lykouris et al. [\[18\]](#page-9-15) in the context of (online) RL with adversarial corruptions.

³¹⁸ We now turn to the works of Xie et al. [\[36\]](#page-10-5) and Cheng et al. [\[9\]](#page-9-3), which are the only practical ³¹⁹ methods to consider function approximation in the infinite horizon setting, with minimal assumption ³²⁰ on the dataset, and thus the only directly comparable to our work. They both use the coverage 321 ratio $C_{\mathcal{F}}(\pi^*; \pi_B) = \max_{f \in \mathcal{F}} ||f - \mathcal{T}f||^2_{\mu^*}/||f - \mathcal{T}f||^2_{\mu_B}$, where \mathcal{F} is a function class and \mathcal{T} is Bellman's 322 operator. This can be shown to reduce to Equation (18) for linear MDPs. However, the specialized 323 bound of Xie et al. [\[36\]](#page-10-5) (Theorem 3.2) scales with the potentially larger ratio from Equation [\(17\)](#page-7-2). 324 Both their algorithms have superlinear computational complexity and a sample complexity of $O(\varepsilon^{-5})$. 325 Hence, in the linear MDP setting, our algorithm is a strict improvement both for its $O(\varepsilon^{-4})$ sample 326 complexity and its $O(n)$ computational complexity. However, It is very important to notice that no ³²⁷ practical algorithm for this setting so far, including ours, can match the minimax optimal sample complexity rate of $O(\varepsilon^2)$ [\[35,](#page-10-13) [31\]](#page-10-2). This leaves space for future work in this area. In particular, by 329 inspecting our proofs, it should be clear the the extra $O(\varepsilon^{-2})$ factor is due to the nested-loop structure ³³⁰ of the algorithm. Therefore, we find it likely that our result can be improved using optimistic descent 331 methods $[6]$ or a two-timescale approach $[15, 30]$ $[15, 30]$ $[15, 30]$.

332 As a final remark, we remind that when Λ is unknown, our error bounds scales with $C_{\varphi,1}$, instead of 333 the smaller $C_{\varphi,1/2}$. However, we find it plausible that one can replace the Λ with an estimate that is ³³⁴ built using some fraction of the overall sample budget. In particular, in the tabular case, we could ³³⁵ simply use all data to estimate the visitation probabilities of each-state action pairs and use them to 336 build an estimator of Λ . Details of a similar approach have been worked out by Gabbianelli et al. ³³⁷ [\[12\]](#page-9-18). Nonetheless, we designed our algorithm to be flexible and work in both cases.

 To summarize, our method is one of the few not to assume the state space to be finite, or the dataset to have global coverage, while also being computationally feasible. Moreover, it offers a significant advantage, both in terms of sample and computational complexity, over the two existing polynomial- time algorithms for discounted linear MDPs with partial coverage [\[36,](#page-10-5) [9\]](#page-9-3); it extends to the challenging average-reward setting with minor modifications; and has error bounds that scale with a low-variance version of the typical coverage ratio. These results were made possible by employing algorithmic principles, based on the linear programming formulation of sequential decision making, that are new in offline RL. Finally, the main direction for future work is to develop a single-loop algorithm to 346 achieve the optimal rate of ε^{-2} , which should also improve the dependence on the coverage ratio 347 from $C_{\varphi,c}(\pi^*; \pi_B)^2$ to $C_{\varphi,c}(\pi^*; \pi_B)$.

References

- [1] Bas-Serrano, J. and Neu, G. Faster saddle-point optimization for solving large-scale markov decision processes. In *L4DC*, volume 120 of *Proceedings of Machine Learning Research*, pp. 413–423. PMLR, 2020.
- [2] Bas-Serrano, J., Curi, S., Krause, A., and Neu, G. Logistic q-learning. In Banerjee, A. and Fuku- mizu, K. (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp. 3610–3618. PMLR, 13–15 Apr 2021. URL <https://proceedings.mlr.press/v130/bas-serrano21a.html>.
- [3] Bellman, R. Dynamic programming. Technical report, RAND CORP SANTA MONICA CA, 1956.
- [4] Bellman, R. Dynamic programming. *Science*, 153(3731):34–37, 1966.
- [5] Bertsekas, D. P. *Constrained Optimization and Lagrange Multiplier Methods*. Academic Press, 1982. ISBN 978-0-12-093480-5.
- [6] Borkar, V. S. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5): 291–294, 1997.
- [7] Cesa-Bianchi, N. and Lugosi, G. *Prediction, Learning, and Games*. Cambridge University Press, New York, NY, USA, 2006.
- [8] Chen, Y., Li, L., and Wang, M. Scalable bilinear learning using state and action features. In *ICML*, volume 80 of *Proceedings of Machine Learning Research*, pp. 833–842. PMLR, 2018.
- [9] Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. Adversarially trained actor critic for offline reinforcement learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 3852–3878. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/cheng22b.html>.
- [10] Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In *NeurIPS*, pp. 442–450. Curran Associates, Inc., 2010.
- [11] Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. *J. Mach. Learn. Res.*, 6:503–556, 2005.
- [12] Gabbianelli, G., Neu, G., and Papini, M. Online learning with off-policy feedback. In Agrawal, S. and Orabona, F. (eds.), *ALT*, volume 201 of *Proceedings of Machine Learning Research*, pp. 620–641. PMLR, 20 Feb–23 Feb 2023. URL [https://proceedings.mlr.press/v201/](https://proceedings.mlr.press/v201/gabbianelli23a.html) [gabbianelli23a.html](https://proceedings.mlr.press/v201/gabbianelli23a.html).
- [13] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably efficient reinforcement learning with linear function approximation. In *COLT*, volume 125 of *Proceedings of Machine Learning Research*, pp. 2137–2143. PMLR, 2020.
- [14] Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pp. 5084–5096. PMLR, 2021.
- [15] Korpelevich, G. The extragradient method for finding saddle points and other problems. *Matecon*, 12:747–756, 1976.
- [16] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. 2020.
- [17] Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. Provably good batch off-policy reinforcement learning without great exploration. In *NeurIPS*, 2020.
- [18] Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W. Corruption-robust exploration in episodic reinforcement learning. In *COLT*, volume 134 of *Proceedings of Machine Learning Research*, pp. 3242–3245. PMLR, 2021.
- [19] Manne, A. S. Linear programming and sequential decisions. *Manage. Sci.*, 6(3):259–267, apr 1960. ISSN 0025-1909. doi: 10.1287/mnsc.6.3.259. URL [https://doi.org/10.1287/](https://doi.org/10.1287/mnsc.6.3.259) [mnsc.6.3.259](https://doi.org/10.1287/mnsc.6.3.259).
- [20] Manne, A. S. Linear programming and sequential decisions. *Management Science*, 6(3): 259–267, 1960.
- [21] Mehta, P. G. and Meyn, S. P. Q-learning and pontryagin's minimum principle. In *CDC*, pp. 3598–3605. IEEE, 2009.
- [22] Meyn, S. and Tweedie, R. *Markov Chains and Stochastic Stability*. Springer-Verlag, 1996.
- [23] Munos, R. and Szepesvári, C. Finite-time bounds for fitted value iteration. *J. Mach. Learn. Res.*, 9:815–857, 2008.
- [24] Nachum, O. and Dai, B. Reinforcement learning via fenchel-rockafellar duality. 2020.
- [25] Nemirovski, A. and Yudin, D. *Problem Complexity and Method Efficiency in Optimization*. Wiley Interscience, 1983.
- [26] Neu, G. and Okolo, N. Efficient global planning in large mdps via stochastic primal-dual optimization. In *ALT*, volume 201 of *Proceedings of Machine Learning Research*, pp. 1101– 1123. PMLR, 2023.
- [27] Neu, G., Jonsson, A., and Gómez, V. A unified view of entropy-regularized Markov decision processes. *arXiv preprint arXiv:1705.07798*, 2017.
- [28] Orabona, F. A modern introduction to online learning. *arXiv preprint arXiv:1912.13213*, 2019.
- [29] Puterman, M. L. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley & Sons, Inc., USA, 1994. ISBN 0471619779.
- [30] Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In *Advances in Neural Information Processing Systems*, pp. 3066–3074, 2013.
- [31] Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. Bridging offline reinforcement learning and imitation learning: A tale of pessimism. *IEEE Trans. Inf. Theory*, 68(12):8156–8196, 2022.
- [32] Uehara, M. and Sun, W. Pessimistic model-based offline reinforcement learning under partial coverage. In *ICLR*. OpenReview.net, 2022.
- [33] Uehara, M., Huang, J., and Jiang, N. Minimax weight and q-function learning for off-policy evaluation. In III, H. D. and Singh, A. (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 9659– 9668. PMLR, 13–18 Jul 2020. URL [https://proceedings.mlr.press/v119/uehara20a.](https://proceedings.mlr.press/v119/uehara20a.html) [html](https://proceedings.mlr.press/v119/uehara20a.html).
- [34] Wang, M. and Chen, Y. An online primal-dual method for discounted markov decision processes. In *CDC*, pp. 4516–4521. IEEE, 2016.
- [35] Xiao, C., Wu, Y., Mei, J., Dai, B., Lattimore, T., Li, L., Szepesvári, C., and Schuurmans, D. On the optimality of batch policy optimization algorithms. In *ICML*, volume 139 of *Proceedings of Machine Learning Research*, pp. 11362–11371. PMLR, 2021.
- [36] Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. Bellman-consistent pessimism for offline reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), *Advances in Neural Information Processing Systems*, volume 34,
- pp. 6683–6694. Curran Associates, Inc., 2021. URL [https://proceedings.neurips.cc/](https://proceedings.neurips.cc/paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf)
- [paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/34f98c7c5d7063181da890ea8d25265a-Paper.pdf).
- [37] Yang, L. and Wang, M. Sample-optimal parametric q-learning using linearly additive features. In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6995–7004. PMLR, 2019.
- [38] Zanette, A., Wainwright, M. J., and Brunskill, E. Provable benefits of actor-critic methods for offline reinforcement learning. In *NeurIPS*, pp. 13626–13640, 2021.
- [39] Zhang, X., Chen, Y., Zhu, X., and Sun, W. Corruption-robust offline reinforcement learning. In *AISTATS*, volume 151 of *Proceedings of Machine Learning Research*, pp. 5757–5773. PMLR, 2022.
- [40] Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the Twentieth International Conference on Machine Learning (ICML)*, 2003.