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Abstract

Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from1

a fixed dataset of transitions collected by another policy. This problem has at-2

tracted a lot of attention recently, but most existing methods with strong theoretical3

guarantees are restricted to finite-horizon or tabular settings. In constrast, few4

algorithms for infinite-horizon settings with function approximation and minimal5

assumptions on the dataset are both sample and computationally efficient. Another6

gap in the current literature is the lack of theoretical analysis for the average-reward7

setting, which is more challenging than the discounted setting. In this paper, we8

address both of these issues by proposing a primal-dual optimization method based9

on the linear programming formulation of RL. Our key contribution is a new10

reparametrization that allows us to derive low-variance gradient estimators that can11

be used in a stochastic optimization scheme using only samples from the behavior12

policy. Our method finds an ε-optimal policy with O(ε−4) samples, improving13

on the previous O(ε−5), while being computationally efficient for infinite-horizon14

discounted and average-reward MDPs with realizable linear function approxima-15

tion and partial coverage. Moreover, to the best of our knowledge, this is the first16

theoretical result for average-reward offline RL.17

1 Introduction18

We study the setting of Offline Reinforcement Learning (RL), where the goal is to learn an ε-optimal19

policy without being able to interact with the environment, but only using a fixed dataset of transitions20

collected by a behavior policy. Learning from offline data proves to be useful especially when21

interacting with the environment can be costly or dangerous [16].22

In this setting, the quality of the best policy learnable by any algorithm is constrained by the quality23

of the data, implying that finding an optimal policy without further assumptions on the data is not24

feasible. Therefore, many methods [23, 33] make a uniform coverage assumption, requiring that the25

behavior policy explores sufficiently well the whole state-action space. However, recent work [17, 31]26

demonstrated that partial coverage of the state-action space is sufficient. In particular, this means that27

the behavior policy needs only to sufficiently explore the state-actions visited by the optimal policy.28

Moreover, like its online counterpart, modern offline RL faces the problem of learning efficiently in29

environments with very large state spaces, where function approximation is necessary to compactly30

represent policies and value functions. Although function approximation, especially with neural31

networks, is widely used in practice, its theoretical understanding in the context of decision-making32

is still rather limited, even when considering linear function approximation.33

In fact, most existing sample complexity results for offline RL algorithms are limited either to the34

tabular and finite horizon setting, by the uniform coverage assumption, or by lack of computational35

efficiency — see the top section of Table 1 for a summary. Notable exceptions are the recent works of36
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Algorithm Partial
Coverage

Polynomial
Sample
Complexity

Polynomial
Computational
Complexity

Function
Approximation

Infinite Horizon

Discounted Average-Reward

FQI [23] 7 3 3 3 3 7

Rashidinejad et al. [31] 3 3 3 7 3 7

Jin et al. [14]
Zanette et al. [38] 3 3 3 3 7 7

Uehara & Sun [32] 3 3 7 3 3 7

Cheng et al. [9] 3 O(ε−5) superlinear 3 3 7

Xie et al. [36] 3 O(ε−5) O(n7/5) 3 3 7

Ours 3 O(ε−4) O(n) 3 3 3

Table 1: Comparison of existing offline RL algorithms. The table is divided horizontally in two
sections. The upper section qualitatively compares algorithms for easier settings, that is, methods
for the tabular or finite-horizon settings or methods which require uniform coverage. The lower
section focuses on the setting considered in this paper, that is computationally efficient methods for
the infinite horizon setting with function approximation and partial coverage.

Xie et al. [36] and Cheng et al. [9] who provide computationally efficient methods for infinite-horizon37

discounted MDPs under realizable linear function approximation and partial coverage. Despite38

being some of the first implementable algorithms, their methods work only with discounted rewards,39

have superlinear computational complexity and find an ε-optimal policy with O(ε−5) samples – see40

the bottom section of Table 1 for more details. Therefore, this work is motivated by the following41

research question:42

Can we design a linear-time algorithm with polynomial sample complexity for the discounted and43

average-reward infinite-horizon settings, in large state spaces under a partial-coverage assumption?44

45

We answer this question positively by designing a method based on the linear-programming (LP)46

formulation of sequential decision making [20]. Albeit less known than the dynamic-programming47

formulation [3] that is ubiquitous in RL, it allows us to tackle this problem with the powerful tools48

of convex optimization. We turn in particular to a relaxed version of the LP formulation [21, 2]49

that considers action-value functions that are linear in known state-action features. This allows to50

reduce the dimensionality of the problem from the cardinality of the state space to the number of51

features. This relaxation still allows to recover optimal policies in linear MDPs [37, 13], a structural52

assumption that is widely employed in the theoretical study of RL with linear function approximation.53

Our algorithm for learning near-optimal policies from offline data is based on primal-dual optimization54

of the Lagrangian of the relaxed LP. The use of saddle-point optimization in MDPs was first proposed55

by Wang & Chen [34] for planning in small state spaces, and was extended to linear function56

approximation by Chen et al. [8], Bas-Serrano & Neu [1], and Neu & Okolo [26]. We largely take57

inspiration from this latter work, which was the first to apply saddle-point optimization to the relaxed58

LP. However, primal-dual planning algorithms assume oracle access to a transition model, whose59

samples are used to estimate gradients. In our offline setting, we only assume access to i.i.d. samples60

generated by a possibly unknown behavior policy. To adapt the primal-dual optimization strategy61

to this setting we employ a change of variable, inspired by Nachum & Dai [24], which allows easy62

computation of unbiased gradient estimates.63

Notation. We denote vectors with bold letters, such as x .
= [x1, . . . , xd]

> ∈ Rd, and use ei to64

denote the i-th standard basis vector. We interchangeably denote functions f : X → R over a finite65

setX , as vectors f ∈ R|X | with components f(x), and use≥ to denote element-wise comparison. We66

denote the set of probability distributions over a measurable set S as ∆S , and the probability simplex67

in Rd as ∆d. We use σ : Rd → ∆d to denote the softmax function defined as σi(x)
.
= exi/

∑d
j=1 e

xj .68

We use upper-case letters for random variables, such as S, and denote the uniform distribution over a69

finite set of n elements as U(n). In the context of iterative algorithms, we use Ft−1 to denote the70

sigma-algebra generated by all events up to the end of iteration t− 1, and use the shorthand notation71

Et [·] = E [ ·| Ft−1] to denote expectation conditional on the history. For nested-loop algorithms, we72

write Ft,i−1 for the sigma-algebra generated by all events up to the end of iteration i− 1 of round t,73

and Et,i [·] = E [ ·| Ft,i−1] for the corresponding conditional expectation.74
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2 Preliminaries75

We study discounted Markov decision processes [MDP, 29] denoted as (X ,A, p, r, γ), with discount76

factor γ ∈ [0, 1] and finite, but potentially very large, state space X and action space A. For77

every state-action pair (x, a), we denote as p(· | x, a) ∈ ∆X the next-state distribution, and as78

r(x, a) ∈ [0, 1] the reward, which is assumed to be deterministic and bounded for simplicity. The79

transition function p is also denoted as the matrix P ∈ R|X×A|×|X| and the reward as the vector80

r ∈ R|X×A|. The objective is to find an optimal policy π∗ : X → ∆A. That is, a stationary81

policy that maximizes the normalized expected return ρ(π∗)
.
= (1− γ)Eπ∗ [

∑∞
t=0 r(Xt, At)], where82

the initial state X0 is sampled from the initial state distribution ν0, the other states according to83

Xt+1 ∼ p(·|Xt, At) and where the notation Eπ[·] is used to denote that the actions are sampled84

from policy π as At ∼ π(·|Xt). Moreover, we define the following quantities for each policy π: its85

state-action value function qπ(x, a)
.
= Eπ[

∑∞
t=0 γ

tr(Xt, At) |X0 = x,A0 = a], its value function86

vπ(x)
.
= Eπ[qπ(x,A0)], its state occupancy measure νπ(x)

.
= (1− γ)Eπ[

∑∞
t=0 1{Xt = x}], and87

its state-action occupancy measure µπ(x, a)
.
= π(a|x)νπ(x). These quantities are known to satisify88

the following useful relations, more commonly known respectively as Bellman’s equation and flow89

constraint for policy π [4]:90

qπ = r + γPvπ νπ = (1− γ)ν0 + γP Tµπ (1)

Given this notation, we can also rewrite the normalized expected return in vector form as ρ(π) =91

(1− γ)〈ν0,v
π〉 or equivalently as ρ(π) = 〈r,µπ〉.92

Our work is based on the linear programming formulation due to Manne [19] (see also 29) which93

transforms the reinforcement learning problem into the search for an optimal state-action occupancy94

measure, obtained by solving the following Linear Program (LP):95

maximize 〈r,µ〉
subject to ETµ = (1− γ)ν0 + γP Tµ

µ ≥ 0

(2)

whereE ∈ R|X×A|×|X| denotes the matrix with componentsE(x,a),x′
.
= 1{x = x′}. The constraints96

of this LP are known to characterize the set of valid state-action occupancy measures. Therefore,97

an optimal solution µ∗ of the LP corresponds to the state-action occupancy measure associated to a98

policy π∗ maximizing the expected return, and which is therefore optimal in the MDP. This policy99

can be extracted as π∗(a|x)
.
= µ∗(x, a)/

∑
ā∈A µ

∗(x, ā). However, this linear program cannot be100

directly solved in an efficient way in large MDPs due to the number of constraints and dimensions101

of the variables scaling with the size of the state space X . Therefore, taking inspiration from the102

previous works of Bas-Serrano et al. [2], Neu & Okolo [26] we assume the knowledge of a feature103

map ϕ, which we then use to reduce the dimension of the problem. More specifically we consider the104

setting of Linear MDPs [13, 37].105

Definition 2.1 (Linear MDP). An MDP is called linear if both the transition and reward functions106

can be expressed as a linear function of a given feature map ϕ : X ×A → Rd. That is, there exist107

ψ : X → Rd and ω ∈ Rd such that, for every x, x′ ∈ X and a ∈ A:108

r(x, a) = 〈ϕ(x, a),ω〉, p(x′ | x, a) = 〈ϕ(x, a),ψ(x′)〉.

We assume that for all x, a, the norms of all relevant vectors are bounded by known constants as109

‖ϕ(x, a)‖2 ≤ Dϕ, ‖
∑
x′ ψ(x′)‖

2
≤ Dψ , and ‖ω‖2 ≤ Dω . Moreover, we represent the feature map110

with the matrix Φ ∈ R|X×A|×d with rows given by ϕ(x, a)T, and similarly we define Ψ ∈ Rd×|X|111

as the matrix with columns given by ψ(x).112

With this notation we can rewrite the transition matrix as P = ΦΨ. Furthermore, it is convenient113

to assume that the dimension d of the feature map cannot be trivially reduced, and therefore that114

the matrix Φ is full-rank. An easily verifiable consequence of the Linear MDP assumption is that115

state-action value functions can be represented as a linear combinations of ϕ. That is, there exist116

θπ ∈ Rd such that:117

qπ = r + γPvπ = Φ(ω + Ψvπ) = Φθπ. (3)

It can be shown that for all policies π, the norm of θπ is at most Dθ = Dω +
Dψ
1−γ (cf. Lemma B.1118

in 13). We then translate the linear program (2) to our setting, with the addition of the new variable119

λ ∈ Rd, resulting in the following new LP and its corresponding dual:120
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maximize 〈ω,λ〉
subject to ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ

µ ≥ 0.

(4)

minimize (1− γ)〈ν0,v〉
subject to θ = ω + γΨv

Ev ≥ Φθ
(5)

It can be immediately noticed how the introduction of λ did not change neither the set of admissible121

µs nor the objective, and therefore did not alter the optimal solution. The Lagrangian associated to122

this set of linear programs is the function:123

L(v,θ,λ,µ) = (1− γ)〈ν0,v〉+ 〈λ,ω + γΨv − θ〉+ 〈µ,Φθ −Ev〉
= 〈λ,ω〉+ 〈v, (1− γ)ν0 + γΨTλ−ETµ〉+ 〈θ,ΦTµ− λ〉. (6)

It is known that finding optimal solutions (λ?,µ?) and (v?,θ?) for the primal and dual LPs is124

equivalent to finding a saddle point (v?,θ?,λ?,µ?) of the Lagrangian function [5]. In the next125

section, we will develop primal-dual methods that aim to find approximate solutions to the above126

saddle-point problem, and convert these solutions to policies with near-optimality guarantees.127

3 Algorithm and Main Results128

This section introduces the concrete setting we study in this paper, and presents our main contributions.129

We consider the offline-learning scenario where the agent has access to a dataset D = (Wt)
n
t=1,130

collected by a behavior policy πB , and composed of n random observations of the form Wt =131

(X0
t , Xt, At, Rt, X

′
t). The random variables X0

t , (Xt, At) and X ′t are sampled, respectively, from132

the initial-state distribution ν0, the discounted occupancy measure of the behavior policy, denoted as133

µB , and from p(· |Xt, At). Finally,Rt denotes the reward r(Xt, At). We assume that all observations134

Wt are generated independently of each other, and will often use the notation ϕt = ϕ(Xt, At).135

Our strategy consists in finding approximately good solutions for the LPs (4) and (5) using stochastic136

optimization methods, which require access to unbiased gradient estimates of the Lagrangian (Equa-137

tion 6). The main challenge we need to overcome is constructing suitable estimators based only on138

observations drawn from the behavior policy. We address this challenge by introducing the matrix139

Λ = EX,A∼µB [ϕ(X,A)ϕ(X,A)T] (supposed to be invertible for the sake of argument for now),140

and rewriting the gradient with respect to λ as141

∇λL(λ,µ;v,θ) = ω + γΨv − θ = Λ−1Λ (ω + γΨv − θ)

= Λ−1E [ϕ(Xt, At)ϕ(Xt, At)
T (ω + γΨv − θ)]

= Λ−1E [ϕ(Xt, At) (Rt + γv(X ′t)− 〈θ,ϕ(Xt, At)〉)] .
This suggests that the vector within the expectation can be used to build an unbiased estimator of the142

desired gradient. A downside of using this estimator is that it requires knowledge of Λ. However,143

this can be sidestepped by a reparametrization trick inspired by Nachum & Dai [24]: introducing the144

parametrization β = Λ−1λ, the objective can be rewritten as145

L(β,µ;v,θ) = (1− γ)〈ν0,v〉+ 〈β,Λ
(
ω + γΨv − θ

)
〉+ 〈µ,Φθ −Ev〉.

This can be indeed seen to generalize the tabular reparametrization of Nachum & Dai [24] to the case146

of linear function approximation. Notably, our linear reparametrization does not change the structure147

of the saddle-point problem, but allows building an unbiased estimator of ∇βL(β,µ;v,θ) without148

knowledge of Λ as149

g̃β = ϕ(Xt, At) (Rt + γv(X ′t)− 〈θ,ϕ(Xt, At)〉) .
In what follows, we will use the more general parametrization β = Λ−cλ, with c ∈ {1/2, 1}, and150

construct a primal-dual stochastic optimization method that can be implemented efficiently in the151

offline setting based on the observations above. Using c = 1 allows to run our algorithm without152

knowledge of Λ, that is, without knowing the behavior policy that generated the dataset, while using153

c = 1/2 results in a tighter bound, at the price of having to assume knowledge of Λ.154

Our algorithm (presented as Algorithm 1) is inspired by the method of Neu & Okolo [26], originally155

designed for planning with a generative model. The algorithm has a double-loop structure, where156
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Algorithm 1 Offline Primal-Dual RL
Input: Learning rates α, ζ, η, initial points θ0 ∈ B(Dθ),β1 ∈ B(Dβ), π1, and data D = (Wt)

n
t=1

for t = 1 to T do
Initialize θt,1 = θt−1

for k = 1 to K − 1 do
Obtain sample Wt,k = (X0

t,k, Xt,k, At,k, X
′
t,k)

µt,k = πt ◦
[
(1− γ)eX0

t,k
+ γ〈ϕ(Xt,k, At,k),Λc−1βt〉eX′t,k

]
g̃θ,t,i = ΦTµt,k − Λc−1ϕ(Xt,k, At,k)〈ϕ(Xt,k, At,k),βt〉
θt,k+1 = ΠB(Dθ)(θt,k − ηg̃θ,t,i) // Stochastic gradient descent

end for
θt = 1

K

∑K
k=1 θt,k

Obtain sample Wt = (X0
t , Xt, At, X

′
t)

vt = ET
(
πt ◦Φθt

)
g̃β,t = ϕ(Xt, A)

(
Rt + γvt(X

′
t)− 〈ϕ(Xt, At),θt〉

)
βt+1 = ΠB(Dβ)(βt + ζg̃β,t) // Stochastic gradient ascent

πt+1 = σ(α
∑t
i=1 Φθi) // Policy update

end for
return πJ with J ∼ U(T ).

at each iteration t we run one step of stochastic gradient ascent for β, and also an inner loop157

which runs K iterations of stochastic gradient descent on θ making sure that 〈ϕ(x, a),θt〉 is a158

good approximation of the true action-value function of πt. Iterations of the inner loop are indexed159

by k. The main idea of the algorithm is to compute the unbiased estimators g̃θ,t,k and g̃β,t of160

the gradients ∇θL(βt,µt; ·,θt,k) and ∇βL(βt, ·;vt,θt), and use them to update the respective161

variables iteratively. We then define a softmax policy πt at each iteration t using the θ parameters as162

πt(a|x) = σ
(
α
∑t−1
i=1〈ϕ(x, a),θi〉

)
. The other higher-dimensional variables (µt,vt) are defined163

symbolically in terms of βt, θt and πt, and used only as auxiliary variables for computing the164

estimates g̃θ,t,k and g̃β,t. Specifically, we set these variables as165

vt(x) =
∑
a

πt(a|x)〈ϕ(x, a),θt〉, (7)

µt,k(x, a) = πt(a|x)
(
(1− γ)1{X0

t,k = x}+ γ〈ϕt,k,Λc−1βt〉1{X ′t,k = x}
)
. (8)

Finally, the gradient estimates can be defined as166

g̃β,t = Λc−1ϕt (Rt + γvt(X
′
t)− 〈ϕt,θt〉) , (9)

g̃θ,t,k = ΦTµt,k −Λc−1ϕt,k〈ϕt,k,βt〉. (10)

These gradient estimates are then used in a projected gradient ascent/descent scheme, with the `2167

projection operator denoted by Π. The feasible sets of the two parameter vectors are chosen as `2168

balls of radii Dθ and Dβ , denoted respectively as B(Dθ) and B(Dβ). Notably, the algorithm does not169

need to compute vt(x), µt,k(x, a), or πt(a|x) for all states x, but only for the states that are accessed170

during the execution of the method. In particular, πt does not need to be computed explicitly, and it171

can be efficiently represented by the single d-dimensional parameter vector
∑t
i=1 θi.172

Due to the double-loop structure, each iteration t uses K samples from the dataset D, adding up to173

a total of n = KT samples over the course of T iterations. Each gradient update calculated by the174

method uses a constant number of elementary vector operations, resulting in a total computational175

complexity of O(|A|dn) elementary operations. At the end, our algorithm outputs a policy selected176

uniformly at random from the T iterations.177

3.1 Main result178

We are now almost ready to state our main result. Before doing so, we first need to discuss the179

quantities appearing in the guarantee, and provide an intuitive explanation for them.180
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Similarly to previous work, we capture the partial coverage assumption by expressing the rate of181

convergence to the optimal policy in terms of a coverage ratio that measures the mismatch between182

the behavior and the optimal policy. Several definitions of coverage ratio are surveyed by Uehara &183

Sun [32]. In this work, we employ a notion of feature coverage ratio for linear MDPs that defines184

coverage in feature space rather than in state-action space, similarly to Jin et al. [14], but with a185

smaller ratio.186

Definition 3.1. Let c ∈ {1/2, 1}. We define the generalized coverage ratio as187

Cϕ,c(π
∗;πB) = E(X∗,A∗)∼µπ∗ [ϕ(X∗, A∗)]>Λ−2cE[ϕ(X∗, A∗)].

We defer a detailed discussion of this ratio to Section 6, where we compare it with similar notions in188

the literature. We are now ready to state our main result.189

Theorem 3.2. Given a linear MDP (Definition 2.1) such that θπ ∈ B(Dθ) for any policy π. Assume190

that the coverage ratio is bounded Cϕ,c(π∗;πB) ≤ Dβ. Then, for any comparator policy π∗, the191

policy output by an appropriately tuned instance of Algorithm 1 satisfies E
[
〈µπ∗ − µπout , r〉

]
≤ ε192

with a number of samples nε that is O
(
ε−4D4

θD
8c
ϕD

4
βd

2−2c log |A|
)

.193

The concrete parameter choices are detailed in the full version of the theorem in Appendix A. The194

main theorem can be simplified by making some standard assumptions, formalized by the following195

corollary.196

Corollary 3.3. Assume that the bound of the feature vectors Dϕ is of order O(1), that Dω = Dψ =197 √
d and that Dβ = c · Cϕ,c(π∗;πB) for some positive universal constant c. Then, under the same198

assumptions of Theorem 3.2, nε is of order O
(
d4Cϕ,c(π

∗;πB)2 log |A|
d2c(1−γ)4ε4

)
.199

4 Analysis200

This section explains the rationale behind some of the technical choices of our algorithm, and sketches201

the proof of our main result.202

First, we explicitly rewrite the expression of the Lagrangian (6), after performing the change of203

variable λ = Λcβ:204

L(β,µ;v,θ) = (1− γ)〈ν0,v〉+ 〈β,Λc
(
ω + γΨv − θ

)
〉+ 〈µ,Φθ −Ev〉 (11)

= 〈β,Λcω〉+ 〈v, (1− γ)ν0 + γΨTΛcβ −ETµ〉+ 〈θ,ΦTµ−Λcβ〉. (12)

We aim to find an approximate saddle-point of the above convex-concave objective function. One205

challenge that we need to face is that the variables v and µ have dimension proportional to the size of206

the state space |X |, so making explicit updates to these parameters would be prohibitively expensive207

in MDPs with large state spaces. To address this challenge, we choose to parametrize µ in terms of a208

policy π and β through the symbolic assignment µ = µβ,π , where209

µβ,π(x, a)
.
= π(a|x)

[
(1− γ)ν0(x) + γ〈ψ(x),Λcβ〉

]
. (13)

This choice can be seen to satisfy the first constraint of the primal LP (4), and thus the gradient of the210

Lagrangian (12) evaluated at µβ,π with respect to v can be verified to be 0. This parametrization211

makes it possible to express the Lagrangian as a function of only θ,β and π as212

f(θ,β, π)
.
= L(β,µβ,π;v,θ) = 〈β,Λcω〉+ 〈θ,ΦTµβ,π −Λcβ〉. (14)

For convenience, we also define the quantities νβ = ETµβ,π and vθ,π(s)
.
=
∑
a π(a|s) 〈θ,ϕ(x, a)〉,213

which enables us to rewrite f as214

f(θ,β, π) = 〈Λcβ,ω − θ〉+ 〈vθ,π,νβ〉 = (1− γ)〈ν0,vθ,π〉+ 〈Λcβ,ω + γΨvθ,π − θ〉. (15)

The above choices allow us to perform stochastic gradient / ascent over the low-dimensional parame-215

ters θ and β and the policy π. In order to calculate an unbiased estimator of the gradients, we first216
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observe that the choice of µt,k in Algorithm 1 is an unbiased estimator of µβt,πt :217

Et,k [µt,k(x, a)] = πt(a|x)
(

(1− γ)P(X0
t,k = x) + Et,k

[
1{X ′t,k = x}〈ϕt,Λc−1βt〉

])
= πt(a|x)

(
(1− γ)ν0(x) + γ

∑
x̄,ā

µB(x̄, ā)p(x|x̄, ā)ϕ(x̄, ā)TΛc−1βt

)
= πt(a|x)

(
(1− γ)ν0(x) + γψ(x)TΛΛc−1βt

)
= µβt,πt(x, a),

where we used the fact that p(x|x̄, ā) = 〈ψ(x),ϕ(x̄, ā)〉, and the definition of Λ. This in turn218

facilitates proving that the gradient estimate g̃θ,t,k, defined in Equation 10, is indeed unbiased:219

Et,k [g̃θ,t,k] = ΦTEt,k [µt,k]−Λc−1Et,k
[
ϕt,kϕ

T

t,k

]
βt = ΦTµβt,πt −Λcβt = ∇θL(βt,µt;vt, ·).

A similar proof is used for g̃β,t and is detailed in Appendix B.3.220

Our analysis is based on arguments by Neu & Okolo [26], carefully adapted to the reparametrized221

version of the Lagrangian presented above. The proof studies the following central quantity that we222

refer to as dynamic duality gap:223

GT (β∗, π∗;θ∗1:T )
.
=

1

T

T∑
t=1

(f(β∗, π∗;θt)− f(βt, πt;θ
∗
t )). (16)

Here, (θt,βt, πt) are the iterates of the algorithm, θ∗1:T = (θ∗t )Tt=1 a sequence of comparators for θ,224

and finally β∗ and π∗ are fixed comparators for β and π, respectively. Our first key lemma relates225

the suboptimality of the output policy to GT for a specific choice of comparators.226

Lemma 4.1. Let θ∗t
.
= θπt , π∗ be any policy, and β∗ = Λ−cΦ>µπ

∗
. Then, E

[
〈µπ∗ − µπout , r〉

]
=227

GT
(
β∗, π∗;θ∗1:T

)
.228

The proof is relegated to Appendix B.1. Our second key lemma rewrites the gap GT for any choice of229

comparators as the sum of three regret terms:230

Lemma 4.2. With the choice of comparators of Lemma 4.1231

GT (β∗, π∗;θ∗1:T ) =
1

T

T∑
t=1

〈θt − θ∗t , gθ,t〉+
1

T

T∑
t=1

〈β∗ − βt, gβ,t〉

+
1

T

T∑
t=1

∑
s

νπ
∗
(s)
∑
a

(π∗(a|s)− πt(a|s))〈θt,ϕ(x, a)〉,

where gθ,t = Φ>µβt,πt −Λcβt and gβ,t = Λc(ω + γΨvθt,πt − θt).232

The proof is presented in Appendix B.2. To conclude the proof we bound the three terms appearing233

in Lemma 4.2. The first two of those are bounded using standard gradient descent/ascent analysis234

(Lemmas B.1 and B.2), while for the latter we use mirror descent analysis (Lemma B.3). The details235

of these steps are reported in Appendix B.3.236

5 Extension to Average-Reward MDPs237

In this section, we briefly explain how to extend our approach to offline learning in average reward238

MDPs, establishing the first sample complexity result for this setting. After introducing the setup, we239

outline a remarkably simple adaptation of our algorithm along with its performance guarantees for240

this setting. The reader is referred to Appendix C for the full details, and to Chapter 8 of Puterman241

[29] for a more thorough discussion of average-reward MDPs.242

In the average reward setting we aim to optimize the objective ρπ(x) =243

lim infT→∞
1
T Eπ

[∑T
t=1 r(xt, at)

∣∣ x1 = x
]
, representing the long-term average reward of244

policy π when started from state x ∈ X . Unlike the discounted setting, the average reward criterion245

prioritizes long-term frequency over proximity of good rewards due to the absence of discounting246

which expresses a preference for earlier rewards. As is standard in the related literature, we will247

assume that ρπ is well-defined for any policy and is independent of the start state, and thus will248
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use the same notation to represent the scalar average reward of policy π. Due to the boundedness249

of the rewards, we clearly have ρπ ∈ [0, 1]. Similarly to the discounted setting, it is possible250

to define quantities analogous to the value and action value functions as the solutions to the251

Bellman equations qπ = r − ρπ1 + Pvπ, where vπ is related to the action-value function as252

vπ(x) =
∑
a π(a|x)qπ(x, a). We will make the following standard assumption about the MDP (see,253

e.g., Section 17.4 of Meyn & Tweedie [22]):254

Assumption 5.1. For all stationary policies π, the Bellman equations have a solution qπ satisfying255

supx,a q
π(x, a)− infx,a q

π(x, a) < Dq .256

Furthermore, we will continue to work with the linear MDP assumption of Definition 2.1, and will257

additionally make the following minor assumption:258

Assumption 5.2. The all ones vector 1 is contained in the column span of the feature matrix Φ.259

Furthermore, let % ∈ Rd such that for all (x, a) ∈ Z , 〈ϕ(x, a),%〉 = 1.260

Using these insights, it is straightforward to derive a linear program akin to (2) that characterize the261

optimal occupancy measure and thus an optimal policy in average-reward MDPs. Starting from this262

formulation and proceeding as in Sections 2 and 4, we equivalently restate this optimization problem263

as finding the saddle-point of the reparametrized Lagrangian defined as follows:264

L(β,µ; ρ,v,θ) = ρ+ 〈β ,Λc[ω + Ψv − θ − ρ%]〉+ 〈µ ,Φθ −Ev〉.

As previously, the saddle point can be shown to be equivalent to an optimal occupancy measure under265

the assumption that the MDP is linear in the sense of Definition 2.1. Notice that the above Lagrangian266

slightly differs from that of the discounted setting in Equation (11) due to the additional optimization267

parameter ρ, but otherwise our main algorithm can be directly generalized to this objective. We268

present details of the derivations and the resulting algorithm in Appendix C. The following theorem269

states the performance guarantees for this method.270

Theorem 5.3. Given a linear MDP (Definition 2.1) satisfying Assumption 5.2 and such that θπ ∈271

B(Dθ) for any policy π. Assume that the coverage ratio is bounded Cϕ,c(π∗;πB) ≤ Dβ. Then, for272

any comparator policy π∗, the policy output by an appropriately tuned instance of Algorithm 2 satisfies273

E
[
〈µπ∗ − µπout , r〉

]
≤ ε with a number of samples nε that is O

(
ε−4D4

θD
12c−2
ϕ D4

βd
2−2c log |A|

)
.274

As compared to the discounted case, this additional dependence of the sample complexity on Dϕ is275

due to the extra optimization variable ρ. We provide the full proof of this theorem along with further276

discussion in Appendix C.277

6 Discussion and Final Remarks278

In this section, we compare our results with the most relevant ones from the literature. Our Table 1 can279

be used as a reference. As a complement to this section, we refer the interested reader to the recent280

work by Uehara & Sun [32], which provides a survey of offline RL methods with their coverage and281

structural assumptions. Detailed computations can be found in Appendix E.282

An important property of our method is that it only requires partial coverage. This sets it apart from283

classic batch RL methods like FQI [11, 23], which require a stronger uniform-coverage assumption.284

Algorithms working under partial coverage are mostly based on the principle of pessimism. However,285

our algorithm does not implement any form of explicit pessimism. We recall that, as shown by Xiao286

et al. [35], pessimism is just one of many ways to achieve minimax-optimal sample efficiency.287

Let us now compare our notion of coverage ratio to the existing notions previsouly used in the288

literature. Jin et al. [14] (Theorem 4.4) rely on a feature coverage ratio which can be written as289

C�(π∗;πB) = EX,A∼µ∗
[
ϕ(X,A)TΛ−1ϕ(X,A)

]
. (17)

By Jensen’s inequality, our Cϕ,1/2 (Definition 3.1) is never larger than C�. Indeed, notice how290

the random features in Equation (17) are coupled, introducing an extra variance term w.r.t. Cϕ,1/2.291

Specifically, we can show that Cϕ,1/2(π∗;πB) = C�(π∗;πB)− VX,A∼µ∗
[
Λ−1/2ϕ(X,A)

]
, where292

V [Z] = E[‖Z − E [Z]‖2] for a random vector Z. So, besides fine comparisons with existing notions293

of coverage ratios, we can regard Cϕ,1/2 as a low-variance version of the standard feature coverage294

ratio. However, our sample complexity bounds do not fully take advantage of this low-variance295
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property, since they scale quadratically with the ratio itself, rather than linearly, as is more common296

in previous work.297

To scale with Cϕ,1/2, our algorithm requires knowledge of Λ, hence of the behavior policy. However,298

so does the algorithm from Jin et al. [14]. Zanette et al. [38] remove this requirement at the price of a299

computationally heavier algorithm. However, both are limited to the finite-horizon setting.300

Uehara & Sun [32] and Zhang et al. [39] use a coverage ratio that is conceptually similar to Equa-301

tion (17),302

C†(π∗;πB) = sup
y∈Rd

yTEX,A∼µ∗ [ϕ(X,A)ϕ(X,A)T] y

yTEX,A∼µB [ϕ(X,A)ϕ(X,A)T] y
. (18)

Some linear algebra shows that C† ≤ C� ≤ dC†. Therefore, chaining the previous inequalities303

we know that Cϕ,1/2 ≤ C� ≤ dC†. It should be noted that the algorithm from Uehara & Sun [32]304

also works in the representation-learning setting, that is, with unknown features. However, it is far305

from being efficiently implementable. The algorithm from Zhang et al. [39] instead is limited to the306

finite-horizon setting.307

In the special case of tabular MDPs, it is hard to compare our ratio with existing ones, because in308

this setting, error bounds are commonly stated in terms of supx,a µ
∗(x,a)/µB(x,a), often introducing309

an explicit dependency on the number of states [e.g., 17], which is something we carefully avoided.310

However, looking at how the coverage ratio specializes to the tabular setting can still provide311

some insight. With known behavior policy, Cϕ,1/2(π∗;πB) =
∑
x,a

µ∗(x,a)2/µB(x,a) is smaller than312

the more standard C�(π∗;πB) =
∑
x,a

µ∗(x,a)/µB(x,a). With unknown behavior, Cϕ,1(π∗;πB) =313 ∑
x,a(µ

∗(x,a)/µB(x,a))2 is non-comparable with C� in general, but larger than Cϕ,1/2. Interestingly,314

Cϕ,1(π∗;πB) is also equal to 1+X 2(µ∗‖µB), where X 2 denotes the chi-square divergence, a crucial315

quantity in off-distribution learning based on importance sampling [10]. Moreover, a similar quantity316

to Cϕ,1 was used by Lykouris et al. [18] in the context of (online) RL with adversarial corruptions.317

We now turn to the works of Xie et al. [36] and Cheng et al. [9], which are the only practical318

methods to consider function approximation in the infinite horizon setting, with minimal assumption319

on the dataset, and thus the only directly comparable to our work. They both use the coverage320

ratio CF (π∗;πB) = maxf∈F ‖f−T f‖
2
µ∗/‖f−T f‖2µB ,where F is a function class and T is Bellman’s321

operator. This can be shown to reduce to Equation (18) for linear MDPs. However, the specialized322

bound of Xie et al. [36] (Theorem 3.2) scales with the potentially larger ratio from Equation (17).323

Both their algorithms have superlinear computational complexity and a sample complexity ofO(ε−5).324

Hence, in the linear MDP setting, our algorithm is a strict improvement both for its O(ε−4) sample325

complexity and its O(n) computational complexity. However, It is very important to notice that no326

practical algorithm for this setting so far, including ours, can match the minimax optimal sample327

complexity rate of O(ε2) [35, 31]. This leaves space for future work in this area. In particular, by328

inspecting our proofs, it should be clear the the extra O(ε−2) factor is due to the nested-loop structure329

of the algorithm. Therefore, we find it likely that our result can be improved using optimistic descent330

methods [6] or a two-timescale approach [15, 30].331

As a final remark, we remind that when Λ is unknown, our error bounds scales with Cϕ,1, instead of332

the smaller Cϕ,1/2. However, we find it plausible that one can replace the Λ with an estimate that is333

built using some fraction of the overall sample budget. In particular, in the tabular case, we could334

simply use all data to estimate the visitation probabilities of each-state action pairs and use them to335

build an estimator of Λ. Details of a similar approach have been worked out by Gabbianelli et al.336

[12]. Nonetheless, we designed our algorithm to be flexible and work in both cases.337

To summarize, our method is one of the few not to assume the state space to be finite, or the dataset338

to have global coverage, while also being computationally feasible. Moreover, it offers a significant339

advantage, both in terms of sample and computational complexity, over the two existing polynomial-340

time algorithms for discounted linear MDPs with partial coverage [36, 9]; it extends to the challenging341

average-reward setting with minor modifications; and has error bounds that scale with a low-variance342

version of the typical coverage ratio. These results were made possible by employing algorithmic343

principles, based on the linear programming formulation of sequential decision making, that are new344

in offline RL. Finally, the main direction for future work is to develop a single-loop algorithm to345

achieve the optimal rate of ε−2, which should also improve the dependence on the coverage ratio346

from Cϕ,c(π
∗;πB)2 to Cϕ,c(π∗;πB).347
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