

000 001 002 003 004 005 DEEP LITERATURE SURVEY AUTOMATION WITH AN 006 ITERATIVE WORKFLOW 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Automatic literature survey generation has attracted increasing attention, yet most
029 existing systems follow a one-shot paradigm, where a large set of papers is re-
030 trieval at once and a static outline is generated before drafting. This design often
031 leads to noisy retrieval, fragmented structures, and context overload, ultimately
032 limiting survey quality. Inspired by the iterative reading process of human re-
033 searchers, we propose IterSurvey, a framework based on recurrent outline gen-
034 eration, in which a planning agent incrementally retrieves, reads, and updates the
035 outline to ensure both exploration and coherence. To provide faithful paper-level
036 grounding, we design paper cards that distill each paper into its contributions,
037 methods, and findings, and introduce a review-and-refine loop with visualization
038 enhancement to improve textual flow and integrate multimodal elements such as
039 figures and tables. Experiments on both established and emerging topics show
040 that IterSurvey substantially outperforms state-of-the-art baselines in content cov-
041 erage, structural coherence, and citation quality, while producing more accessible
042 and better-organized surveys. To provide a more reliable assessment of such im-
043 provements, we further introduce Survey-Arena, a pairwise benchmark that com-
044 plements absolute scoring and more clearly positions machine-generated surveys
045 relative to human-written ones.
046

1 INTRODUCTION

047 Automatic literature survey generation has recently attracted growing attention due to its potential to
048 help researchers quickly grasp new domains, identify key trends, and reduce the burden of manual re-
049 views. Following Wang et al. (2024b), current systems generally adopt a multistage pipeline (Liang
050 et al., 2025; Yan et al., 2025; Wang et al., 2025): The process begins with a topic description, usually
051 consisting of a few tokens, which is directly used to retrieve a large collection of candidate papers.
052 Due to the context window limitation of large language models (LLMs), the retrieved papers are di-
053 vided into multiple groups, for each, an LLM agent generates a survey section outline based on the
054 corresponding subset of papers. These group-level outlines are subsequently merged into a global
055 draft outline. Once the draft outline is obtained, the system performs section-wise retrieval to col-
056 lect references for section writing and then generates the corresponding text passages. Finally, a
057 global review and integration process is applied, in which the drafted survey is iteratively polished
058 to improve readability and overall consistency.
059

060 The above approach takes a "one-shot" planning paradigm, retrieves a comprehensive set of papers
061 and construct a global outline from a single, static starting point. **However, this approach lacks a**
062 **structured understanding of individual papers, relying only on high-level signals to construct the**
063 **outline. As a result, it becomes brittle, especially when applied to complex or emerging domains**
064 **where nuanced and evolving information is crucial.** This limitation leads to several challenges:
065 **First, retrieval can be imprecise and static** due to reliance on a short topic description (often
066 just a few tokens) as the retrieval query (Sun et al., 2019; Azad & Deepak, 2019; Wang et al.,
067 2020). Such coarse queries fail to capture a field's nuances and are never refined, leading to noisy
068 and incomplete paper collections. **Second, the survey structure can be incoherent** (Fabbri et al.,
069 2019; Gidiotis & Tsoumacas, 2020; Yang et al., 2023a). Since outlines are generated for each paper
070 group independently and subsequently merged, the global structure lacks coherence and often misses
071 important cross-group connections. **Third, injecting overly long contexts introduces distraction**
072 **and context overload** (Liu et al., 2023; Wu et al., 2024). Feeding entire papers into LLMs not only
073

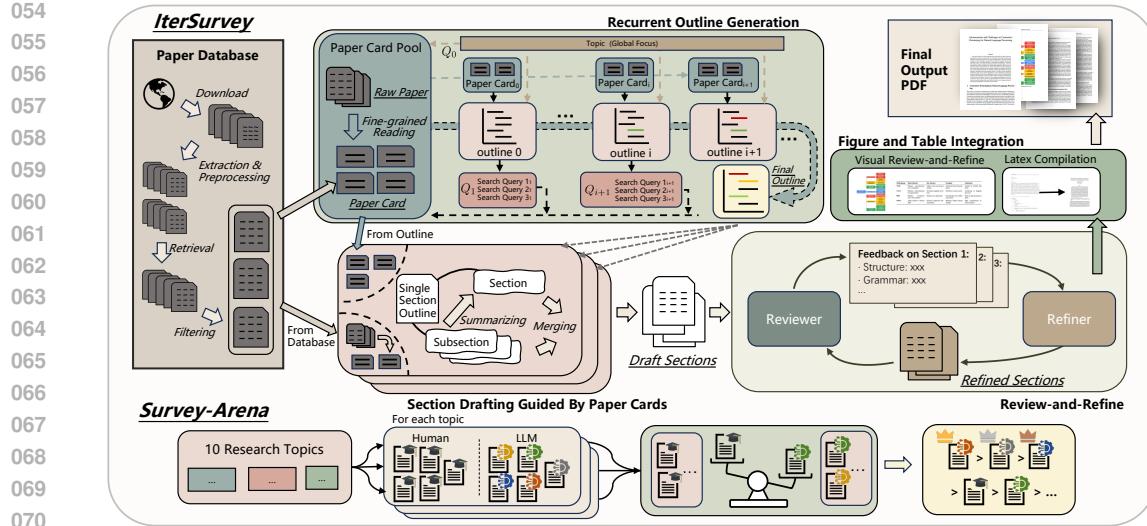


Figure 1: Overview of IterSurvey and Survey-Arena.

exposes them to large amounts of peripheral information, such as dataset details or experimental setups, which distracts from the conceptual structure needed for survey writing, but also places unnecessary pressure on the limited context window of the model.

In contrast, human researchers rarely attempt to grasp an entire field in a single shot. Instead, they follow an iterative reading process: starting with a small set of core papers, summarizing key contributions, and gradually expanding to related directions as their understanding deepens (Bates, 1989; Asai et al., 2023). Inspired by this workflow, we propose an iterative planning paradigm for automated survey generation, named as IterSurvey. **IterSurvey shifts from a survey-centric pipeline to a paper-centric perspective, placing the understanding of individual papers at the core of the generation process.** At its core lies a **recurrent outline generation** module that incrementally retrieves, organizes, and integrates evidence through a planning agent equipped with stability checks and stopping criteria, mitigating the brittleness of one-shot pipelines that rely on static queries and fragmented merges. Central to this process are **paper cards**, structured semantic abstractions that distill each paper into contributions, methods, and findings. Unlike conventional abstract-based inputs, these cards serve as fine-grained evidence units that guide both outline construction and **section drafting**, ensuring coherence and faithful citation across iterations. Finally, a **global review and integration** stage employs a reviewer-refiner loop to enforce consistency and clarity across sections, while an integrated figure-table generation pipeline compiles candidate visualizations, automatically checks them for layout and readability, and revises them to meet academic presentation standards. This design inherits the advantages of iterative human reading: retrieval is progressively refined rather than static (Jiang et al., 2023), the outline develops as an organically coherent structure rather than a patchwork (Zhang et al., 2025a), and paper cards enforce fine-grained evidence grounding that avoids distraction from peripheral details (Cachola et al., 2020; Wu et al., 2024).

Comprehensive experiments validate the effectiveness of our incremental paradigm. IterSurvey consistently outperforms all baselines across multiple dimensions, with recurrent outline generation yielding more coherent structures and paper cards improving citation accuracy without sacrificing precision. These advantages are further confirmed by human evaluation, where experts also favor the outputs of IterSurvey over competing systems. While these results confirm the superiority of IterSurvey, we find that absolute scoring struggles to reliably quantify the performance gap against human-written surveys (Yang et al., 2023b; Oren et al., 2023; Ye et al., 2024). In the LLM evaluation community, similar concerns have led to the development of Chatbot Arena Chiang et al. (2024), which adopts pairwise human preference judgments to overcome the noisiness and inconsistency of absolute ratings. Inspired by this paradigm, we further contribute **Survey-Arena**, the first benchmark to our knowledge that evaluates synthesized surveys through direct, pairwise ranking against a corpus of human-written exemplars. This approach provides a more robust and interpretable assessment of system quality by directly positioning it relative to a human-level baseline.

Our contributions are threefold.

- 108 • We propose **recurrent outline generation**, which iteratively retrieves, reads, and updates
109 outlines with paper cards and outline–paper grounding, while encouraging the model to
110 explore new directions.
- 111 • We develop a new framework: **IterSurvey**, which produces finer-grained outlines and sup-
112 ports multi-modal inputs and outputs for more comprehensive surveys.
- 113 • We construct **Survey-Arena**, a pairwise evaluation benchmark that ranks machine-
114 generated surveys alongside human-written ones, enabling more reliable and interpretable
115 assessment of survey quality.

117 2 RELATED WORK

119 **Automated Survey Generation** Recent automated survey generation systems largely adopt a
120 “one-shot” paradigm, where a static outline is constructed upfront before content generation. This
121 approach is evident in pipeline-based systems like AutoSurvey (Wang et al., 2024b), which em-
122 ploys a hierarchical paradigm, and SurveyForge (Yan et al., 2025), which utilizes a memory-driven
123 scholar navigation agent. Other frameworks focus on enhancing this initial outlining step through
124 reference pre-processing; for instance, SurveyX (Liang et al., 2025) introduces an AttributeTree to
125 extract key information, while HiReview (Hu et al., 2024) generates a hierarchical taxonomy tree.
126 Tackling the challenge from a technical scalability perspective, SurveyGo (Wang et al., 2025) lever-
127 ages the LLMxMapReduce-V2 algorithm to handle long contexts within this paradigm. In contrast,
128 our framework treats the outline not as a static blueprint but as an evolving knowledge structure.
129 Through a dynamic, recurrent mechanism, the outline is continuously updated as the system iter-
130 atively engages with the literature, resulting in comprehensive and coherent synthesis.

131 **Evaluation of Automated Surveys** Evaluating machine-generated surveys is inherently challeng-
132 ing. Building on insights from automated peer review (Yu et al., 2024; Jin et al., 2024; Weng
133 et al., 2025), prior works (Wang et al., 2024b; Yan et al., 2025; Liang et al., 2025) commonly adopt
134 an LLM-as-a-judge paradigm with manually designed criteria, assessing dimensions such as coher-
135 ence, coverage, and factuality. Citation quality is typically measured with NLI-based protocols (Gao
136 et al., 2023), and Yan et al. (2025) additionally evaluate coverage by comparing system outputs with
137 human-written surveys. While absolute scoring by LLMs provides useful fine-grained signals, it
138 has also been noted to suffer from inconsistency and calibration issues (Ye et al., 2024; Latona
139 et al., 2024), making system-level comparisons less reliable. In contrast, pairwise judgment which
140 is widely used in chatbot evaluation (Zhao, 2025; Chiang et al., 2024) and peer review (Zhang et al.,
141 2025b), offers more stable and interpretable assessments, but has not yet been applied to survey eval-
142 uation. To fill this gap, we introduce *Survey-Arena*, the first benchmark that ranks machine-generated
143 surveys against human-written exemplars, providing both robust comparison across systems and a
144 clearer positioning relative to human-level quality.

145 3 ITERSURVEY

147 An overview of IterSurvey is shown in Fig. 1, and its three core stages are detailed below.

149 3.1 RECURRENT OUTLINE GENERATION

151 Outline generation is a central component of automatic survey construction, as it requires under-
152 standing the research domain, identifying its subfields, and synthesizing individual papers. Alg. 1
153 shows the overview of the generation process. The outcome is a hierarchical framework that
154 summarizes the domain, where each node in the hierarchy is represented by a title and an accompan-
155 ying description. Given a topic query, our goal is to enable the model to integrate retrieval with inductive
156 reasoning, so that it can systematically explore the literature and produce a comprehensive outline
157 for the target domain. To this end, we design recurrent outline generation.

158 **Paper Card Pool.** The paper card pool organizes retrieval keywords together with their associated
159 papers in a structured mapping. For each keyword K_i , we retrieve n candidate papers and extract m
160 of the most relevant references, forming the set:

$$\mathcal{P}_i = \{p_i^1, p_i^2, \dots, p_i^{n+m}\}.$$

162 **Algorithm 1** Description of the recurrent outline generation process.

163 **Require:** Topic query q ; retrieval sizes (n, m) ; batch size B ; paper budget (N_{\min}, N_{\max}) ; similarity threshold τ

164 **Ensure:** Writing-oriented outline \hat{O}

165 1: $O \leftarrow \text{INITOUTLINE}(q)$

166 2: $\text{Pool} \leftarrow \emptyset$ ▷ map: query \mapsto card list

167 3: $\mathcal{U} \leftarrow \emptyset$ ▷ consulted papers

168 4: $\mathbf{R} \leftarrow []$ ▷ query history

169 5: **for all** $r \in \text{SEEDQUERIES}(q)$ **do**

170 6: $\mathcal{P} \leftarrow \text{RETRIEVE}(r, n) \cup \text{TOPREFS}(\cdot, m)$

171 7: $\mathcal{C} \leftarrow \{\text{PAPERCARD}(p) \mid p \in \mathcal{P}\}$

172 8: $\text{Pool}[r] \leftarrow \mathcal{C}$; $\mathcal{U} \leftarrow \mathcal{U} \cup \mathcal{P}$

173 9: **while** $|\mathcal{U}| < N_{\max}$ **do**

174 10: **if** $\text{Pool} = \emptyset$ **then**

175 11: **if** $|\mathcal{U}| \geq N_{\min}$ **and** $h(O, \mathbf{R})$ **then**

176 12: **break**

177 13: **else**

178 14: **for all** $r \in \text{EXPANDQUERIES}(O, \mathbf{R})$ **do**

179 15: $\mathcal{P} \leftarrow \text{RETRIEVE}(r, n) \cup \text{TOPREFS}(\cdot, m)$

180 16: $\mathcal{C} \leftarrow \{\text{PAPERCARD}(p) \mid p \in \mathcal{P}\}$

181 17: $\text{Pool}[r] \leftarrow \mathcal{C}$; $\mathcal{U} \leftarrow \mathcal{U} \cup \mathcal{P}$

182 18: **continue**

183 19: $(r, \mathcal{C}) \leftarrow \text{POP}(\text{Pool})$ ▷ activate a query and its cards

184 20: $\mathbf{R} \leftarrow \mathbf{R} \parallel r$

185 21: **while** $\mathcal{C} \neq \emptyset$ **do**

186 22: $\mathcal{B} \leftarrow \text{SAMPLEBATCH}(\mathcal{C}, B)$

187 23: $\tilde{O} \leftarrow g(O, \mathcal{B}, r)$ ▷ retrieval + reading + synthesis

188 24: **if** $\text{SIM}(O, \tilde{O}) \geq \tau$ **then**

189 25: $O \leftarrow \tilde{O}$

190 26: $\mathcal{C} \leftarrow \mathcal{C} \setminus \mathcal{B}$

191 27: $\hat{O} \leftarrow \text{REFINE}(O)$

192 28: **return** \hat{O}

186 At iteration i , the system pops one keyword K_i together with its associated paper set \mathcal{P}_i from the
187 pool. Each paper $p_i^j \in \mathcal{P}_i$ is converted into a paper card
188

$$c_i^j = \text{PaperCard}(p_i^j),$$

190 which distills the paper into its key information. In practice, a paper card is generated in a single
191 structured pass following a manually designed schema that includes the problem motivation, core
192 contributions, methodological summary, main findings, and limitations. This ensures that each pa-
193 per card provides a consistent and comprehensive summary of the paper’s essential elements. An
194 example is shown in App. A.1. The collection of paper cards is denoted as $\mathcal{C}_i = \{c_i^1, c_i^2, \dots, c_i^{|\mathcal{P}_i|}\}$.
195 Overall, the paper card pool can be represented as a mapping

$$\mathcal{Q} = \{K_i \mapsto \mathcal{C}_i \mid i = 0, 1, \dots\},$$

196 where each keyword K_i is associated with the corresponding set of paper cards \mathcal{C}_i .
197

200 **Outline updating.** The outline updating process begins with an empty initial outline, denoted as
201 O_0 . At each step, the outline is refined using the current outline O_i , the active keyword K_i , and a
202 mini-batch of paper cards drawn from the pool. Specifically, let $\mathcal{B}_i \subseteq \mathcal{C}_i$ be a batch of paper cards
203 sampled from the set of cards associated with K_i . The model produces a candidate update
204

$$\tilde{O}_{i+1} = g(O_i, \mathcal{B}_i, K_i),$$

205 where $g(\cdot)$ denotes the outline updating function. This procedure is repeated iteratively, with batches
206 \mathcal{B}_i of paper cards popped from the paper pool \mathcal{Q} under the current keyword K_i , until all cards
207 associated with K_i are consumed and integrated into the outline. To ensure stability and promote
208 refinement, the candidate update is accepted if its similarity to the previous outline exceeds τ :

$$O_{i+1} = \begin{cases} \tilde{O}_{i+1}, & \text{if } \text{SIM}(O_i, \tilde{O}_{i+1}) \geq \tau, \\ O_i, & \text{otherwise.} \end{cases}$$

212 **Keyword expansion.** When all keywords K_i has been fully consumed, the system explores new
213 directions by proposing additional keywords. The goal is to identify potentially relevant aspects of
214 the domain that have not yet been covered. Formally, new keywords are generated as
215

$$K_{i+1} = f(O_{i+1}, K_i, \dots, K_0),$$

216 where $f(\cdot)$ denotes a keyword generation function that takes the updated outline and the history of
 217 queries as input, and proposes candidate keywords for further exploration. The corresponding paper
 218 set \mathcal{P}_{i+1} is then retrieved and pushed into the pool \mathcal{Q} , thereby guiding the next iteration.
 219

220 **Stopping condition.** Let $N_i = |\mathcal{P}_0 \cup \mathcal{P}_1 \cup \dots \cup \mathcal{P}_i|$ denote the total number of consulted papers
 221 up to iteration i . The process terminates when either (i) $N_i \geq N_{\min}$ and the stopping signal
 222

$$223 \quad s = h(O_{i+1}, K_i, \dots, K_0), \quad s \in \{0, 1\},$$

224 indicates that the outline is sufficiently complete, or (ii) $N_i \geq N_{\max}$. Here $h(\cdot)$ is a decision
 225 function which takes the evolving outline and the query history as input and outputs whether further
 226 exploration is necessary. This design ensures that the outline is not terminated prematurely, while
 227 also preventing excessive exploration.
 228

229 **Post-processing.** After termination, the recurrent process produces a research-oriented outline \tilde{O} ,
 230 which is further refined into a writing-oriented survey outline:
 231

$$232 \quad \hat{O} = \text{Refine}(\tilde{O}),$$

233 where $\text{Refine}(\cdot)$ reorganizes the structure, inserts standard survey components such as ‘Introduction’ and ‘Future Directions’, and ensures conformity with academic conventions. Finally, we
 234 perform paper–section relinking, where all consulted papers are reassociated with the correspond-
 235 ing sections of the final outline \hat{O} . This guarantees that each section of \hat{O} is grounded in concrete
 236 evidence, providing a reliable foundation for subsection drafting.
 237

238 **3.2 SECTION DRAFTING GUIDED BY PAPER CARDS**

239 A distinctive feature of our framework is that section drafting is entirely guided by paper cards,
 240 which serve as fine-grained, structured representations of the literature. Given the refined outline
 241 \hat{O} , each section or subsection is written by conditioning on its description d_j together with the
 242 relevant pool of cards. Specifically, for a given subsection with description d_j , the system retrieves
 243 a set of additional reference papers $\mathcal{P}_{\text{sec}}^j$ and converts them into paper cards $\mathcal{C}_{\text{sec}}^j$. In contrast to
 244 previous work, our framework benefits from the paper–section relinking established during outline
 245 construction: each subsection is already associated with a pool of consulted papers from earlier
 246 iterations. This enriched evidence base, combining $\mathcal{C}_{\text{sec}}^j$ with the relinked cards, provides the model
 247 with a stronger foundation for subsection writing. Formally, the j -th subsection is generated as
 248

$$249 \quad S_j = \text{Draft}(d_j, \mathcal{C}_{\text{sec}}^j \cup \mathcal{C}_{\text{link}}^j),$$

250 where $\mathcal{C}_{\text{link}}^j$ denotes the set of paper cards relinked to subsection j . During drafting, the model is
 251 required to cite the provided references, and the citations are mapped to their corresponding papers.
 252

253 **3.3 GLOBAL REVIEW AND INTEGRATION**

254 The final stage of survey generation goes beyond local drafting. It performs a global review-and-
 255 refine process that integrates sections into a coherent survey and enriches the survey with automati-
 256 cally generated figures and tables.
 257

258 **Textual Review-and-Refine.** We adopt a reviewer–refiner loop that involves two collaborative
 259 LLM roles. The reviewer takes the entire survey draft as input to capture the global context but then
 260 focuses its critique on a specific section or subsection. This design ensures that feedback on local
 261 content is always grounded in an understanding of the overall narrative. The reviewer provides de-
 262 tailed suggestions covering aspects such as clarity of exposition, consistency of terminology, logical
 263 alignment with preceding and following sections, and stylistic fluency. The refiner then incorpo-
 264 rates these suggestions to revise the targeted section, producing a polished update that fits better into
 265 the survey as a whole. This loop is applied sequentially across all sections and iterated multiple
 266 times, progressively enhancing readability, improving cross-section coherence, and strengthening
 267 the global structural integrity of the survey.
 268

270 **Figure–Table Integration.** In addition to textual refinement, we extend the refinement process
 271 to include multimodal elements, to further enhance readability. For each section, the model first
 272 generates visualization requirements, such as tables with structured comparisons or figures with
 273 explanatory diagrams, together with natural language descriptions. Based on these descriptions,
 274 candidate figures and tables are synthesized. The compiled outputs are then fed back to an LLM for
 275 quality assessment, enabling automatic detection of issues such as oversized layouts or unreadable
 276 text. The LLM provides corrective suggestions, which are applied to improve the final visualizations.
 277 Finally, the text is refined again to ensure that all generated figures and tables are properly referenced
 278 within the survey.

279 4 EXPERIMENTS

280 4.1 EXPERIMENTAL SETTINGS

281 **Implementation Details.** Following Wang et al. (2024b), we adopt **GPT-4o-mini** as our genera-
 282 tion model for its balance of responsiveness and cost. Our retrieval database contains 680K computer
 283 science papers from arXiv, with PDFs converted into structured Markdown using MinerU (Wang
 284 et al., 2024a) for consistent formatting. In outline generation, the system consults 1000–1200 pa-
 285 pers, with a maximum of 8 sections. For section drafting, each subsection retrieves up to 60 addi-
 286 tional relevant papers, combined with those linked during outline generation. Finally, we apply two
 287 iterations of the review-and-refine loop to enhance coherence across sections and improve overall
 288 readability. The details of the implementation are provided in App. A.2. Illustrative outputs com-
 289 pared with AutoSurvey are provided in App. A.13. **A detailed analysis of the framework’s time and**
 290 **cost overhead is provided in App. A.8.**

291 **Baselines.** We compare IterSurvey with a set of baselines, ranging from simple retrieval-
 292 augmented generation (Naive RAG), which directly drafts from retrieved documents, to more ad-
 293 vanced state-of-the-art systems. Specifically, we evaluate against AutoSurvey (Wang et al., 2024b),
 294 the first systematic framework for this task; SurveyForge (Yan et al., 2025), which combines heur-
 295 istic outline generation based on the logical structures of human-written surveys with a memory-driven
 296 scholar navigation agent for high-quality retrieval; and SurveyGo (Wang et al., 2025), which em-
 297 ploys the LLM×MapReduce-V2 algorithm to address the long-context challenge. We also compare
 298 with SurveyX (Liang et al., 2025), which introduces an Attribute Tree-based outlining mechanism;
 299 however, due to access restrictions, we include SurveyX only in arena experiments. All methods are
 300 evaluated on the same retrieval database with generation hyperparameters aligned to their original
 301 settings for fairness.

302 4.2 AUTOMATIC EVALUATION RESULTS

303 **Evaluation Setup.** We follow the evaluation protocol established in Wang et al. (2024b) and adopt
 304 their multi-dimensional LLM-as-a-judge framework. On the standard 20-topic suite used in Auto-
 305 Survey, we evaluate content quality along three dimensions: *coverage*, *structure*, and *relevance*,
 306 exactly following the criteria defined in Wang et al. (2024b). In addition, citation quality is assessed
 307 using the NLI-based evaluation of Gao et al. (2023), reporting both recall and precision: *Citation*
 308 *Recall* measures whether statements are fully supported by cited passages, while *Citation* *Precision*
 309 checks that citations are relevant and directly support the claims. To improve scoring stability
 310 and reliability, we standardize prompts and require judges to provide a rationale before assigning a
 311 score. For further robustness, we aggregate outputs from three independent LLM judges: GPT-4o,
 312 Claude-3.5-Haiku, and GLM-4.5V.¹ Full prompts are provided in App. A.12.

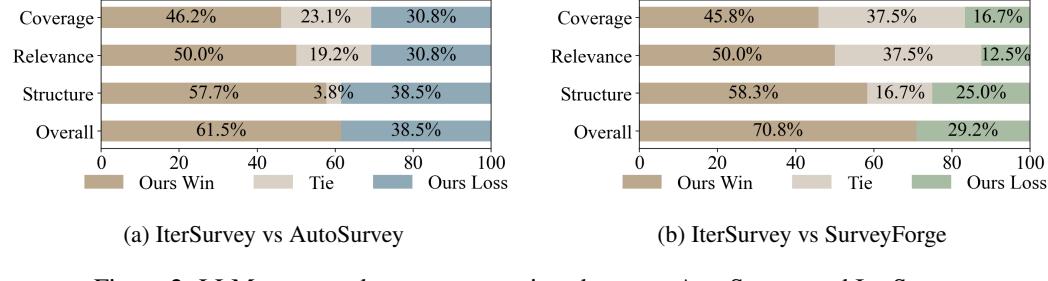
313 **Results.** The results on the 20 topics from Wang et al. (2024b) are reported in Tab. 1. Statistical
 314 significance was confirmed via paired t-tests, indicating that IterSurvey consistently outperforms
 315 baseline models ($p < 0.05$). We summarize the main observations below.

- 316 • **Overall superiority.** IterSurvey consistently outperforms all baselines across both content
 317 and citation quality, achieving the highest overall average score (4.75). This demonstrates
 318 that the proposed framework is effective and robust across multiple evaluation dimensions.

319 ¹Specifically, we use chatgpt-4o-latest, claude-3-5-haiku-20241022, and glm-4.5v.

324
325
326 Table 1: Comparison of different methods in terms of content quality and citation quality.
327
328

Methods	Content Quality				Citation Quality	
	Coverage	Relevance	Structure	Avg.	Precision	Recall
NaiveRAG	4.42 \pm 0.50	4.85 \pm 0.36	4.20 \pm 0.73	4.49 \pm 0.41	0.39 \pm 0.16	0.40 \pm 0.15
AutoSurvey	4.50 \pm 0.29	4.80 \pm 0.16	4.62 \pm 0.24	4.64 \pm 0.15	0.64 \pm 0.08	0.64 \pm 0.08
SurveyForge	4.57 \pm 0.50	4.82 \pm 0.39	4.60 \pm 0.56	4.66 \pm 0.40	0.59 \pm 0.09	0.59 \pm 0.09
SurveyGo	4.37 \pm 0.49	4.83 \pm 0.38	4.27 \pm 0.63	4.49 \pm 0.40	0.50 \pm 0.11	0.63 \pm 0.12
IterSurvey	4.58 \pm 0.50	4.95 \pm 0.22	4.72 \pm 0.45	4.75 \pm 0.30	0.64 \pm 0.06	0.70 \pm 0.07

341
342
343 Figure 2: LLM-generated survey comparison between AutoSurvey and IterSurvey.
344

- **Improved structural quality.** On the structure dimension, IterSurvey achieves the best score (4.72). This improvement stems from the recurrent outline generation mechanism, which iteratively explores the literature and refines the outline, resulting in clearer organizational planning and stronger cross-sectional coherence.
- **Enhanced citation quality.** IterSurvey also achieves superior citation performance. While maintaining the same precision as AutoSurvey, it improves recall to 0.70. This advantage is enabled by paper cards, which provide fine-grained summaries of individual papers and thus allow for retrieving and citing a broader yet still accurate set of supporting references.

353 Together, these results confirm that recurrent outline generation, paper cards, and outline–paper
354 grounding synergize to produce surveys that are both structurally coherent and rigorously evidenced.
355

356 4.3 HUMAN EVALUATION RESULTS 357

358 To further assess the quality of the generated surveys, we conducted a blind, pairwise
359 study (Novikova et al., 2018; Chiang et al., 2024) with seven PhD-level experts. For each eval-
360 uation, experts were presented with an anonymized survey pair and asked to select the superior
361 one based on multiple quality dimensions, including coverage, relevance, structural coherence, and
362 overall quality, which is more objective and stable than ranking based on absolute scores (Herbrich
363 et al., 2006; Sakaguchi et al., 2014). To control annotation cost, the human study was limited to
364 direct comparisons between IterSurvey and two leading baselines: AutoSurvey and SurveyForge.
365 Inter-rater agreement is reported in App. A.3. Results, as shown in Fig. 2, indicate that IterSur-
366 vey is consistently preferred over AutoSurvey and SurveyForge by domain experts, especially in
367 terms of structure and overall quality. This trend aligns with our automatic evaluation, where re-
368 current outline generation also demonstrated stronger coherence and organization. The consistency
369 between expert judgments and automatic metrics further highlights the robustness of IterSurvey in
370 generating high-quality surveys.

371 4.4 SURVEY-ARENA: PAIRWISE COMPARISON AND RANKING 372

373 **Dataset construction.** Previous automatic evaluation methods typically assign an absolute score
374 for each dimension, which struggles to fully capture the performance gap between machine-
375 generated surveys and human-written ones. To move beyond absolute scores, we constructed the
376 *Survey-Arena* benchmark. The benchmark spans ten research topics. For each topic, we manually
377 selected five high-quality, human-written surveys to serve as a performance baseline. To ensure com-
378 parability, all surveys for a given topic were chosen from a narrow six-month submission window,

378 a process that required careful verification to ensure each topic had a sufficient number of suitable
 379 papers. We further confirmed their quality and influence via non-trivial citation counts on Google
 380 Scholar. The retrieval database for all machine-generated surveys was correspondingly frozen to the
 381 same time period to guarantee fairness. The full list of topics and papers is available in the App. A.7.
 382

383 **Evaluation protocol.** For each topic, all possible pairs of a machine-generated survey and a human-written survey are constructed. To ensure robust evaluation and mitigate positional bias,
 384 each pair is judged in both directions (A vs. B and B vs. A), following Li et al. (2024). A panel
 385 of three distinct LLMs, namely GPT-4o, Claude-3.5-Haiku, and GLM-4.5V, serves as the judges for
 386 each comparison. Elo scores are computed from these aggregated pairwise outcomes to generate
 387 rankings for all systems.
 388

389 **Results.** We report two key evaluation metrics:
 390 Avg. Rank, which indicates the mean position among all surveys, and $>\text{Human}\%$, which reflects the proportion of topics where a system surpasses human surveys. The topic-wise outcomes from Survey-Arena are visualized in Fig.3, and the aggregated rankings are summarized in Tab.2.
 391

392 Each system is evaluated by its average rank across all surveys (including 5 machine-written
 393 surveys and 5 human-written ones) and by the proportion of topics where it surpasses human
 394 surveys. The results show that IterSurvey consistently achieves the best overall performance
 395 among automatic survey generation systems, with an average rank of 4.0 and surpassing
 396 human-written surveys in 60% of topics. These findings highlight that IterSurvey not only out-
 397 performs competing methods but also approaches
 398 human-level quality across diverse domains.
 399

400 **Meta Evaluation.** To assess the reliability of
 401 Survey-Arena judgments, we compare the rank-
 402 ings produced by Survey-Arena for human-
 403 written surveys with citation counts on Google
 404 Scholar, which serve as an external signal of im-
 405 pact. Specifically, we compute Spearman’s ρ_s by
 406 measuring the correlation between Arena-derived
 407 and citation-based rankings for each topic, and
 408 then report the average across topics. For relevance
 409 scoring, we treat citation counts as an in-
 410 dicator of relevance and compute nDCG directly
 411 over the ranking lists. As a comparison, we also
 412 use the rankings derived from absolute scoring
 413 and compute their consistency and nDCG. This
 414 allows us to evaluate how well the different rank-
 415 ing methods align with citation-based rankings.
 416

417 Results are shown in Tab. 3. Compared with
 418 the scoring-based approach, pairwise judgment
 419 achieves higher agreement with citation-based
 420 rankings, yielding a Spearman’s ρ_s of 0.410 and
 421 nDCG@2/3 = 0.834/0.873. This indicates that when models are asked to directly compare two sur-
 422 veys, they more reliably identify the superior one, producing rankings that better align with human
 423 impact signals. These findings support pairwise evaluation as a more robust protocol for Survey-
 424 Arena.
 425

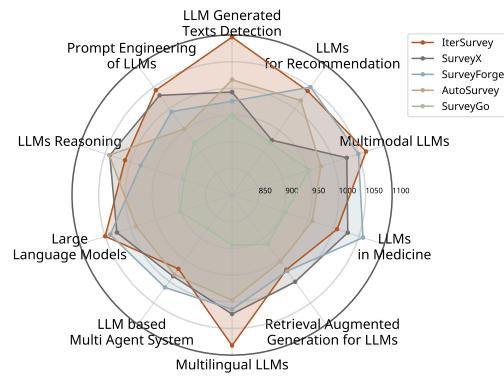


Figure 3: Elo scores of Survey-Arena results across topics. The radar plot shows the Elo scores for each system across all topics, providing a topic-wise comparison.

Table 2: Aggregated rankings on Survey-Arena. Avg. Rank is the mean position among all surveys. $>\text{Human}\%$ is the average proportion of topics where a system surpasses human surveys.

Method	Avg. Rank \downarrow	$>\text{Human}\% \uparrow$
SurveyGo	9.80	4%
AutoSurvey	6.70	32%
SurveyForge	4.80	50%
SurveyX	4.70	54%
IterSurvey	4.00	60%

Table 3: Consistency between different ranking methods and citation-based rankings.

Rank Method	ρ_s	nDCG@2	nDCG@3
Absolute Scoring	0.320	0.695	0.767
Pair-Judge	0.410	0.834	0.873

432
433
434 Table 4: Comparison of different methods on survey-lacking topics.
435
436
437
438

Methods	Content Quality				Citation Quality	
	Coverage	Relevance	Structure	Avg.	Precision	Recall
AutoSurvey	4.00 ± 1.12	4.20 ± 1.20	4.00 ± 1.00	4.07 ± 1.11	0.55 ± 0.14	0.55 ± 0.09
SurveyForge	4.50 ± 0.50	4.75 ± 0.50	4.54 ± 0.54	4.60 ± 0.52	0.47 ± 0.12	0.47 ± 0.13
IterSurvey	4.42 ± 0.58	4.83 ± 0.17	4.63 ± 0.63	4.63 ± 0.37	0.60 ± 0.06	0.67 ± 0.06

440
441 Table 5: Ablation study analyzing the contribution of each component in IterSurvey.

Methods	Content Quality				Citation Quality	
	Coverage	Relevance	Structure	Avg.	Precision	Recall
Main	4.73 ± 0.50	4.93 ± 0.41	4.80 ± 0.52	4.82 ± 0.39	0.65 ± 0.04	0.77 ± 0.04
w/o Iterative Outline Paradigm	4.53 ± 0.50	4.87 ± 0.31	4.53 ± 0.51	4.64 ± 0.41	0.66 ± 0.08	0.70 ± 0.07
w/o PaperCard	4.52 ± 0.51	4.81 ± 0.38	4.52 ± 0.52	4.62 ± 0.39	0.63 ± 0.08	0.72 ± 0.06
w/o Review/Refine	4.60 ± 0.51	4.80 ± 0.42	4.60 ± 0.52	4.69 ± 0.39	0.64 ± 0.09	0.71 ± 0.08
AutoSurvey	4.53 ± 0.51	4.73 ± 0.43	4.47 ± 0.51	4.58 ± 0.44	0.57 ± 0.10	0.57 ± 0.09

442
443
444
445
446
447
448
449
450 4.5 GENERALIZATION ON SURVEY-LACKING TOPICS

451 To examine whether automated survey generation can succeed in areas without existing surveys, we
 452 construct a subset of eight research topics (listed in App. A.9) where no human-written reviews are
 453 available. Such settings are common in emerging domains and pose greater challenges, since there
 454 are no canonical structures to imitate and the literature is often sparse and fragmented. This setup
 455 tests whether a system can autonomously organize the field into a coherent, well-grounded survey.

456 We compare IterSurvey against AutoSurvey and SurveyForge under this setup, and the results are
 457 presented in Tab. 4. Our method achieves the highest average score (4.63), consistently outperforming
 458 both baselines across content and citation quality. Notably, IterSurvey shows clear advantages
 459 in structural quality (4.63) and citation recall (0.67). Instead of fixed retrievals, our recurrent outline
 460 generation and paper card mechanism drive iterative exploration. This ensures structural coherence
 461 and broader reference coverage, even in domains where survey conventions are absent. Detailed
 462 results on these subsets are provided in App. A.9.

463
464 4.6 ABLATION STUDY

465 We conduct an ablation study over five representative topics to quantify the contributions of the three
 466 core modules of IterSurvey: the Iterative Outline Paradigm, PaperCard, and the Review-and-Refine
 467 stage. Results are shown in Tab. 5, revealing the following insights:

468 **Iterative Outline Paradigm improves content organization.** Removing the iterative outline mech-
 469 anism and replacing it with a one-shot outline generation results in clear degradation across all
 470 content-quality dimensions (Coverage: 4.53 vs. 4.73, Structure: 4.53 vs. 4.80). This demonstrates
 471 that iterative exploration helps the model achieve broader coverage and stronger organizational
 472 coherence by progressively integrating evidence. To further examine the effect of iterative planning
 473 itself, we additionally evaluate the quality of intermediate outlines produced at different stages of
 474 the pipeline, implementation details are shown in App. A.10. As shown in Fig. 5, outline quality
 475 increases consistently across iterations, rising from 3.67 to 4.46. Early rounds introduce most of the
 476 structural and technical improvements, while later rounds provide steady refinement. This confirms
 477 that iterative planning yields incremental gains throughout the generation process.

478 **PaperCard enhances citation grounding.** When replacing PaperCards with abstract-based inputs,
 479 citation recall drops from 0.77 to 0.72 while overall content quality also decreases. This indicates
 480 that structured paper-level distillation provides more complete and faithful evidence grounding,
 481 enabling the model to cite more comprehensively without sacrificing precision.

482
483 **Review-and-Refine provides additional polishing.** Omitting the review-and-refine stage reduces
 484 both content quality (Avg. from 4.82 to 4.69) and citation recall (0.77 to 0.71). These improvements
 485 show that iterative self-critique strengthens factual support, fills evidence gaps, and improves the
 486 overall coherence and readability of the final survey.

486
487 In addition, we extend our evaluation to assess the framework’s robustness across different base
488 models (App A.5) and its generalization capability in disciplines beyond Computer Science, such as
489 Optimization (App A.6).

490
491 **5 CONCLUSION**

492 In this work, we tackled the limitations of existing survey generation systems by introducing Iter-
493 Survey, a framework with recurrent outline generation, paper cards, and global review and integra-
494 tion. This design enables precise retrieval, coherent structure, and faithful citation grounding, while
495 supporting multimodal outputs. Experiments on diverse topics show that IterSurvey outperforms
496 state-of-the-art baselines in coherence, coverage, and citation quality. We also proposed Survey-
497 Arena, a pairwise benchmark that complements absolute scoring for a more reliable assessment.
498 Future work will extend our framework to broader domains, integrate richer multimodal evidence,
499 and refine evaluation protocols toward human-level quality.

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541

ETHICAL CONSIDERATIONS

542
543
544
545
546
547
548
549
Our work focuses on automatic literature survey generation using large language models. While the system is designed to support researchers by synthesizing existing knowledge, it inevitably inherits limitations of current models, including potential citation errors, incomplete coverage, and occasional inaccuracies. Therefore, the generated surveys are intended as an assistive tool rather than a substitute for human scholarship, and should be used for reference only. For evaluation, all human experts involved in the study participated voluntarily and received fair compensation. All data used in our experiments were sourced from publicly available arXiv papers, which permit non-commercial use. We strictly avoided the use of private or sensitive data.550
551

USE OF LARGE LANGUAGE MODELS

552
553
554
555
556
557
We used large language models (GPT-4o, Claude-3.5-Haiku, and GLM-4.5V) in two ways: (i) as evaluation judges for assessing survey quality, and (ii) for limited language editing and refinement of the manuscript. All substantive research ideas, experimental design, analyses, and final decisions were made solely by the authors, who take full responsibility for the content of this paper.558
559

REFERENCES

560
561
562
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning
to retrieve, generate, and critique through self-reflection, 2023. URL <https://arxiv.org/abs/2310.11511>.563
564
565
566
567
Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for information retrieval:
A survey. *Information Processing & Management*, 56(5):1698–1735, 2019. ISSN 0306-4573.
doi: <https://doi.org/10.1016/j.ipm.2019.05.009>. URL <https://www.sciencedirect.com/science/article/pii/S0306457318305466>.568
569
570
Marcia J. Bates. The design of browsing and berrypicking techniques for the online search in-
terface. *Online Review*, 1989. URL <https://pages.gseis.ucla.edu/faculty/bates/berrypicking.html>.571
572
573
Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S. Weld. Tldr: Extreme summarization of
scientific documents, 2020. URL <https://arxiv.org/abs/2004.15011>.574
575
576
577
Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference, 2024. URL
<https://arxiv.org/abs/2403.04132>.578
579
580
581
582
583
584
Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-scale
multi-document summarization dataset and abstractive hierarchical model. In Anna Korhonen,
David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics*, pp. 1074–1084, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1102. URL <https://aclanthology.org/P19-1102/>.585
586
Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
text with citations. *arXiv preprint arXiv:2305.14627*, 2023.587
588
589
Alexios Gidiotis and Grigorios Tsoumacas. A divide-and-conquer approach to the summarization
of long documents, 2020. URL <https://arxiv.org/abs/2004.06190>.590
591
Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system. *Advances
in neural information processing systems*, 19, 2006.592
593
Yuntong Hu, Zhuofeng Li, Zheng Zhang, Chen Ling, Raasikh Kanjiani, Boxin Zhao, and Liang
Zhao. Hireview: Hierarchical taxonomy-driven automatic literature review generation. 2024.

594 Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 595 Jamie Callan, and Graham Neubig. Active retrieval augmented generation, 2023. URL <https://arxiv.org/abs/2305.06983>.

596

597 Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and Jindong Wang.
 598 Agentreview: Exploring peer review dynamics with llm agents, 2024. URL <https://arxiv.org/abs/2406.12708>.

599

600

601 Giuseppe Russo Latona, Manoel Horta Ribeiro, Tim R. Davidson, Veniamin Veselovsky, and Robert
 602 West. The ai review lottery: Widespread ai-assisted peer reviews boost paper scores and accep-
 603 tance rates, 2024. URL <https://arxiv.org/abs/2405.02150>.

604

605 Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan Wu, Shuai Wang, Cuiyun Gao, and Yang
 606 Liu. Split and merge: Aligning position biases in llm-based evaluators, 2024. URL <https://arxiv.org/abs/2310.01432>.

607

608 Xun Liang, Jiawei Yang, Yezhaohui Wang, Chen Tang, Zifan Zheng, Shichao Song, Zehao Lin,
 609 Yebin Yang, Simin Niu, Hanyu Wang, et al. Surveyx: Academic survey automation via large
 610 language models. *arXiv preprint arXiv:2502.14776*, 2025.

611

612 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 613 and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
 614 <https://arxiv.org/abs/2307.03172>.

615

616 Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. RankME: Reliable human ratings for nat-
 617 ural language generation. In *NAACL-HLT*, 2018. URL <https://aclanthology.org/N18-2012>.

618

619 Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
 620 a reproducible long context text embedder, 2024.

621

622 Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B. Hashimoto. Prov-
 623 ing test set contamination in black box language models, 2023. URL <https://arxiv.org/abs/2310.17623>.

624

625 Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. Efficient elicitation of annotations for
 626 human evaluation of machine translation. In Ondřej Bojar, Christian Buck, Christian Federmann,
 627 Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, and Lucia Specia (eds.), *Proceed-
 628 ings of the Ninth Workshop on Statistical Machine Translation*, pp. 1–11, Baltimore, Maryland,
 629 USA, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3301. URL
 630 <https://aclanthology.org/W14-3301/>.

631

632 Haitian Sun, Tania Bedrax-Weiss, and William Cohen. PullNet: Open domain question answering
 633 with iterative retrieval on knowledge bases and text. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 634 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 635 guage Processing and the 9th International Joint Conference on Natural Language Processing
 636 (EMNLP-IJCNLP)*, pp. 2380–2390, Hong Kong, China, November 2019. Association for Com-
 637 putational Linguistics. doi: 10.18653/v1/D19-1242. URL <https://aclanthology.org/D19-1242/>.

638

639 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
 640 Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content
 641 extraction. *arXiv preprint arXiv:2409.18839*, 2024a.

642

643 Haoyu Wang, Yujia Fu, Zhu Zhang, Shuo Wang, Zirui Ren, Xiaorong Wang, Zhili Li, Chaoqun He,
 644 Bo An, Zhiyuan Liu, et al. Llmxmapreduce-v2: Entropy-driven convolutional test-time scaling for
 645 generating long-form articles from extremely long resources. *arXiv preprint arXiv:2504.05732*,
 2025.

646

647 Xiao Wang, Craig Macdonald, and Iadh Ounis. Deep reinforced query reformulation for information
 648 retrieval, 2020. URL <https://arxiv.org/abs/2007.07987>.

648 Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu
 649 Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosurvey: Large
 650 language models can automatically write surveys. In *The Thirty-eighth Annual Conference on*
 651 *Neural Information Processing Systems*, 2024b.

652 Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and
 653 Linyi Yang. Cycleresearcher: Improving automated research via automated review, 2025. URL
 654 <https://arxiv.org/abs/2411.00816>.

655 Zijun Wu, Bingyuan Liu, Ran Yan, Lei Chen, and Thomas Delteil. Reducing distraction in long-
 656 context language models by focused learning, 2024. URL <https://arxiv.org/abs/2411.05928>.

657 Xiangchao Yan, Shiyang Feng, Jiakang Yuan, Renqiu Xia, Bin Wang, Lei Bai, and Bo Zhang.
 658 SURVEYFORGE : On the outline heuristics, memory-driven generation, and multi-dimensional
 659 evaluation for automated survey writing. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 660 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 661 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 12444–12465, Vienna, Austria, July
 662 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 663 2025.acl-long.609. URL <https://aclanthology.org/2025.acl-long.609/>.

664 Kevin Yang, Dan Klein, Nanyun Peng, and Yuandong Tian. DOC: Improving long story coherence
 665 with detailed outline control. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
 666 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume*
 667 *1: Long Papers)*, pp. 3378–3465, Toronto, Canada, July 2023a. Association for Computational
 668 Linguistics. doi: 10.18653/v1/2023.acl-long.190. URL <https://aclanthology.org/2023.acl-long.190/>.

669 Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethink-
 670 ing benchmark and contamination for language models with rephrased samples, 2023b. URL
 671 <https://arxiv.org/abs/2311.04850>.

672 Rui Ye, Xianghe Pang, Jingyi Chai, Jiaao Chen, Zhenfei Yin, Zhen Xiang, Xiaowen Dong, Jing
 673 Shao, and Siheng Chen. Are we there yet? revealing the risks of utilizing large language models
 674 in scholarly peer review, 2024. URL <https://arxiv.org/abs/2412.01708>.

675 Jianxiang Yu, Zichen Ding, Jiaqi Tan, Kangyang Luo, Zhenmin Weng, Chenghua Gong, Long Zeng,
 676 Renjing Cui, Chengcheng Han, Qiushi Sun, Zhiyong Wu, Yunshi Lan, and Xiang Li. Automated
 677 peer reviewing in paper sea: Standardization, evaluation, and analysis, 2024. URL <https://arxiv.org/abs/2407.12857>.

678 Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang,
 679 Yufeng Li, Kewei Tu, Pengjun Xie, and Fei Huang. Evolvesearch: An iterative self-evolving
 680 search agent, 2025a. URL <https://arxiv.org/abs/2505.22501>.

681 Yaohui Zhang, Haijing Zhang, Wenlong Ji, Tianyu Hua, Nick Haber, Hancheng Cao, and Weixin
 682 Liang. From replication to redesign: Exploring pairwise comparisons for llm-based peer review,
 683 2025b. URL <https://arxiv.org/abs/2506.11343>.

684 Zhimin Zhao. Se arena: An interactive platform for evaluating foundation models in software en-
 685 gineering. In *2025 IEEE/ACM Second International Conference on AI Foundation Models and*
 686 *Software Engineering (Forge)*, pp. 78–81, 2025. doi: 10.1109/Forge66646.2025.00016.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX
703704 A.1 PAPER CARD EXAMPLE
705

706

707 **Paper Card Data Structure Example**

708

```

709 {
710     "title": "Attention Is All You Need",
711     "paper_type": "Research",
712     "motivation_problem": "Traditional sequence transduction models
713         (RNNs, CNNs) process data sequentially, which precludes
714         parallelization and increases training time. They also
715         struggle with learning dependencies between distant positions
716         in a sequence.",
717     "method_contribution": "The paper proposes the Transformer, a
718         novel model architecture eschewing recurrence and relying
719         entirely on an attention mechanism to draw global
720         dependencies between input and output. Key components include
721         Multi-Head Attention and Positional Encoding.",
722     "results_findings": "On the WMT 2014 English-to-German
723         translation task, the Transformer achieves 28.4 BLEU,
724         improving over the existing best results, including
725         ensembles, by over 2 BLEU. It also trains significantly
726         faster than architectures based on recurrent or convolutional
727         layers.",
728     "limitations_future_work": "The quadratic complexity of
729         self-attention with respect to sequence length limits the
730         model's application on very long sequences. Future work
731         includes extending the Transformer to input and output
732         modalities other than text.",
733     "related_papers": [
734         "Long Short-Term Memory",
735         "Convolutional Sequence to Sequence Learning",
736         "Layer Normalization",
737         "Neural Machine Translation by Jointly Learning to Align and
738         Translate"
739     ],
740     "relevance_score": 5
741 }
```

742

739 A.2 IMPLEMENTATION DETAILS
740

741 **For the retrieval process.** We implemented a lightweight database to provide the necessary func-
742 tionality. The retrieval logic is based on vector similarity, using the *nomic-ai/nomic-embed-text-*
743 *v1.5* (Nussbaum et al., 2024) embedding model with all hyperparameters set to their default values.
744 Given a query, the database computes the similarity between the query vector and all paper vectors,
745 and returns the top-k most relevant entries. In addition, the database supports bidirectional lookup
746 between a paper's arXiv identifier and title, as well as filtering papers published prior to a specified
747 cutoff date.

748 **For Similarity Threshold τ .** In our recurrent outline generation module, the iterative updates pro-
749 duced by the LLM are susceptible to instability, particularly when addressing broad topics or when
750 the model over-prioritizes partial evidence from newly retrieved documents. To maintain structural
751 coherence, we validate the updated outline $O^{(t)}$ against its predecessor $O^{(t-1)}$, accepting the up-
752 date only if their similarity exceeds a threshold τ . This gating mechanism prevents the outline from
753 collapsing into degenerate states. The value of τ was determined empirically based on pilot experi-
754 ments. We found that setting τ too low (e.g., < 0.5) permits over-aggressive restructuring, leading
755 to truncated outputs, the deletion of significant sections, and structural invalidity, which collectively
undermine the iterative process. Conversely, setting τ too high (e.g., > 0.90) renders the model

756 overly conservative, causing it to reject legitimate refinements and thereby diminishing the outline’s
 757 exploratory capability.
 758

759 A.3 RESULTS OF INTER-RATER AGREEMENT 760

761 To assess the reliability of human annotations and the consistency between human and machine
 762 evaluations, we computed Cohen’s kappa coefficients across four evaluation dimensions: Coverage,
 763 Relevance, Structure, and Overall, as shown in Tab. 6. These results show substantial agreement both
 764 among human annotators and between human and machine evaluations, supporting the reliability
 765 and consistency of the evaluation process.

766 Table 6: Cohen’s kappa coefficient between LLMs and human evaluations.
 767

Evaluation Pair	Coverage	Relevance	Structure	Overall
Human vs. Mixture of LLMs	0.726	0.562	0.590	0.615
Human vs. Human	0.714	0.583	0.611	0.650

773 A.4 TOPICS FOR AUTOMATIC EVALUATION 774

775 We utilize 20 topics derived from AutoSurvey (Wang et al., 2024b). Each topic is paired with a
 776 human survey, as shown in Tab. 7, which also reports the survey titles, arXiv IDs, and their latest
 777 citation counts from Google Scholar.
 778

779 Table 7: Topics for Automatic Evaluation
 780

Topic	Human Survey	ArXiv ID	Citations
In-context Learning	A Survey on In-context Learning	2301.00234	2396
LLMs for Recommendation	A Survey on Large Language Models for Recommendation	2305.19860	596
LLM-Generated Texts Detection	The Science of Detecting LLM-Generated Texts	2310.14724	308
Explainability for LLMs	Explainability for Large Language Models: A Survey	2309.01029	875
Evaluation of LLMs	A Survey on Evaluation of Large Language Models	2307.03109	4020
LLMs-based Agents	A Survey on Large Language Model based Autonomous Agents	2308.11432	1906
LLMs in Medicine	A Survey of Large Language Models in Medicine	2311.05112	217
Domain Specialization of LLMs	Domain Specialization as the Key to Make Large Language Models Disruptive	2305.18703	217
Challenges of LLMs in Education	Practical and Ethical Challenges of Large Language Models in Education	2303.13379	722
Alignment of LLMs	Aligning Large Language Models with Human: A Survey	2307.12966	435
ChatGPT	Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond	2304.13712	1254
Instruction Tuning for LLMs	Instruction Tuning for Large Language Models: A Survey	2308.10792	1174
LLMs for Information Retrieval	Large Language Models for Information Retrieval: A Survey	2308.07107	544
Safety in LLMs	Towards Safer Generative Language Models	2302.09270	13
Chain of Thought	A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future	2309.15402	290
Hallucination in LLMs	A Survey on Hallucination in Large Language Models	2311.05232	2599
Bias and Fairness in LLMs	Bias and Fairness in Large Language Models: A Survey	2309.00770	1009
Large Multi-Modal Language Models	Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey	2302.10035	285
Acceleration for LLMs	A Survey on Model Compression and Acceleration for Pretrained Language Models	2202.07105	101
LLMs for Software Engineering	Large Language Models for Software Engineering: A Systematic Literature Review	2308.10620	1058

795 A.5 EFFECT OF DIFFERENT BASE MODELS 796

797 To investigate the extent to which the underlying base model rigidly determines IterSurvey’s perfor-
 798 mance, we conducted additional experiments using GPT-4o, GPT-4.1-mini, and the original GPT-
 800 4o-mini. Due to costs, we evaluated these on a randomly sampled subset of 5 topics. The results
 801 shown in Tab. 8 indicate that IterSurvey remains consistently effective across all tested models,
 802 demonstrating its robustness regardless of the base model. Furthermore, our method exhibits strong
 803 scalability: performance improves significantly as the capability of the base model increases (e.g.,
 804 GPT-4o outperforms GPT-4o-mini). This suggests that while the base model sets a performance
 805 baseline, IterSurvey effectively leverages stronger reasoning capabilities to achieve superior results.
 806

807 A.6 RESULTS ON OPTIMIZATION DOMAIN 808

809 To evaluate the generalization capability of IterSurvey in disciplines beyond standard Computer
 810 Science, we conducted additional experiments on five representative topics within the Optimization
 811 domain, which is shown in Tab. 9.

810
811
812
813 Table 8: Performance comparison of IterSurvey using different base models (evaluated on a random
814 subset of 5 topics).
815
816
817
818

Base Model	Content Quality				Citation Quality	
	Coverage	Relevance	Structure	Avg.	Precision	Recall
GPT-4o	4.75 \pm 0.37	4.94 \pm 0.09	4.83 \pm 0.38	4.84 \pm 0.20	0.68 \pm 0.03	0.76 \pm 0.04
GPT-4o-mini	4.40 \pm 0.51	4.73 \pm 0.45	4.67 \pm 0.52	4.60 \pm 0.51	0.66 \pm 0.02	0.77 \pm 0.04
GPT-4.1-mini	4.58 \pm 0.35	4.75 \pm 0.51	4.67 \pm 0.50	4.67 \pm 0.42	0.74 \pm 0.03	0.83 \pm 0.04

819
820
821 Table 9: List of evaluated topics in the optimization domain.
822
823
824
825
826
827

Category	Topic
Optimization	Stochastic Optimization for Large-Scale Learning
	Zeroth-Order Optimization Methods
	Combinatorial and Integer Optimization
	Distributed and Federated Optimization
	Multi-Objective Optimization and Pareto Methods

828
829
830 The results (shown in Tab. 10) demonstrate that IterSurvey maintains robust performance in this
831 adjacent domain, consistently outperforming baseline methods. Specifically, IterSurvey achieves the
832 highest average content quality score of 4.73, surpassing both SurveyForge (4.62) and AutoSurvey
833 (4.60). Notably, our framework exhibits a significant advantage in evidence grounding, achieving
834 a citation precision of 0.70, which is substantially higher than AutoSurvey (0.61) and SurveyForge
835 (0.57). This confirms that the iterative outline generation and paper-card mechanism can effectively
836 synthesize high-quality surveys with accurate citations, even in mathematically intensive fields like
837 Optimization.
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865

Table 10: Performance comparison of different methods on five optimization domain topics.

866
867
868
869
870
871
872

Methods	Content Quality				Citation Quality
	Coverage	Relevance	Structure	Avg.	
AutoSurvey	4.53 \pm 0.52	4.80 \pm 0.41	4.47 \pm 0.74	4.60 \pm 0.51	0.61 \pm 0.08
SurveyForge	4.40 \pm 0.51	4.93 \pm 0.26	4.53 \pm 0.52	4.62 \pm 0.36	0.57 \pm 0.11
IterSurvey	4.60 \pm 0.51	4.93 \pm 0.26	4.67 \pm 0.49	4.73 \pm 0.32	0.70 \pm 0.06

A.7 TOPICS FOR SURVEY-AREA

To construct the Survey-Arena benchmark, we select 10 topics, with several derived from AutoSurvey (Wang et al., 2024b) and SurveyForge (Yan et al., 2025). For each topic, we include 5 human-written surveys, requiring that their arXiv submission dates fall within a six-month window. We report their latest Google Scholar citation counts as a measure of impact, as summarized in Tab. 11. For reproducibility, we also specify the exact arXiv version, since submission dates can vary considerably across different versions of the same paper.

881
882

Table 11: Topics for Survey-Arena

883
884
885
886
887

Topic	Human Survey	ArXiv ID	Citations
Large Language Models	Large Language Models: A Survey	2402.06196v3	1133
	Large Language Models Meet NLP: A Survey	2405.12819v1	86
	History, Development, and Principles of Large Language Models-An Introductory Survey	2402.06853v2	73
	Recent Advances in Generative AI and Large Language Models	2407.14962v1	68
	Exploring the landscape of large language models: Foundations, techniques, and challenges	2404.11973v1	5
Multimodal LLMs	MM-LLMs: Recent Advances in MultiModal Large Language Models	2401.13601v3	381
	Multimodal Large Language Models: A Survey	2311.13165v1	299
	The Revolution of Multimodal Large Language Models: A Survey	2402.12451v1	98
	How to Bridge the Gap between Modalities: Survey on Multimodal Large Language Model	2311.07594v1	43
Multilingual LLMs	A Review of Multi-Modal Large Language and Vision Models	2404.01322v1	39
	Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers	2404.04925v1	83
	A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias	2404.00929v2	55
	A Survey on Large Language Models with Multilingualism	2405.10936v1	40
	Surveying the MLLM Landscape: A Meta-Review of Current Surveys	2409.18991v1	12
LLMs Reasoning	Multilingual Large Language Models: A Systematic Survey	2411.11072v2	9
	A Survey of Long Chain-of-Thought for Reasoning Large Language Models	2503.09567v3	130
	From System 1 to System 2: A Survey of Reasoning Large Language Models	2502.17419v2	110
	Advancing Reasoning in Large Language Models: Promising Methods and Approaches	2502.03671v1	19
	A Survey of Frontiers in LLM Reasoning	2504.09037v1	17
Prompt Engineering of LLMs	Thinking Machines: A Survey of LLM based Reasoning Strategies	2503.10814v1	9
	A Systematic Survey of Prompt Engineering in Large Language Models	2402.07927v1	748
	The Prompt Report: A Systematic Survey of Prompt Engineering Techniques	2406.06608v2	182
	Prompt Design and Engineering: Introduction and Advanced Methods	2401.14423v4	117
	A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks	2407.12994v1	60
Retrieval-Augmented Generation for LLMs	Efficient Prompting Methods for Large Language Models: A Survey	2404.01077v1	56
	Retrieval-Augmented Generation for Large Language Models: A Survey	2312.10997v5	2583
	A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models	2405.06211v3	559
	A Survey on Retrieval-Augmented Text Generation for Large Language Models	2404.10981v2	119
	Retrieval-Augmented Generation for Natural Language Processing: A Survey	2407.13193v2	77
LLM-based Multi-Agent System	Retrieval-Augmented Generation (RAG) and Beyond	2409.14924v1	70
	A survey on large language model based autonomous agents	2308.11432v7	1623
	Multi-Agent Collaboration Mechanisms: A Survey of LLMs	2501.06322v1	79
	Large language model agent: A survey on methodology, applications and challenges	2503.21460v1	19
	Agentic large language models, a survey	2503.23037v2	12
LLM-Generated Texts Detection	A Survey on LLM-based Multi-Agent System:	2412.17481v2	3
	A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions	2310.14724v2	210
	A Survey on Detection of LLMs-Generated Content	2310.15654v1	69
	Towards Possibilities & Impossibilities of AI-generated Text Detection: A Survey	2310.15264v1	46
	Detecting chatgpt: A survey of the state of detecting chatgpt-generated text	2309.07689v1	22
LLMs in Medicine	Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated Text	2403.05750v1	13
	Large language models in healthcare and medical domain: A review	2401.06775v2	246
	A Survey on Medical Large Language Models	2406.03712v1	53
	A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine	2405.08603v1	46
	Large Language Models for Medicine: A Survey	2405.13055v1	37
LLMs for Recommendation	A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry	2404.15777v4	32
	A Survey on Large Language Models for Recommendation	2305.19860v4	508
	Recommender Systems in the Era of Large Language Models (LLMs)	2307.02046v2	479
	A Comprehensive Survey of Language Modelling Paradigm Adaptations in Recommender Systems	2302.03735v3	117
	Large Language Models for Generative Recommendation: A Survey and Visionary Discussions	2309.01157v1	116
	How Can Recommender Systems Benefit from Large Language Models: A Survey	2306.05817v4	104

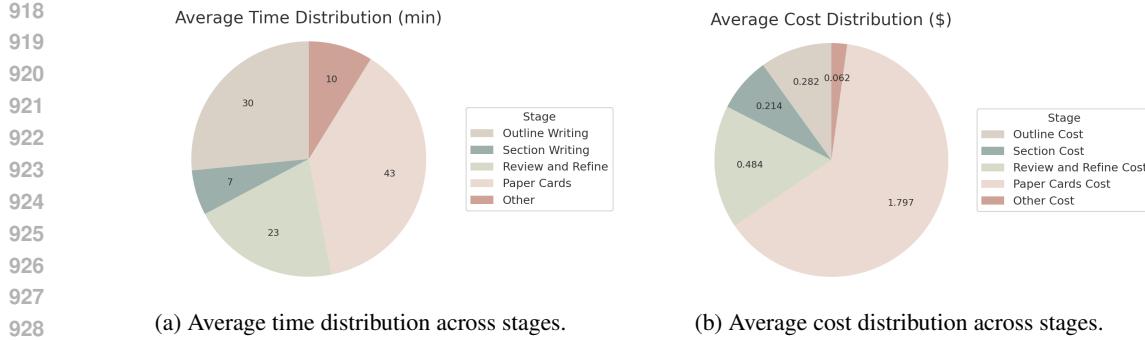


Figure 4: Time and cost breakdown of LLM-generated survey pipeline.

A.8 TIME AND COST ANALYSIS

To quantify the computational overhead of IterSurvey framework, we measure both time consumption and API cost across ten representative topics. We compute average time spent in each major stage of the workflow: outline writing, section writing, review-and-refine, paper card generation, and other operations (such as figure/table generation and LaTeX compilation) as shown in Fig. 4a. The corresponding API cost breakdown is presented in Fig. 4b. The reported time and cost are based on the use of GPT-4o-mini, and they may vary depending on the model and usage conditions. On average, generating a full survey requires approximately **113 minutes** and incurs a total API cost of **\$2.84**, corresponding to a consumption of **16.2M input** and **661k output tokens**. Among all components, PaperCard generation accounts for the largest portion of both time and monetary cost. This is expected, as PaperCards require reading and distilling the full text of each retrieved paper, rather than relying solely on abstracts. While more expensive, this fine-grained evidence extraction substantially improves grounding quality. In practical deployment scenarios, however, this cost can be significantly reduced. PaperCards can be computed *offline* during corpus construction rather than at survey-generation time. Specifically, paper cards can be pre-generated using a lightweight LLM and stored in the retrieval database, with new papers being distilled immediately upon ingestion. This design amortizes PaperCard generation cost and avoids redundant recomputation, enabling fast and cost-efficient online survey generation.

A.9 ANALYSIS OF SURVEY-LACKING SCENARIOS

We categorize the survey-lacking topics (Tab. 12) into two settings: *Survey-Absent* (unorganized literature) and *Literature-Sparse* (data-scarce). The detailed performance breakdown is provided in Tab. 13.

Robustness in Survey-Absent Fields. For topics like “*Event Timeline Generation*” where literature exists but lacks organization, IterSurvey achieves peak Coverage (4.53) and Citation Recall (0.67). This confirms that our *Paper Card* mechanism effectively synthesizes dispersed information, ensuring comprehensive coverage even without a structural template to follow.

Coherence in Literature-Sparse Domains. In domains such as “*RAG for Mechanical Design*,” the supporting literature is relatively sparse. Even under such constraints, IterSurvey achieves strong Structural Quality (4.67), demonstrating that the *Recurrent Outline Generation* mechanism can construct coherent and well-organized outlines by leveraging broader domain knowledge when direct evidence is limited.

A.10 ANALYSIS ON OUTLINE QUALITY ACROSS ITERATIONS

To evaluate how outline quality evolves during the recurrent outline generation process, we design an outline-structure criterion following the style of Wang et al. (2024b). The full rubric is shown below.

972
973
974 Table 12: **Categorization of topics for Survey-Lacking Test.**
975
976
977
978
979
980
981

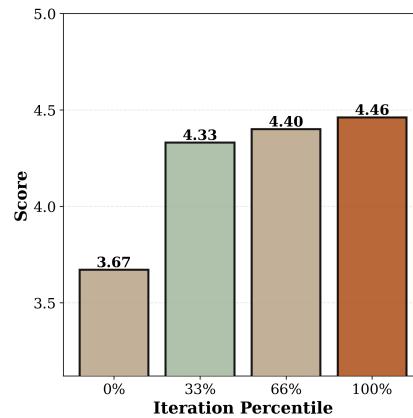
Category	Topic
Survey-Absent	Event Timeline Generation
	Agent-flow Data Curation
	Causal Mediation with Sparse Autoencoder Features in Transformers
	Multi-Tenant Scheduling for MoE Inference
	Renderer-in-the-Loop Supervision for Multimodal Model
Literature-Sparse	Linear RNN in Natural Language Processing
	Benchmarking Tool-Using LLMs for Causal Tasks in the MCP Ecosystem
	RAG for Mechanical Design: Cross-Modal Retrieval over CAD Trees and BOMs

982
983
984
985
986 Table 13: **Performance breakdown of IterSurvey on Survey-Absent and Literature-Sparse subsets.**
987

Settings	Content Quality				Citation Quality	
	Coverage	Relevance	Structure	Avg.	Precision	Recall
Survey-Absent	4.53 ± 0.45	4.84 ± 0.54	4.34 ± 0.45	4.57 ± 0.51	0.61 ± 0.03	0.67 ± 0.18
Literature-Sparse	4.33 ± 0.33	4.67 ± 0.33	4.67 ± 0.33	4.57 ± 0.26	0.57 ± 0.09	0.66 ± 0.03

994
995 **Outline Criterion**996
997 Description: Outline quality is evaluated based on structural
998 completeness and description depth. Sparse subsections,
999 shallow single-sentence descriptions, and lack of named
1000 technical elements indicate insufficient depth, whereas rich
1001 subsection structure, detailed bullet points, and abundant
1002 technical terminology reflect strong depth.1003 Score 1: The outline is unusable, containing only keywords
1004 without coherent structure.
1005 Score 2: Shallow outline with limited subsections and minimal
1006 technical specificity.
1007 Score 3: Moderate outline with reasonable subsections and
1008 occasional technical mentions.
1009 Score 4: Strong outline with well-developed subsections,
1010 structured lists, and frequent named methods.
1011 Score 5: Exceptional outline with comprehensive structure,
1012 extensive bullet lists, and pervasive technical specificity.1013 Following the same evaluation setup as in our main experiments, three LLM judges independently
1014 score the outlines at different stages of the iterative process, and their averaged results are reported.
1015 As shown in Fig. 5, outline quality improves steadily from the initial to the final iteration (3.67 to
1016 4.46), with early iterations contributing substantial structural expansion and later iterations providing
1017 consistent refinement. This validates that iterative planning brings incremental and meaningful
1018 improvements throughout the generation process.1019
1020 **A.11 DETAIL OF NAIVE RAG**1021
1022 Given a topic, the Naive RAG system first retrieves 1,500 papers from the same database as ours. It
1023 then employs an iterative prompting strategy, where the LLM generates content until the total length
1024 of the survey reaches 5,000 tokens (Wang et al., 2024b). The prompt used for generation is shown
1025 below.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039



1040 Figure 5: Outline quality across iterative refinement stages.
1041
1042
1043
1044
1045
1046

1047 **Naive RAG Prompt**

1049 You are an expert in artificial intelligence who wants to write
1050 an overall and comprehensive survey about [TOPIC].
1051
1052 You are provided with a list of papers related to [TOPIC] below:
1053 ---
1054 [PAPER LIST]
1055 ---
1056 Here is the survey content you have written:
1057 ---
1058 [SURVEY CONTENT]
1059 ---
1060 Here is the requirement of the survey:
1061 1. The survey must be more than [SURVEY LEN] tokens!
1062 2. Containing several sections. Each section contains several
1063 subsections.
1064 3. Cite several paper provided above to support the content you
1065 write.
1066 Here is the format of your writing:
1067 1. ## indicates the section title
1068 2. ### indicates the subsection title
1069 3. Only cite the "paper_title" in []. An example of citation: the
1070 emergence of large language models (LLMs) [Language models
1071 are few-shot learners; Language models are unsupervised
1072 multitask learners; PaLM: Scaling language modeling with
1073 pathways]
1074 You need to continue writing the survey by adding a new section
1075 or subsection.
1076 Do not stop until the length of survey is more than [SURVEY LEN]
1077 tokens!!!
1078
1079 Return the content you write:

1080 A.12 PROMPTS FOR EVALUATION

1081

1082 NLI Prompt

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

```

---
Claim:
[CLAIM]
---
Source:
[SOURCE]
---
Claim:
[CLAIM]
---
Is the Claim faithful to the Source?
A Claim is faithful to the Source if the core part in the Claim
can be supported by the Source.\n
Only reply with 'Yes' or 'No':

```

Criteria-based judging survey prompt

You are an expert academic evaluator specializing in rigorous assessment of academic survey quality. Your task is to conduct a comprehensive evaluation using established scholarly standards and provide detailed justification for your assessment.

<topic>
[TOPIC]
</topic>

<survey_content>
[SURVEY]
</survey_content>

<instruction>
You are provided with:
1. A research topic for context
2. An academic survey for evaluation

Your task is to assess the survey quality based on the specific criterion provided below. Apply rigorous academic standards and provide detailed justification for your assessment. Base your evaluation on specific evidence from the survey content, considering both strengths and areas for improvement.

</instruction>

<evaluation_criterion>
Criterion Description: [Criterion Description]

CRITICAL: Evaluation Standards

Your evaluation must follow a systematic approach:

1. **Comprehensive Analysis**: Thoroughly examine the survey content against the specific criterion
2. **Evidence-Based Scoring**: Base your score on specific observable strengths and weaknesses
3. **Detailed Justification**: Provide specific examples and reasoning for your score

```

1134
1135    **Scoring Framework**:
1136    Score 1: [Score 1 Description]
1137    Score 2: [Score 2 Description]
1138    Score 3: [Score 3 Description]
1139    Score 4: [Score 4 Description]
1140    Score 5: [Score 5 Description]
1141
1142    </evaluation_criterion>
1143
1144    <output_format>
1145    Provide your evaluation in the following structured format:
1146
1147    **Rationale:**  

1148    <Provide a comprehensive analysis of the survey's performance  

1149    against the specific criterion. Include specific examples of  

1150    strengths and weaknesses, with detailed justification for  

1151    your assessment. Address how well the survey meets the  

1152    criterion description and identify specific areas that align  

1153    with or deviate from the scoring descriptions.>
1154
1155    **Final Score:**  

1156    <SCORE>X</SCORE>
1157    (Where X is the score from 1 to 5 based on your evaluation)
1158
1159    Return your response in the following JSON format:
1160    {
1161        "rationale": "Your detailed reasoning here",
1162        "score": X
1163    }
1164
1165
1166
1167    Now conduct your comprehensive evaluation of the academic survey
1168    quality.

```

Coverage Criterion

```

1169    Description: Coverage: Coverage assesses the extent to which the
1170    survey encapsulates all relevant aspects of the topic,
1171    ensuring comprehensive discussion on both central and
1172    peripheral topics.
1173
1174    Score 1: The survey has very limited coverage, only touching on a
1175    small portion of the topic and lacking discussion on key
1176    areas.
1177    Score 2: The survey covers some parts of the topic but has
1178    noticeable omissions, with significant areas either
1179    underrepresented or missing.
1180    Score 3: The survey is generally comprehensive in coverage but
1181    still misses a few key points that are not fully discussed.
1182    Score 4: The survey covers most key areas of the topic
1183    comprehensively, with only very minor topics left out.
1184    Score 5: The survey comprehensively covers all key and peripheral
1185    topics, providing detailed discussions and extensive
1186    information.

```

1188

Structure Criterion

1189

1190

Description: Structure: Structure evaluates the logical organization and coherence of sections and subsections, ensuring that they are logically connected.

1191

1192

1193

Score 1: The survey lacks logic, with no clear connections between sections, making it difficult to understand the overall framework.

1194

Score 2: The survey has weak logical flow with some content arranged in a disordered or unreasonable manner.

1195

Score 3: The survey has a generally reasonable logical structure, with most content arranged orderly, though some links and transitions could be improved such as repeated subsections.

1196

Score 4: The survey has good logical consistency, with content well arranged and natural transitions, only slightly rigid in a few parts.

1197

Score 5: The survey is tightly structured and logically clear, with all sections and content arranged most reasonably, and transitions between adjacent sections smooth without redundancy.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Relevance Criterion

1210

1211

1212

1213

Description: Relevance: Relevance measures how well the content of the survey aligns with the research topic and maintain a clear focus.

1214

1215

1216

1217

1218

Score 1: The content is outdated or unrelated to the field it purports to review, offering no alignment with the topic.

1219

Score 2: The survey is somewhat on topic but with several digressions; the core subject is evident but not consistently adhered to.

1220

Score 3: The survey is generally on topic, despite a few unrelated details.

1221

Score 4: The survey is mostly on topic and focused; the narrative has a consistent relevance to the core subject with infrequent digressions.

1222

Score 5: The survey is exceptionally focused and entirely on topic; the article is tightly centered on the subject, with every piece of information contributing to a comprehensive understanding of the topic.

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Survey-Arena Review Prompt

```
# Paper 1:
```

```
Title: {title_1}
```

```
Figures: {figure_and_captions_1}
```

```
Content: {main_content_1}
```

```
# Paper 2:
```

```
Title: {title_2}
```

```
Figures: {figure_and_captions_2}
```

```
Content: {main_content_2}
```

You are provided with two survey papers on topic: {topic}.

1242
 1243 As the area chair for a top ML conference, you can only select
 1244 one paper. Start with a brief meta-review/reasoning of the
 1245 pros and cons for each paper (two sentences), focusing on:
 1246
 1247 (1) insight and synthesis - moves beyond mere summarization to
 1248 create new understanding and provides clear taxonomy;
 1249 (2) thoroughness and accuracy - comprehensive coverage of
 1250 literature with technical correctness;
 1251 (3) structure and clarity - logical organization with compelling
 1252 narrative;
 1253 (4) scope and impact - well-defined scope with valuable future
 1254 research directions;
 1255 (5) presentation quality - professional polish, clear writing,
 1256 and comprehensive evaluation of figures/tables presence and
 1257 aesthetic quality.
 1258
 1259 Be very critical and do not be biased by what the author claimed.
 1260 Finally, provide your choice in a binary format.
 1261
 1262 ****Your Task:****
 1263 1. Provide a detailed evaluation for Paper 1 using the above
 1264 criteria.
 1265 2. Provide a detailed evaluation for Paper 2 using the same
 1266 criteria.
 1267 3. Make a final decision by comparing the two papers and
 1268 justifying your choice.
 1269
 1270 **STRICT OUTPUT INSTRUCTIONS:**
 1271 - You **MUST** return a single valid JSON object.
 1272 - Output **ONLY** JSON. No explanations, no Markdown, no code fences,
 1273 no additional text before or after the JSON.
 1274 - Use exactly these keys and types:
 1275 - "paper_1_review": string
 1276 - "paper_2_review": string
 1277 - "chosen_paper": "1" or "2"
 1278 - Do **NOT** include any additional keys or trailing commas. If
 1279 unsure, return empty strings for the review fields.
 1280
 1281 Return JSON in exactly this shape:
 1282 {
 1283 "paper_1_review": "Your meta-review and reasoning for paper 1",
 1284 "paper_2_review": "Your meta-review and reasoning for paper 2",
 1285 "chosen_paper": "1 or 2"
 1286 }
 1287
 1288 End your output immediately after the closing.
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297

A.13 COMPARISON BETWEEN AUTOSURVEY AND ITERSURVEY.

1298

Comprehensive Survey on the Alignment of
Large Language Models (LLMs)

1299

1 Introduction to Alignment in LLMs

1300

1.1 Overview of Large Language Models

1301

Large Language Models (LLMs) are a groundbreaking advancement in the field of artificial intelligence, especially in natural language processing (NLP). These models are primarily defined as deep learning systems designed to generate and comprehend human language by learning from vast amounts of textual data. At their core, LLMs utilize transformer architectures to predict subsequent words in a sequence based on the context provided by preceding words, allowing for more nuanced language comprehension and generation.

1302

The architecture of LLMs is their use of the transformer model introduced by Vaswani et al. in 2017, which employs a self-attention mechanism. This mechanism enables the model to weigh the significance of different words in a given context, facilitating a deeper understanding of language. Unlike previous architectures such as recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), which have a sequential processing nature, LLMs capitalize on self-attention to capture longer dependencies effectively.

1303

A foundational aspect of LLMs is their use of unsupervised learning techniques, particularly self-supervised learning. This involves training on an extensive corpus of text data without the necessity for labeled inputs. During this training phase, models learn to predict parts of the text (e.g., the next word in a sentence) based on surrounding context, thereby developing a probabilistic understanding of language. The advent of models such as GPT-3, ChatGPT, and GPT-4 exemplifies how state-of-the-art models in terms of parameters, data, and computational resources can yield significant improvements in performance across a broad range of NLP tasks [1].

1304

The capabilities of LLMs are diverse and extend beyond their ability to generate human-like text and perform tasks such as translation, summarization, and question-answering. As LLMs continue to evolve, they can engage in conversational dialogues, achieving interactions that closely mirror human communication. This versatility is significant, as LLMs find applications in various sectors, spanning customer service, education, healthcare, and creative writing [2]. Notably, LLMs often demonstrate strong performance on multiple benchmarks without specific training, highlighting their remarkable generality and adaptability [3].

1305

Moreover, advanced variations of LLMs known as Multimodal Large Language Models (MLLMs), have emerged to process and generate not only textual data but also integrate information from images, audio, and other data types. This extensibility of functionality allows LLMs to venture into domains like image captioning, video understanding, and the development of interactive AI systems capable of handling multiple input types simultaneously [3].

1306

Despite their impressive competencies, LLMs face criticism and scrutiny. While adept at generating coherent and contextually appropriate outputs, these models often lack genuine understanding of the content they produce. This shortcoming can lead to the generation of plausible but incorrect information, raising concerns regarding the reliability and accountability of their applications [4]. Additionally, the vast and

1307

diverse training datasets essential to LLMs present ethical challenges concerning bias, fairness, and transparency. The data utilized for training may harbor biases that models can inadvertently learn and perpetuate, underscoring the imperative for alignment strategies that incorporate human values and ethical considerations. Addressing these challenges is crucial for ensuring that LLMs are not only efficient but also responsible in their deployment, particularly in sensitive and impactful sectors [5].

1308

As the landscape of LLMs continues to evolve, ongoing research is dedicated to improving their efficiency, accuracy, and alignment with human values. There is a growing interest in tailoring LLMs for domain-specific applications to enhance their performance in specialized tasks such as bioinformatics, legal analysis, and scientific research, where unique terminologies and contexts necessitate precise adjustments to the models [6, 7].

1309

Overall, LLMs represent a transformative leap in AI, driven by significant technical advancements, immense computational resources, and sophisticated learning algorithms. These models have become increasingly integrated into everyday life and various professional practices, maintaining a focus on their alignment with human-centric ethical standards. While the values remain essential, continuous evaluation of their capabilities and limitations will drive further research and application in the pursuit of more robust, equitable, and effective AI systems [8].

1310

1.2 Significance of LLMs in Modern AI

1311

The significance of large language models (LLMs) in modern AI is profound, catalyzing transformative shifts across multiple industries. These models are not just technological advancements; they are enabling innovative applications that reshape industries and enhance operational efficiencies in sectors such as healthcare, education, energy, and cybersecurity. This subsection will explore the integral role of LLMs in these areas, showcasing their impact through specific use cases that highlight their remarkable capabilities.

1312

In the healthcare sector, LLMs are revolutionizing patient care by improving access to and efficiency of medical services. They assist healthcare professionals in diverse tasks, including clinical decision support, patient interaction, and personalized therapy suggestions. For instance, it indicates that LLMs can process vast amounts of medical information to provide relevant healthcare services [9]. By assisting healthcare providers in diagnosing conditions, generating treatment plans, and facilitating communication between healthcare providers, and patient engagement is enhanced, leading to improved productivity and patient outcomes [4]. Additionally, increasing collaborations between AI developers and healthcare experts can emphasize their potential to support clinical workflow, transforming while addressing ethical considerations [9].

1313

In education, LLMs are making significant strides in transforming learning experiences. Educators are utilizing LLMs to create more active learning environments tailored to individual student needs. For instance, they facilitate intelligent tutoring systems capable of delivering personalized learning paths, which cater to diverse students' learning styles and paces. By utilizing LLMs, educators can provide instant feedback, thus enhancing student engagement and understanding [10]. Moreover, LLMs assist in curating high-quality educational content, making classroom resources more accessible and efficient to develop, further emphasizing their transformative role in modern education [11].

1314

In the business realm, LLMs significantly enhance operational efficiency by streamlining workflows and improving decision-making processes. An increasing number of organizations adopt LLMs for applications like customer service automation, sentiment analysis, and content creation. These models analyze customer inquiries and provide real-time responses, improving user experiences while alleviating the burden on human agents. Furthermore, they enable better data-driven decisions by swiftly analyzing extensive

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

Figure 6: LLM-generated survey comparison between AutoSurvey and IterSurvey.

Towards Ethical Alignment of Large Language Models with Human Values: A Comprehensive Survey

Abstract

The alignment of Large Language Models (LLMs) with human values has become essential in artificial intelligence (AI) research as these models increasingly impact various facets of our daily lives. The rapid evolution of LLMs necessitates a thorough understanding of their alignment methodologies to mitigate potential risks and ensure responsible AI development. This survey, which can be found at www.alignment-survey.com, proposes a novel taxonomy of various alignment strategies, from Reinforcement Learning from Human Feedback (RLHF) and Direct Policy Gradient (DPG) to a hybrid approach. Key findings include an overview of the challenges and opportunities of existing frameworks, frequently capturing the complexities of human preferences and the limitations of model outputs. This high-level alignment need for AI systems requires capabilities of increased transparency and explainability, while also maintaining accountability and reliability. Future research directions emphasize the necessity of personalized alignment strategies. In conclusion, this survey fosters ethical AI practices by highlighting these challenges, research gaps, and the way forward. It reflects the diversity and scope of the challenges of the societies that are using responsible AI deployment in a rapidly evolving technological landscape.

1 Introduction

The alignment of Large Language Models (LLMs) with human values and preferences has emerged as a critical area of focus within artificial intelligence, particularly as these models increasingly impact various sectors that significantly impact human lives. The rapid evolution of LLMs has raised concerns about the alignment of AI systems with human values. This alignment is not just a technical challenge but a moral imperative, as misalignment can lead to risks such as biased outputs and misinformation, which undermine trust in AI technologies [79, 39]. Therefore, alignment is integral to the responsible deployment of AI systems, necessitating a comprehensive exploration of current research

1

1. Introduction

Figure 1: Survey Structure Overview

2

1350 datasets and generating actionable insights [12]. The ability of LLMs to produce sophisticated content, 1351 optimize marketing campaigns, and personalize user interactions marks a critical advancement in how 1352 businesses engage with customers and leverage AI technology. 1353

1354 In cybersecurity, LLMs are emerging as powerful tools to strengthen security measures and address 1355 vulnerabilities in digital infrastructures. Their adeptness in performing natural language processing tasks at 1356 scale equips them to analyze potential threats and detect anomalous patterns in vast datasets. Research 1357 highlights their potential to automate threat detection and incident response, enabling security 1358 professionals to respond more effectively to emerging threats [13]. Additionally, LLMs can generate insights 1359 from historical attack data, empowering organizations to preemptively mitigate risks and bolster their 1360 cybersecurity frameworks. 1361

1362 Beyond individual sectors, LLMs present opportunities for cross-industry solution that tackle complex 1363 challenges. For example, in supply chain management, LLMs can use predictive analytics by analyzing 1364 market trends and consumer behaviors, facilitating more efficient inventory management and logistics 1365 operations [14]. The integration of LLMs across various industries not only promotes operational efficiency, 1366 but also fosters collaboration and innovation. 1367

1368 As LLMs continue to evolve, their role in enhancing accessibility in education becomes increasingly 1369 significant. They can provide expertise by granting individuals access to sophisticated AI tools that were 1370 previously unavailable to specialized professionals. This has crucial implications for underserved 1371 communities, where LLMs can help bridge knowledge gaps in areas such as health education and legal 1372 assistance. By equipping users with pertinent information, LLMs empower them to make informed 1373 decisions that improve their quality of life [15]. 1374

1375 The rapid development and deployment of LLMs underscore the importance of ethical considerations and 1376 the necessity for responsible AI use across all applications. As organizations adopt LLM technologies, 1377 addressing biases in training data, ensuring transparency of their inner workings, and maintaining overall 1378 accountability in algorithmic decision-making become paramount. With potential risks arising from reliance 1379 on these models, it is crucial for stakeholders to establish guidelines and frameworks that ensure fairness, 1380 mitigate bias, and preserve user trust [16]. 1381

1382 In conclusion, the significance of LLMs in modern education is undeniable. Their transformative 1383 natives are evident across various sectors, with the capability to revolutionize traditional delivery, reshape educational practices, 1384 enhance business operations, strengthen cybersecurity efforts, and promote equitable access to 1385 information. Moving forward, ongoing research and collaboration among developers, researchers, and 1386 industry practitioners will be essential in realizing the full potential of LLMs while concurrently addressing 1387 the ethical challenges and societal implications they bring. 1388

1389 **1.3 Human Interaction and LLMs** 1390

1391 Large Language Models (LLMs) have emerged as a transformative force in the landscape of human-computer interaction (HCI), particularly in the realm of conversational AI. These models, capable of 1392 processing and generating human-like text, are fundamentally reshaping how users engage with technology 1393 across various domains. This subsection delves into the intricacies of human interaction with LLMs, 1394 emphasizing their facilitation of conversational AI, implications for user experience, and the factors that 1395 enhance user engagement. 1396

1397 Furthermore, effective alignment for LLMs requires an iterative process that embraces feedback from 1398 various stakeholders. Traditional training methods for AI systems often follow a linear approach, focusing 1399 primarily on model training and evaluation. However, the evolving nature of societal values and norms 1400 necessitates an adaptive approach to alignment that accommodates change over time. Stakeholders should 1401 be actively engaged in the ongoing assessment and refinement of AI systems to ensure they remain aligned 1402 with shifting human values. This perspective aligns with the notion of "bidirectional Human-AI Alignment," 1403 wherein both AI systems and users are in a constant state of adaptation to each other [68]. 1404

1405 Another significant sociotechnical challenge concerns the need for accountability and governance structures 1406 that can manage the complexities associated with AI deployment. As LLMs are increasingly integrated into 1407 decision-making processes across various domains—such as healthcare and criminal justice—the 1408 ramifications of misalignment become more pronounced. Establishing robust mechanisms for 1409 accountability and traceability in AI decision-making is essential, as it requires AI systems to be designed 1410 with clear standards of transparency and governance. It is crucial for stakeholders to understand how 1411 alignment is achieved and can discuss the associated ethical considerations. Such frameworks help to 1412 mitigate risks related to misalignment and restore public trust in AI systems [69]. 1413

1414 The social context of AI deployment raises implications of misalignment that are particularly poignant. For 1415 example, employing LLMs in high-stakes environments, such as justice or law enforcement, necessitates 1416 balancing user autonomy with the potential for unintended, i.e., i.e., consequences. In these contexts, 1417 misalignment can lead to real-world repercussions, such as reinforcing existing inequalities or favoring 1418 certain groups over others. Clear guidelines, rigorous ethical considerations and stakeholder engagement 1419 are instrumental in navigating these challenges and enhancing effective alignment strategies [70]. 1420

1421 To promote successful alignment, organizations must also consider the broader impact of their AI systems 1422 on societal values. This involves recognizing not only the immediate outcomes of AI outputs but also how 1423 these systems can shape and influence public perception and behavior over time. As capabilities 1424 continue to evolve, the potential for consequential impacts grows, highlighting the interdependence of 1425 technology and society. Researchers and practitioners must develop methodologies for assessing alignment 1426 that integrate sociotechnical dimensions and respond to evolving societal challenges [71]. 1427

1428 In conclusion, adopting a sociotechnical perspective in the alignment of LLMs requires the multifaceted 1429 nature of the challenges involved, necessitating collaborative approaches that ensure a diverse representation 1430 in AI development. Integrating feedback and adaptive mechanisms, along with clear governance 1431 structures, stakeholders' in work towards achieving effective alignment. Furthermore, by embedding 1432 ethical considerations and social implications into the design process, the development of LLMs can better 1433 reflect the diverse values of society, ultimately enhancing trust and effectiveness in AI systems. 1434

1435 **3 Techniques for Aligning LLMs** 1436

1437 **3.1 Reinforcement Learning from Human Feedback (RLHF)** 1438

1439 Reinforcement Learning from Human Feedback (RLHF) represents a pivotal approach in aligning Large 1440 Language Models (LLMs) with human values and preferences. This framework enables models to learn 1441 desirable behaviors through direct interactions and feedback provided by human evaluators, rather than 1442 relying solely on traditional supervised training techniques. As LLMs are increasingly tasked with complex 1443 functions across diverse applications, RLHF has become essential for developing models that not only 1444 perform accurately but also align with user expectations in behavior and output. 1445

1. Introduction

methodologies. This survey aims to provide a thorough overview of the literature on LLM alignment, addressing the theoretical foundations and practical methodologies that have emerged in this rapidly evolving field [67]. Various alignment strategies, including Reinforcement Learning from Human Feedback (RLHF) [52] and Direct Preference Optimization (DPO) [37], are explored, alongside emerging frameworks for personalized and cultural alignment [50]. The structure of this survey is summarized in Figure 1, which outlines the key components and sections we will cover. By synthesizing insights from recent literature, this survey seeks to fill critical gaps in understanding how effective alignment can be achieved across diverse contexts and user demographics.

The historical context of alignment research reveals a path from a simplistic rule-based systems to more sophisticated methods that consider the complexities of human values [98]. Early alignment strategies primarily focused on ensuring that AI systems adhered to predefined specifications, often overlooking the rich diversity of human preferences. Contemporary approaches leverage advanced techniques like RLHF, which utilizes human feedback as reward signals, thereby aligning LLMs to refine their outputs based on user feedback [121]. Conversely, RLHF presents challenges such as the difficulty of eliciting accurate and consistent data [17]. Additionally, while DPO offers a streamlined approach for generating model outputs based on user preferences, it too faces difficulties in capturing the multifaceted nature of human values across varied contexts [14]. The limitations inherent in these existing alignment frameworks underscore the necessity for more robust approaches that incorporate ethical considerations alongside user input in alignment processes, as recent studies advocate for the integration of fairness and accountability into these methodologies [26].

A pivotal aspect of alignment involves the integration of user feedback, enabling models to adapt to the dynamic and diverse experiences of users across various contexts [8]. Techniques such as active learning and diverse learning strategies have been proposed to enhance alignment with individual user preferences, yet these methods often require considerable computational resources and may not scale. If applied to a less varied population [76]. Furthermore, the complexity of user preferences presents challenges in accurately capturing them [14]. As we explore alignment, it becomes evident that understanding these dynamics is crucial in addressing the challenges posed by the dynamic nature of user preferences and the limitations of current methodologies, which often result in static models that do not capture the nuances of real-world interactions.

In summary, this survey emphasizes that the alignment of LLMs with human preferences is an undertaking requiring in-depth engagement with the underlying theories, methodologies, and ethical considerations involved [33]. By fostering a deeper understanding of alignment as a multifaceted challenge, the research community can work towards creating AI systems that are not only technically proficient but also socially responsible and reflective of the values of the communities they serve [92]. The exploration of personalized alignment strategies is particularly vital as user interactions

3

3. Theoretical Foundations of Alignment

3.1 Theoretical Foundations of Alignment

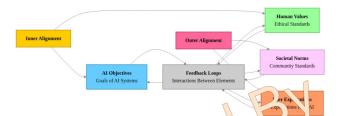


Figure 2: Conceptual Framework of Inner and Outer Alignment in AI Systems

The alignment of Large Language Models (LLMs) with human values is a pivotal area of research that underpins effective interactions between AI systems and users. This section will explore the theoretical foundations of alignment, including the distinctions between inner and outer alignment, the evolution of alignment methodologies, the challenges posed by biases, and the implications of cultural representation. Inner alignment focuses on the congruence of an AI's learned representations with human values, while outer alignment pertains to how an AI's behavior aligns with broader societal norms [62]. This dual framework reveals the multifaceted nature of alignment challenges, such as the dynamic nature of human values and contextual factors that shape user preferences, which can significantly differ across cultural landscapes [38, 75]. Understanding these distinctions is crucial as we examine the historical advancements in alignment methodologies, which have transitioned from rigid, rule-based systems to more flexible, data-driven approaches capable of adapting to complex human expectations [77, 99]. Early AI systems relied heavily on fixed representations that proved inadequate for capturing the complexities of human behavior, in contrast, contemporary approaches leverage reinforcement learning techniques to enhance responsiveness [14, 46].

The conceptual framework of alignment, illustrated in Figure 2, highlights the interplay between inner and outer alignment in AI systems. However, defining and implementing effective alignment strategies is complicated by the limitations of existing frameworks, which often struggle to capture the diversity of human experiences. Issues of bias and fairness have emerged as significant concerns, particularly as models trained on predominantly Western datasets may misrepresent the values of non-Western cultures, leading to misaligned systems in diverse applications [77, 99]. Research suggests that existing alignment methodologies frequently overlook the implications of these biases [62], highlighting the need for frameworks that are not only technically robust but also ethically sound and culturally aware. Approaches such as the Cultural Alignment Test (CAT) and the LLM-GLOBE benchmark have been introduced to systematically evaluate how well LLMs align with cultural values, revealing critical insights into areas of misalignment that require attention [54]. Furthermore, integrating user feedback mechanisms is essential; these systems must continuously adapt to individual user preferences, thereby necessitating a deeper understanding of how human values can inform model development and evaluation processes [85].

5

Figure 7: LLM-generated survey comparison between AutoSurvey and IterSurvey.

1404
 1405
 1406
 1407
 1408
 1409
 1410 **References**
 1411 [1] A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4
 1412 [2] A Comprehensive Overview of Large Language Models
 1413 [3] Survey of different Large Language Model Architectures, Their Benefits and Challenges
 1414 [4] Large language models: A brief history, the potentials and pitfalls
 1415 [5] Challenges and Applications of Large Language Models
 1416 [6] Advancing bioinformatics with large language models: Opportunities, applications and perspectives
 1417 [7] Large Language Models in Bioinformatics: A Survey
 1418 [8] Are We Testing or Being Tested? Exploring the Practical Applications of Large Language Models in Software Testing
 1419 [9] Harnessing Large Language Models for Mental Health: Opportunities, Challenges, and Ethical Considerations
 1420 [10] LLMs in Education: Novel Perspectives, Challenges, and Opportunities
 1421 [11] Automatically Generating CS Learning Materials with Large Language Models
 1422 [12] Harnessing the Potential of Large Language Models in Modern Marketing Management: Applications, Future Directions, and Strategic Recommendations
 1423 [13] A Survey of Large Language Models in Cybersecurity
 1424 [14] The Potential of Large Language Models in Supply Chain Management: Enabling Decision-Making, Efficiency, and Innovation
 1425 [15] Using large language models to predict regression
 1426 [16] Ethics Whitepaper: A Call to Action on Ethical Research into Large Language Models
 1427 [17] Leveraging Large Language Models for Patient Engagement and Experience in Conversational AI in Digital Health
 1428 [18] Exploring Autonomy as a Key through Lens of Large Language Models: A Review
 1429 [19] Script-Based Dialog Policy Planning for LLM-Powered Conversational Agents: A Basic Architecture for an "AI Therapist"
 1430 [20] Attacks, Defenses and Evaluations for LLM Conversation Safety: A Survey
 1431 [21] CloChat: Understanding How People Customize, Interact, and Experience Personas in Large Language Models

(a) AutoSurvey

3.2 Strengths of ChatGPT

ChatGPT, developed by OpenAI, has garnered significant attention due to its impressive capabilities in generating coherent and contextually relevant responses across a variety of domains. A key strength of ChatGPT lies in its ability to engage in human-like conversation, effectively positioning it as a conversational agent across numerous applications. This conversational fluency is largely attributed to its underlying architecture, which employs the transformer model—an advancement that has substantially enhanced the effectiveness of many natural language processing (NLP) tasks [57].

The transformer architecture is particularly advantageous for text generation, thanks to its self-attention mechanism. This feature enables the model to weigh the importance of different words in a sentence relative to one another, leading to a deeper understanding of context compared to previous models. As a result, ChatGPT generates responses that are not only grammatically correct but also contextually appropriate, demonstrating a higher level of coherence in its outputs [12].

Another notable strength of ChatGPT is its proficiency across a wide range of domains, which is facilitated by extensive training and answer queries on subjects spanning science, technology, arts, and personal advice. For example, studies indicate that ChatGPT can generate human-like responses in educational contexts, assisting students with queries across multiple disciplines [6]. By adapting its knowledge to the types of questions posed, ChatGPT delivers tailored responses, ultimately enhancing user engagement and satisfaction.

(a) AutoSurvey

Figure 8: LLM-generated survey comparison between AutoSurvey and IterSurvey.

REFERENCES

[1] Aakanksha, Arash Ahmadian, Beyza Ermiş, Seraphina Goldfarb-Tarrant, Julia Kreutzer, Marziah Fadaee, and Sara Hooker. The multilingual alignment prism: Aligning global and local preferences to reduce harm, 2024.

[2] Sisira Adikari, Craig McDonald, and John Campbell. Quantitative analysis of desirability in user experience, 2016.

[3] Saleh Afzoon, Zahra Jahanandish, Phuong Thao Huynh, Amin Beheshti, and Usman Naseem. Modeling and optimizing user preferences as copilots: A comprehensive survey and taxonomy, 2025.

[4] Arash Ahmadian, Chris Cremer, Mathias Gölz, Michael Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Marziah Fadaee. Back to basics: Revisiting reinforce style optimization of learning from human feedback in ILMs, 2024.

[5] Georg Ahnert, Leon Stoyanov, Florian Lemmerich, Claudia Wacker, and Markus Stachniss. A fair epsilon: A framework for measuring human perceptions of algorithmic fairness, 2021.

[6] Reza Amini, Saman Salavati, Nourouzi, P. Alizadeh, Hitzler, and Reza Amini. Towards complex ontology alignment in using large language models, 2024.

[7] Chinmay Andulkar, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D. Goodman. Star-gate: Teaching language models to ask clarifying questions, 2024.

[8] Usman Anwar, Abulhair Saparov, Javier Calvo, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana, Eric Stoller, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman, Zhaowei Zhang, Mario Günther, Anton Kuřínek, Jose Hernandez-Orallo, Lewis Hamer, Eric Bigelow, Alejo Lopez, Laura Langoso, Tomasz Korbak, Zhiang Ruiqi Zhong, Michael Bergstrahl, Gabriel Recchia, Giulio Cesari, Alia Chan, Markus Anderl, Lillian Edwards, Aleksander Tetrov, Christian Schroeder de Witt, Nushe Ramesh Motwan, Joshua Bengio, Daniel Rubin, Philip H. S. Torr, satu Albani, Tegan Maharaj, Jakob Foerster, Michael T. Rabe, He-Qing Ato, S. Kasirzadeh, Yejin Choi, and David Krueger. Foundation of the 100 days in assuring alignment and safety of large language models, 2022.

[9] Xuechen Li, Brian Liu, Elina Wang, Ilia Susholtzky, and Thomas L. Griffiths. Measuring implicit bias in explicitly unbiased large language models, 2024.

[10] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kerton, Tom Conery, Sheer El-Showk, Nelson Elhage, Zai Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and David Bauman. The LLaMA-2 family of models, 2024.

28

(b) IterSurvey

5. Performance Evaluation of ChatGPT

Table 1: Performance Evaluation of ChatGPT across Different Domains. Abbreviations: MCQs = Multiple Choice Questions, USMLE = United States Medical Licensing Examination, F1 = F1 Score

Domain	Metric	Accuracy	Strengths	Weaknesses
Education	MCQs	56.9%	High accuracy in coding (~75% on LeetCode)	Low accuracy in concepts (33.4% in DBMS)
Healthcare	USMLE	58.2% (Top 20% Chicago)	Potential utility in education	Lacks nuanced understanding (20% in Anatomy)
Legal	F1 Score	0.49 (vs. 0.86 with guidance)	Generates relevant content	Incomplete reasoning paths

stakeholders remain vigilant in addressing the ethical and regulatory challenges they present, ensuring that the benefits of AI are realized without compromising ethical principles or consumer trust.

(b) IterSurvey

1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523