
An AR Debugging Tool for Robotics Programmers
Bryce Ikeda

University of Colorado Boulder
Colorado, United States

bryce.ikeda@colorado.edu

Daniel Szafir
University of Colorado Boulder

Colorado, United States
daniel.szafir@colorado.edu

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: In this paper we develop an AR system to support programmers debug robots. Our design can: (a) visualize and
measure distance; (b) indicate detected objects and display textual information; (c) display depth sensor readings; (d) visualize
the estimated position of the robot; (e) display the robot’s coordinate system origin and orientation; (f) provide color indicators
that can be controlled by the programmer; (g) visualize the planned path trajectory of the robot; (h) visualize the travelled path
history of the robot.

ABSTRACT
Programming robots is a challenging task exacerbated by environ-
mental factors, faulty hardware, and software bugs. When coding
issues arise, traditional debugging techniques such as output logs
or added print statements that may help in typical computer ap-
plications are not always useful for roboticists. This is because
robots often have an array of sensors that output complex data
types, which can be difficult to decipher as raw text data. As an
alternative, we explore how an augmented reality head mounted
display (ARHMD) may facilitate robotics programming by pro-
viding a medium for conveying 3D visualizations of robot data
superimposed directly into the programmer’s environment. Such
visualizations can provide users with an intuitive way to confirm
their understanding of the robot’s inner state and sensor data. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VAM-HRI’21, March 8, 2021, Boulder, CO
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

this paper, we outline an augmented reality (AR) debugging tool
for aiding roboticists with analyzing and fixing programs that elicit
unwanted robot behavior and propose a series of planned studies to
further understand the intersection of robotics programming and
AR.

CCS CONCEPTS
• Computer systems organization→ External interfaces for
robotics; •Human-centered computing→Mixed / augmented
reality; • User interface design;

KEYWORDS
Augmented Reality (AR); Mixed Reality (MR); ARHMD; interface
design; robots; debugging

1 INTRODUCTION
Programming robots is difficult. In addition to standard challenges
faced by any computer programmer, such as syntax, logic, compila-
tion or runtime errors, roboticists must also deal with complications
in added system variability due to environmental factors and ir-
regular sensor reliability. Typical debugging techniques, such as
reading raw data from print statements or log files, are both tedious
and often confusing. For example, end effector transformations can

https://doi.org/10.1145/1122445.1122456

VAM-HRI’21, March 8, 2021, Boulder, CO Bryce Ikeda and Daniel Szafir

be difficult to validate via matrices, but when inspected through 3D
visualizations, can be easily confirmed. To address this limitation,
we are interested in leveraging the unique capabilities of AR tech-
nologies, which can project real-time data directly into the user’s
environment, to create an intuitive way for a user to understand the
robot’s operation and therefore, debug errors. AR interfaces have
three key attributes that differentiate them from other systems: (1)
they combine real and virtual objects in the user’s current environ-
ment, (2) applications can be run interactively in real time, and (3)
real and virtual objects can be aligned together and expressed as
one in the scene [1].

Our work builds on research investigating the interplay between
robotics and AR. For example, Collet and MacDonald examined 2D
AR visualizations via their system ARDev, and found two important
benefits for debugging: (1) it provides data validation preventing
false conclusions, and (2) it produces immediate confirmation of
hardware performance and limitations [2]. While promising, this
work was limited as the visualizations were 2D and displayed on a
TV screen using a top down view of the robot thus lacking stereo
depth cues. This setup also requires additional perspective transla-
tion on the part of the user. In contrast, we explore the use of an
ARHMDwhich provides all of the data visualizations within a single
context in the user’s real environment. We have developed our own
ARHMD debugging system to both validate the findings of Collett
and MacDonald and to compare the results from their 2D display
with our ARHMD system to better understand the importance of
in situ visualizations. Aspects of our AR system, such as geometric
data visualizations, are also inspired by applications developed in
related prior work examining AR and robotics [2–5]. We also add
easily-customized visualizations for abstract data, such as textual
information or color coded objects, which the programmer can take
advantage of while developing their code. Going forward, we pro-
pose a small participant-observer ethnographic study of our system
using two coding scenarios in which roboticists will be tasked with
correcting bugs within our debugging tool. After this initial study,
we plan on transitioning to a “fly on the wall” ethnographic study
with a larger number of participants.

2 RELATEDWORK
Previous studies have investigated the benefits of using AR as a
tool to see the world from the robot’s point of view. For example ap-
plications have been developed to help users understand the inner
state of mobile robots, manipulators, and robotic swarms [2, 6, 7].
However, these systems overlay their data on 2D screens, which re-
moves the depth cue of stereopsis and may remove the data from its
true environmental context. This form of data rendering also forces
the user to shift perspectives between the real-world view and the
camera view. Furthermore, now that the Robot Operating System
(ROS) is widely adopted for robotics applications, the software used
in such previous studies is becoming obsolete. Other research has
explored how AR tablets may assist K–12 students in understanding
robots [3, 5, 8]. While this work helps provide insights on how to
educate new roboticists, our research focuses on roboticists that
are already experienced in programming ROS applications. Similar
to our AR debugging tool, Muhammad et al. and Cleaver et al. have
developed an AR framework for visualizing sensor data obtained

from a robot [4, 5]. Although robotic debugging is identified as a
potential application for their system, their work focuses primarily
on using a 2D tablet to communicate robot motion intent and im-
proving robotic education [4, 5]. This contrasts with our system,
which focuses primarily on the effects of using an ARHMD during
the debugging process. ARHMDs have shown promise in many
related avenues of HRI, such as providing information on robot
intent, robot constraints, and sensor information for collocated
users [9–12], but to our knowledge, such information has yet to be
used within the context of providing assistance in robot debugging.

3 SYSTEM ARCHITECTURE
ARHMD Platform: We use the Microsoft HoloLens 2 for display-
ing augmented reality visualizations. The HoloLens 2 is an updated
version of the HoloLens 1 with an increased field-of-view of 52
degrees and a higher display resolution of 2048×1080px. It includes
multiple sensors, including an eye tracker, microphone, inertial
measurement unit, depth sensor, and camera.

Robot Platform: Although our system is designed to be a gen-
eral purpose debugging aid, for our upcoming study we will be
using a TurtleBot 2. The TurtleBot is a low-cost, differential drive
mobile robot commonly used as an entry machine by roboticists.
The TurtleBot is controlled through a laptop running ROS, one of
the leading software architectures used to program robots.

Scene Rectification: To provide accurately positioned visual-
izations, we align the coordinate frames of the TurtleBot and the
HoloLens. To accomplish this, we first detect the initial position
and pose of the robot by using the HoloLens camera and a fiducial
marker placed on top of the TurtleBot [13]. We also use the fiducial
marker to provide real-time tracking of the TurtleBot. This, in turn,
provides data visualizations of the on-board depth sensor at its
origin and a debugging text box on top of the robot (see Figures 1b
and 1c). Once we align the origin of our space, we place a spatial
anchor into our scene. Using the built-in HoloLens mapping and
tracking system, the HoloLens collects data of the environment as
the user moves around their workspace. Once enough data is col-
lected, a spatial anchor can be placed as a common reference point
for all visualizations. Additionally, this anchor can persist between
application sessions. Therefore, the user will only need to perform
a one-time environment rectification as long as the TurtleBot is
placed in the same starting position between test runs.

Data Types for Visualization: We have developed an AR de-
bugging tool using Unity, a 3D game engine for developing simula-
tions and experiences, to enable data visualizations on the HoloLens.
Collett and MacDonald have identified four common data types
that encapsulate robot data at the interface level: scalar, vector,
geometric and abstract [2]. Although they base their conclusion on
data types used in Player/Stage, a different robotics platform, we
determine identical information is used in ROS.

Data Visualizations:We represent scalar data from the depth
sensor through a virtual line from the origin of the sensor along the
axis of measurement for each range value (see Figure 1c). Vector
data, such as the orientation of the world space, is depicted through
a virtual axis game object (see Figure 1e). The red arrow points
in the x direction, the green arrow points in the y direction and
the blue arrow points in the z direction. Geometric data, including

An AR Debugging Tool for Robotics Programmers VAM-HRI’21, March 8, 2021, Boulder, CO

detected object locations, the TurtleBot’s estimated position silhou-
ette, the planned path trajectory and the travelled path history, can
be represented through virtual objects aligned directly in the scene
with their corresponding visual definitions as developed in various
prior works [2–5] (see Figures 1b, 1d, 1h, and 1g). Finally, abstract
data is visualized by displaying textual information in the environ-
ment and by the color change of virtual objects (see Figures 1b and
1f). To provide as little overhead as possible for the participants,
scalar, vector and geometric data are displayed by default. How-
ever, abstract data can be directly altered by the text or color the
participant would like to display. To send the data from ROS to our
HoloLens application we use ROS#, a set of open source software
libraries and tools for communicating with ROS from Unity [14].

4 PROPOSED EXPERIMENTAL DESIGN:
Our proposed study will be divided into two stages: (1) an informal
participant-observer ethnographic pilot study, where users provide
feedback on the usability of the AR debugging device and the ex-
perimental process, and (2) a larger, observer-only ethnographic
study of our system where we work to answer four questions:

• In what ways can AR help with debugging, e.g., reducing
actual and/or perceived debugging time, steps, effort, etc.?

• What types of software bugs is AR best suited to address?
• How might providing augmented reality data visualizations
influence a programmer’s debugging practice?

• While using an ARHMD, what specific aspects of augmented
reality do programmers find most useful for programming a
robot?

For these two stages, we are using two modified tasks proposed by
Collett and MacDonald that represent standard tasks robot develop-
ers typically code: a detection task and a finder task [2]. Since these
tasks require object detection and navigation, the programmer will
need to take advantage of multiple forms of data types and control
sequences. We will provide the user with an an autonomous robot
framework that includes the code for localization, path trajectory
calculations, path following control and object detection. The pro-
grammer, in turn, will only need to use our object detection output
to guide their decisions for sending waypoints to our path trajec-
tory algorithm to control the robot. The detection task is designed
to be a warm-up to allow the user to become familiar with this code
base. The robot will need to detect an object a few meters in front
of its camera, drive up to it and stop a short distance away. Next, in
the finder task, the robot should either systematically or randomly
search a room until it finds a specific object. Once the robot detects
the object and its position, it should drive up to it and stop a short
distance away.

5 EXPERIMENTAL PROCEDURE
For both stages of our experimental design, we will be using the
following guidelines. Participants will first be chosen from a pool
of programmers with experience using ROS, but are not required
to have prior experience with the HoloLens or the TurtleBot. Due
to varying levels of experience and the added learning curve of
using our HoloLens application, we plan for the experiment to last
approximately 1–2 hours. One session will consist of five phases:

(1) introduction, (2) training, (3) task one, (4) task two, (5) conclu-
sion. (1) Participants will be given an overview of the experiment,
a consent form to sign and a pre-survey so we can determine their
current experience levels with the HoloLens and programming in
ROS. They will then be asked to think and process out loud while
they are performing the tasks, and may be reminded if necessary
[15]. This will provide us with critical insight as to the effect our
AR system has on their debugging process in real time. (2) Next, the
participants will be given the HoloLens and a video to watch, pro-
viding an overview of the debugging system and examples of what
the two programming tasks will look like. Each participant will be
required to perform multiple tasks within the virtual environment
to reach a minimum experience baseline with the HoloLens. (3)
Participants will begin the detection task, and will finish once the
robot reaches its goal. (4) Participants will begin the finder task,
and will finish once the robot reaches its goal. (5) Once participants
have completed these tasks at their own pace, they will be given
a post-survey based on the System Usability Scale to evaluate the
usefulness of the AR debugging tool [16]. Lastly, we will conduct
a short interview to gain further insight into the effects of the AR
debugging tool on their coding process. A debriefing will follow.

6 CONCLUSION
In this paper, we describe a prototype ARHMD debugging sys-
tem designed to aid roboticists in programming robots. Using the
HoloLens, we provide standard visualizations for scalar, vector
and geometric data, overlaying them in the user’s environment in
real time. In addition, we expand Collet and MacDonald’s ARDev
design by implementing programmer customizable visualizations
for abstract data, such as text boxes and color-controlled game
objects, and modernize their ideas by creating a framework for
AR-supported robot debugging in ROS. We outline our proposed
experimental procedure to evaluate the effectiveness of our system
in assisting a participant with correctly identifying and fixing bugs
in their code. We anticipate that by providing an intuitive, visual
view of the inner state of the robot through in situ visualizations
using an ARHMD, users will better understand their programs and
consequently debug issues more effectively.

ACKNOWLEDGMENTS
Thanks to Professor Thomas Howard whose template code was
extended in this work.

REFERENCES
[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. Recent

advances in augmented reality. IEEE Computer Graphics andApplications, 21(6):34–
47, 2001.

[2] Toby Collett and Bruce A. MacDonald. An augmented reality debugging system
for mobile robot software engineers. Journal of Software Engineering for Robotics,
1:18–32, 2010.

[3] Mark Cheli, Jivko Sinapov, Ethan E. Danahy, and Chris Rogers. Towards an
augmented reality framework for k-12 robotics education. In Proceedings of the
1st International Workshop on Virtual, Augmented,and Mixed Reality for HRI, 2018.

[4] F. Muhammad, A. Hassan, A. Cleaver, and J. Sinapov. Creating a shared reality
with robots. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 614–615, 2019.

[5] Andre Cleaver, Faizan Muhammad, Amel Hassan, Elaine Short, and Jivko Sinapov.
Sensar: A visual tool for intelligent robots for collaborative human-robot interac-
tion, 2020.

[6] Alan G. Millard, Richard Redpath, Alistair M. Jewers, Charlotte Arndt, Russell
Joyce, James A. Hilder, Liam J. McDaid, and David M. Halliday. Ardebug: An

VAM-HRI’21, March 8, 2021, Boulder, CO Bryce Ikeda and Daniel Szafir

augmented reality tool for analysing and debugging swarm robotic systems.
Frontiers in Robotics and AI, 5:87, 2018.

[7] Fabrizio Ghiringhelli, Alessandro Giusti, Jerome Guzzi, Gianni Di Caro, Vin-
cenzo Caglioti, and Luca Maria Gambardella. Interactive augmented reality for
understanding and analyzing multi-robot systems. 09 2014.

[8] Stéphane Magnenat, Morderchai Ben-Ari, Severin Klinger, and Robert W. Sumner.
Enhancing robot programming with visual feedback and augmented reality.
In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’15, page 153–158, New York, NY, USA, 2015.
Association for Computing Machinery.

[9] Hooman Hedayati, Michael Walker, and Daniel Szafir. Improving collocated
robot teleoperation with augmented reality. In Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’18, page 78–86, New
York, NY, USA, 2018. Association for Computing Machinery.

[10] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tompkin,
George Konidaris, and Stefanie Tellex. Communicating Robot Arm Motion Intent
Through Mixed Reality Head-Mounted Displays, pages 301–316. 01 2020.

[11] Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir. Communi-
cating robot motion intent with augmented reality. In Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction, HRI ’18, page
316–324, New York, NY, USA, 2018. Association for Computing Machinery.

[12] Matthew B Luebbers, Connor Brooks, Minjae John Kim, Daniel Szafir, and Bradley
Hayes. Augmented reality interface for constrained learning from demonstration.
In Proceedings of the International Workshop on Virtual, Augmented, and Mixed
Reality for HRI (VAM-HRI), Daegu, Korea (South), pages 11–14, 2019.

[13] L. Qian, Ehsan Azimi, P. Kazanzides, and N. Navab. Comprehensive tracker based
display calibration for holographic optical see-through head-mounted display.
ArXiv, abs/1703.05834, 2017.

[14] Martin Bischoff, David Whitney, and Eric Vollenweider. ros-sharp. https://github.
com/EricVoll/ros-sharp.git, 2017.

[15] Marsha E Fonteyn, Benjamin Kuipers, and Susan J Grobe. A description of think
aloud method and protocol analysis. Qualitative health research, 3(4):430–441,
1993.

[16] John Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11
1995.

https://github.com/EricVoll/ros-sharp.git
https://github.com/EricVoll/ros-sharp.git

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Proposed Experimental Design:
	5 Experimental Procedure
	6 Conclusion
	Acknowledgments
	References

