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Abstract

Pre-trained language models (PLMs) perform
well in In-Topic setups, where training and test-
ing data come from the same topics. However,
they face challenges in Cross-Topic scenarios
where testing data is derived from distinct top-
ics. This paper analyzes various PLMs with
three probing-based experiments to better un-
derstand the reasons behind such generalization
gaps. For the first time, we demonstrate that
the extent of these generalization gaps and the
sensitivity to token-level interventions vary sig-
nificantly across PLMs. By evaluating large
language models (LLMs), we show the use-
fulness of our analysis for these recent mod-
els. Overall, we observe diverse pre-training
objectives and architectural regularization con-
tribute to more robust PLMs and mitigate gen-
eralization gaps. Our research contributes to a
deeper understanding and comparison of lan-
guage models across different generalization
scenarios. !

1 Introduction

Fine-tuning is widely used and imparts NLP tasks
to pre-trained language models (PLMs) (Devlin
etal., 2019; Liu et al., 2019; He et al., 2021; Rad-
ford et al., 2019) resulting in remarkable perfor-
mance - including GLUE (Wang et al., 2018) or
SuperGLUE (Wang et al., 2019). However, such
benchmarks underrepresent challenges of more re-
alistic and challenging applications, like Argument
Mining (AM) tasks (Lawrence and Reed, 2019).
In AM tasks, Cross-Topic evaluation is commonly
used to assess the essential scenario of generaliz-
ing towards unseen topics embodying distinct vo-
cabulary compared to training data (Slonim et al.,
2021). More precisely, we induced covariant distri-
bution shifts by withholding instances of specific
topics (like Gun Control) for testing - where the
dataset gives the topic-instances assignment. While
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Figure 1: Generalization gap of fine-tuning PLMs on
argumentative stance detection (Stab et al., 2018) in the
In- or Cross-Topic evaluation setup. The dashed line
marks the ideal case of equal performance.

these are semantic shifts, there are fewer structural
differences (like input length) compared to train-
ing data than targeting unseen text domains (Wang
et al., 2023). Figure 1 illustrates the expected per-
formance gap of comparing Cross-Topic with the
generally used In-Topic evaluation setup when fine-
tuning on the UKP ArgMin dataset (Stab et al.,
2018). This AM dataset labels arguments as in
favor, against, or neutral to one of eight topics. No-
tably, we observe that the gaps between In- and
Cross-Topic vary considerably across PLMs - with
BART outperforming the others in the Cross-Topic
scenario. This observation prevents us from gener-
alizing findings from one scenario to another, such
as determining the best-suited PLM.

While specific vocabulary encapsulates relevant
semantics for distinguishing between topics, it can
also introduce spurious correlations (Thorn Jakob-
sen et al., 2021; Reuver et al., 2021). As such,
understanding how PLMs encode tokens is vital
for comprehending generalization gaps between
In-Topic and Cross-Topic evaluations. Although
probing (Belinkov et al., 2017; Conneau et al.,
2018) methods allow us to analyze and compare
token representations, typically, single properties,
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such as part-of-speech, are studied (Tenney et al.,
2019a,b). Nevertheless, despite little research com-
paring such properties across generalization setups
(Aghazadeh et al., 2022; Zhu et al., 2022), we be-
lieve probing can be incredibly useful in under-
standing gaps between different setups. There-
fore, for the first time, we propose a thorough
analysis of In- vs. Cross-Topic generalization
gaps using token- and span-level probing tasks
(§ 2) across various PLMs. Specifically, this work
is structured around three experiments, consider-
ing three linguistic tasks (dependency-tree parsing,
part-of-speech tagging, and named-entity recogni-
tion) and argumentative stance detection using the
UKP ArgMin dataset as a reference:

How do generalization gaps of PLMs differ af-
ter pre-training? (§ 4) We find generalization
gaps substantially differ across PLMs and that they
become more prominent for tasks with greater se-
mantically difficulties, such as NER. Further, prob-
ing generally falls short regarding lexical unseen
instances - like highly rare entities. Subsequently,
we evaluate large language models (LLMs) and
notice their generally higher performance but also
higher generalization gaps. Interestingly, dedupli-
cating the pre-training data reduces these gaps and
enhances performance.

How do PLMs depend on topic-specific vocabu-
lary? (§ 5) Next, we remove the topic-specificity
of tokens using amnesic probing and find that
PLMs significantly differ in their reliance on and
robustness concerning such semantic features.

How do generalization gaps evolve during fine-
tuning? (§ 6) Finally, we re-probe tuned PLMs
on the UKP ArgMin dataset and find that In-Topic
fine-tuning erases more linguistic properties than
Cross-Topic fine-tuning.

To sum up, we expand the scope of probing by
comparing and contrasting In- and Cross-Topic sce-
narios across various language models. Thereby,
we shed light on previously underexplored charac-
teristics of the embedding space of language mod-
els, such as the variable generalization gap or their
fragility regarding token-level interventions. Inter-
estingly, embodying mixed pre-training objectives
or architectural regularization leads to better out-
comes, suggesting their potential importance in
building robust and competitive language models.
Overall, our analysis underscores probing as a uni-

versally applicable tool that complements the study
of language models (Wang et al., 2018; Liang et al.,
2022).

2 In- and Cross-Topic Probing

The following section formally outlines the used
probing setup and tasks before elaborating on the
generalization gap, and comparing In- and Cross-
Topic probing evaluation.

2.1 Probing Setup and Tasks

We define a probe f;, comprised of a frozen encoder
h and linear classifier ¢ without any intermediate
layer. This classifier is trained to map instances
X =A{x1,...,z,} totargets Y = {y1,...,yn}
for a given probing task. Using a frozen PLM as h,
the probe converts x; into a vector h;. In detail, we
encode the entire sentence, which wraps z;, and
average relevant positions of x; to find h;. Relevant
positions for the considered probing task are either
single tokens for part-of-speech tagging (POS)), a
span for named entity recognition (NER), or the
concatenation of two tokens for dependency tree
parsing (DEP). Then, the classifier c utilizes h; to
generate a prediction 7;, as shown in Equation 1.

Gi = fp(xi) = c(h(z;)) (1)
2.2 Generalization Gap

Generalization gaps arise when we compare evalu-
ation setups focusing on different capabilities for
the same task. This work focuses on gaps of using
data from the same (In-Topic) or different topics
(Cross-Topic) for training and evaluation. We de-
fine such topics T = {t1,...,t,} as given by a
dataset and involve semantically grouping its in-
stances. - i.e., arguments about Nuclear Energy.
This gap between In- and Cross-Topic is visible
in Figure 2, which shows how NER instances (in
blue) are distributed in the semantic space. For
Cross-Topic, entities cover only specific topics and
thereby are less broadly spread, while In-Topic
ones are spread more broadly since they cover all
datasets’ topics. Simultaneously, we note more lex-
ically unseen entities (in red) during training for
Cross-Topic.

In an ideal case, the generalization gaps do not
exist because pre-trained language models (PLMs)
are robust enough to overcome such distribution
shifts between different evaluation setups. How-
ever, practically, we saw in Figure 1 these gaps



Named Entity Recognition Instances

> =

Cross-Topic

In-Topic

34.9%
@ unseen instances

® allinstances

Figure 2: Density plot of In- and Cross-Topic NER test
instances (blue), encoded with bert-base-uncased and
reduced with the same t-SNE model (van der Maaten
and Hinton, 2008). While the number of instances is the
same, Cross-Topic embodies, with 40.2%, more unseen
instances than In-Topic (34.9%).

being pronounced on a varying scale for different
models.

2.3 Difference between In- and Cross-Topic
Evaluation

By evaluating probing tasks for In- and Cross-
Topic, we examine the varying generalization gaps
between these setups across different PLMs.

Cross-Topic  With Cross-Topic evaluation, we
investigate how well a probe generalizes when the
train, dev, and test instances cover distinct sets
of topics {T(tram) ldev) pltest)y A probe f,
must generalize across the distribution shift in this
setup. This shift originates because distinct topics

cover different specific vocabulary Z - 1.e., Z(4cqp)

for topics in T(*¢st) . We formally describe this

shift, denoted as AZ, as the relative complement
between topic-specific vocabulary from train and
test instances - AZ = Z(yrqin) \ Z(test)- For Cross-
Topic, we expect AZ to be large (Figure 2).

In-Topic In contrast, AZ is smaller for the In-
Topic setup because instances from every split
(train/dev/test) cover the same topics. We expect
similar topic distribution and minor semantic differ-
ences within these splits compared to Cross-Topic
(Figure 2). Thus, we see fewer difficulties for In-
Topic because a classifier does not need to general-
ize across a big distribution shift AZ.

Topic-Specific Vocabulary As discussed previ-
ously, we see topic-specific vocabulary as one
main reason for generalization gaps between In-
and Cross-Topic because AZ differs for these se-
tups considering a dataset d covering topics 1" =
t1,...,tm. The topic-specificity of a token z; is

Model # Params Objectives Data
ALBERT (Lan et al., 2020) 12M MLM + SOP 16GB
BART (Lewis et al., 2020) 121M DAE 160GB
BERT (Devlin et al., 2019) 110M MLM + NSP 16GB
DeBERTa (He et al., 2021) 100M MLM 80GB
RoBERTa (Liu et al., 2019) 110M MLM 160GB
ELECTRA (Clark et al., 2020) 110M  MLM+DISC 16GB
GPT-2 (Radford et al., 2019) 117M LM 40GB

Table 1: Overview of the used PLMs trained on MLM,
LM, DISC, NSP, SOP, or DAE objectives.

a latently encoded property within the encodings
h; for a token w;. To capture this property on
the token level, we adopt the approach of Kawin-
tiranon and Singh (2021) and use the maximum
log-odds-ratio r; of a token regarding a set of top-

ics T'. Firstly, we calculate the odds of finding the
n(wi,t]’)

n(ﬁwi,tj)
n(w;, t;) is the number of occurrences of w; in ¢,
and n(—wj, t;) is the number of occurrences of ev-
ery other token —wj; in ¢;. We then compute r as

the maximum log-odds ratio of w; for all topics in
O(U)i,tj) ))'

O(wg,=t5)

token w; in a topic ¢ as oy, ¢,) = , Where

T as 7(y,, 1) = maz,er(log(

3 Experimental Setup

We propose three experiments to analyze the vary-
ing generalization gap between PLMs after pre-
training (§ 4), their dependence on topic-specific
vocabulary (§ 5), and the evolution of these gaps
during fine-tuning (§ 6). We outline general details
about these experiments, while details and results
are provided in the subsequent sections.

Models We examine how various PLMs (Table 1)
with varying pre-training objectives or architectural
designs differ regarding our probing tasks. We
cover PLMs pre-trained using masked language
modeling (MLM), next sentence prediction (NSP),
sentence order prediction (SOP), language mod-
eling (LM), discriminator (DISC), and denoising
autoencoder (DAE) objectives. As in previous
work (Koto et al., 2021), we group them into the
ones pre-trained using token- (MLM) and sentence-
objectives (NSP, SOP, or DAE) and four purely
token-based pre-trained (MLM, LM, DISC). We
consider the base-sized variations to compare their
specialties in a controlled setup. Apart from these
seven contextualized PLMs, we use a static PLM
with G1oVe (Pennington et al., 2014).

Data We require a dataset with distinguishable
topic annotations to evaluate probing tasks in the



In- and Cross-Topic evaluation setup. Therefore,
we mainly? rely on the UKP ArgMin dataset (Stab
et al., 2018), which provides 25,492 arguments an-
notated for their argumentative stance (pro, con, or
neutral) towards one of eight distinct topics like
Nuclear Energy or Gun Control. Using these in-
stances, we heuristically generate at most 40,000
instances for the three linguistic properties depen-
dency tree parsing (DEP), part-of-speech tagging
(POS), or named entity recognition (NER) using
spaCy.? Additionally, we consider the main task
of the UKP ArgMin dataset (Stab et al., 2018) -
argumentative stance detection (Stance). There-
fore, we have a topic-dependent reference probe to
relate the results of other probes and evaluate the
generalization ability of PLMs on real-world tasks
after pre-training. We use a three-folded setup for
all these four probing tasks to consider the full data
variability for both In- and Cross-Topic evaluation.
Details about the compositions of these folds and
how we ensure a fair comparison between In- and
Cross-Topic are provided in the Appendix (§ A.2)
as well as examples for probing tasks (Appendix
§A.D).

Evaluation We primarily report the macro Fj
score averaged over the results of evaluating every
of the three folds three times using different ran-
dom seeds. Following recent work (Voita and Titov,
2020; Pimentel et al., 2020), we additionally report
information compression I (Voita and Titov, 2020)
for a holistic evaluation. It measures the effective-
ness of a probe as the ratio (ﬁ) between uniform
code length u = n*loge(K ) and minimum descrip-
tion length mdl, where u denotes how many bits
are needed to encode n instances with label space
of K. We follow online variation of mdl and use
the same ten-time steps t1.11 = {ﬁ, 5%, e %}
where we train a probe for every ¢; with a fraction
of instances and evaluate with the same fraction
of non-overlapping instances. Exemplary, for, ¢g
we use the first fraction of % instances to train and
another fraction of i to evaluate. We find the final
mdl as the sum of the evaluation losses of every
time step t1.11. For Cross-Topic, we group train-
ing instances into two groups of distinct topics and
sample the same fraction of instances to train and
evaluate. Thus, we ensure a similar distribution

2We verified our findings with another dataset in the Ap-
pendix § B.1.

3We show in the Appendix (§ B.8) that the heuristically

generated labels are reliable, and our results are well aligned
with previous work.

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross , In Cross A

ALBERT  43.8 39.5 80.2 78.0 48.6 458 548 459 156.9 523 4.6
BART 36.5 369 754 74.1 48.7 453 60.8 444 553 50.2 -5.1
BERT 254 256 685 67.5 454 41.6 569 430 (49.0 444 -4.6

DeBERTa  32.8 299 737 746 48.8 424 59.8 45.8 :53.4 482 -5.2
RoBERTa  25.1 23.6 64.0 655 484 42.1 51.8 40.1 47.3 42.8 4.5
ELECTRA 33.6 33.6 753 753 415 412 466 43.1 |49.3 483 -1.0

GPT-2 252 239 635 61.9 455 38.6 S51.1 384 1463 40.7 -5.6
GloVe 120 119265 262 434 375 416 341 _130.9 274 35
Avg. A 1.2 -0.5 4.5 11.0

Table 2: In- and Cross-Topic probing results for eight
PLMs. We report the macro I} over three random seeds,
the average difference between the two setups (last row),
and their average per PLM (last three columns). Best
results within a gap of 1.0 are marked by columns.

shift between training and evaluation fractions as
in all instances.

4 The Generalization Gap of PLMs

The first experiment shows that the generalization
gap already exists after pre-training and varies re-
garding specific PLMs and probing tasks. We ana-
lyze general (Table 2 and Figure 3) and fine-grained
(Table 3) results and discuss them for the different
evaluating setups, probing tasks, and PLMs. While
firstly focusing on mid-size PLMs usable for fine-
tuning, we close how probing performance scales
to large language models (LLMs) in § 4.

Design We probe eight PLMs on the probing
tasks DEP, POS, NER, and Stance and verify them
by observing significant performance drains using
random initialized PLMs (Appendix § B.2). For a
holistic evaluation, we provide general results as
well as grouping instances into two categories: seen
and unseen. We define seen instances as already
processed during training but in another context.
For example, the pronoun /e might appear in both
training and test data, but in distinct sentences. By
evaluating the PLMs on seen instances, we gain in-
sights into the influence of token-level lexical infor-
mation versus context information from surround-
ing tokens. In contrast, unseen instances were not
encountered during the training of a probe. They
allow assessing whether PLMs generalize to tokens
that are similar to some extent (such as Berlin and
Washington) but not seen during training.

Results for Evaluation Setups Upon analyzing
Table 2, we observe clear generalization gaps be-
tween In- and Cross-Topic evaluation for all tasks
and PLMs. As in Figure 3, the magnitude of this
gap (AF}) correlates with the difference in com-
pression (A7). Interestingly, we find a stronger



DEP POS NER

all A seen Aunseen all A seen Aunseen all A seen A unseen

Instance Ratio - 85% 15% - 86% 14% - 65% 35%

ALBERT 43.8 +0.21 -32 80.2 +0.41 -17.7 48.6 +1.1 -5.8

-2 BART 36.5 +0.13  -3.0 754 +020 -16.5 487 +1.3 -7.0
& BERT 254 -0.02 -0.8 68.5 +0.20 -16.5 454 +1.0 -5.8
£ DeBERTa 328 +0.07  -15 737 +0.09 -12.7 488 +1.0 -5.6

C_ROBERTa___ 250 001 _ 09 _ 640 004 155 _ 484 +10__ ST
Average - -0.08 -1.9 - +0.17  -15.8 -+l -6.0

. Instance Ratio - 18% 2% - 8l%__19% - Sl%__49%
o ALBERT 39.5 +0.03 23 78.0 +0.51  -12.9 458 +2.2 -5.3
‘2 BART 36.9 +0.01 -4.0 74.1 +0.24  -16.5 453 +2.4 -5.8
E}, BERT 25.6 -0.09 -0.7 67.5 +0.20  -14.0 41.6 +1.9 -5.1
¢ DeBERTa 29.9 -0.07 -1.3 74.6 +0.14 11.7 424 +20 5.2

O ROBERTa___ 236 -022 03 __ 655 4000 147 421 +19 52
Average - -0.08 -1.7 - 4022 -14.0 - +21 -5.3

Table 3: Performance difference of seen and unseen
instances compared to the full set (all). We report for
ALBERT, BART, BERT, DeBERTa, & RoBERTa, and
include the ratio of seen and unseen instances.
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Figure 3: Comparision of the difference in AF} and AT
between Cross-Topic and In-Topic for all eight PLMs
on the four probing tasks.

correlation between F; and I for Cross-Topic
(p = 0.72) as compared to In-Topic (p = 0.69).
Thus, a higher performance level, like for In-Topic,
leaves less room for compression improvements.
Further, we examine the performance of seen
and unseen instances in Table 3. It shows that seen
performs slightly better than all, while unseen ones
underperform the complete set (all) and seen in-
stances. Considering the average over PLMs, there
are fewer relative gains for seen for In-Topic and
more loss for unseen instances (+1.2, -6.0 for NER)
compared to Cross-Topic (+2.0, -5.3 for NER).
This observation relates to the lower percentage
of unseen instances (i.e., made of topic-specific
terms) for In- compared to Cross-Topic. We see un-
seen instances on In-Topic are harder and cover rare
vocabulary, and seen instances on Cross-Topic are
easier and made of general terms - which confirm
our theoretical and semantic assumptions (§ 2).

Results for Probing Tasks Considering Table 2
and Figure 3, we note higher generalization gaps
(Avg. A of -4.5 and -11.0) for semantic tasks (NER
and Stance) than for syntactic ones (DEP and POS)
- Avg. A of -1.2 and -0.5. We verify this trend with
results by observing a more pronounced gap for

semantic NER classes (like ORG) than for syntactic
ones (like ORDINAL) in the Appendix (§ B.5).

Next, we separately compare tasks for seen and
unseen instances. DEP shows the slightest perfor-
mance difference compared to all. We assume that
the pairwise nature of the task leads to a larger
shared vocabulary between unseen and training in-
stances - since a pair can be unseen, but it may
contain a frequent word like of. In contrast, appar-
ent differences between NER and POS are visible
- with less performance drain on unseen instances
for NER than POS. Therefore, we assume for NER
a higher semantic overlap with training instances
since they could include - as being an n-gram -
words from the training vocabulary. In contrast,
tokens of unseen POS instances are always single
words; thus, we assume a smaller semantic overlap
with the training.

Results for Encoding Models We now com-
pare PLMs amongst themselves. The four best-
performing PLMs of In-Topic differ up to 7.6 (AL-
BERT - BERT), while for Cross-Topic, this differ-
ence narrows to 4.1 (ALBERT - ELECTRA). These
results confirm the varying generalization gap be-
tween them and, again, that we can not transfer
conclusions from one evaluation setup to another.
For example, the probing performance of BART for
In-Topic Stance is the best and the third best for
Cross-Topic.

Generally, we do not see a clear correlation be-
tween better average performance and a smaller
generalization gap. PLMs like DeBERTa perform
better for In- and Cross-Topic but show a bigger
gap (-5.1) compared to lower performing PLMs
like ELECTRA (-1.0), but there are also worse
PLMs with a bigger gap (GPT-2, -5.6) or better
ones with a smaller gap (ALBERT, -4.6). Over-
all, we see the generalization gap being more pro-
nounced for better-performing PLM:s.

Considering absolute performance, AL-
BERT and BART performs the best on average for
both evaluation setups, while ELECTRA excels
POS and DEP, and DeBERTa performs for NER
and Stance. In contrast, BERT, RoBERTa, GPT-2,
and GloVeunderperform the others. Thus, PLMs
with architectural regularization, such as layer-wise
parameter sharing (ALBERT), encoder-decoder
layers (BART), disentangled attention (DeBERTa),
or discriminator (ELECTRA), tend to provide
higher Cross-Topic performance.  Similarly,
regularized PLMs, such as ALBERTor DeBERTa,



DEP POS NER Stance Average

In Cross In Cross In Cross A

48.6 458 548 459 56.9 52.3 -4.6
48.7 453 608 444 1553 50.2 -5.1
57.3 505 652 41.6 :60.1 513 -8.8
64.5 558 66.1 504 63.4 57.9 -6.2

487 453 668 44.2 1602 53.0 7.2
49.2 429 672 432 :60.6 52.0 -8.7

In Cross In Cross

ALBERT 43.8 39.5 80.2 78.0
BART 36.5 369 754 74.1
383 354 795 777
PYTHIA-DD (12B) 453 454 79.8 792

LLAMA-2 (13B) 444 418 81.0 80.6
LLAMA-2 Chat (13B) 45.4 41.7 80.7 80.1

PYTHIA (12B)

Table 4: Results (macro F1) of the four probing tasks
using the two overall best-performing PLMs (AL-
BERT and BART) in the In- and Cross-Topic setup
based on the ArgMin dataset (Table 2) and three LLM:s.

generally achieve more performance gains for
seen instances and fewer performance drops for
unseen ones than models without regularization
such as BERT or RoBERTa. We hypothesize
that architectural and regularization aspects equip
PLMs with a more generalizable and robust
encoding space.

Results for Larger Models We compare in Ta-
ble 4 six open accessible LLMs with the two best
performing models (ALBERT and BART). In gen-
eral, we see the performance scales with the higher
number of parameters, but more noticeable for In-
than Cross-Topic tasks. Therefore, the generaliza-
tion gap of LLMs tend to be bigger than for PLMs.
Regarding the different LLMs, PYTHIA (Bider-
man et al., 2023) and LLAMA-2 (Touvron et al.,
2023) outperforms the others on In-Topic tasks
while performing on par with ALBERT. Further,
we notice data deduplication during pre-training
(PYTHIA-DD) results in best performing model
and actively reduce the generalization gap from 8.8
to 6.2. In addition, instruction fine-tuning does not
heavily affect the performance but tend to increase
the generalization gap, from 7.2 (LLAMA-2) to
8.7 (LLAMA-2 Chat).

5 The Dependence on Topic-Specific
Vocabulary

To this point, we saw that the generalization gap
varies between different PLMs and probing tasks.
Since we see topic-specific vocabulary crucially
affects generalization gaps, we analyze the vary-
ing dependence on the topic-specific vocabulary of
PLMs using Amnesic Probing (Elazar et al., 2021).
We observe clear differences among PLMs and
therefore assume that their embedding space clearly
differs beyond single evaluation metrics. Therefore,
we emphasize considering various PLMs when us-
ing Amnesic Probing. Additional insights of com-
paring seen and unseen instance and distinct NER

classes are provided in the Appendix (§ B.4, § B.6).

Design To measure how PLMs depend on topic-
specific vocabulary, we employ Amnesic Probing
(Elazar et al., 2021) to remove the latently encoded
topic-specificity z; from the embeddings h; of a
token w;. More precisely, we compare how the
performance of a probing task (like NER) changes
when we remove z;. A more negative effect indi-
cates a higher dependence on topic-specific vocab-
ulary, while this property is a hurdle when perfor-
mance improves. We first train a linear model on
token-level topic-specificity r (§ 2.3). To shape it
as a classification task, we categorize r into three
classes (low, medium, high). 4 Next, we find a
projection matrix P that projects all embeddings
h; - gathered as H - using the learned weights W;
of [ to the null space as W;PH = 0. Using P
we update h; by neutralizing topic-specificity from
the input as h;- = Ph; before training the probe.
Following (Elazar et al., 2021), we verified our re-
sults by measuring less effect of removing random
information from h; (see Appendix § B.3).

Results Considering Figure 4, we see ALBERT,
BART, and BERT depend less on topic-specific vo-
cabulary. We see their diverse pre-training (token-
and sentence-objectives or sentence denoising) re-
sults in a more robust embedding space. Sur-
prisingly, they show positive effects (3.2 for DEP
for BART) when removing topic-specificity. This
could remove potentially disturbing parts of the em-
bedding space. Similarly, GPT-2 is less affected
by the removal - we assume this is due to its gen-
erally lower performance level. Therefore, it has
less room for performance drain, and capturing
topic-specificity is less powerful.

Comparing In- and Cross-Topic setups shows
a narrowing generalization gap for more affected
models (like RoBERTa and GloVe on NER or
NER). Simultaneously, less affected PLMs ei-
ther maintain the gap or enlarge it slightly - like
BART on DEP, NER, or NER. Further, DeBERTa,
RoBERTa, ELECTRA, and GloVe rely more on
topic-specific vocabulary since they show signifi-
cant performance loss (up to 34.6 for GloVe on
POS) when removing this information. Specif-
ically, GloVe as a static language model, and
RoBERTza is affected the highest for all tasks.
ELECTRA shows similar behavior, but is less pro-
nounced for POS. Thus, its reconstruction pre-

*Please find examples in the Appendix § A.6.
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Figure 4: Comparison of the probing results with (blue bars) or without (red bars) topic information. The white text

indicates the difference between these two scenarios (AFl\T).

training objective provides a more robust em-
bedding space than purely MLM (DeBERTa or
RoBERTa). Comparing, DeBERTa and RoBERTa,
DeBERTa is less affected by the removal of se-
mantic tasks (NER and NER). We hypothesize
that distinguishing between token content and to-
ken position via disentangled attention makes De-
BERTa more robust for the semantic than for syn-
tactic tasks (DEP and POS).

6 The Evolution of the Generalization
Gap during Fine-Tuning

Finally, we re-evaluate fine-tuned PLMs using our
proposed probing setups and show that fine-tuning
leads to a drain in probing performance. We use
these results to retrace apparent differences be-
tween evaluation setups and the varying general-
ization gap between PLMs. This is relevant for a
broader understanding of how fine-tuning affects
PLMs (Mosbach et al., 2020; Kumar et al., 2022a),
and what they learn during fine-tuning (Merendi
et al., 2022; Ravichander et al., 2021).

Design We fine-tune the PLMs on an argumen-
tative stance detection task and re-evaluate them
on the probing tasks DEP, POS, and NER. To be
consistent with our probing setup, we used the
same folds for fine-tuning. Further details are
in the Appendix (§ A.5). We compare these re-
sults with the probing performance of their pre-
trained counterparts (§ 4 and § 5) and correlate
this change with the generalization gap observed
on the downstream task. We limit our analysis to
ALBERT, BERT, BART, DeBERTa, and RoBERTa.

Results Table 5 shows that fine-tuning clearly
boost the performance on NER compared to the
probing performance (§ 4) but leads to a clear

Stance DEP POS NER Avg. DEP POS NER
F fine-tuned AF, probing AFI\T

ALBERT  55.4 +0.6 -27.3 -40.2 -25.0 -30.8 -0.6 -3.0 -0.1

a BART 69.8 +9.0 -17.3 -322 40 -17.8 -0.8 -40 +0.3
£ BERT 67.2 +10.3 -7.5 -248 +1.0 -104 +04 +0.7 +1.1
,é DeBERTa  70.1 +10.3 -13.2 -253 -8.8 -158 -0.8 -3.8 -04
__ RoBERTa 6894171  -19.7 486 297 272 -08 30 -07
Avg. 66.3 +9.5 -16.6 -32.6 -12.1 -204 -0.5 -2.6 +0.1

o ALBERT 514455 -14.4 -203 -12.6 -158 +1.6 -1.3 +2.1
S BART 61.9 +17.5 -16.5 -339 -54 -186 -1.0 -35 -1.6
E BERT 56.6 +13.6 -5.7 -195 +0.6 -82 +0.7 +0.6 +1.2
E DeBERTa 55.9 +10.1 -13.4 -334 -11.8 -195 -12 -8.6 +1.6
O ROBERTa 555+154 <166 -483 231 235 19 48 03
Avg. 56.3 +12.6 -13.0 293 9.1 -17.1 -04 -35 +0.6

Table 5: Results of evaluating our probing setup on fine-
tuned PLMs on NER. The first column shows these fine-
tuned results and the gained improvement compared to
probing for NER on pre-trained PLMs (Table 2). Next,
we show performance differences between pre-trained
and fine-tuned PLMs (A F} probing) and how removing
topic-specificity affects the fine-tuned PLMs (AFl\T).

performance drop (AFy) for both evaluation se-
tups and the probing tasks. Cross-Topic achieved
more gains on average (+12.6) and fewer drains
(-17.1) on the three linguistic properties than In-
Topic (+9.5, -20.4). On average, we assume that
In-Topic fine-tuning affects the encoding space of
PLMs more heavily than Cross-Topic. Regarding
the different probing tasks, the performance drain
is more pronounced for syntactic tasks (DEP and
POS) than semantic tasks (NER). This hints that
PLMs acquire competencies of semantic nature -
which holds for stance detection. Similarly, remov-
ing topic-specificity influences fine-tuned PLMs
the least for NER. At the same time, this removal
is more pronounced for Cross-Topic. This con-
firms the assumption that the Cross-Topic setup
has smaller effects on PLMs internals, since we
saw big impacts of this removal (§ 5).
Considering the single PLMs, we see apparent



differences. For example, ALBERT, with its shared
architecture and priorly best-performing PLM, ex-
periences big probing performance drains and the
smallest fine-tuning gains (+0.6, +5.5). In con-
trast, we note effective fine-tuning of BERTwith
+10.3 for In- and +13.6 for Cross-Topic, and that
it lost the least probing performance. Compar-
ing RoBERTa and DeBERTa reveals again the ef-
fectiveness of architectural regularization of De-
BERTa. RoBERTa shows the most gains when
fine-tuning on NER and almost catching up with
DeBERTa. However, it experiences a more clear
performance drain (-27.2, -23.5) regarding the
probing tasks for In- and Cross-Topic compared
to DeBERTa (-15.8, -19.5). Next, we focus on
BART and its superior Cross-Topic performance
on NER. It seems already well-equipped for this
downstream task due to its high In-Topic probing
performance on NER. Therefore, it can learn the
task more robustly during fine-tuning.

7 Related Work

The rise of PLMs (Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019; He et al., 2021) enabled
big success on a wide range of tasks (Wang et al.,
2018, 2019). Nevertheless, they still fall behind
on more realistic Cross-Topic, like generalizing
towards unseen topics (Stab et al., 2018; Gulra-
jani and Lopez-Paz, 2021; Allaway and McKeown,
2020). One primary reason is that PLMs often
rely on unwanted spurious correlations. Despite
PLMs seeing such vocabulary during pre-training,
they failed to consider test vocabulary in the re-
quired fine-grained way (Thorn Jakobsen et al.,
2021; Reuver et al., 2021). Further, Kumar et al.
(2022b) found linear models can outperform fine-
tuning PLMs when considering out-of-distribution
data. Thus, a broader understanding of PLMs in
challenging evaluation setups is crucial.

Probing (Belinkov et al., 2017; Conneau et al.,
2018; Peters et al., 2018) helps to analyze inners
of PLMs. This includes to examine how linguistic
(Tenney et al., 2019a,c), numeric (Wallace et al.,
2019), reasoning (Talmor et al., 2020), or discourse
(Koto et al., 2021) properties are encoded. Other
works focus on specific properties used for other
tasks (Elazar et al., 2021; Lasri et al., 2022), or fine-
tuning dynamics (Merchant et al., 2020; Zhou and
Srikumar, 2022; Kumar et al., 2022b). However,
these works target the commonly used In-Topic
setup and less work considering Cross-Topic setups.

Aghazadeh et al. (2022) analyzed metaphors across
domains and language, or Zhu et al. (2022) cross-
distribution probing for visual tasks. They found
that models generalize to some extent across distri-
bution shifts in probing-based evaluation. Never-
theless, these works focus on specialized tasks and
consider the generalizations across distributions in
isolation. In contrast, we propose with our exper-
iments a more holistic probing-based evaluation
of PLMs, covering different generalization aspects
after pre-training and fine-tuning.

8 Conclusion

Discussion We analyzed and compared In- and
Cross-Topic evaluation setups and found gener-
alization gaps significantly differing considering
PLMs and the specific probing task. Notably, di-
verse pre-training objectives and architectural reg-
ularization tend to positively affect the generaliz-
ability and robustness of PLMs, such as depending
less on topic-specific vocabulary. Moreover, our re-
sults reveal probing performance falls short for rare
vocabulary, underscoring the need to explore token-
level properties. Further, we preliminarily analyzed
LLMs and observed that the probing performance,
but also generalization gaps, tend to scale with in-
creasing parameters. Eventually, we re-evaluated
tuned PLMs and found generalization gaps evolve
differently, and linguistic properties tend to vanish
during fine-tuning, being more prominent for In-
than Cross-Topic. We verified our results using a
second dataset from the social media domain (Con-
forti et al., 2020) - details in the Appendix § B.1.
To conclude, this work demonstrated the practi-
cal utility of probing to analyze and compare the ca-
pacities of various PLMs from a different perspec-
tive - considering different generalization scenar-
ios. Thereby, our work points out the importance
of probing as a universally applicable method, re-
gardless of size or being static or contextualized, to
complement existing work on analyzing language
models (Wang et al., 2018; Liang et al., 2022).

Outlook With our findings in mind, we see reg-
ularly probing PLMs and LLMs on new tasks and
considering forthcoming learning paradigms as in-
dispensable for a holistic evaluation of their verity
and multiplicity. Therefore, we will continue to
analyze language models, including a broader set
of tasks and focusing on general and rare vocab-
ulary to increase our understanding of how, why,
and where they differ.



Ethical Considerations and Limitations

Automatic Annotations for Linguistic Proper-
ties Our experiments require all instances origin
in the same datasets with topic annotations. Thanks
to this condition, we align all our experiments, like
probing PLMs, with the same data as they got pre-
trained. Therefore, we minimize other influences
like semantic shifts of other datasets. However,
there are no corresponding annotations for linguis-
tic properties, which forces us to rely on automat-
ically gathered annotations. This work addresses
this issue by transparently stating the libraries and
models we used to derive these annotations and
providing the source code and the extracted labels
in our repository. We compared our results (§ B.8)
with previous work (Tenney et al., 2019a,c; He-
witt and Liang, 2019) and found our results well
aligned. Further, we verify the probing task results
on the different PLMs with randomly initialized
counter-parts (§ B.2) and confirm our findings with
a second dataset (§ B.1).

Definition of Topic-Specific Vocabulary This
work considers a topic as a semantic grouping pro-
vided by a given dataset. As previously mentioned,
this focus on the context of one dataset allows in-
depth and controlled analysis, like examining the
change of PLMs during fine-tuning. On the other
hand, we need to re-evaluate other datasets since
the semantic space and granularity of the topic are
different in almost every other dataset. Neverthe-
less, results in the Appendix (§ B.1) let us assume
that our findings correlate with other datasets and
domains. Further, we consider only token-level
specific vocabulary, as done previously in literature
(Kawintiranon and Singh, 2021). We think that
considering n-grams could give a better approx-
imation of topic-specific terms. Still, we do not
take them into account because Amnesic Probing
(Elazar et al., 2021) require token-level properties
to apply resulting intervention on token-level tasks
like POS.

Impact of PLMs Design choices This work ana-
lyzes PLMs regarding a set of different properties
like pre-training objectives or architectural regu-
larization. However, we do not claim the com-
pleteness of these aspects nor a clear causal re-
lationship. Making such a final causal statement
would require significant computational resources
to pre-train models to verify single properties with
full certainty. Instead, we use same-sized model

variations, evaluate all probes on three folds and
three random seeds to account for data variabil-
ity and random processes, and verify our results
on a second dataset. Nevertheless, we use them
to correlate results on aggregated properties (like
having diverse pre-training objectives or not) and
not on single aspects, like the usefulness of the
Sentence-Order objective.
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A Additional Details of the Experiments

A.1 Probing Tasks

Table 6 shows examples and additional details of
the different probing tasks.

A.2 Fold Composition

We rely on a three-folded evaluation for In- and
Cross-Topic for a generalized performance mea-
sure. These folds cover every instance exactly once
in a test split. In addition, we require that In- and
Cross-Topic train/dev/test splits have the same num-
ber of instances for a fair comparison, as visualized
in Figure 5. For Cross-Topic, we make sure that
every topic {t1, ..., ty, } is covered precisely once
by one of the three test splits X, éf«f;i? To compose
X, C%ién) and X éfgﬁg, we randomly distribute the re-
maining topics for every fold. For In-Topic, we ran-
domly® form subsequent test splits X, - (est) for ev-
ery fold from all instances {z1, ... xm} X, (train)

and X i(;lev) are then randomly composed for every
fold using the remaining instance set following the

t d
dimension of X, c(rzién) and X C(Tg;’g

A.3 Training Setup

For all our experiments, we use NVIDIA RTX
A6000 GPUs, python (3.8.10), transformers
(4.9.12), and PyTorch (1.11.0).

A.4 Probing Hyperparameters

Further, we use for the training of the probes the
following fixed hyperparameters: 20 epochs, where
we find the best one using dev instances; AdamW
(Loshchilov and Hutter, 2019) as optimizer; a batch
size of 64; a learning rate of 0.0005; a dropout rate
of 0.2; a warmup rate of 10% of the steps; random
seeds: [0, 1, 2]

In addition, we use the following tags from the
huggingface model hub:

* albert-base-v2

* bert-base—-uncased

e facebook/bart-base

* microsoft/deberta-base

* roberta-base

SWe expect that all folds cover all topics given the small
number of topics (8) and the big number of instances.
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Figure 5: Overview of the In- and Cross-Topic setup
using three folds. The colour indicates a topic; solid
lines train-, dotted lines dev-, and dashed lines test-
splits.

* google/electra—-base-
discriminator

* gpt2

* EleutherAI/pythia-12b

* EleutherAI/pythia-12b-deduped
* meta-llama/Llama-2-13b-hf

* meta-llama/Llama-2-13b-chat-hf
* google/t5-xx1l-1m—adapt

e allenai/tk—-instruct-11lb-def

A.5 Fine-Tuning Hyperparameters

To fine-tune on stance detection, we use the fol-
lowing setup: 5 epochs, where we find the best
one using dev instances; AdamW (Loshchilov and
Hutter, 2019) as optimizer; a batch size of 16; a
learning rate of 0.00002; a warmup rate of 10% of
the steps; random seeds: [0, 1, 2].

A.6 Token-Level Examples for Topic
Relevance

In § 5, we use the binned topic-specificity (§ 5) for
each token. We show in Table 7 examples for three
bins low, medium, and high. The first bin (low) is
made of tokens, which barely occur in the dataset.
The second one (medium) consists of tokens which
are part of most topics. Finally, the last bin (high)
includes tokens with a high topic relevance for ones
like Cloning or Minimum Wage.

B Further Results

B.1 Generalization Across Datasets

With Table 8, and Figure 6 we verify the results
of § 4, § 5, and § 4 using another stance detecion
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Task Example Label # Instances # Labels
DEP I think there is a lot we can learn from Colorado and Washington State. nsubj 40,000 41
POS I think there is a lot we can learn from Colorado and Washington State. PRON 40,000 17
NER I think there is a lot we can learn from Colorado and Washington State. PERS 25,892 17
Stance I think there is a lot we can learn from Colorado and Washington State. PRO 25,492 3

Table 6: Overview and examples of the different probing tasks.

low medium high

as, on, take,
some, like, how,
s0, one, these,
instead, while, ago

fianc, joking, validate,
latitude, poignantly, informative
ameliorate, bonding, mentors
brigade, emancipation, deriving,
ignatius, 505, nominations,
electorate, SWPS, 731

cloning, uniform, wage,
marijuana, minimum, gun,
cloned, wear, clone,
nuclear, energy, penalty,

come, engage, seems  execution, wast, employment

where, came, still, many, uranium, legalization, cannabis,

Table 7: Examples of tokens with a low, medium, or
high token relevance following § 4.

DEP POS NER NER Average
In Cross In Cross In Cross In Cross , In Cross A
ALBERT 335 329 751 742 309 28.6 573 328 149.1 421 7.0
BART 329 331 632 621 324 305 519 47.2 1451 43.2 -1.9
BERT 21.6 212 548 559 272 278 474 321 378 342 -36
DeBERTa 269 27.6 69.6 679 294 285 495 357 1439 40.0 -39
RoBERTa 204 199 547 535 26.1 255 37.0 37.8 1356 342 -14
ELECTRA 26.6 266 69.6 68.6 21.7 241 35.1 36.7 :38.2 39.0 +0.8
GPT-22 169 165 422 422 251 240 408 326 1312 288 -2.4
GloVe 129 122 235 226 281 246 452 342 :27.4 234 -4.0
Avge A 03 0.7 - 09 95 oo

Table 8: Results of the four probing tasks using eight
PLMs in the In- and Cross-Topic setup. We report the
mean Fj (macro averaged) over three random seeds, the
average difference between the two evaluation setups
per task (last row), and their average per PLM (last two
columns). Best-performing results within a margin of
1pp are marked for every task and setup.

dataset. Namely, we use the wtwt (will-they-wont-
they) (Conforti et al., 2020) dataset which covers
51.284 tweets annotated either support, refute, com-
ment, or unrelated towards five financial topics. For
the overall performance comparison between In-
and Cross-Topic, the results show the same trend
as we already saw in § 4, but on a lower level.
We assume that this is mainly due to this dataset’s
more specific domain (twitter) compared to UKP
ArgMin. Focusing on the influence of topic-specific
vocabulary verifies the previously presented results
(§ 5) again. PLMs pre-trained with purely token-
based objectives highly depend on topic-specific
vocabulary.

B.2 Comparison of Probing Tasks against
Random Initialized PLMs

We show in Table 9 and Table 10 the results of run-
ning the three linguistic probes on the seven contex-
tualized PLMs in their random initialized version.
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For In- and Cross-Topic, there is a clear perfor-
mance drop of having random initialized models.

DEP POS NER
Random A Random A Random A
ALBERT 1.4 -424 6.8 -41.8 34  -76.8
BART 1.4 -35.1 5.0 -43.7 2.7 -72.7
BERT 2.7 -22.7 94 -36.0 4.6 -63.9
DeBERTa 7.0 -25.8 16.3  -32.5 16.1 -57.6
RoBERTa 22 229 11.0 -374 47 -59.3
ELECTRA 1.7  -31.9 8.4  -33.1 38 -71.5
GPT-2 5.8 -194 123  -332 125 -51.0

Table 9: Results of evaluating DEP, POS, and NER us-
ing the seven contextual PLMs (random initialized) for
In-Topic and the difference to their pre-trained counter-
parts in Table 2.

B.3 The Effect of Removing Random
Information

We saw in § 5 that removing topic-specificity has
a big impact for some models (like RoBERTa or
ELECTRA) but at the same time can even boost
the performance of others like BERT. As suggested
in Elazar et al. (2021), we apply a sanity check by
removing random information from the encodings
of PLMs. Following the results in Figure 7, remov-
ing random information (green bars) performs in
between the scenarios with (blue bars) or without
(red bars) topic information for cases where we see
a clear negative effect when removing topic infor-

DEP POS NER
Random A Random A Random A
ALBERT 1.4 -38.1 6.2 -39.6 34  -746
BART 1.5 -354 50 -403 29 712
BERT 2.1 -235 9.6 -32.0 45 -63.0
DeBERTa 6.8 -23.1 140 -284 172 -574
RoBERTa 2.6 -21.0 10.0 -32.1 5.2 -60.3
ELECTRA 3.0 -30.6 9.8 -31.4 4.1 -71.2
GPT-2 5.8 -18.1 13.6 -25.0 11.0  -50.9

Table 10: Results of evaluating DEP, POS, and NER
using the seven contextual PLMs (random initialized)
for Cross-Topic and the difference to their pre-trained
counterparts in Table 2.



Dependency Tree Parsing (DEP) Part-of-Speech Tagging (POS)

g 5
E +
(= s
EE !! 2 N " EE !
BB!! 1
0

Named Entity Recognition (NER) Stance Detection

60
) +
ol 5S : +
e 40 w :
s
£y
' B n ;
]
0 = 0

In Cross In Cross In Cross|In Cross In Cross In Cross In Cross In Cross In Cross In Cross In Cross|In Cross In Cross In Cross In Cross In Cross
ALBERT BART BERT DEBERTA ROBERTA ELECTRA  GPT-2 GLOVE ALBERT BART BERT DEBERTA ROBERTA ELECTRA  GPT-2 GLOVE

Now
S 3
S

5
S

o

a
S

~N
~N
S

[l  with Topic information  [ll]  Without Topic Information

Figure 6: Comparison of the probing results with (blue bars) or without (red bars) topic-specificity for the will-they-
wont-they dataset (Conforti et al., 2020). The white text indicates the difference between these two scenarios.

. . . . CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON
mation. In contrast, removing random information e e

can produce a more pronounced effect when we ~ SBaRT - 048 946 87 956 916 973 810 94 835
DeBERTa 953 95.6 90.0 96.5 915 974 81.1 99.2 83.7

see performance improvements. This observation L ALBERT 912 950 86 556 908 981 788 989 817
EBART 90.1 942 889 350 90.7 97.6 79.1 98.8 81.8

backs our assumption that removing information O DeBERTa 883 953 886 00 905 975 798 986 818
can have a regularization effect.

Table 11: Per-class results of ALBERT, BART, and

B.4 The Effect of Removing Topic DeBERTa on NER for In- and Cross-Topic.

Information on Seen and Unseen

Instances classes unevenly distributed instances over topics
We show in Figure 8 that a performance drop - like MONEY. Further, it Outperforms BART and
affects seen and unseen instances for In- and ~ DeBERTa on less semantical classes (CARDINAL,
Cross-Topic equally. Exceptionally, we see unseen =~ ORDINAL, PERCENT).
ones are more affected on POS for DeBERTa and . .
RoBERTa. This result indicates that these PLMs ~ B-0  Effect of .Removmg Token-Level Topic
fall short of generalizing towards rare vocabularies Information of Per-Class Results for NER

- like unseen instances of POS. Similar to the previous analysis, there are apparent
) effects of removing topic information when consid-
B.5  Analysis of Per-Class Results for NER ering NER classes separately. Table 12 shows these

When considering the per-class results of NER in  results for BART, BERT, DeBERTa, and RoBERTa.
Table 11, we see the classes CARDINAL, MONEY, Like the overall result, BART, DeBERTa, and
ORG, and PERSON show the biggest differences =~ ROBERTa perform less when removing topic infor-
between In- and Cross-Topic. For ORG and PER- ~ mation. Whereby the effect is the most pronounced
SON, we see their topic-specific terms as the main ~ for ROBERTa with the highest performance drop
reason for the performance gap. In contrast, we  for In- and Cross-Topic on classes like NORP or
were surprised about the high difference for CAR- ORDINAL. In addition, these results show that the
DINAL. We think this is mainly because this class ~ performance gain from removing topic information
embodies all numbers belonging to no other class. ~ within BERT happens on MONEY for In-Topic
For MONEY, we see its uneven distribution over ~ and NORP for Cross-Topic.
topics as the main reason for the performance dif-
ference - one topic covers more than 50% of the
instances. These entities are highly topic-specific
from a statistical point of view. Analysing the results (Table B.7) for every NER
Despite having almost the same performance  class gives additional insights into where the fine-
for In-Topic, BART and DeBERTa tend to out-  tuning had the most significant effect. We generally
perform ALBERT on classes with more semantic  see the biggest effect on classes with less semantic
complexities - like GPE, ORG or PERSON. For = meaning, like ORDINAL, PERCENT, or MONEY.
Cross-Topic, we see ALBERT performing better in At the same time, GPE, PERSON, and ORG are

B.7 The Effect of Fine-Tuning on NER
Classes
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Figure 7: Comparison of the probing results with (blue bars) and without (red bars) topic information, or without
random information (green bars). The white text indicates the difference between the blue and red bars.
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Figure 8: Performance difference for seen (x-axis) and
unseen (y-axis) instances when removing topic informa-
tion or not. One dot represents one PLM.

CARDINAL DATE

GPE MONEY NORP ORDINAL ORG PERCENT PERSON

BART -0.23 0.04 0.15  0.15 0.02 -0.04 0.08 -0.13 0.20
= BERT 1.65 -0.15 -0.04 2800 -0.14 -0.58 0.06 0.00 0.22
DEBERTA -1.14 -0.13 -1.48 -7.74  -1440 -030 -0.82 -0.12 -0.10
ROBERTA -6.00 -3.00 -7.82 -24.09 -90.61 -98.06 -2.66 -0.51 -0.58
., BART -0.48 0.01 -0.13 245 -0.06 -0.52 -038  -0.09 -0.03
$ BERT -0.05 -0.05 1.00 0.00 8.95 -0.60 0.29 0.00 0.00
© DEBERTA -0.07 -0.16 -2.52 0.00 -21.88 -0.35 -0.91 -0.01 0.07
ROBERTA -9.04 -2.63 -745 000 -8523 -98.07 -299 -3597 -0.46

Table 12: Class-wise effect on the performance when
removing topic information of BART, BERT, DeBERTa,
and RoBERTa on NER for In- and Cross-Topic.
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CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

ALBERT -34.2 -254 -269 -950 -51.9 -60.3  -224 992 -21.8
~ BART -8.5 <72 15 <72 -10.4 -36.6 -4.1 -3.8 -2.7
~ BERT -1.9 2.0 20 348 -4.4 -17.9 -0.8 -3.9 -1l
DEBERTA -15.1 -6.8 -87 -19.5 -43.7 -60.8 -8.8 -24.8 -83
ALBERT -21.5 -104 -19.1 -556 -344 -13.1 -10.7  -81.0 9.2
2 BART -9.2 -74 <70 -163  -112 -24.4 -39 -4.5 2.1
S BERT 2.5 -2 -12 3.6 -22 -9.7 -0.8 -2.6 -0.5
DEBERTA -182 -62 -127 00 -50.6 -76.0  -11.7  -73.5 -6.8

Table 13: Per-class difference before and after fine-
tuning on stance detection of ALBERT, BART, BERT,
and DeBERTa on NER for In- and Cross-Topic.

less affected as classes with more attached seman-
tics. Regarding the different PLMs, ALBERT and
DeBERTa show the most performance training,
while BERT gains performance for the MONEY
class.

B.8 Annotation Verification

To evaluate probing tasks in the In- and Cross-
Topic setup, we rely on data with topic annota-
tions on the instance level - like the UKP ArgMin
(Stab et al., 2018) or the wrwr (Conforti et al.,
2020) dataset. Since these datasets do not in-
clude linguistic annotations, we rely on spaCy®
to automatically derive the labels for dependency
tree parsing (DEP), part-of-speech tagging (POS),
or named entity recognition (NER). We used the
en_core_web_sm model, which provides reli-
able labels with a detection performance in terms
of accuracy of 97.0 for POS, 90.0-92.0 for DEP,
and an F1 score of 85.0 for NER (details available
online).Note, this performance referees to identify
valid candidates (like entities for NER) given a
piece of text, and assign the corresponding labels,
such as person or organization. In contrast, in prob-
ing, we consider only the second step: assigning
the right label of a valid candidate. Therefore, we

®https://spacy.io/


https://spacy.io/models/en

DEP POS NER

In Cross In Cross In Cross

ALBERT 852 839 93.8 93.6 86.9 85.0
BART 80.9 81.0 92.6 92.0 87.1 84.5
BERT 76.1 76.1 89.2 88.6 852 829
DeBERTa 81.2 799 928 93.1 87.5 84.0
RoBERTa 759 755 89.6 90.1 86.3 83.2
ELECTRA 81.1 80.7 923 922 828 822
GPT-2 69.8 69.1 858 857 84.6 8l.1
GloVe 39.5 385 46.6 459 78.8 77.2
Average 737 731 853 852 849 825
BERT 80k 80.5 79.1 92.0 91.5 - -
BERT 160k 84.3 842 93.1 92.8 - -
BERT 320k 86.3 85.6 93.7 933 - -
BERT (Tenney et al., 2019¢) 93.0 97.0 96.1
BERT (Tenney et al., 2019a) 95.2 96.5 96.0
BERT (Hewitt and Liang, 2019) 89.0 97.2 -

Table 14: Accuracy results for In- and Cross-Topic prob-
ing results for eight PLMs, across three random seeds.
Further, we report results of gradually increasing the
number of consider instance (BERT 80k, BERT 160k,
and BERT 320k), as well as reference performance of
previous work (Tenney et al., 2019c,a; Hewitt and Liang,
2019).

can not directly compare recognition and probing
performance.

Considering our results (§ 4), we see these de-
rived labels as reliable and well aligned with previ-
ous work (Tenney et al., 2019c¢,a; Hewitt and Liang,
2019), even though we mainly report F score. One
reason for that is the similar performance ranking
(DEP < NER < POS) as in previous work, con-
sidering F7 score as well as the accuracy score
reported in Table 14. Another reason is the nar-
rowing accuracy performance gap between our ex-
periments and previous work when we gradually
increase the number of consider instance from 40k
to 80k, 160k, until 320k.
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