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Abstract

Pre-trained language models (PLMs) perform001
well in In-Topic setups, where training and test-002
ing data come from the same topics. However,003
they face challenges in Cross-Topic scenarios004
where testing data is derived from distinct top-005
ics. This paper analyzes various PLMs with006
three probing-based experiments to better un-007
derstand the reasons behind such generalization008
gaps. For the first time, we demonstrate that009
the extent of these generalization gaps and the010
sensitivity to token-level interventions vary sig-011
nificantly across PLMs. By evaluating large012
language models (LLMs), we show the use-013
fulness of our analysis for these recent mod-014
els. Overall, we observe diverse pre-training015
objectives and architectural regularization con-016
tribute to more robust PLMs and mitigate gen-017
eralization gaps. Our research contributes to a018
deeper understanding and comparison of lan-019
guage models across different generalization020
scenarios. 1021

1 Introduction022

Fine-tuning is widely used and imparts NLP tasks023

to pre-trained language models (PLMs) (Devlin024

et al., 2019; Liu et al., 2019; He et al., 2021; Rad-025

ford et al., 2019) resulting in remarkable perfor-026

mance - including GLUE (Wang et al., 2018) or027

SuperGLUE (Wang et al., 2019). However, such028

benchmarks underrepresent challenges of more re-029

alistic and challenging applications, like Argument030

Mining (AM) tasks (Lawrence and Reed, 2019).031

In AM tasks, Cross-Topic evaluation is commonly032

used to assess the essential scenario of generaliz-033

ing towards unseen topics embodying distinct vo-034

cabulary compared to training data (Slonim et al.,035

2021). More precisely, we induced covariant distri-036

bution shifts by withholding instances of specific037

topics (like Gun Control) for testing - where the038

dataset gives the topic-instances assignment. While039

1We provide data and code anonymized online.

Figure 1: Generalization gap of fine-tuning PLMs on
argumentative stance detection (Stab et al., 2018) in the
In- or Cross-Topic evaluation setup. The dashed line
marks the ideal case of equal performance.

these are semantic shifts, there are fewer structural 040

differences (like input length) compared to train- 041

ing data than targeting unseen text domains (Wang 042

et al., 2023). Figure 1 illustrates the expected per- 043

formance gap of comparing Cross-Topic with the 044

generally used In-Topic evaluation setup when fine- 045

tuning on the UKP ArgMin dataset (Stab et al., 046

2018). This AM dataset labels arguments as in 047

favor, against, or neutral to one of eight topics. No- 048

tably, we observe that the gaps between In- and 049

Cross-Topic vary considerably across PLMs - with 050

BART outperforming the others in the Cross-Topic 051

scenario. This observation prevents us from gener- 052

alizing findings from one scenario to another, such 053

as determining the best-suited PLM. 054

While specific vocabulary encapsulates relevant 055

semantics for distinguishing between topics, it can 056

also introduce spurious correlations (Thorn Jakob- 057

sen et al., 2021; Reuver et al., 2021). As such, 058

understanding how PLMs encode tokens is vital 059

for comprehending generalization gaps between 060

In-Topic and Cross-Topic evaluations. Although 061

probing (Belinkov et al., 2017; Conneau et al., 062

2018) methods allow us to analyze and compare 063

token representations, typically, single properties, 064
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such as part-of-speech, are studied (Tenney et al.,065

2019a,b). Nevertheless, despite little research com-066

paring such properties across generalization setups067

(Aghazadeh et al., 2022; Zhu et al., 2022), we be-068

lieve probing can be incredibly useful in under-069

standing gaps between different setups. There-070

fore, for the first time, we propose a thorough071

analysis of In- vs. Cross-Topic generalization072

gaps using token- and span-level probing tasks073

(§ 2) across various PLMs. Specifically, this work074

is structured around three experiments, consider-075

ing three linguistic tasks (dependency-tree parsing,076

part-of-speech tagging, and named-entity recogni-077

tion) and argumentative stance detection using the078

UKP ArgMin dataset as a reference:079

How do generalization gaps of PLMs differ af-080

ter pre-training? (§ 4) We find generalization081

gaps substantially differ across PLMs and that they082

become more prominent for tasks with greater se-083

mantically difficulties, such as NER. Further, prob-084

ing generally falls short regarding lexical unseen085

instances - like highly rare entities. Subsequently,086

we evaluate large language models (LLMs) and087

notice their generally higher performance but also088

higher generalization gaps. Interestingly, dedupli-089

cating the pre-training data reduces these gaps and090

enhances performance.091

How do PLMs depend on topic-specific vocabu-092

lary? (§ 5) Next, we remove the topic-specificity093

of tokens using amnesic probing and find that094

PLMs significantly differ in their reliance on and095

robustness concerning such semantic features.096

How do generalization gaps evolve during fine-097

tuning? (§ 6) Finally, we re-probe tuned PLMs098

on the UKP ArgMin dataset and find that In-Topic099

fine-tuning erases more linguistic properties than100

Cross-Topic fine-tuning.101

To sum up, we expand the scope of probing by102

comparing and contrasting In- and Cross-Topic sce-103

narios across various language models. Thereby,104

we shed light on previously underexplored charac-105

teristics of the embedding space of language mod-106

els, such as the variable generalization gap or their107

fragility regarding token-level interventions. Inter-108

estingly, embodying mixed pre-training objectives109

or architectural regularization leads to better out-110

comes, suggesting their potential importance in111

building robust and competitive language models.112

Overall, our analysis underscores probing as a uni-113

versally applicable tool that complements the study 114

of language models (Wang et al., 2018; Liang et al., 115

2022). 116

2 In- and Cross-Topic Probing 117

The following section formally outlines the used 118

probing setup and tasks before elaborating on the 119

generalization gap, and comparing In- and Cross- 120

Topic probing evaluation. 121

2.1 Probing Setup and Tasks 122

We define a probe fp comprised of a frozen encoder 123

h and linear classifier c without any intermediate 124

layer. This classifier is trained to map instances 125

X = {x1, . . . , xn} to targets Y = {y1, . . . , yn} 126

for a given probing task. Using a frozen PLM as h, 127

the probe converts xi into a vector hi. In detail, we 128

encode the entire sentence, which wraps xi, and 129

average relevant positions of xi to find hi. Relevant 130

positions for the considered probing task are either 131

single tokens for part-of-speech tagging (POS)), a 132

span for named entity recognition (NER), or the 133

concatenation of two tokens for dependency tree 134

parsing (DEP). Then, the classifier c utilizes hi to 135

generate a prediction ŷi, as shown in Equation 1. 136

ŷi = fp(xi) = c(h(xi)) (1) 137

2.2 Generalization Gap 138

Generalization gaps arise when we compare evalu- 139

ation setups focusing on different capabilities for 140

the same task. This work focuses on gaps of using 141

data from the same (In-Topic) or different topics 142

(Cross-Topic) for training and evaluation. We de- 143

fine such topics T = {t1, . . . , tm} as given by a 144

dataset and involve semantically grouping its in- 145

stances. - i.e., arguments about Nuclear Energy. 146

This gap between In- and Cross-Topic is visible 147

in Figure 2, which shows how NER instances (in 148

blue) are distributed in the semantic space. For 149

Cross-Topic, entities cover only specific topics and 150

thereby are less broadly spread, while In-Topic 151

ones are spread more broadly since they cover all 152

datasets’ topics. Simultaneously, we note more lex- 153

ically unseen entities (in red) during training for 154

Cross-Topic. 155

In an ideal case, the generalization gaps do not 156

exist because pre-trained language models (PLMs) 157

are robust enough to overcome such distribution 158

shifts between different evaluation setups. How- 159

ever, practically, we saw in Figure 1 these gaps 160
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Figure 2: Density plot of In- and Cross-Topic NER test
instances (blue), encoded with bert-base-uncased and
reduced with the same t-SNE model (van der Maaten
and Hinton, 2008). While the number of instances is the
same, Cross-Topic embodies, with 40.2%, more unseen
instances than In-Topic (34.9%).

being pronounced on a varying scale for different161

models.162

2.3 Difference between In- and Cross-Topic163

Evaluation164

By evaluating probing tasks for In- and Cross-165

Topic, we examine the varying generalization gaps166

between these setups across different PLMs.167

Cross-Topic With Cross-Topic evaluation, we168

investigate how well a probe generalizes when the169

train, dev, and test instances cover distinct sets170

of topics {T (train), T (dev), T (test)}. A probe fp171

must generalize across the distribution shift in this172

setup. This shift originates because distinct topics173

cover different specific vocabulary Z - i.e., Z(test)174

for topics in T (test). We formally describe this175

shift, denoted as ∆Z, as the relative complement176

between topic-specific vocabulary from train and177

test instances - ∆Z = Z(train) \Z(test). For Cross-178

Topic, we expect ∆Z to be large (Figure 2).179

In-Topic In contrast, ∆Z is smaller for the In-180

Topic setup because instances from every split181

(train/dev/test) cover the same topics. We expect182

similar topic distribution and minor semantic differ-183

ences within these splits compared to Cross-Topic184

(Figure 2). Thus, we see fewer difficulties for In-185

Topic because a classifier does not need to general-186

ize across a big distribution shift ∆Z.187

Topic-Specific Vocabulary As discussed previ-188

ously, we see topic-specific vocabulary as one189

main reason for generalization gaps between In-190

and Cross-Topic because ∆Z differs for these se-191

tups considering a dataset d covering topics T =192

t1, . . . , tm. The topic-specificity of a token zi is193

Model # Params Objectives Data

ALBERT (Lan et al., 2020) 12M MLM + SOP 16GB
BART (Lewis et al., 2020) 121M DAE 160GB
BERT (Devlin et al., 2019) 110M MLM + NSP 16GB

DeBERTa (He et al., 2021) 100M MLM 80GB
RoBERTa (Liu et al., 2019) 110M MLM 160GB
ELECTRA (Clark et al., 2020) 110M MLM+DISC 16GB
GPT-2 (Radford et al., 2019) 117M LM 40GB

Table 1: Overview of the used PLMs trained on MLM,
LM, DISC, NSP, SOP, or DAE objectives.

a latently encoded property within the encodings 194

hi for a token wi. To capture this property on 195

the token level, we adopt the approach of Kawin- 196

tiranon and Singh (2021) and use the maximum 197

log-odds-ratio ri of a token regarding a set of top- 198

ics T . Firstly, we calculate the odds of finding the 199

token wi in a topic tj as o(wi,tj) =
n(wi,tj)
n(¬wi,tj)

, where 200

n(wi, tj) is the number of occurrences of wi in tj , 201

and n(¬wi, tj) is the number of occurrences of ev- 202

ery other token ¬wi in tj . We then compute r as 203

the maximum log-odds ratio of wi for all topics in 204

T as r(wi,T ) = maxtj∈T (log(
o(wi,tj)
o(wi,¬tj)

)). 205

3 Experimental Setup 206

We propose three experiments to analyze the vary- 207

ing generalization gap between PLMs after pre- 208

training (§ 4), their dependence on topic-specific 209

vocabulary (§ 5), and the evolution of these gaps 210

during fine-tuning (§ 6). We outline general details 211

about these experiments, while details and results 212

are provided in the subsequent sections. 213

Models We examine how various PLMs (Table 1) 214

with varying pre-training objectives or architectural 215

designs differ regarding our probing tasks. We 216

cover PLMs pre-trained using masked language 217

modeling (MLM), next sentence prediction (NSP), 218

sentence order prediction (SOP), language mod- 219

eling (LM), discriminator (DISC), and denoising 220

autoencoder (DAE) objectives. As in previous 221

work (Koto et al., 2021), we group them into the 222

ones pre-trained using token- (MLM) and sentence- 223

objectives (NSP, SOP, or DAE) and four purely 224

token-based pre-trained (MLM, LM, DISC). We 225

consider the base-sized variations to compare their 226

specialties in a controlled setup. Apart from these 227

seven contextualized PLMs, we use a static PLM 228

with GloVe (Pennington et al., 2014). 229

Data We require a dataset with distinguishable 230

topic annotations to evaluate probing tasks in the 231
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In- and Cross-Topic evaluation setup. Therefore,232

we mainly2 rely on the UKP ArgMin dataset (Stab233

et al., 2018), which provides 25,492 arguments an-234

notated for their argumentative stance (pro, con, or235

neutral) towards one of eight distinct topics like236

Nuclear Energy or Gun Control. Using these in-237

stances, we heuristically generate at most 40,000238

instances for the three linguistic properties depen-239

dency tree parsing (DEP), part-of-speech tagging240

(POS), or named entity recognition (NER) using241

spaCy.3 Additionally, we consider the main task242

of the UKP ArgMin dataset (Stab et al., 2018) -243

argumentative stance detection (Stance). There-244

fore, we have a topic-dependent reference probe to245

relate the results of other probes and evaluate the246

generalization ability of PLMs on real-world tasks247

after pre-training. We use a three-folded setup for248

all these four probing tasks to consider the full data249

variability for both In- and Cross-Topic evaluation.250

Details about the compositions of these folds and251

how we ensure a fair comparison between In- and252

Cross-Topic are provided in the Appendix (§ A.2)253

as well as examples for probing tasks (Appendix254

§ A.1).255

Evaluation We primarily report the macro F1256

score averaged over the results of evaluating every257

of the three folds three times using different ran-258

dom seeds. Following recent work (Voita and Titov,259

2020; Pimentel et al., 2020), we additionally report260

information compression I (Voita and Titov, 2020)261

for a holistic evaluation. It measures the effective-262

ness of a probe as the ratio ( u
mdl ) between uniform263

code length u = n∗log2(K) and minimum descrip-264

tion length mdl, where u denotes how many bits265

are needed to encode n instances with label space266

of K. We follow online variation of mdl and use267

the same ten-time steps t1:11 = { 1
1024 ,

1
512 , ...,

1
2},268

where we train a probe for every tj with a fraction269

of instances and evaluate with the same fraction270

of non-overlapping instances. Exemplary, for, t9271

we use the first fraction of 1
4 instances to train and272

another fraction of 1
4 to evaluate. We find the final273

mdl as the sum of the evaluation losses of every274

time step t1:11. For Cross-Topic, we group train-275

ing instances into two groups of distinct topics and276

sample the same fraction of instances to train and277

evaluate. Thus, we ensure a similar distribution278

2We verified our findings with another dataset in the Ap-
pendix § B.1.

3We show in the Appendix (§ B.8) that the heuristically
generated labels are reliable, and our results are well aligned
with previous work.

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1
BERT 25.4 25.6 68.5 67.5 45.4 41.6 56.9 43.0 49.0 44.4 -4.6
DeBERTa 32.8 29.9 73.7 74.6 48.8 42.4 59.8 45.8 53.4 48.2 -5.2
RoBERTa 25.1 23.6 64.0 65.5 48.4 42.1 51.8 40.1 47.3 42.8 -4.5
ELECTRA 33.6 33.6 75.3 75.3 41.5 41.2 46.6 43.1 49.3 48.3 -1.0
GPT-2 25.2 23.9 63.5 61.9 45.5 38.6 51.1 38.4 46.3 40.7 -5.6
GloVe 12.1 11.9 26.5 26.2 43.4 37.5 41.6 34.1 30.9 27.4 -3.5
Avg. ∆ -1.2 -0.5 -4.5 -11.0 - - -

Table 2: In- and Cross-Topic probing results for eight
PLMs. We report the macro F1 over three random seeds,
the average difference between the two setups (last row),
and their average per PLM (last three columns). Best
results within a gap of 1.0 are marked by columns.

shift between training and evaluation fractions as 279

in all instances. 280

4 The Generalization Gap of PLMs 281

The first experiment shows that the generalization 282

gap already exists after pre-training and varies re- 283

garding specific PLMs and probing tasks. We ana- 284

lyze general (Table 2 and Figure 3) and fine-grained 285

(Table 3) results and discuss them for the different 286

evaluating setups, probing tasks, and PLMs. While 287

firstly focusing on mid-size PLMs usable for fine- 288

tuning, we close how probing performance scales 289

to large language models (LLMs) in § 4. 290

Design We probe eight PLMs on the probing 291

tasks DEP, POS, NER, and Stance and verify them 292

by observing significant performance drains using 293

random initialized PLMs (Appendix § B.2). For a 294

holistic evaluation, we provide general results as 295

well as grouping instances into two categories: seen 296

and unseen. We define seen instances as already 297

processed during training but in another context. 298

For example, the pronoun he might appear in both 299

training and test data, but in distinct sentences. By 300

evaluating the PLMs on seen instances, we gain in- 301

sights into the influence of token-level lexical infor- 302

mation versus context information from surround- 303

ing tokens. In contrast, unseen instances were not 304

encountered during the training of a probe. They 305

allow assessing whether PLMs generalize to tokens 306

that are similar to some extent (such as Berlin and 307

Washington) but not seen during training. 308

Results for Evaluation Setups Upon analyzing 309

Table 2, we observe clear generalization gaps be- 310

tween In- and Cross-Topic evaluation for all tasks 311

and PLMs. As in Figure 3, the magnitude of this 312

gap (∆F1) correlates with the difference in com- 313

pression (∆I). Interestingly, we find a stronger 314
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DEP POS NER

all ∆ seen ∆ unseen all ∆ seen ∆ unseen all ∆ seen ∆ unseen

Instance Ratio - 85% 15% - 86% 14% - 65% 35%

In
-T

op
ic

ALBERT 43.8 +0.21 -3.2 80.2 +0.41 -17.7 48.6 +1.1 -5.8
BART 36.5 +0.13 -3.0 75.4 +0.20 -16.5 48.7 +1.3 -7.0
BERT 25.4 -0.02 -0.8 68.5 +0.20 -16.5 45.4 +1.0 -5.8
DeBERTa 32.8 +0.07 -1.5 73.7 +0.09 -12.7 48.8 +1.0 -5.6
RoBERTa 25.1 -0.01 -0.9 64.0 -0.04 -15.5 48.4 +1.0 -5.7
Average - -0.08 -1.9 - +0.17 -15.8 - +1.1 -6.0

Instance Ratio - 78% 22% - 81% 19% - 51% 49%

C
ro

ss
-T

op
ic ALBERT 39.5 +0.03 -2.3 78.0 +0.51 -12.9 45.8 +2.2 -5.3

BART 36.9 +0.01 -4.0 74.1 +0.24 -16.5 45.3 +2.4 -5.8
BERT 25.6 -0.09 -0.7 67.5 +0.20 -14.0 41.6 +1.9 -5.1
DeBERTa 29.9 -0.07 -1.3 74.6 +0.14 -11.7 42.4 +2.0 -5.2
RoBERTa 23.6 -0.22 -0.3 65.5 +0.00 -14.7 42.1 +1.9 -5.2
Average - -0.08 -1.7 - +0.22 -14.0 - +2.1 -5.3

Table 3: Performance difference of seen and unseen
instances compared to the full set (all). We report for
ALBERT, BART, BERT, DeBERTa, & RoBERTa, and
include the ratio of seen and unseen instances.

Figure 3: Comparision of the difference in ∆F1 and ∆I
between Cross-Topic and In-Topic for all eight PLMs
on the four probing tasks.

correlation between F1 and I for Cross-Topic315

(ρ = 0.72) as compared to In-Topic (ρ = 0.69).316

Thus, a higher performance level, like for In-Topic,317

leaves less room for compression improvements.318

Further, we examine the performance of seen319

and unseen instances in Table 3. It shows that seen320

performs slightly better than all, while unseen ones321

underperform the complete set (all) and seen in-322

stances. Considering the average over PLMs, there323

are fewer relative gains for seen for In-Topic and324

more loss for unseen instances (+1.2, -6.0 for NER)325

compared to Cross-Topic (+2.0, -5.3 for NER).326

This observation relates to the lower percentage327

of unseen instances (i.e., made of topic-specific328

terms) for In- compared to Cross-Topic. We see un-329

seen instances on In-Topic are harder and cover rare330

vocabulary, and seen instances on Cross-Topic are331

easier and made of general terms - which confirm332

our theoretical and semantic assumptions (§ 2).333

Results for Probing Tasks Considering Table 2334

and Figure 3, we note higher generalization gaps335

(Avg. ∆ of -4.5 and -11.0) for semantic tasks (NER336

and Stance) than for syntactic ones (DEP and POS)337

- Avg. ∆ of -1.2 and -0.5. We verify this trend with338

results by observing a more pronounced gap for339

semantic NER classes (like ORG) than for syntactic 340

ones (like ORDINAL) in the Appendix (§ B.5). 341

Next, we separately compare tasks for seen and 342

unseen instances. DEP shows the slightest perfor- 343

mance difference compared to all. We assume that 344

the pairwise nature of the task leads to a larger 345

shared vocabulary between unseen and training in- 346

stances - since a pair can be unseen, but it may 347

contain a frequent word like of. In contrast, appar- 348

ent differences between NER and POS are visible 349

- with less performance drain on unseen instances 350

for NER than POS. Therefore, we assume for NER 351

a higher semantic overlap with training instances 352

since they could include - as being an n-gram - 353

words from the training vocabulary. In contrast, 354

tokens of unseen POS instances are always single 355

words; thus, we assume a smaller semantic overlap 356

with the training. 357

Results for Encoding Models We now com- 358

pare PLMs amongst themselves. The four best- 359

performing PLMs of In-Topic differ up to 7.6 (AL- 360

BERT - BERT), while for Cross-Topic, this differ- 361

ence narrows to 4.1 (ALBERT - ELECTRA). These 362

results confirm the varying generalization gap be- 363

tween them and, again, that we can not transfer 364

conclusions from one evaluation setup to another. 365

For example, the probing performance of BART for 366

In-Topic Stance is the best and the third best for 367

Cross-Topic. 368

Generally, we do not see a clear correlation be- 369

tween better average performance and a smaller 370

generalization gap. PLMs like DeBERTa perform 371

better for In- and Cross-Topic but show a bigger 372

gap (-5.1) compared to lower performing PLMs 373

like ELECTRA (-1.0), but there are also worse 374

PLMs with a bigger gap (GPT-2, -5.6) or better 375

ones with a smaller gap (ALBERT, -4.6). Over- 376

all, we see the generalization gap being more pro- 377

nounced for better-performing PLMs. 378

Considering absolute performance, AL- 379

BERT and BART performs the best on average for 380

both evaluation setups, while ELECTRA excels 381

POS and DEP, and DeBERTa performs for NER 382

and Stance. In contrast, BERT, RoBERTa, GPT-2, 383

and GloVeunderperform the others. Thus, PLMs 384

with architectural regularization, such as layer-wise 385

parameter sharing (ALBERT), encoder-decoder 386

layers (BART), disentangled attention (DeBERTa), 387

or discriminator (ELECTRA), tend to provide 388

higher Cross-Topic performance. Similarly, 389

regularized PLMs, such as ALBERTor DeBERTa, 390
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DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1

PYTHIA (12B) 38.3 35.4 79.5 77.7 57.3 50.5 65.2 41.6 60.1 51.3 -8.8
PYTHIA-DD (12B) 45.3 45.4 79.8 79.2 64.5 55.8 66.1 50.4 63.4 57.9 -6.2

LLAMA-2 (13B) 44.4 41.8 81.0 80.6 48.7 45.3 66.8 44.2 60.2 53.0 -7.2
LLAMA-2 Chat (13B) 45.4 41.7 80.7 80.1 49.2 42.9 67.2 43.2 60.6 52.0 -8.7

Table 4: Results (macro F1) of the four probing tasks
using the two overall best-performing PLMs (AL-
BERT and BART) in the In- and Cross-Topic setup
based on the ArgMin dataset (Table 2) and three LLMs.

generally achieve more performance gains for391

seen instances and fewer performance drops for392

unseen ones than models without regularization393

such as BERT or RoBERTa. We hypothesize394

that architectural and regularization aspects equip395

PLMs with a more generalizable and robust396

encoding space.397

Results for Larger Models We compare in Ta-398

ble 4 six open accessible LLMs with the two best399

performing models (ALBERT and BART). In gen-400

eral, we see the performance scales with the higher401

number of parameters, but more noticeable for In-402

than Cross-Topic tasks. Therefore, the generaliza-403

tion gap of LLMs tend to be bigger than for PLMs.404

Regarding the different LLMs, PYTHIA (Bider-405

man et al., 2023) and LLAMA-2 (Touvron et al.,406

2023) outperforms the others on In-Topic tasks407

while performing on par with ALBERT. Further,408

we notice data deduplication during pre-training409

(PYTHIA-DD) results in best performing model410

and actively reduce the generalization gap from 8.8411

to 6.2. In addition, instruction fine-tuning does not412

heavily affect the performance but tend to increase413

the generalization gap, from 7.2 (LLAMA-2) to414

8.7 (LLAMA-2 Chat).415

5 The Dependence on Topic-Specific416

Vocabulary417

To this point, we saw that the generalization gap418

varies between different PLMs and probing tasks.419

Since we see topic-specific vocabulary crucially420

affects generalization gaps, we analyze the vary-421

ing dependence on the topic-specific vocabulary of422

PLMs using Amnesic Probing (Elazar et al., 2021).423

We observe clear differences among PLMs and424

therefore assume that their embedding space clearly425

differs beyond single evaluation metrics. Therefore,426

we emphasize considering various PLMs when us-427

ing Amnesic Probing. Additional insights of com-428

paring seen and unseen instance and distinct NER429

classes are provided in the Appendix (§ B.4, § B.6). 430

Design To measure how PLMs depend on topic- 431

specific vocabulary, we employ Amnesic Probing 432

(Elazar et al., 2021) to remove the latently encoded 433

topic-specificity zi from the embeddings hi of a 434

token wi. More precisely, we compare how the 435

performance of a probing task (like NER) changes 436

when we remove zi. A more negative effect indi- 437

cates a higher dependence on topic-specific vocab- 438

ulary, while this property is a hurdle when perfor- 439

mance improves. We first train a linear model on 440

token-level topic-specificity r (§ 2.3). To shape it 441

as a classification task, we categorize r into three 442

classes (low, medium, high). 4 Next, we find a 443

projection matrix P that projects all embeddings 444

hi - gathered as H - using the learned weights Wl 445

of l to the null space as WlPH = 0. Using P 446

we update hi by neutralizing topic-specificity from 447

the input as h
′
i = Phi before training the probe. 448

Following (Elazar et al., 2021), we verified our re- 449

sults by measuring less effect of removing random 450

information from hi (see Appendix § B.3). 451

Results Considering Figure 4, we see ALBERT, 452

BART, and BERT depend less on topic-specific vo- 453

cabulary. We see their diverse pre-training (token- 454

and sentence-objectives or sentence denoising) re- 455

sults in a more robust embedding space. Sur- 456

prisingly, they show positive effects (3.2 for DEP 457

for BART) when removing topic-specificity. This 458

could remove potentially disturbing parts of the em- 459

bedding space. Similarly, GPT-2 is less affected 460

by the removal - we assume this is due to its gen- 461

erally lower performance level. Therefore, it has 462

less room for performance drain, and capturing 463

topic-specificity is less powerful. 464

Comparing In- and Cross-Topic setups shows 465

a narrowing generalization gap for more affected 466

models (like RoBERTa and GloVe on NER or 467

NER). Simultaneously, less affected PLMs ei- 468

ther maintain the gap or enlarge it slightly - like 469

BART on DEP, NER, or NER. Further, DeBERTa, 470

RoBERTa, ELECTRA, and GloVe rely more on 471

topic-specific vocabulary since they show signifi- 472

cant performance loss (up to 34.6 for GloVe on 473

POS) when removing this information. Specif- 474

ically, GloVe as a static language model, and 475

RoBERTa is affected the highest for all tasks. 476

ELECTRA shows similar behavior, but is less pro- 477

nounced for POS. Thus, its reconstruction pre- 478

4Please find examples in the Appendix § A.6.
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Figure 4: Comparison of the probing results with (blue bars) or without (red bars) topic information. The white text
indicates the difference between these two scenarios (∆F

\T
1 ).

training objective provides a more robust em-479

bedding space than purely MLM (DeBERTa or480

RoBERTa). Comparing, DeBERTa and RoBERTa,481

DeBERTa is less affected by the removal of se-482

mantic tasks (NER and NER). We hypothesize483

that distinguishing between token content and to-484

ken position via disentangled attention makes De-485

BERTa more robust for the semantic than for syn-486

tactic tasks (DEP and POS).487

6 The Evolution of the Generalization488

Gap during Fine-Tuning489

Finally, we re-evaluate fine-tuned PLMs using our490

proposed probing setups and show that fine-tuning491

leads to a drain in probing performance. We use492

these results to retrace apparent differences be-493

tween evaluation setups and the varying general-494

ization gap between PLMs. This is relevant for a495

broader understanding of how fine-tuning affects496

PLMs (Mosbach et al., 2020; Kumar et al., 2022a),497

and what they learn during fine-tuning (Merendi498

et al., 2022; Ravichander et al., 2021).499

Design We fine-tune the PLMs on an argumen-500

tative stance detection task and re-evaluate them501

on the probing tasks DEP, POS, and NER. To be502

consistent with our probing setup, we used the503

same folds for fine-tuning. Further details are504

in the Appendix (§ A.5). We compare these re-505

sults with the probing performance of their pre-506

trained counterparts (§ 4 and § 5) and correlate507

this change with the generalization gap observed508

on the downstream task. We limit our analysis to509

ALBERT, BERT, BART, DeBERTa, and RoBERTa.510

Results Table 5 shows that fine-tuning clearly511

boost the performance on NER compared to the512

probing performance (§ 4) but leads to a clear513

Stance DEP POS NER Avg. DEP POS NER

F1 fine-tuned ∆F1 probing ∆F
\T
1

In
-T

op
ic

ALBERT 55.4 +0.6 -27.3 -40.2 -25.0 -30.8 -0.6 -3.0 -0.1
BART 69.8 +9.0 -17.3 -32.2 -4.0 -17.8 -0.8 -4.0 +0.3
BERT 67.2 +10.3 -7.5 -24.8 +1.0 -10.4 +0.4 +0.7 +1.1
DeBERTa 70.1 +10.3 -13.2 -25.3 -8.8 -15.8 -0.8 -3.8 -0.4
RoBERTa 68.9 +17.1 -19.7 -48.6 -29.7 -27.2 -0.8 -3.0 -0.7
Avg. 66.3 +9.5 -16.6 -32.6 -12.1 -20.4 -0.5 -2.6 +0.1

C
ro

ss
-T

op
ic ALBERT 51.4 +5.5 -14.4 -20.3 -12.6 -15.8 +1.6 -1.3 +2.1

BART 61.9 +17.5 -16.5 -33.9 -5.4 -18.6 -1.0 -3.5 -1.6
BERT 56.6 +13.6 -5.7 -19.5 +0.6 -8.2 +0.7 +0.6 +1.2
DeBERTa 55.9 +10.1 -13.4 -33.4 -11.8 -19.5 -1.2 -8.6 +1.6
RoBERTa 55.5 +15.4 -16.6 -48.3 -23.1 -23.5 -1.9 -4.8 -0.3
Avg. 56.3 +12.6 -13.0 -29.3 -9.1 -17.1 -0.4 -3.5 +0.6

Table 5: Results of evaluating our probing setup on fine-
tuned PLMs on NER. The first column shows these fine-
tuned results and the gained improvement compared to
probing for NER on pre-trained PLMs (Table 2). Next,
we show performance differences between pre-trained
and fine-tuned PLMs (∆F1 probing) and how removing
topic-specificity affects the fine-tuned PLMs (∆F

\T
1 ).

performance drop (∆F1) for both evaluation se- 514

tups and the probing tasks. Cross-Topic achieved 515

more gains on average (+12.6) and fewer drains 516

(-17.1) on the three linguistic properties than In- 517

Topic (+9.5, -20.4). On average, we assume that 518

In-Topic fine-tuning affects the encoding space of 519

PLMs more heavily than Cross-Topic. Regarding 520

the different probing tasks, the performance drain 521

is more pronounced for syntactic tasks (DEP and 522

POS) than semantic tasks (NER). This hints that 523

PLMs acquire competencies of semantic nature - 524

which holds for stance detection. Similarly, remov- 525

ing topic-specificity influences fine-tuned PLMs 526

the least for NER. At the same time, this removal 527

is more pronounced for Cross-Topic. This con- 528

firms the assumption that the Cross-Topic setup 529

has smaller effects on PLMs internals, since we 530

saw big impacts of this removal (§ 5). 531

Considering the single PLMs, we see apparent 532
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differences. For example, ALBERT, with its shared533

architecture and priorly best-performing PLM, ex-534

periences big probing performance drains and the535

smallest fine-tuning gains (+0.6, +5.5). In con-536

trast, we note effective fine-tuning of BERTwith537

+10.3 for In- and +13.6 for Cross-Topic, and that538

it lost the least probing performance. Compar-539

ing RoBERTa and DeBERTa reveals again the ef-540

fectiveness of architectural regularization of De-541

BERTa. RoBERTa shows the most gains when542

fine-tuning on NER and almost catching up with543

DeBERTa. However, it experiences a more clear544

performance drain (-27.2, -23.5) regarding the545

probing tasks for In- and Cross-Topic compared546

to DeBERTa (-15.8, -19.5). Next, we focus on547

BART and its superior Cross-Topic performance548

on NER. It seems already well-equipped for this549

downstream task due to its high In-Topic probing550

performance on NER. Therefore, it can learn the551

task more robustly during fine-tuning.552

7 Related Work553

The rise of PLMs (Devlin et al., 2019; Liu et al.,554

2019; Radford et al., 2019; He et al., 2021) enabled555

big success on a wide range of tasks (Wang et al.,556

2018, 2019). Nevertheless, they still fall behind557

on more realistic Cross-Topic, like generalizing558

towards unseen topics (Stab et al., 2018; Gulra-559

jani and Lopez-Paz, 2021; Allaway and McKeown,560

2020). One primary reason is that PLMs often561

rely on unwanted spurious correlations. Despite562

PLMs seeing such vocabulary during pre-training,563

they failed to consider test vocabulary in the re-564

quired fine-grained way (Thorn Jakobsen et al.,565

2021; Reuver et al., 2021). Further, Kumar et al.566

(2022b) found linear models can outperform fine-567

tuning PLMs when considering out-of-distribution568

data. Thus, a broader understanding of PLMs in569

challenging evaluation setups is crucial.570

Probing (Belinkov et al., 2017; Conneau et al.,571

2018; Peters et al., 2018) helps to analyze inners572

of PLMs. This includes to examine how linguistic573

(Tenney et al., 2019a,c), numeric (Wallace et al.,574

2019), reasoning (Talmor et al., 2020), or discourse575

(Koto et al., 2021) properties are encoded. Other576

works focus on specific properties used for other577

tasks (Elazar et al., 2021; Lasri et al., 2022), or fine-578

tuning dynamics (Merchant et al., 2020; Zhou and579

Srikumar, 2022; Kumar et al., 2022b). However,580

these works target the commonly used In-Topic581

setup and less work considering Cross-Topic setups.582

Aghazadeh et al. (2022) analyzed metaphors across 583

domains and language, or Zhu et al. (2022) cross- 584

distribution probing for visual tasks. They found 585

that models generalize to some extent across distri- 586

bution shifts in probing-based evaluation. Never- 587

theless, these works focus on specialized tasks and 588

consider the generalizations across distributions in 589

isolation. In contrast, we propose with our exper- 590

iments a more holistic probing-based evaluation 591

of PLMs, covering different generalization aspects 592

after pre-training and fine-tuning. 593

8 Conclusion 594

Discussion We analyzed and compared In- and 595

Cross-Topic evaluation setups and found gener- 596

alization gaps significantly differing considering 597

PLMs and the specific probing task. Notably, di- 598

verse pre-training objectives and architectural reg- 599

ularization tend to positively affect the generaliz- 600

ability and robustness of PLMs, such as depending 601

less on topic-specific vocabulary. Moreover, our re- 602

sults reveal probing performance falls short for rare 603

vocabulary, underscoring the need to explore token- 604

level properties. Further, we preliminarily analyzed 605

LLMs and observed that the probing performance, 606

but also generalization gaps, tend to scale with in- 607

creasing parameters. Eventually, we re-evaluated 608

tuned PLMs and found generalization gaps evolve 609

differently, and linguistic properties tend to vanish 610

during fine-tuning, being more prominent for In- 611

than Cross-Topic. We verified our results using a 612

second dataset from the social media domain (Con- 613

forti et al., 2020) - details in the Appendix § B.1. 614

To conclude, this work demonstrated the practi- 615

cal utility of probing to analyze and compare the ca- 616

pacities of various PLMs from a different perspec- 617

tive - considering different generalization scenar- 618

ios. Thereby, our work points out the importance 619

of probing as a universally applicable method, re- 620

gardless of size or being static or contextualized, to 621

complement existing work on analyzing language 622

models (Wang et al., 2018; Liang et al., 2022). 623

Outlook With our findings in mind, we see reg- 624

ularly probing PLMs and LLMs on new tasks and 625

considering forthcoming learning paradigms as in- 626

dispensable for a holistic evaluation of their verity 627

and multiplicity. Therefore, we will continue to 628

analyze language models, including a broader set 629

of tasks and focusing on general and rare vocab- 630

ulary to increase our understanding of how, why, 631

and where they differ. 632
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Ethical Considerations and Limitations633

Automatic Annotations for Linguistic Proper-634

ties Our experiments require all instances origin635

in the same datasets with topic annotations. Thanks636

to this condition, we align all our experiments, like637

probing PLMs, with the same data as they got pre-638

trained. Therefore, we minimize other influences639

like semantic shifts of other datasets. However,640

there are no corresponding annotations for linguis-641

tic properties, which forces us to rely on automat-642

ically gathered annotations. This work addresses643

this issue by transparently stating the libraries and644

models we used to derive these annotations and645

providing the source code and the extracted labels646

in our repository. We compared our results (§ B.8)647

with previous work (Tenney et al., 2019a,c; He-648

witt and Liang, 2019) and found our results well649

aligned. Further, we verify the probing task results650

on the different PLMs with randomly initialized651

counter-parts (§ B.2) and confirm our findings with652

a second dataset (§ B.1).653

Definition of Topic-Specific Vocabulary This654

work considers a topic as a semantic grouping pro-655

vided by a given dataset. As previously mentioned,656

this focus on the context of one dataset allows in-657

depth and controlled analysis, like examining the658

change of PLMs during fine-tuning. On the other659

hand, we need to re-evaluate other datasets since660

the semantic space and granularity of the topic are661

different in almost every other dataset. Neverthe-662

less, results in the Appendix (§ B.1) let us assume663

that our findings correlate with other datasets and664

domains. Further, we consider only token-level665

specific vocabulary, as done previously in literature666

(Kawintiranon and Singh, 2021). We think that667

considering n-grams could give a better approx-668

imation of topic-specific terms. Still, we do not669

take them into account because Amnesic Probing670

(Elazar et al., 2021) require token-level properties671

to apply resulting intervention on token-level tasks672

like POS.673

Impact of PLMs Design choices This work ana-674

lyzes PLMs regarding a set of different properties675

like pre-training objectives or architectural regu-676

larization. However, we do not claim the com-677

pleteness of these aspects nor a clear causal re-678

lationship. Making such a final causal statement679

would require significant computational resources680

to pre-train models to verify single properties with681

full certainty. Instead, we use same-sized model682

variations, evaluate all probes on three folds and 683

three random seeds to account for data variabil- 684

ity and random processes, and verify our results 685

on a second dataset. Nevertheless, we use them 686

to correlate results on aggregated properties (like 687

having diverse pre-training objectives or not) and 688

not on single aspects, like the usefulness of the 689

Sentence-Order objective. 690
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A Additional Details of the Experiments1006

A.1 Probing Tasks1007

Table 6 shows examples and additional details of1008

the different probing tasks.1009

A.2 Fold Composition1010

We rely on a three-folded evaluation for In- and1011

Cross-Topic for a generalized performance mea-1012

sure. These folds cover every instance exactly once1013

in a test split. In addition, we require that In- and1014

Cross-Topic train/dev/test splits have the same num-1015

ber of instances for a fair comparison, as visualized1016

in Figure 5. For Cross-Topic, we make sure that1017

every topic {t1, ..., tm} is covered precisely once1018

by one of the three test splits X(test)
cross . To compose1019

X
(train)
cross and X

(dev)
cross , we randomly distribute the re-1020

maining topics for every fold. For In-Topic, we ran-1021

domly5 form subsequent test splits X(test)
in for ev-1022

ery fold from all instances {x1, ..., xm}. X(train)
in1023

and X
(dev)
in are then randomly composed for every1024

fold using the remaining instance set following the1025

dimension of X(train)
cross and X

(dev)
cross .1026

A.3 Training Setup1027

For all our experiments, we use NVIDIA RTX1028

A6000 GPUs, python (3.8.10), transformers1029

(4.9.12), and PyTorch (1.11.0).1030

A.4 Probing Hyperparameters1031

Further, we use for the training of the probes the1032

following fixed hyperparameters: 20 epochs, where1033

we find the best one using dev instances; AdamW1034

(Loshchilov and Hutter, 2019) as optimizer; a batch1035

size of 64; a learning rate of 0.0005; a dropout rate1036

of 0.2; a warmup rate of 10% of the steps; random1037

seeds: [0, 1, 2]1038

In addition, we use the following tags from the1039

huggingface model hub:1040

• albert-base-v21041

• bert-base-uncased1042

• facebook/bart-base1043

• microsoft/deberta-base1044

• roberta-base1045

5We expect that all folds cover all topics given the small
number of topics (8) and the big number of instances.

Figure 5: Overview of the In- and Cross-Topic setup
using three folds. The colour indicates a topic; solid
lines train-, dotted lines dev-, and dashed lines test-
splits.

• google/electra-base- 1046

discriminator 1047

• gpt2 1048

• EleutherAI/pythia-12b 1049

• EleutherAI/pythia-12b-deduped 1050

• meta-llama/Llama-2-13b-hf 1051

• meta-llama/Llama-2-13b-chat-hf 1052

• google/t5-xxl-lm-adapt 1053

• allenai/tk-instruct-11b-def 1054

A.5 Fine-Tuning Hyperparameters 1055

To fine-tune on stance detection, we use the fol- 1056

lowing setup: 5 epochs, where we find the best 1057

one using dev instances; AdamW (Loshchilov and 1058

Hutter, 2019) as optimizer; a batch size of 16; a 1059

learning rate of 0.00002; a warmup rate of 10% of 1060

the steps; random seeds: [0, 1, 2]. 1061

A.6 Token-Level Examples for Topic 1062

Relevance 1063

In § 5, we use the binned topic-specificity (§ 5) for 1064

each token. We show in Table 7 examples for three 1065

bins low, medium, and high. The first bin (low) is 1066

made of tokens, which barely occur in the dataset. 1067

The second one (medium) consists of tokens which 1068

are part of most topics. Finally, the last bin (high) 1069

includes tokens with a high topic relevance for ones 1070

like Cloning or Minimum Wage. 1071

B Further Results 1072

B.1 Generalization Across Datasets 1073

With Table 8, and Figure 6 we verify the results 1074

of § 4, § 5, and § 4 using another stance detecion 1075
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Task Example Label # Instances # Labels

DEP I think there is a lot we can learn from Colorado and Washington State. nsubj 40,000 41
POS I think there is a lot we can learn from Colorado and Washington State. PRON 40,000 17
NER I think there is a lot we can learn from Colorado and Washington State. PERS 25,892 17
Stance I think there is a lot we can learn from Colorado and Washington State. PRO 25,492 3

Table 6: Overview and examples of the different probing tasks.

low medium high

fianc, joking, validate, as, on, take, cloning, uniform, wage,
latitude, poignantly, informative some, like, how, marijuana, minimum, gun,

ameliorate, bonding, mentors so, one, these, cloned, wear, clone,
brigade, emancipation, deriving, instead, while, ago nuclear, energy, penalty,

ignatius, 505, nominations, where, came, still, many, uranium, legalization, cannabis,
electorate, SWPS, 731 come, engage, seems execution, wast, employment

Table 7: Examples of tokens with a low, medium, or
high token relevance following § 4.

DEP POS NER NER Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 33.5 32.9 75.1 74.2 30.9 28.6 57.3 32.8 49.1 42.1 -7.0
BART 32.9 33.1 63.2 62.1 32.4 30.5 51.9 47.2 45.1 43.2 -1.9
BERT 21.6 21.2 54.8 55.9 27.2 27.8 47.4 32.1 37.8 34.2 -3.6
DeBERTa 26.9 27.6 69.6 67.9 29.4 28.5 49.5 35.7 43.9 40.0 -3.9
RoBERTa 20.4 19.9 54.7 53.5 26.1 25.5 37.0 37.8 35.6 34.2 -1.4
ELECTRA 26.6 26.6 69.6 68.6 21.7 24.1 35.1 36.7 38.2 39.0 +0.8
GPT-22 16.9 16.5 42.2 42.2 25.1 24.0 40.8 32.6 31.2 28.8 -2.4
GloVe 12.9 12.2 23.5 22.6 28.1 24.6 45.2 34.2 27.4 23.4 -4.0
Avg. ∆ -0.3 -0.7 -0.9 -9.5 - - -

Table 8: Results of the four probing tasks using eight
PLMs in the In- and Cross-Topic setup. We report the
mean F1 (macro averaged) over three random seeds, the
average difference between the two evaluation setups
per task (last row), and their average per PLM (last two
columns). Best-performing results within a margin of
1pp are marked for every task and setup.

dataset. Namely, we use the wtwt (will-they-wont-1076

they) (Conforti et al., 2020) dataset which covers1077

51.284 tweets annotated either support, refute, com-1078

ment, or unrelated towards five financial topics. For1079

the overall performance comparison between In-1080

and Cross-Topic, the results show the same trend1081

as we already saw in § 4, but on a lower level.1082

We assume that this is mainly due to this dataset’s1083

more specific domain (twitter) compared to UKP1084

ArgMin. Focusing on the influence of topic-specific1085

vocabulary verifies the previously presented results1086

(§ 5) again. PLMs pre-trained with purely token-1087

based objectives highly depend on topic-specific1088

vocabulary.1089

B.2 Comparison of Probing Tasks against1090

Random Initialized PLMs1091

We show in Table 9 and Table 10 the results of run-1092

ning the three linguistic probes on the seven contex-1093

tualized PLMs in their random initialized version.1094

For In- and Cross-Topic, there is a clear perfor- 1095

mance drop of having random initialized models. 1096

DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -42.4 6.8 -41.8 3.4 -76.8
BART 1.4 -35.1 5.0 -43.7 2.7 -72.7
BERT 2.7 -22.7 9.4 -36.0 4.6 -63.9
DeBERTa 7.0 -25.8 16.3 -32.5 16.1 -57.6
RoBERTa 2.2 -22.9 11.0 -37.4 4.7 -59.3
ELECTRA 1.7 -31.9 8.4 -33.1 3.8 -71.5
GPT-2 5.8 -19.4 12.3 -33.2 12.5 -51.0

Table 9: Results of evaluating DEP, POS, and NER us-
ing the seven contextual PLMs (random initialized) for
In-Topic and the difference to their pre-trained counter-
parts in Table 2.

B.3 The Effect of Removing Random 1097

Information 1098

We saw in § 5 that removing topic-specificity has 1099

a big impact for some models (like RoBERTa or 1100

ELECTRA) but at the same time can even boost 1101

the performance of others like BERT. As suggested 1102

in Elazar et al. (2021), we apply a sanity check by 1103

removing random information from the encodings 1104

of PLMs. Following the results in Figure 7, remov- 1105

ing random information (green bars) performs in 1106

between the scenarios with (blue bars) or without 1107

(red bars) topic information for cases where we see 1108

a clear negative effect when removing topic infor- 1109

DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -38.1 6.2 -39.6 3.4 -74.6
BART 1.5 -35.4 5.0 -40.3 2.9 -71.2
BERT 2.1 -23.5 9.6 -32.0 4.5 -63.0
DeBERTa 6.8 -23.1 14.0 -28.4 17.2 -57.4
RoBERTa 2.6 -21.0 10.0 -32.1 5.2 -60.3
ELECTRA 3.0 -30.6 9.8 -31.4 4.1 -71.2
GPT-2 5.8 -18.1 13.6 -25.0 11.0 -50.9

Table 10: Results of evaluating DEP, POS, and NER
using the seven contextual PLMs (random initialized)
for Cross-Topic and the difference to their pre-trained
counterparts in Table 2.

14



Figure 6: Comparison of the probing results with (blue bars) or without (red bars) topic-specificity for the will-they-
wont-they dataset (Conforti et al., 2020). The white text indicates the difference between these two scenarios.

mation. In contrast, removing random information1110

can produce a more pronounced effect when we1111

see performance improvements. This observation1112

backs our assumption that removing information1113

can have a regularization effect.1114

B.4 The Effect of Removing Topic1115

Information on Seen and Unseen1116

Instances1117

We show in Figure 8 that a performance drop1118

affects seen and unseen instances for In- and1119

Cross-Topic equally. Exceptionally, we see unseen1120

ones are more affected on POS for DeBERTa and1121

RoBERTa. This result indicates that these PLMs1122

fall short of generalizing towards rare vocabularies1123

- like unseen instances of POS.1124

B.5 Analysis of Per-Class Results for NER1125

When considering the per-class results of NER in1126

Table 11, we see the classes CARDINAL, MONEY,1127

ORG, and PERSON show the biggest differences1128

between In- and Cross-Topic. For ORG and PER-1129

SON, we see their topic-specific terms as the main1130

reason for the performance gap. In contrast, we1131

were surprised about the high difference for CAR-1132

DINAL. We think this is mainly because this class1133

embodies all numbers belonging to no other class.1134

For MONEY, we see its uneven distribution over1135

topics as the main reason for the performance dif-1136

ference - one topic covers more than 50% of the1137

instances. These entities are highly topic-specific1138

from a statistical point of view.1139

Despite having almost the same performance1140

for In-Topic, BART and DeBERTa tend to out-1141

perform ALBERT on classes with more semantic1142

complexities - like GPE, ORG or PERSON. For1143

Cross-Topic, we see ALBERT performing better in1144

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

ALBERT 95.0 95.3 89.4 95.0 91.3 97.8 80.2 99.2 82.7
BART 94.8 94.6 89.7 95.6 91.6 97.3 81.0 99.4 83.5
DeBERTa 95.3 95.6 90.0 96.5 91.5 97.4 81.1 99.2 83.7

C
ro

ss
ALBERT 91.2 95.0 88.6 55.6 90.8 98.1 78.8 98.9 81.7
BART 90.1 94.2 88.9 35.0 90.7 97.6 79.1 98.8 81.8
DeBERTa 88.3 95.3 88.6 0.0 90.5 97.5 79.8 98.6 81.8

Table 11: Per-class results of ALBERT, BART, and
DeBERTa on NER for In- and Cross-Topic.

classes unevenly distributed instances over topics 1145

- like MONEY. Further, it outperforms BART and 1146

DeBERTa on less semantical classes (CARDINAL, 1147

ORDINAL, PERCENT). 1148

B.6 Effect of Removing Token-Level Topic 1149

Information of Per-Class Results for NER 1150

Similar to the previous analysis, there are apparent 1151

effects of removing topic information when consid- 1152

ering NER classes separately. Table 12 shows these 1153

results for BART, BERT, DeBERTa, and RoBERTa. 1154

Like the overall result, BART, DeBERTa, and 1155

RoBERTa perform less when removing topic infor- 1156

mation. Whereby the effect is the most pronounced 1157

for RoBERTa with the highest performance drop 1158

for In- and Cross-Topic on classes like NORP or 1159

ORDINAL. In addition, these results show that the 1160

performance gain from removing topic information 1161

within BERT happens on MONEY for In-Topic 1162

and NORP for Cross-Topic. 1163

B.7 The Effect of Fine-Tuning on NER 1164

Classes 1165

Analysing the results (Table B.7) for every NER 1166

class gives additional insights into where the fine- 1167

tuning had the most significant effect. We generally 1168

see the biggest effect on classes with less semantic 1169

meaning, like ORDINAL, PERCENT, or MONEY. 1170

At the same time, GPE, PERSON, and ORG are 1171
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Figure 7: Comparison of the probing results with (blue bars) and without (red bars) topic information, or without
random information (green bars). The white text indicates the difference between the blue and red bars.

Figure 8: Performance difference for seen (x-axis) and
unseen (y-axis) instances when removing topic informa-
tion or not. One dot represents one PLM.

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

BART -0.23 0.04 0.15 0.15 0.02 -0.04 0.08 -0.13 0.20
BERT 1.65 -0.15 -0.04 28.00 -0.14 -0.58 0.06 0.00 0.22
DEBERTA -1.14 -0.13 -1.48 -7.74 -14.40 -0.30 -0.82 -0.12 -0.10
ROBERTA -6.00 -3.00 -7.82 -24.09 -90.61 -98.06 -2.66 -0.51 -0.58

C
ro

ss

BART -0.48 0.01 -0.13 2.45 -0.06 -0.52 -0.38 -0.09 -0.03
BERT -0.05 -0.05 1.00 0.00 8.95 -0.60 0.29 0.00 0.00
DEBERTA -0.07 -0.16 -2.52 0.00 -21.88 -0.35 -0.91 -0.01 0.07
ROBERTA -9.04 -2.63 -7.45 0.00 -85.23 -98.07 -2.99 -35.97 -0.46

Table 12: Class-wise effect on the performance when
removing topic information of BART, BERT, DeBERTa,
and RoBERTa on NER for In- and Cross-Topic.

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

ALBERT -34.2 -25.4 -26.9 -95.0 -51.9 -60.3 -22.4 -99.2 -21.8
BART -8.5 -7.2 -7.5 -7.2 -10.4 -36.6 -4.1 -3.8 -2.7
BERT -1.9 -2.0 -2.0 34.8 -4.4 -17.9 -0.8 -3.9 -1.1
DEBERTA -15.1 -6.8 -8.7 -19.5 -43.7 -60.8 -8.8 -24.8 -8.3

C
ro

ss
ALBERT -21.5 -10.4 -19.1 -55.6 -34.4 -13.1 -10.7 -81.0 -9.2
BART -9.2 -7.4 -7.0 -16.3 -11.2 -24.4 -3.9 -4.5 -2.1
BERT -2.5 -1.2 -1.2 3.6 -2.2 -9.7 -0.8 -2.6 -0.5
DEBERTA -18.2 -6.2 -12.7 0.0 -50.6 -76.0 -11.7 -73.5 -6.8

Table 13: Per-class difference before and after fine-
tuning on stance detection of ALBERT, BART, BERT,
and DeBERTa on NER for In- and Cross-Topic.

less affected as classes with more attached seman- 1172

tics. Regarding the different PLMs, ALBERT and 1173

DeBERTa show the most performance training, 1174

while BERT gains performance for the MONEY 1175

class. 1176

B.8 Annotation Verification 1177

To evaluate probing tasks in the In- and Cross- 1178

Topic setup, we rely on data with topic annota- 1179

tions on the instance level - like the UKP ArgMin 1180

(Stab et al., 2018) or the wtwt (Conforti et al., 1181

2020) dataset. Since these datasets do not in- 1182

clude linguistic annotations, we rely on spaCy6 1183

to automatically derive the labels for dependency 1184

tree parsing (DEP), part-of-speech tagging (POS), 1185

or named entity recognition (NER). We used the 1186

en_core_web_sm model, which provides reli- 1187

able labels with a detection performance in terms 1188

of accuracy of 97.0 for POS, 90.0-92.0 for DEP, 1189

and an F1 score of 85.0 for NER (details available 1190

online).Note, this performance referees to identify 1191

valid candidates (like entities for NER) given a 1192

piece of text, and assign the corresponding labels, 1193

such as person or organization. In contrast, in prob- 1194

ing, we consider only the second step: assigning 1195

the right label of a valid candidate. Therefore, we 1196

6https://spacy.io/
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DEP POS NER

In Cross In Cross In Cross

ALBERT 85.2 83.9 93.8 93.6 86.9 85.0
BART 80.9 81.0 92.6 92.0 87.1 84.5
BERT 76.1 76.1 89.2 88.6 85.2 82.9
DeBERTa 81.2 79.9 92.8 93.1 87.5 84.0
RoBERTa 75.9 75.5 89.6 90.1 86.3 83.2
ELECTRA 81.1 80.7 92.3 92.2 82.8 82.2
GPT-2 69.8 69.1 85.8 85.7 84.6 81.1
GloVe 39.5 38.5 46.6 45.9 78.8 77.2
Average 73.7 73.1 85.3 85.2 84.9 82.5

BERT 80k 80.5 79.1 92.0 91.5 - -
BERT 160k 84.3 84.2 93.1 92.8 - -
BERT 320k 86.3 85.6 93.7 93.3 - -

BERT (Tenney et al., 2019c) 93.0 97.0 96.1
BERT (Tenney et al., 2019a) 95.2 96.5 96.0
BERT (Hewitt and Liang, 2019) 89.0 97.2 -

Table 14: Accuracy results for In- and Cross-Topic prob-
ing results for eight PLMs, across three random seeds.
Further, we report results of gradually increasing the
number of consider instance (BERT 80k, BERT 160k,
and BERT 320k), as well as reference performance of
previous work (Tenney et al., 2019c,a; Hewitt and Liang,
2019).

can not directly compare recognition and probing1197

performance.1198

Considering our results (§ 4), we see these de-1199

rived labels as reliable and well aligned with previ-1200

ous work (Tenney et al., 2019c,a; Hewitt and Liang,1201

2019), even though we mainly report F1 score. One1202

reason for that is the similar performance ranking1203

(DEP < NER < POS) as in previous work, con-1204

sidering F1 score as well as the accuracy score1205

reported in Table 14. Another reason is the nar-1206

rowing accuracy performance gap between our ex-1207

periments and previous work when we gradually1208

increase the number of consider instance from 40k1209

to 80k, 160k, until 320k.1210
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