
4th Symposium on Advances in Approximate Bayesian Inference, 2022 1–39

Fast Finite Width Neural Tangent Kernel

Roman Novak romann@google.com

Jascha Sohl-Dickstein jaschasd@google.com

Samuel S. Schoenholz schsam@google.com

Google Brain

Abstract

The Neural Tangent Kernel (NTK), defined as the outer product of the neural network

(NN) Jacobians, Θθ(x1, x2) =
[
∂f(θ, x1)

/
∂θ
] [
∂f(θ, x2)

/
∂θ
]T

, has emerged as a central
object of study in deep learning.

In the infinite width limit, the NTK provides a precise posterior distribution of the
NN outputs after training, and can be used for uncertainty estimation and modelling deep
ensembles. However, the infinite width NTK rarely admits a closed-form solution, and
when it does, it is usually prohibitively expensive to compute exactly, and a finite width
NTK can be used as a Monte Carlo approximation. The finite width NTK also models
approximate inference in finite Bayesian NNs (BNNs), and has widespread applications in
deep learning theory, meta-learning, neural architecture search, and many other areas.

Unfortunately, the finite width NTK is also notoriously expensive to compute, which
severely limits its practical utility.

We perform the first in-depth analysis of the compute and memory requirements for
NTK computation in finite width networks. Leveraging the structure of neural networks, we
further propose two novel algorithms that change the exponent of the compute and memory
requirements of the finite width NTK, improving efficiency by orders of magnitude in a wide
range of practical models on all major hardware platforms.

We open-source [github.com/iclr2022anon/fast finite width ntk] our two algorithms as
general-purpose JAX function transformations that apply to any differentiable computation
(convolutions, attention, recurrence, etc.) and introduce no new hyper-parameters.

1. Introduction

The past few years have seen significant progress towards a principled probabilistic mod-
elling of deep neural networks. Much of this effort has focused on understanding the prop-
erties of random functions in high dimensions. One significant line of work (Neal, 1994; Lee
et al., 2018; Matthews et al., 2018; Novak et al., 2019; Garriga-Alonso et al., 2019; Hron
et al., 2020b; Yang, 2019) established that in the limit of infinite width, outputs of Bayesian
Neural Networks at initialization converge to Gaussian Processes (called the NNGP – Neu-
ral Network Gaussian Process). Building on this development, Hron et al. (2020a) proved
that after Bayesian training BNNs also converge to the respective NNGP posterior in the
infinite width limit, while Jacot et al. (2018); Lee et al. (2019) showed that after gradient
descent training, the posterior distribution over outputs is also described by a GP with the
so called Neural Tangent Kernel.

The NTK has since been used in a variety of settings, including modelling deep ensembles
(He et al., 2020), approximate inference in BNNs (Khan et al., 2019), uncertainty estimation
and calibration (Adlam et al., 2020), insights into trainability and generalization (Xiao et al.,
2020), improving NN initialization (Zhang et al., 2019; Dauphin and Schoenholz, 2019;
Brock et al., 2021a,b), neural architecture search (Park et al., 2020; Chen et al., 2021b,

© R. Novak, J. Sohl-Dickstein & S.S. Schoenholz.

https://github.com/iclr2022anon/fast_finite_width_ntk

Novak Sohl-Dickstein Schoenholz

NAS), deep learning phenomenology (Fort et al., 2020), and many others. The NTK has
additionally given insight into a wide range of phenomena such as: behavior of Generative
Adversarial Networks (Franceschi et al., 2021), neural scaling laws (Bahri et al., 2021), and
neural irradiance fields (Tancik et al., 2020). Kernel regression using the NTK has further
enabled strong performance on small datasets (Arora et al., 2020), and applications such
as dataset distillation (Nguyen et al., 2020, 2021) and meta-learning (Zhou et al., 2021).

Despite the significant promise of theory and applications based on the NTK, computing
the NTK in practice is challenging. In the infinite width limit, the NTK can rarely be
computed in closed-form, and when it can, it is usually prohibitively expensive, demanding
thousands of GPU-hours on the simplest datasets like MNIST and CIFAR-10 (Arora et al.,
2019b; Novak et al., 2020). Furthermore, in many applications finite width corrections are
important to describe actual NNs used in practice, and using the infinite width limit is sub-
optimal or not applicable. We provide a detailed discussion on the benefits and drawbacks
of finite and infinite width NTK in §G, and focus on the finite width NTK in this work,
which we denote as simply NTK.

The NTK matrix can be computed as the outer product of Jacobians using forward or
reverse mode automatic differentiation (AD),

Θθ(x1, x2)︸ ︷︷ ︸
O×O

:=
[
∂f(θ, x1)

/
∂θ
]︸ ︷︷ ︸

O×P

[
∂f(θ, x2)

/
∂θ
]T︸ ︷︷ ︸

P×O

, (1)

where f is the forward pass NN function producing outputs in RO, θ ∈ RP are all trainable
parameters, and x1 and x2 are two inputs to the network. If inputs are batches of sizes N1

and N2, the NTK is an N1O×N2O matrix.
Unfortunately, evaluating Eq. (1) is often infeasible due to time and memory costs.
In this note, we perform the first in-depth analysis of the compute and memory re-

quirements for the NTK as in Eq. (1). Noting that forward and reverse mode AD are two
extremes of a wide range of AD strategies (Naumann, 2004, 2008), we explore other methods
for computing the NTK leveraging the structure of NNs used in practice. We propose two
novel methods for computing the NTK that exploit different orderings of the computation.
We describe the compute and memory requirements of our techniques in fully-connected
(FCN) and convolutional (CNN) settings, and show that one is asymptotically more efficient
in both settings. We compute the NTK over a wide range of NN architectures and demon-
strate orders of magnitude improvements on all major hardware platforms. We open-source
implementations of both methods as JAX function transformations.

2. Algorithms for fast NTK computation

Here we describe our algorithms for efficiently computing the NTK. In §2.1 we cover the pre-
liminaries, such as introducing notation (§2.1.1) and recalling the computational complex-
ities of basic AD building blocks like Jacobian-vector products (JVP) and vector-Jacobian
products (VJP) (§2.1.2), as well as the cost of evaluating the Jacobian matrix (§2.1.3).

In §2.2 we use the above building blocks to describe the computational complexity of
the baseline approach to computing the NTK that is used in most (likely all) prior works.

In §2.3 and §2.4 we present our two algorithms that each allow to speed-up the compu-
tation by orders of magnitude in different ways.

2

Fast Finite Width Neural Tangent Kernel

2.1. Preliminaries

2.1.1. Notation

Consider a NN f(θ, x) ∈ RO with O outputs (logits) per input x and a total number P
of trainable parameters θ = vec

[
θ0, . . . , θL

]
, with each θl of size Pl, P =

∑L
l=0P

l. Also

assume the network has K intermediate pre-activations yk of size Yk each, Y =
∑K

k=1Y
k

(see Fig. 5 and Fig. 6). The NTK is

Θθ︸︷︷︸
O×O

:=
∂f(θ, x1)

∂θ︸ ︷︷ ︸
O×P

∂f(θ, x2)

∂θ

T

︸ ︷︷ ︸
P×O

=
L∑
l=0

∂f(θ, x1)

∂θl︸ ︷︷ ︸
O×Pl

∂f(θ, x2)

∂θl

T

︸ ︷︷ ︸
Pl×O

(2)

We denote FP to be the (time or memory, depending on the context) cost of a single forward
pass f(θ, x). For memory, we exclude the cost of storing all P weights in memory, but rather
define it to be the cost of evaluating f one JAX (Bradbury et al., 2018) primitive yk at
a time, amounting to no more than O

(
maxl P

l +maxk Y
k
)
, which we denote as simply

Pl +Yk for brevity.1 Finally, we will consider x1 and x2 to be batches of N inputs each, in
which case the NTK will be an NO×NO matrix.

2.1.2. Jacobian-vector products (JVP) and vector-Jacobian products (VJP)

Following Maclaurin et al. we define

JVP(f,θ,x) : θt ∈ RP 7→ ∂f (θ, x)

∂θ
θt ∈ RO; VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RP. (3)

The time cost of both is comparable to FP (see §H and Griewank and Walther (2008)). The
memory cost of a JVP is FP as well, while the memory cost of a VJP is generally Y+P,
since it requires storing all K intermediate pre-activations for efficient backprop and all L
output cotangents. However, for the purpose of computing the NTK, we never need to store
the whole Jacobian ∂f/∂θ, but only individual cotangents like ∂f/∂θl to compute the sum
in Eq. (2). Hence we consider VJP to costY+Pl memory. Finally, for a batch ofN inputs x,

JVP and VJP cost N [FP] time; N [FP] +P and N
[
Y+Pl

]
+P memory respectively.

2.1.3. Jacobian

For NNs, the Jacobian ∂f/∂θ is most often computed viaO VJP calls on rows of the identity
matrix IO, i.e. costs O [VJP] time and memory less parameters and pre-activations that can

be reused across VJPs. Jacobian costs NO [FP] time; NO
[
Yk +Pl

]
+NY+P memory.

2.2. Jacobian contraction – the baseline

This baseline method of evaluating the NTK consists in computing the Jacobians ∂f/∂θ
and contracting them as in Eq. (2). The contraction costs N2O2P time and N2O2+NOPl

memory. Adding up the cost of computing the Jacobian ∂f/∂θ (§2.1.3) we arrive at

Jacobian contraction: NO [FP] +N2O2P time; N2O2 +NO
[
Yk +Pl

]
+NY+P mem.

1. To declutter notation throughout this work, in time and memory complexity expressions, we (1) omit
the O symbol, and (2) imply taking the maximum over any free index.

3

https://jax.readthedocs.io/en/latest/notebooks/How_JAX_primitives_work.html

Novak Sohl-Dickstein Schoenholz

2.3. NTK-vector products – our first contribution

Consider the NTK-vector product function: ΘVP : v ∈ RO 7→ Θθv ∈ RO. Applying it to
O columns of the identity matrix IO allows to compute the NTK, i.e. ΘθIO = Θθ. Expand
ΘVP(v) = Θθv as

∂f (θ, x1)

∂θ

∂f (θ, x2)

∂θ

T

v =
∂f (θ, x1)

∂θ
VJP(f,θ,x2) (v) = JVP(f,θ,x1)

[
VJP(f,θ,x2) (v)

]
, (4)

where we have observed that the NTK-vector product can be expressed as a composition
of a JVP and a VJP. The cost of computing Θθ is then equivalent to the cost of Jacobian,
since it consists of O VJPs followed by O (cheaper) JVPs, therefore O [FP] time and
O
[
Yk +Pl

]
+Y +P memory. In the batched setting Eq. (4) is repeated for each pair of

inputs, and therefore time increases by a factor of N2 to become N2O [FP]. However, the
memory cost grows only linearly in N (except for the cost of storing the NTK of size N2O2),
since intermediate pre-activations and tangents/cotangents necessary to compute the JVP
and VJP can be computed for each batch x1 and x2 separately, and then reused for every
pairwise combination. Therefore memory cost is equivalent to Jacobian, and we arrive at

NTK-vector products cost N2O [FP] time; N2O2 +NO
[
Yk +Pl

]
+NY+P memory.

2.4. Structured derivatives – our second contribution

Rewrite Θθ from Eq. (2) using the chain rule and pre-activation y notation:

Θθ =
∑

l,k1,k2

(
∂f1

∂yk11

∂yk11
∂θl

)(
∂f2

∂yk22

∂yk22
∂θl

)T

=
∑

l,k1,k2

∂f1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f2

∂yk22

T

, (5)

where i ∈ {1, 2}, fi = f(θ, xi), and we only consider ∂ykii /∂θl if θl is a direct input to ykii .
Both Jacobian contraction and NTK-vector products perform this sum of contractions,

albeit implicitly via VJPs and JVPs, without explicit instantiation of primitive Jacobians
∂y/∂θ. However, while VJPs and JVPs themselves are guaranteed to be computationally
optimal, higher order computations like their composition (NTK-vector products) or con-
traction (Jacobian contraction) are not. The idea of Structured derivatives is to design rules
for efficient computation of such contractions, similarly to AD rules for JVPs and VJPs.

Specifically, our rules identify a few simple types of structure (e.g. block diagonal,
constant-block diagonal, tiling) in ∂yki

/
∂θl, that allow us to simplify the contraction in

Eq. (5). In practice this amounts to replacing the inner terms ∂yk11
/
∂θl and ∂yk22

/
∂θl

with (much) smaller subarrays and modifying the contraction. In §I we provide specific
descriptions of our rules and their impact on the computational complexity of Eq. (5).
We denote the generic contraction cost as NOG, and show in §3 that it is asymptotically
faster than Jacobian contraction for matrix multiplications and convolutions. For a simple
example on FCNs, see §L.4, applying a more general Constant block-diagonal rule (§I.3).

The remaining cost to compute the factors ∂fi/∂y
ki
i , and ∂ykii /∂θl also depends on the

specific pair of primitives yk11 and yk22 , but is generally similar to the cost of Jacobian except
for (1) we don’t need to compute and storeNO final weight space cotangents ∂fi/∂θ

l, but (2)
we do have to process N small subarrays of primitive Jacobians ∂ykii /∂θl, which we consider

4

Fast Finite Width Neural Tangent Kernel

Method Time Memory Use when

Jacobian contraction N O [FP] +N2O2P N2O2 +NO
[
Yk +Pl

]
+NY+P P < Y, small O

NTK-vector products N2O [FP] N2O2 +NO
[
Yk +Pl

]
+NY+P FP < OP, large O, small N

Structured derivatives N O [FP] +N O G+N [J−OP] N2O2 +NOYk +NJk
l +NY+P FP > OP, large O, large N

Table 1: Generic NTK computation cost. NTK-vector products trade-off contractions
for more FP. Structured derivatives usually save both time and memory.

Method Time Memory Use when

Jacobian contraction N O
[
LDFW2 +OW

]
+N2O2

[
LFW2 +OW

]
N2O2 +NO

[
DW+ FW2 +OW

]
+N [LDW] +

[
LFW2 +OW2

]
D > OW

NTK-vector products N2O
[
LDFW2 +OW

]
N2O2 +NO

[
DW+ FW2 +OW

]
+N [LDW] +

[
LFW2 +OW2

]
N = 1

Structured derivatives N O
[
LDFW2 +OW

]
+N2O2

[
Lmin

(
FW2,DW+ DFW2

O ,DW+ D2W
O + D2FW

O2

)
+O

]
N2O2 +NO [DW] + NDFW +N [LDW] +

[
LFW2 +OW2

]
D < OW

Table 2: CNN NTK computation cost. Structured derivatives reduce time complexity,
and have lower memory cost if D < OW, which is a common setting.

Method Time Memory Use when

Jacobian contraction N2O2LW2 N2O2 +NOW2 +NLW+ LW2 Don’t

NTK-vector products N2OLW2 +N2O2 W N2O2 +NOW2 +NLW+ LW2 O > W or N = 1

Structured derivatives N OLW2 +N2O2LW N2O2 +NOW +NLW+ LW2 O < W or L = 1

Table 3: FCN NTK computation cost. NTK-vector products allow a reduction of the
time complexity, while Structured derivatives reduce both time and memory complexity.
For brevity O = O(LW) is assumed in this table (see §M and Table 7 for no assumption).

to cost Jki
l . We summarize generic cost estimates below and in Table 1, and show in §3

that they end up beneficial in most practical settings. In conclusion, Structured derivatives

cost NO [FP] +NOG+N [J−OP] time; N2O2 +NOYk +NJk
l +NY+P memory.

3. Applications and benchmarks

We consider K = L-layer CNNs with channel count W, pixel count D, filter size F, and
global average pooling before the top FC layer (see Fig. 5). Plugging Pl = FW2 (OW for
l = L), Yk = DW (O for k = K), FP = LDFW2+OW, Jk

l = DFW, and G from Table 8
(convolutions and matrix multiplications have the Constant block-diagonal structure – see
§I.3) we arrive at Table 2. For FCNs we simply put D = F = 1, and obtain Table 3 (and
Fig. 1, Fig. 3). Notably, in both cases Structured derivatives are asymptotically better than
Jacobian contraction in time and memory (the latter under a mild condition of D ≤ OW).

Finally, we evaluate our methods in the wild, and confirm computational benefits on full
ImageNet models in Fig. 2 (ResNets, He et al. (2016)) and Fig. 4 (WideResNets, Zagoruyko
and Komodakis (2016); Vision Transformers and hybrids Dosovitskiy et al. (2021); Steiner
et al. (2021); and MLP-Mixers Tolstikhin et al. (2021)). Computing the full O × O =
1000× 1000 NTK in many settings is only possible with Structured derivatives.

4. API

We release all implementations as a single function decorator accepting an implementation

argument, that can be also set to AUTO , i.e. a FLOPs cost analysis will be run once at
compilation time, and the best implementation will be selected automatically (§C, §D).

5

Novak Sohl-Dickstein Schoenholz

FLOPs (per NTK entry) Wall-clock time (TPUv3)

101

104

107

FL
OP

s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

101

104

107

FL
OP

s

N = 16 batch
20 23 26 29 212

Width W

101

104

107

FL
OP

s

20 23 26 29 212

Width W
20 23 26 29 212

Width W
N = 128 batch

10 3

10 1

101

Se
co

nd
s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

10 3

10 1

101

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 3

10 1

101

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 3

10 1

101

Se
co

nd
s

O = 1 logits

Jacobian contraction
NTK-vector products

Structured derivatives
Jacobian

W = O
W2

O = 16 logits

N = 1 batch size

O = 128 logits

10 3

10 1

101

Se
co

nd
s

N = 16 batch size

20 23 26 29 212

Width W

10 3

10 1

101

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch size

Figure 1: FLOPs (left) and wall-clock time (right) of computing the NTK for a
10-layer ReLU FCN. As predicted by Table 3, our methods almost always outperform
Jacobian contraction, allowing orders of magnitude speed-ups and memory improvements
(missing points are out-of-memory).

10 4

10 3

10 2

Se
co

nd
s

NVIDIA V100

10 5

10 4

10 3
TPUv4

10 2

100

O
 =

 1 logits

CPU

18 34 50 101 152 200
ResNet depth

100
1.1 × 100
1.2 × 100
1.3 × 100
1.4 × 100
1.5 × 100
1.6 × 100
1.7 × 100

Se
co

nd
s Jacobian contraction

NTK-vector products
Structured derivatives
Jacobian

18 34 50 101 152 200
ResNet depth

100

18 34 50 101 152 200
ResNet depth

102

103

O
 =

 1000 logits

Figure 2: Wall-clock time cost of computing an NTK for several ResNet sizes
on a pair of ImageNet inputs. Structured derivatives allow the NTK to be computed
faster and for larger models (see bottom row – missing are out-of-memory). NTK-vector
products, as predicted by Table 1, are advantageous for large O (bottom row), but also scale
worse with FP than other methods, which is especially noticeable in CNNs. See Fig. 4 for
more ImageNet models, and §O for experimental details, and §N for analysis of CNN NTK
complexity analysis.

6

Fast Finite Width Neural Tangent Kernel

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016.

Ben Adlam, Jaehoon Lee, Lechao Xiao, Jeffrey Pennington, and Jasper Snoek. Exploring
the uncertainty properties of neural networks’ implicit priors in the infinite-width limit.
In International Conference on Learning Representations, 2020.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. In Advances in Neural
Information Processing Systems, pages 8141–8150. Curran Associates, Inc., 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584, 2019b.

Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rkl8sJBYvH.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close
the performance gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021a.

Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-
scale image recognition without normalization. arXiv preprint arXiv:2102.06171, 2021b.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet
in four gpu hours: A theoretically inspired perspective. In International Conference on
Learning Representations, 2021a.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform
resnets without pretraining or strong data augmentations, 2021b.

Yann Dauphin and Samuel S Schoenholz. Metainit: Initializing learning by learning to
initialize. 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

7

https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=rkl8sJBYvH
http://github.com/google/jax

Novak Sohl-Dickstein Schoenholz

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang,
and Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph
kernels. In Advances in Neural Information Processing Systems. 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/finn17a.html.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. arXiv preprint
arXiv:2010.15110, 2020.

Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lam-
prier, and Patrick Gallinari. A neural tangent kernel perspective of gans. arXiv preprint
arXiv:2106.05566, 2021.

Roy Frostig, Matthew J Johnson, Dougal Maclaurin, Adam Paszke, and Alexey Radul.
Decomposing reverse-mode automatic differentiation. arXiv preprint arXiv:2105.09469,
2021.

Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolu-
tional networks as shallow gaussian processes. In International Conference on Learning
Representations, 2019.

Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for Industrial
and Applied Mathematics, second edition, 2008. doi: 10.1137/1.9780898717761. URL
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent
kernel. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJgndT4KwB.

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via
the neural tangent kernel. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html.

8

https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://openreview.net/forum?id=SJgndT4KwB
https://openreview.net/forum?id=SJgndT4KwB
https://proceedings.neurips.cc/paper/2020/hash/0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html

Fast Finite Width Neural Tangent Kernel

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre,
Andreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for
JAX, 2020. URL http://github.com/google/flax.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX,
2020. URL http://github.com/deepmind/dm-haiku.

Jiri Hron, Yasaman Bahri, Roman Novak, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Exact posterior distributions of wide bayesian neural networks, 2020a.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention:
NNGP and NTK for deep attention networks. In International Conference on Machine
Learning, 2020b.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information Processing
Systems, 2018.

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate inference turns deep networks into gaussian processes. In Advances in neural
information processing systems, 2019.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and
Jascha Sohl-dickstein. Deep neural networks as gaussian processes. In International
Conference on Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. In Advances in Neural Information Processing
Systems, 2019.

Jaehoon Lee, Samuel S Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical
study. 2020.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients
in numpy.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

Herman Müntz. Solution directe de l’équation séculaire et de quelques problèmes analogues
transcendants. C. R. Acad. Sci. Paris, 156:43–46, 1913.

9

http://github.com/google/flax
http://github.com/deepmind/dm-haiku

Novak Sohl-Dickstein Schoenholz

Uwe Naumann. Optimal accumulation of jacobian matrices by elimination methods on the
dual computational graph. Mathematical Programming, 99(3):399–421, 2004.

Uwe Naumann. Optimal jacobian accumulation is np-complete. Mathematical Programming,
112(2):427–441, 2008.

Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of
Toronto, 1994.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. arXiv preprint arXiv:2011.00050, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. arXiv preprint arXiv:2107.13034, 2021.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A.
Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional
networks with many channels are gaussian processes. In International Conference on
Learning Representations, 2019.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural
networks in python. In International Conference on Learning Representations, 2020.
URL https://github.com/google/neural-tangents.

Boris N. Oreshkin, Pau Rodŕıguez López, and Alexandre Lacoste. Tadam: Task dependent
adaptive metric for improved few-shot learning. In NeurIPS, 2018.

Daniel S Park, Jaehoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-Dickstein. Towards
nngp-guided neural architecture search. arXiv preprint arXiv:2011.06006, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. arXiv preprint arXiv:2106.10270, 2021.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low dimensional domains. NeurIPS,
2020.

10

https://github.com/google/neural-tangents
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Fast Finite Width Neural Tangent Kernel

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lu-
cic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

Lechao Xiao, Jeffrey Pennington, and Samuel S Schoenholz. Disentangling trainability and
generalization in deep learning. In International Conference on Machine Learning, 2020.

Sho Yaida. Non-Gaussian processes and neural networks at finite widths. In Mathematical
and Scientific Machine Learning Conference, 2020.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoen-
holz. A mean field theory of batch normalization. In International Conference on Learning
Representations, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference, 2016.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, and Jinhui Xu. Meta-learning with
neural tangent kernels. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Ti87Pv5Oc8.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017.
URL https://arxiv.org/abs/1611.01578.

11

https://openreview.net/forum?id=Ti87Pv5Oc8
https://arxiv.org/abs/1611.01578

Novak Sohl-Dickstein Schoenholz

Appendix

A. Additional figures

CPU (Skylake) NVIDIA V100

10 3

100

103

Se
co

nd
s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

10 3

100

103

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 3

100

103

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 2

100

102

Se
co

nd
s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

10 2

100

102

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 2

100

102

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

TPUv4 NVIDIA P100

10 3

10 1

Se
co

nd
s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

10 3

10 1

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 3

10 1

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 2

100

102

Se
co

nd
s

O = 1 logits O = 16 logits

N = 1 batch

O = 128 logits

10 2

100

102

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 2

100

102

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 3

10 1

101

Se
co

nd
s

O = 1 logits

Jacobian contraction
NTK-vector products

Structured derivatives
Jacobian

W = O
W2

O = 16 logits

N = 1 batch size

O = 128 logits

10 3

10 1

101

Se
co

nd
s

N = 16 batch size

20 23 26 29 212

Width W

10 3

10 1

101

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch size

Figure 3: Wall-clock time of computing the NTK of a 10-layer ReLU FCN on
different platforms. In all settings, Structured derivatives allow orders of magnitude
improvement in wall-clock time and memory (missing points indicate out-of-memory error).
See Fig. 1 for FLOPs, TPUv3 platform, and more discussion. See §O for details.

12

Fast Finite Width Neural Tangent Kernel

10 4

10 2

Se
co

nd
s

NVIDIA V100

10 5

10 3

TPUv4

10 2

100 O
 =

 1 logits
CPU

R+
Vi

T-
Ti

_1
6

Vi
T-

Ti
_1

6
Vi

T-
S_

32
Vi

T-
S_

16
M

ix
er

-B
_1

6
Vi

T-
B_

32
Vi

T-
L_

32
R2

6+
Vi

T-
B_

32
R2

6+
Vi

T-
S_

32
Vi

T-
B_

16
R5

0+
Vi

T-
B_

16
R5

0+
Vi

T-
L_

32
M

ix
er

-L
_1

6
Vi

T-
L_

16
wr

n_
28

_1
0

wr
n_

28
_1

2
Vi

T-
H_

14
Model

100Se
co

nd
s

Jacobian contraction
NTK-vector products
Structured derivatives
Jacobian

R+
Vi

T-
Ti

_1
6

Vi
T-

Ti
_1

6
Vi

T-
S_

32
Vi

T-
S_

16
M

ix
er

-B
_1

6
Vi

T-
B_

32
Vi

T-
L_

32
R2

6+
Vi

T-
B_

32
R2

6+
Vi

T-
S_

32
Vi

T-
B_

16
R5

0+
Vi

T-
B_

16
R5

0+
Vi

T-
L_

32
M

ix
er

-L
_1

6
Vi

T-
L_

16
wr

n_
28

_1
0

wr
n_

28
_1

2
Vi

T-
H_

14

Model

10 1

100

R+
Vi

T-
Ti

_1
6

Vi
T-

Ti
_1

6
Vi

T-
S_

32
Vi

T-
S_

16
M

ix
er

-B
_1

6
Vi

T-
B_

32
Vi

T-
L_

32
R2

6+
Vi

T-
B_

32
R2

6+
Vi

T-
S_

32
Vi

T-
B_

16
R5

0+
Vi

T-
B_

16
R5

0+
Vi

T-
L_

32
M

ix
er

-L
_1

6
Vi

T-
L_

16
wr

n_
28

_1
0

wr
n_

28
_1

2
Vi

T-
H_

14

Model

102

103

104

O
 =

 1000 logits

Figure 4: Wall-clock time per input pair of computing NTK on various ImageNet
models like Vision Tansformers and hybrids (Dosovitskiy et al., 2021; Steiner et al., 2021),
WideResNets (Zagoruyko and Komodakis, 2016) and MLP-Mixers (Tolstikhin et al., 2021).
Structured derivatives generally allow fastest computation, but also are able to process
more models due to lower memory requirements (lower left; missing points indicate out-of-
memory error). For the case of single output logitO = 1 (top row), NTK-vector products are
generally detrimental due to a costly forward pass FP relative to the size of parameters
P (i.e. a lot of weight sharing; see Table 1). However, since NTK-vector products scale
better than other methods with output size, for O = 1000 (bottom row), they perform
comparably or better than other methods. Finally, we remark that Jacobian not only runs
out of memory faster, but can also take more time to compute. We conjecture that due to
a larger memory footprint, XLA can sometimes perform optimizations that trade off speed
for memory, and therefore compute the Jacobian in a less optimal way than if it had more
memory available. See Fig. 2 for ResNets, and §O for details.

<latexit sha1_base64="N7dWDDp5SaZjiomhSQBw4NYjymw=">AAACs3icdZHLTttAFIYnbrk0XArtslVlgZBYRXYkCkvUbrrIAqQGkGILnRmfJCPmppkxEFledttt2zfhVfoMfYlOEha1KUca6dd/vtG5USO480nyuxO9eLmyurb+qruxubX9emf3zYXTpWU4ZFpoe0XBoeAKh557gVfGIkgq8JLefJ7nL2/ROq7VVz8zmEuYKD7mDPzcysyUX+/sJ71kEfFTkT6K/dP3D+d/vn14OLve7fzKCs1KicozAc6N0sT4vALrORNYd7PSoQF2AxMcBalAosurRbN1fBCcIh5rG57y8cL990cF0rmZpIGU4KeunZub/81RKlul/fgkr7gypUfFlpXHpYi9jueriAtukXkxCwKY5aH5mE3BAvNhYc8Mcb+cotvNFN4xLSWoospUPUryqsoWycqU1oQ1qLpuUkXRwDyCqIs2pHUDoqLEWrehwaABaQtqgvUgYOGYaft0T8VFv5d+7PXPw1U/kWWsk3dkjxySlByTU/KFnJEhYWRKvpMf5Gd0FI0iGhVLNOo8/nlLGhHJv52w4M8=</latexit>

�
<latexit sha1_base64="N7dWDDp5SaZjiomhSQBw4NYjymw=">AAACs3icdZHLTttAFIYnbrk0XArtslVlgZBYRXYkCkvUbrrIAqQGkGILnRmfJCPmppkxEFledttt2zfhVfoMfYlOEha1KUca6dd/vtG5USO480nyuxO9eLmyurb+qruxubX9emf3zYXTpWU4ZFpoe0XBoeAKh557gVfGIkgq8JLefJ7nL2/ROq7VVz8zmEuYKD7mDPzcysyUX+/sJ71kEfFTkT6K/dP3D+d/vn14OLve7fzKCs1KicozAc6N0sT4vALrORNYd7PSoQF2AxMcBalAosurRbN1fBCcIh5rG57y8cL990cF0rmZpIGU4KeunZub/81RKlul/fgkr7gypUfFlpXHpYi9jueriAtukXkxCwKY5aH5mE3BAvNhYc8Mcb+cotvNFN4xLSWoospUPUryqsoWycqU1oQ1qLpuUkXRwDyCqIs2pHUDoqLEWrehwaABaQtqgvUgYOGYaft0T8VFv5d+7PXPw1U/kWWsk3dkjxySlByTU/KFnJEhYWRKvpMf5Gd0FI0iGhVLNOo8/nlLGhHJv52w4M8=</latexit>

�
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="cg4wh2R8HPfQZj85TGdjcqRSXHU=">AAAC93icdZLLbtQwFIY94VbCrYUlG4sREqtR0gWwqagoCxYjKBIzU2kSVbbjTE19k+3QRlbegS1sWCAhtjwFj1BVvAyeySzIBI5k6dc53/G52FhzZl2SXA6iK1evXb+xdTO+dfvO3XvbO/enVlWG0AlRXJkjjCzlTNKJY47TI20oEpjTGT49WMZnH6mxTMn3rtY0F2ghWckIcsE1zZTaS5Pj7WEySlYG+yJdi+GLX/Ge/nYRHx7vDH5nhSKVoNIRjqydp4l2uUfGMcJpE2eVpRqRU7Sg8yAlEtTmftVuAx8HTwFLZcKRDq68f2d4JKytBQ6kQO7EbsaWzn/GMBYbpV35PPdM6spRSdrKZcWhU3C5DFgwQ4njdRCIGBaah+QEGURcWNl/hjhvp4jjTNIzooRAsvCZbOZJ7n22CnpdGR3W4DNcwjdN03TZoujAjiLeoq96qFIdFPNqfevbHjoed1BlkFys4XEPPuuwpEayJWdLMnyHdPPx+2K6O0qfjnbfJcP9l6C1LfAQPAJPQAqegX3wGhyCCSDgA/gEPoMvUR19jb5HP1o0GqxzHoCORT//AKjg+7M=</latexit> O
=

10

<latexit sha1_base64="Qpdy3pro1NNJ8If446pKRpcn5sQ=">AAAC+XicdZLNbtNAEMc3LtBivtpy5GIRIXGK7B4oF0QFHHqIoEikiRSbarxeJ6vul3bXLdHKL9ErXBAXxJWH4BEQ4mXYxDngGEZa6a+Z3+x87OaKUWPj+Fcv2Lp2/cb2zs3w1u07d+/t7u2fGllpTEZYMqknORjCqCAjSy0jE6UJ8JyRcX7+chkfXxBtqBTv7EKRjMNM0JJisN41Se2cWHifnO3240G8sqgrkrXoP/8RPlNffoYnZ3u932khccWJsJiBMdMkVjZzoC3FjNRhWhmiAJ/DjEy9FMCJydyq4Tp65D1FVErtj7DRyvt3hgNuzILnnuRg52YztnT+M5bnfKO0LZ9mjgpVWSJwU7msWGRltFxHVFBNsGULLwBr6puP8Bw0YOuX9p8hPjRThGEqyCWWnIMoXCrqaZw5l66CTlVa+TW4NC+j13Vdt9miaMGWAGvQVx1Uyhaas2p965sOOhy2UKlBzNbwsANftli8ANGQ4yXpv0Oy+fhdcXowSJ4MDt7G/aMXqLEd9AA9RI9Rgg7RETpGJ2iEMGLoCn1EnwIXfA6+Bt8aNOitc+6jlgXf/wDxkfzw</latexit>

✓1
<latexit sha1_base64="X550jq1v/sy12IXBWGz1dZtSXGU=">AAAC+XicdZLLbtNAFIYn5lbMrYUlG4sIiVVkZ0HZICraRRcRFIk0kWJTHY/Hyahz08yYEo38Et3CBrFBbHkIHgEhXoZJnAWO4Ugj/TrnO3MuM7li1Ng4/tULrly9dv3Gzs3w1u07d+/t7t0/NbLSmIyxZFJPczCEUUHGllpGpkoT4Dkjk/z8cBWfvCfaUCne2qUiGYe5oCXFYL1rmtoFsfBueLbbjwfx2qKuSDai/+JH+Fx9+RmenO31fqeFxBUnwmIGxsySWNnMgbYUM1KHaWWIAnwOczLzUgAnJnPrhuvosfcUUSm1P8JGa+/fGQ64MUuee5KDXZjt2Mr5z1ie863StnyWOSpUZYnATeWyYpGV0WodUUE1wZYtvQCsqW8+wgvQgK1f2n+G+NBMEYapIBdYcg6icKmoZ3HmXLoOOlVp5dfg0ryMXtV13WaLogVbAqxBjzqolC00Z9Xm1tcddDRqoVKDmG/gUQe+aLF4CaIhJyvSf4dk+/G74nQ4SJ4Ohm/i/sFL1NgOeogeoScoQfvoAB2jEzRGGDF0iT6iT4ELPgdfg28NGvQ2OQ9Qy4LvfwD0H/zx</latexit>

✓2

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="d1jS81yEcCbPePxRxxkzID3woSc=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7t5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAvXZhd</latexit>

y0
<latexit sha1_base64="ukTw29czn/Yn9Cy7xsduelj7NbM=">AAAB+3icbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LivYB7VgyadqGJpkhyYhl6Ce41Q/oTtz6DX6CuPZHTB8LbT1w4XDOvZzLCWPOtPG8LyezsLi0vJJdddfWNza3cts7FR0litAyiXikaiHWlDNJy4YZTmuxoliEnFbD3tXIrz5QpVkk70w/poHAHcnajGBjpdvHe7+Zy3sFbww0T/wpyV98uOfx8NMtNXPfjVZEEkGlIRxrXfe92AQpVoYRTgduI9E0xqSHO7RuqcSC6iAdvzpAB1ZpoXak7EiDxurvixQLrfsitJsCm66e9Ubiv14Yiplo0z4LUibjxFBJJsnthCMToVERqMUUJYb3LcFEMfs8Il2sMDG2Lte24s92ME8qRwX/pHB84+WLlzBBFvZgHw7Bh1MowjWUoAwEOvAEz/DiDJyh8+q8TVYzzvRmF/7Aef8BmtmX8w==</latexit>

x1
<latexit sha1_base64="uTUoYnWhEuXC+virlGgm9s+Wweg=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7r5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAw8phe</latexit>

y1
<latexit sha1_base64="XXZu6VHq+n79ewuO3byg4tkYRqs=">AAAB+3icbVDLSgMxFL3js46vqks3wSK4KjNF1I1YdOOyon1AO5ZMmmlDk8yQZMRS+glu9QO6E7d+g58grv0R08dCWw9cOJxzL+dywoQzbTzvy1lYXFpeWc2suesbm1vb2Z3dio5TRWiZxDxWtRBrypmkZcMMp7VEUSxCTqth92rkVx+o0iyWd6aX0EDgtmQRI9hY6fbxvtDM5ry8NwaaJ/6U5C4+3PNk+OmWmtnvRismqaDSEI61rvteYoI+VoYRTgduI9U0waSL27RuqcSC6qA/fnWADq3SQlGs7EiDxurviz4WWvdEaDcFNh09643Ef70wFDPRJjoL+kwmqaGSTJKjlCMTo1ERqMUUJYb3LMFEMfs8Ih2sMDG2Lte24s92ME8qhbx/kj++8XLFS5ggA/twAEfgwykU4RpKUAYCbXiCZ3hxBs7QeXXeJqsLzvRmD/7Aef8BnG6X9A==</latexit>

x2

<latexit sha1_base64="1Vi9UjW4LFXztWif5V8zpuF6W88=">AAACDHicbVC7SgNBFJ2NrxhfMZY2Q4IQUcJuELURgjaWEcwDsmuYncwmQ2YfzNyVLCG/YGVtqx9gJ7b+Q2p/xMmj0MQDFw7n3Mu5HDcSXIFpjo3Uyura+kZ6M7O1vbO7l93P1VUYS8pqNBShbLpEMcEDVgMOgjUjyYjvCtZw+zcTv/HIpOJhcA9JxByfdAPucUpAS+1sLnko4yvsFW3oMSCneHDczhbMkjkFXibWnBQqefvkeVxJqu3st90JaeyzAKggSrUsMwJnSCRwKtgoY8eKRYT2SZe1NA2Iz5QznP4+wkda6WAvlHoCwFP198WQ+Eolvqs3fQI9tehNxH891/UXosG7dIY8iGJgAZ0le7HAEOJJM7jDJaMgEk0IlVw/j2mPSEJB95fRrViLHSyTerlknZfO7nQ912iGNDpEeVREFrpAFXSLqqiGKBqgF/SK3own4934MD5nqyljfnOA/sD4+gEkj5z0</latexit>

y2 = f(✓, x)
<latexit sha1_base64="8T8bMdhnW0kInSg+AM7bw/mqgCU=">AAAB/3icbVC7SgNBFL0bX3F9RS1tBoNgFXZF1CYYtLGMYB6QrGF2MpsMmZ1dZmYlYUnhJ9hqaWEntn6BnyDW/oiTR6GJBy4czrmXczl+zJnSjvNlZRYWl5ZXsqv22vrG5lZue6eqokQSWiERj2Tdx4pyJmhFM81pPZYUhz6nNb93OfJrd1QqFokbPYipF+KOYAEjWBup1r91UBH1W7m8U3DGQPPEnZL8+YddjJ8/7XIr991sRyQJqdCEY6UarhNrL8VSM8Lp0G4misaY9HCHNgwVOKTKS8fvDtGBUdooiKQZodFY/X2R4lCpQeibzRDrrpr1RuK/nu+HM9E6OPNSJuJEU0EmyUHCkY7QqAzUZpISzQeGYCKZeR6RLpaYaFOZbVpxZzuYJ9WjgntSOL528qULmCALe7APh+DCKZTgCspQAQI9eIBHeLLurRfr1XqbrGas6c0u/IH1/gO1/ZkP</latexit>

x0 = x

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="4y4omA+fYFk3QguH54PgfJeh8Us=">AAAC+XicdZLNbtNAEMc3LtBivtpy5GIRIXGK7B4oF0QFHHqIoEikiRSbarxeJ6vul3bXLdHKL9ErXBAXxJWH4BEQ4mXYxDngGEZa6a+Z3+x87OaKUWPj+Fcv2Lp2/cb2zs3w1u07d+/t7u2fGllpTEZYMqknORjCqCAjSy0jE6UJ8JyRcX7+chkfXxBtqBTv7EKRjMNM0JJisN41Se2cWHgfn+3240G8sqgrkrXoP/8RPlNffoYnZ3u932khccWJsJiBMdMkVjZzoC3FjNRhWhmiAJ/DjEy9FMCJydyq4Tp65D1FVErtj7DRyvt3hgNuzILnnuRg52YztnT+M5bnfKO0LZ9mjgpVWSJwU7msWGRltFxHVFBNsGULLwBr6puP8Bw0YOuX9p8hPjRThGEqyCWWnIMoXCrqaZw5l66CTlVa+TW4NC+j13Vdt9miaMGWAGvQVx1Uyhaas2p965sOOhy2UKlBzNbwsANftli8ANGQ4yXpv0Oy+fhdcXowSJ4MDt7G/aMXqLEd9AA9RI9Rgg7RETpGJ2iEMGLoCn1EnwIXfA6+Bt8aNOitc+6jlgXf/wDvA/zv</latexit>

✓0

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

1
5

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

1
5

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

1
5

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

1
5 <latexit sha1_base64="cg4wh2R8HPfQZj85TGdjcqRSXHU=">AAAC93icdZLLbtQwFIY94VbCrYUlG4sREqtR0gWwqagoCxYjKBIzU2kSVbbjTE19k+3QRlbegS1sWCAhtjwFj1BVvAyeySzIBI5k6dc53/G52FhzZl2SXA6iK1evXb+xdTO+dfvO3XvbO/enVlWG0AlRXJkjjCzlTNKJY47TI20oEpjTGT49WMZnH6mxTMn3rtY0F2ghWckIcsE1zZTaS5Pj7WEySlYG+yJdi+GLX/Ge/nYRHx7vDH5nhSKVoNIRjqydp4l2uUfGMcJpE2eVpRqRU7Sg8yAlEtTmftVuAx8HTwFLZcKRDq68f2d4JKytBQ6kQO7EbsaWzn/GMBYbpV35PPdM6spRSdrKZcWhU3C5DFgwQ4njdRCIGBaah+QEGURcWNl/hjhvp4jjTNIzooRAsvCZbOZJ7n22CnpdGR3W4DNcwjdN03TZoujAjiLeoq96qFIdFPNqfevbHjoed1BlkFys4XEPPuuwpEayJWdLMnyHdPPx+2K6O0qfjnbfJcP9l6C1LfAQPAJPQAqegX3wGhyCCSDgA/gEPoMvUR19jb5HP1o0GqxzHoCORT//AKjg+7M=</latexit> O

=
10

<latexit sha1_base64="d1jS81yEcCbPePxRxxkzID3woSc=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7t5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAvXZhd</latexit>

y0
<latexit sha1_base64="ukTw29czn/Yn9Cy7xsduelj7NbM=">AAAB+3icbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LivYB7VgyadqGJpkhyYhl6Ce41Q/oTtz6DX6CuPZHTB8LbT1w4XDOvZzLCWPOtPG8LyezsLi0vJJdddfWNza3cts7FR0litAyiXikaiHWlDNJy4YZTmuxoliEnFbD3tXIrz5QpVkk70w/poHAHcnajGBjpdvHe7+Zy3sFbww0T/wpyV98uOfx8NMtNXPfjVZEEkGlIRxrXfe92AQpVoYRTgduI9E0xqSHO7RuqcSC6iAdvzpAB1ZpoXak7EiDxurvixQLrfsitJsCm66e9Ubiv14Yiplo0z4LUibjxFBJJsnthCMToVERqMUUJYb3LcFEMfs8Il2sMDG2Lte24s92ME8qRwX/pHB84+WLlzBBFvZgHw7Bh1MowjWUoAwEOvAEz/DiDJyh8+q8TVYzzvRmF/7Aef8BmtmX8w==</latexit>

x1
<latexit sha1_base64="uTUoYnWhEuXC+virlGgm9s+Wweg=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7r5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAw8phe</latexit>

y1
<latexit sha1_base64="XXZu6VHq+n79ewuO3byg4tkYRqs=">AAAB+3icbVDLSgMxFL3js46vqks3wSK4KjNF1I1YdOOyon1AO5ZMmmlDk8yQZMRS+glu9QO6E7d+g58grv0R08dCWw9cOJxzL+dywoQzbTzvy1lYXFpeWc2suesbm1vb2Z3dio5TRWiZxDxWtRBrypmkZcMMp7VEUSxCTqth92rkVx+o0iyWd6aX0EDgtmQRI9hY6fbxvtDM5ry8NwaaJ/6U5C4+3PNk+OmWmtnvRismqaDSEI61rvteYoI+VoYRTgduI9U0waSL27RuqcSC6qA/fnWADq3SQlGs7EiDxurviz4WWvdEaDcFNh09643Ef70wFDPRJjoL+kwmqaGSTJKjlCMTo1ERqMUUJYb3LMFEMfs8Ih2sMDG2Lte24s92ME8qhbx/kj++8XLFS5ggA/twAEfgwykU4RpKUAYCbXiCZ3hxBs7QeXXeJqsLzvRmD/7Aef8BnG6X9A==</latexit>

x2

<latexit sha1_base64="1Vi9UjW4LFXztWif5V8zpuF6W88=">AAACDHicbVC7SgNBFJ2NrxhfMZY2Q4IQUcJuELURgjaWEcwDsmuYncwmQ2YfzNyVLCG/YGVtqx9gJ7b+Q2p/xMmj0MQDFw7n3Mu5HDcSXIFpjo3Uyura+kZ6M7O1vbO7l93P1VUYS8pqNBShbLpEMcEDVgMOgjUjyYjvCtZw+zcTv/HIpOJhcA9JxByfdAPucUpAS+1sLnko4yvsFW3oMSCneHDczhbMkjkFXibWnBQqefvkeVxJqu3st90JaeyzAKggSrUsMwJnSCRwKtgoY8eKRYT2SZe1NA2Iz5QznP4+wkda6WAvlHoCwFP198WQ+Eolvqs3fQI9tehNxH891/UXosG7dIY8iGJgAZ0le7HAEOJJM7jDJaMgEk0IlVw/j2mPSEJB95fRrViLHSyTerlknZfO7nQ912iGNDpEeVREFrpAFXSLqqiGKBqgF/SK3own4934MD5nqyljfnOA/sD4+gEkj5z0</latexit>

y2 = f(✓, x)
<latexit sha1_base64="8T8bMdhnW0kInSg+AM7bw/mqgCU=">AAAB/3icbVC7SgNBFL0bX3F9RS1tBoNgFXZF1CYYtLGMYB6QrGF2MpsMmZ1dZmYlYUnhJ9hqaWEntn6BnyDW/oiTR6GJBy4czrmXczl+zJnSjvNlZRYWl5ZXsqv22vrG5lZue6eqokQSWiERj2Tdx4pyJmhFM81pPZYUhz6nNb93OfJrd1QqFokbPYipF+KOYAEjWBup1r91UBH1W7m8U3DGQPPEnZL8+YddjJ8/7XIr991sRyQJqdCEY6UarhNrL8VSM8Lp0G4misaY9HCHNgwVOKTKS8fvDtGBUdooiKQZodFY/X2R4lCpQeibzRDrrpr1RuK/nu+HM9E6OPNSJuJEU0EmyUHCkY7QqAzUZpISzQeGYCKZeR6RLpaYaFOZbVpxZzuYJ9WjgntSOL528qULmCALe7APh+DCKZTgCspQAQI9eIBHeLLurRfr1XqbrGas6c0u/IH1/gO1/ZkP</latexit>

x0 = x

<latexit sha1_base64="Qpdy3pro1NNJ8If446pKRpcn5sQ=">AAAC+XicdZLNbtNAEMc3LtBivtpy5GIRIXGK7B4oF0QFHHqIoEikiRSbarxeJ6vul3bXLdHKL9ErXBAXxJWH4BEQ4mXYxDngGEZa6a+Z3+x87OaKUWPj+Fcv2Lp2/cb2zs3w1u07d+/t7u2fGllpTEZYMqknORjCqCAjSy0jE6UJ8JyRcX7+chkfXxBtqBTv7EKRjMNM0JJisN41Se2cWHifnO3240G8sqgrkrXoP/8RPlNffoYnZ3u932khccWJsJiBMdMkVjZzoC3FjNRhWhmiAJ/DjEy9FMCJydyq4Tp65D1FVErtj7DRyvt3hgNuzILnnuRg52YztnT+M5bnfKO0LZ9mjgpVWSJwU7msWGRltFxHVFBNsGULLwBr6puP8Bw0YOuX9p8hPjRThGEqyCWWnIMoXCrqaZw5l66CTlVa+TW4NC+j13Vdt9miaMGWAGvQVx1Uyhaas2p965sOOhy2UKlBzNbwsANftli8ANGQ4yXpv0Oy+fhdcXowSJ4MDt7G/aMXqLEd9AA9RI9Rgg7RETpGJ2iEMGLoCn1EnwIXfA6+Bt8aNOitc+6jlgXf/wDxkfzw</latexit>

✓1
<latexit sha1_base64="X550jq1v/sy12IXBWGz1dZtSXGU=">AAAC+XicdZLLbtNAFIYn5lbMrYUlG4sIiVVkZ0HZICraRRcRFIk0kWJTHY/Hyahz08yYEo38Et3CBrFBbHkIHgEhXoZJnAWO4Ugj/TrnO3MuM7li1Ng4/tULrly9dv3Gzs3w1u07d+/t7t0/NbLSmIyxZFJPczCEUUHGllpGpkoT4Dkjk/z8cBWfvCfaUCne2qUiGYe5oCXFYL1rmtoFsfBueLbbjwfx2qKuSDai/+JH+Fx9+RmenO31fqeFxBUnwmIGxsySWNnMgbYUM1KHaWWIAnwOczLzUgAnJnPrhuvosfcUUSm1P8JGa+/fGQ64MUuee5KDXZjt2Mr5z1ie863StnyWOSpUZYnATeWyYpGV0WodUUE1wZYtvQCsqW8+wgvQgK1f2n+G+NBMEYapIBdYcg6icKmoZ3HmXLoOOlVp5dfg0ryMXtV13WaLogVbAqxBjzqolC00Z9Xm1tcddDRqoVKDmG/gUQe+aLF4CaIhJyvSf4dk+/G74nQ4SJ4Ohm/i/sFL1NgOeogeoScoQfvoAB2jEzRGGDF0iT6iT4ELPgdfg28NGvQ2OQ9Qy4LvfwD0H/zx</latexit>

✓2
<latexit sha1_base64="4y4omA+fYFk3QguH54PgfJeh8Us=">AAAC+XicdZLNbtNAEMc3LtBivtpy5GIRIXGK7B4oF0QFHHqIoEikiRSbarxeJ6vul3bXLdHKL9ErXBAXxJWH4BEQ4mXYxDngGEZa6a+Z3+x87OaKUWPj+Fcv2Lp2/cb2zs3w1u07d+/t7u2fGllpTEZYMqknORjCqCAjSy0jE6UJ8JyRcX7+chkfXxBtqBTv7EKRjMNM0JJisN41Se2cWHgfn+3240G8sqgrkrXoP/8RPlNffoYnZ3u932khccWJsJiBMdMkVjZzoC3FjNRhWhmiAJ/DjEy9FMCJydyq4Tp65D1FVErtj7DRyvt3hgNuzILnnuRg52YztnT+M5bnfKO0LZ9mjgpVWSJwU7msWGRltFxHVFBNsGULLwBr6puP8Bw0YOuX9p8hPjRThGEqyCWWnIMoXCrqaZw5l66CTlVa+TW4NC+j13Vdt9miaMGWAGvQVx1Uyhaas2p965sOOhy2UKlBzNbwsANftli8ANGQ4yXpv0Oy+fhdcXowSJ4MDt7G/aMXqLEd9AA9RI9Rgg7RETpGJ2iEMGLoCn1EnwIXfA6+Bt8aNOitc+6jlgXf/wDvA/zv</latexit>

✓0

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8

<latexit sha1_base64="0MSMPKCE/B1HrLnfTe2yAwqdA6I=">AAACO3icbVC7SgNBFJ2N7/hKtLRZjYJV2I2iNkIwIJYRjAaSEGZn7+qQ2Qczd0PCsrVfY6uVH2JtJ7b2TjZbaPTAhcO57+NEgiu0rDejMDe/sLi0vFJcXVvf2CyVt25VGEsGLRaKULYdqkDwAFrIUUA7kkB9R8CdM2hM8ndDkIqHwQ2OI+j59D7gHmcUtdQv7e4n3WxK0qAu4IWIIe0ijNDxkss0PT/a75cqVtXKYP4ldk4qJEezXzYKXTdksQ8BMkGV6thWhL2ESuRMQFrsxgoiygb0HjqaBtQH1UuyK1LzQCuu6YVSR4Bmpv7sSKiv1Nh3dKVP8UHN5ibivznH8WdWo3fWS3gQxQgBm272YmFiaE6cMl0ugaEYa0KZ5Pp4kz1QSRlqP39Ncoc8Uvkbo+kf2jV71qO/5LZWtU+qx9e1Sv0i92+Z7JA9ckhsckrq5Io0SYsw8kieyDN5MV6Nd+PD+JyWFoy8Z5v8gvH1DZ5zrnQ=</latexit>

F = 3
<latexit sha1_base64="0MSMPKCE/B1HrLnfTe2yAwqdA6I=">AAACO3icbVC7SgNBFJ2N7/hKtLRZjYJV2I2iNkIwIJYRjAaSEGZn7+qQ2Qczd0PCsrVfY6uVH2JtJ7b2TjZbaPTAhcO57+NEgiu0rDejMDe/sLi0vFJcXVvf2CyVt25VGEsGLRaKULYdqkDwAFrIUUA7kkB9R8CdM2hM8ndDkIqHwQ2OI+j59D7gHmcUtdQv7e4n3WxK0qAu4IWIIe0ijNDxkss0PT/a75cqVtXKYP4ldk4qJEezXzYKXTdksQ8BMkGV6thWhL2ESuRMQFrsxgoiygb0HjqaBtQH1UuyK1LzQCuu6YVSR4Bmpv7sSKiv1Nh3dKVP8UHN5ibivznH8WdWo3fWS3gQxQgBm272YmFiaE6cMl0ugaEYa0KZ5Pp4kz1QSRlqP39Ncoc8Uvkbo+kf2jV71qO/5LZWtU+qx9e1Sv0i92+Z7JA9ckhsckrq5Io0SYsw8kieyDN5MV6Nd+PD+JyWFoy8Z5v8gvH1DZ5zrnQ=</latexit>

F = 3

<latexit sha1_base64="RcYanoYAyzpLkAmVlPZjtSxVcAA=">AAAFQnicpZPPb9MwFMfTUGCEXxscuVisIE5TOyF+3KZtqjhUrEh0nVRXk+O8tNYcJ7KdtVXwFf4x/gn+BU4grhxw3LI1K2xIvCjSs/15Xz/7PYcZZ0o3m19q/rX69Rs3124Ft+/cvXd/fePBoUpzSaFHU57Ko5Ao4ExATzPN4SiTQJKQQz882SvX+6cgFUvFez3LYJiQkWAxo0TbqeON2jccwoiJQhMbYgbD4HyccyJN8YHbzwR4XG4RNLCGqZZJgcMYu+2LLJeZDd0lmo5NAz1FDSwa6ArDGP1dsZ3TsWLE7EOmS0lnpW6nc5XwpboaCDddNgWuFqqlaNS4PGqPRKB3eQ6mzbgGuRQaXxFKZ0SYPovOTzGPm/zf/YRlMge5znK9lEyaLmeDQURnRTwb2Todr282t5rO0KrTWjib3sK6xxv+axylNE9AaMqJUoNWM9PDgkjNqBUMcK4gI/SEjGBgXUESUMPCpWrQEzsToTiV9hcaudnliIIkSs2S0JIJ0WN1ca2c/ONaGCYXttbxq2HBhL0VEHS+c5xzpFNUdj6KmASq+cw6hEpmk0d0TCShtqYV6UF0yjK1OMZ0fo4gwAImNE0SYm8SCzNoDoui+gLKCqG3xpgqG0UV2DWhQ/dX0DStoK7ODj1YQTudCvr7yTi6s0JPKrBrS0f2HSmhku8/pxtXyPN34vB2idtma11srVXncHur9WLr+bvtzZ3dRduteY+8x94zr+W99Ha8N17X63nU7/vG/+h/qn+uf61/r/+Yo35tEfPQq1j95y/+jbY/</latexit>

Batch N
Depth L
Pixels D
Filter F
Width W
Output O

Figure 5: Notation used in §2.1.1 (FCN, top) and §N (CNN, bottom). For FCN,
D = F = 1. For CNN, D = 8, F = 3, and the penultimate layer is global average pooling.

13

https://www.tensorflow.org/xla

Novak Sohl-Dickstein Schoenholz

B. Glossary

• N - batch size of inputs x to the NN f (θ, x). In a more general setting (§I), the
number of functions f(θ).

n - batch indices ranging from 1 to N.

• O - output size (e.g. number of logits) of f (θ, x) for a single (N = 1) input x.

• The NTK matrix has shape NO×NO.

• W - width of an FCN, or number of channels of a CNN. Individual inputs x are
usually assumed to have the same size / number of channels.

• L - depth of the network, number of layers. In a more general setting, number of
trainable parameter matrices, that are used in a possibly different number of subex-
pressions in the network.

l - depth index ranging from 0 to L.

• K - number of subexpressions (primitives, nodes in the computation graph) of the
network f(θ, x). For NNs without weight sharing, K = L.

k - subexpression index ranging from 1 to K.

• D - total number of pixels (e.g. 1024 for a 32× 32 image; 1 for an FCN) in an input
and every intermediate layer of a CNN (SAME or CIRCULAR padding is assumed, to
consider the spatial size unchanged from layer to layer).

• F - total filter size (e.g. 9 for a 3× 3 filter; 1 for an FCN) in a convolutional filter of
a CNN (no striding and dilation is assumed for simplicity).

• Y - total size of a pre-activation / primitive / subexpression y (e.g. Y = DW for a
layer with D pixels and W channels; Y = W for FCN). Depending on the context,
can represent size of a single or particular pre-activation in the network, or the size
of all pre-activations together.

• C - in §I, the size of the axis along which a subexpression derivative ∂y
/
∂θ admits

certain structure (C can often be equal to Y or a significant fraction of it, e.g. W).

c - index along the structured axis, ranging from 1 to C.

• P - total size of trainable parameters. Depending on the context, can represent the
size of a particular weight matrix θl in some layer l (e.g. W2 for width-W FCN), or
the size of all parameters in the network.

• FP - forward pass, cost (time or memory, depending on the context) of evaluating
f(θ, x) on a single (N = 1) input x.

• If a variable is present in complexity analysis with an index such as k or l, it is
considered to be the maximum over that index, e.g. Yk = maxk Y

k. This is used in
Table 1, Table 2, and Table 3.

• Jk
l is the cost of evaluating a single primitive Jacobian ∂yk/∂θl, given the structure

present in yk according to §I.

14

Fast Finite Width Neural Tangent Kernel

C. Implementation

Both algorithms are implemented in JAX (Bradbury et al., 2018) as the following function
transformation ntk_fn : [f : (θ, x) 7→ f(θ, x)] 7→ [Θ : (x1, x2, θ) 7→ Θθ(x1, x2)] , i.e. our
function accepts any function f with the above signature and returns the efficient NTK
kernel function operating on inputs x1 and x2 and parameterized by θ. Inputs x, parameters
θ, and outputs f(θ, x) can be arbitrary PyTrees. We rely on many utilities from JAX and
Neural Tangents (Novak et al., 2020).

NTK-vector products algorithm is implemented by using JAX core operations such
as vjp , jvp , and vmap to map the NTK-vp function to the IO matrix and to parallelize
the computation over pairwise combinations of N inputs in each batch x1 and x2.

Structured derivatives algorithm is implemented as a Jaxpr interpreter, built on top
of the JAX reverse-mode AD interpreter. On a high level, the algorithm performs the sum
in Eq. (5). Each summand is a contraction of 4 factors: ∂f1

/
∂y1, ∂y1/∂θ, ∂y2/∂θ, ∂f2

/
∂y2.

First, we linearize f to obtain a computational graph constructed out of a limited
set (54,2 see Table 6) of linear primitives y1, . . . , yK. Then, we can obtain two factors
∂f1
/
∂y1, ∂f2

/
∂y2 as part of a backward pass almost identical to jax.jacobian (f)(θ, x).

To contract these terms with ∂y1/∂θ and ∂y2/∂θ, as described above, we query a dictionary
of rules which map primitives to a structural description (§I.8); for a given pair of primitives,
these rules allow us to analytically simplify the contraction and avoid explicitly instantiating
the derivatives.

Finally, owing to the nuanced trade-offs between different computational methods in
the general case, we release all our implementations as a single function that allows the
user to manually select the desired implementation. For convenience, we include an auto-
mated setting which will perform FLOPs analysis for each method at compilation time and
automatically select the most efficient one.

D. Leveraging JAX design for efficient NTK computation

At the time of writing, Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019)
are more widely used than JAX (Bradbury et al., 2018). However, certain JAX features
and design choices made it much more suitable, if not indispensable, for our project:

1. Structured derivatives require manual implementation of structure rules for different
primitives in the computational graph of a function f(θ, x). JAX has a small primitive
set of about 131 primitives, while PyTorch and Tensorflow have more than 400 (Frostig
et al., 2021, Section 2). Further, by leveraging jax.linearize , we reduce our task to

implementing structure rules for only linear primitives, of which JAX has only 54.3

To our knowledge neither PyTorch nor Tensorflow have an equivalent transformation,
which makes JAX a natural choice due to the very concise set of primitives that we
need to handle (Table 6).

2. JAX leverages a similar approach to implement only 54 transpose rules for linear primitives for reverse-
mode differentiation instead of 131 VJP rules (Frostig et al., 2021).

3. This follows from the fact that the NTK of a function is equal to the NTK of the linearized function
at the same primal parameters θ. See also (Frostig et al., 2021, Section 1) for how JAX uses the same
insight to not implement all 131 VJP rules, but only implement 54 transpose rules for reverse mode AD.

15

https://jax.readthedocs.io/en/latest/pytrees.html
https://jax.readthedocs.io/en/latest/notebooks/Writing_custom_interpreters_in_Jax.html

Novak Sohl-Dickstein Schoenholz

2. NTK-vector products critically rely on forward mode AD (JVP), and Structured
derivatives also use it (albeit it’s not crucial; see §J). At the time of writing, Py-
Torch does not implement an efficient forward mode AD.

3. Structured derivatives rely crucially on the ability to traverse the computation graph
to rewrite contractions using our substitution rules. JAX provides a highly-convenient
graph representation in the form of a Jaxpr, as well as tooling and documentation for
writing custom Jaxpr interpreters.

4. All implementations (even Jacobian contraction) rely heavily on jax.vmap (and to
our knowledge, in many cases, it is indispensable). While PyTorch has released a
prototype of vmap in May 2021, it was not available when we started this project.

For researchers interested in interfacing with our library, we recommend looking into
tools facilitating data exchange between different ML frameworks, such as DLPack and
Jax2TF. See §C for more implementation details.

E. Comparison with specific related works

The finite width NTK has been used extensively in many recent works, but to our knowl-
edge implementation details and compute costs were rarely made public. Below we draw
comparison to some of these works, but we stress that it only serves as a sanity check to
make sure our contribution is valuable relative to the scale of problems that have been
attempted (none of these works had efficient NTK computation as their central goal).

In order to compare performance of models based on the NTK and the infinite width
NTK, Arora et al. (2019a, Table 2) compute the NTK of up to 20-layer, 128-channel CNN
in a binary CIFAR-2 classification setting. In an equivalent setting with the same hardware
(NVIDIA V100), we are able to compute the NTK of a 2048-channel CNN, i.e. a network
with at least 256 times more parameters.

To demonstrate the stability of the NTK during training for wide networks, Lee et al.
(2019, Figure S6) compute the NTK of up to 3-layer 212-wide or 1-layer 214-wide FCNs. In
the same setting with the same hardware (NVIDIA V100), we can reach widths of at least
214 and 218 respectively, i.e. handle networks with at least 16 times more parameters.

To investigate convergence of a WideResNet WRN-28-k (Zagoruyko and Komodakis,
2016) to its infinite width limit, Novak et al. (2020, Figure 2) evaluate the NTK of this
model with widening factor k up to 32. In matching setting and hardware, we are able to
reach the widening factor of at least 64, i.e. work with models at least 4 times larger.

To meta-learn NN parameters for transfer learning in a MAML-like (Finn et al., 2017)
setting, Zhou et al. (2021, Table 7) replace the inner training loop with NTK-based inference.
They use up to 5-layer, 200-channel CNNs on MiniImageNet (Oreshkin et al., 2018) with
scalar outputs and batch size 25. In same setting we achieve at least 512 channels, i.e.
support models at least 6 times larger.

Park et al. (2020, §4.1) use the NTK to predict the generalization performance of archi-
tectures in the context of Neural Architecture Search (Zoph and Le, 2017, NAS); however,
the authors comment on its high computational burden and ultimately use a different proxy.
In another NAS setting, Chen et al. (2021a, §3.1.1) use the condition number of NTK to
predict a model’s trainability. Remarking its prohibitive cost, Chen et al. (2021b, Table 1)

16

https://pytorch.org/docs/stable/generated/torch.autograd.functional.jvp.html#torch.autograd.functional.jvp
https://jax.readthedocs.io/en/latest/jaxpr.html
https://jax.readthedocs.io/en/latest/notebooks/Writing_custom_interpreters_in_Jax.html
https://github.com/pytorch/pytorch/issues/42368
https://github.com/dmlc/dlpack
https://github.com/google/jax/tree/main/jax/experimental/jax2tf

Fast Finite Width Neural Tangent Kernel

also use the NTK to evaluate the trainability of several ImageNet (Deng et al., 2009) mod-
els such as ResNet 50/152 (He et al., 2016), Vision Transformer (Dosovitskiy et al., 2021)
and MLP-Mixer (Tolstikhin et al., 2021). However, in all of the above cases the authors
only evaluate a pseudo-NTK, i.e. an NTK of a scalar-valued function,4 which impacts the
quality of the respective trainability/generalization proxy. In contrast, in this work we can
compute the full 1000× 1000 NTK on the same models (1000 classes), i.e. perform a task
1000 times more costly.

Finally, we remark that in all of the above settings, scaling up by increasing width or
by working with the true NTK (vs the pseudo-NTK) should lead to improved downstream
task performance due to better infinite width/linearization approximation or higher-quality
trainability/generalization proxy respectively, which makes our work especially relevant to
modern research.

F. Applications with a limited compute budget

While our methods allow to dramatically speed-up the computation of NTK, all of them
still scale as N2O2 for both time and memory, which can be intractable for large datasets
and/or large outputs.

Here we present several settings in which our proposed methods still provide substantial
time and memory savings, even when instantiating the entire NO×NO NTK is not feasible
or not necessary.

• NTK-vector products. In many applications one only requires computing the
NTK-vector product linear map

Θθ : v ∈ RNO 7→ Θθv ∈ NO, (6)

without computing the entire NTK matrix Θθ. One common setting is using the
power iteration method (Müntz, 1913) to compute NTK condition number and hence
trainability of the respective NN (Lee et al., 2019; Chen et al., 2021a,b). Another set-
ting is using conjugate gradients to compute Θ−1

θ Y when doing kernel ridge regression
with the NTK (Jacot et al., 2018; Lee et al., 2019; Zhou et al., 2021).

Eq. (6) is the same map as the one we considered in §2.3, and naturally, NTK-vector
products can provide a substantial speed-up over Jacobian contraction in this setting.
Precisely, a straightforward application of Jacobian contraction yields

Θθv︸︷︷︸
NO×1

=
∂f (θ, x1)

∂θ︸ ︷︷ ︸
NO×P

∂f (θ, x2)

∂θ

T

︸ ︷︷ ︸
P×NO

v︸︷︷︸
NO×1

. (7)

Combined with the cost of computing the weight space cotangents ∂f/∂θ, such eval-
uation costs NO [FP] time, i.e. the cost of instantiating the entire Jacobian. Alter-
natively, one could store the entire Jacobians of sizes NOP in memory, and compute
a single NTK-vector product in NOP time.

4. Precisely, computing the Jacobian only for a single logit or the sum of all 1000 class logits. The result is
not the full NTK, but rather a single diagonal block or the sum of its 1000 diagonal blocks (finite width
NTK is a dense matrix, not block diagonal).

17

Novak Sohl-Dickstein Schoenholz

In contrast, NTK-vector products allow to compute an NTK-vector product at a cost
asymptotically equivalent to a single VJP call (§2.3), i.e. N [FP], O times faster
than Jacobian contraction without caching. With caching, fastest method will vary
based on the cost of [FP] relative to OP, as discussed in §2.4, but NTK-vector
products will remain substantially more memory-efficient due to not caching the entire
NOP Jacobians.

• Batching. In many applications it suffices to compute the NTK over small batches of
the data. For example Dauphin and Schoenholz (2019); Chen et al. (2021a,b) estimate
the conditioning by computing an approximation to the NTK on N equal to 128, 32,
and 48 examples respectively. Similarly, Zhou et al. (2021) use a small batch size of
N = 25 to meta-learn the network parameters by replacing the inner SGD training
loop with NTK regression.

• Pseudo-NTK. Many applications (§E) compute a pseudo-NTK of size N×N, which
is commonly equal to one of its O diagonal blocks, or to the mean of all O blocks.
The reason for considering such approximation is that in the infinite width limit,
off-diagonal entries often converge to zero, and for wide-enough networks this ap-
proximation can be justified. Compute-wise, these approximations are equivalent to
having O = 1. While an important contribution of our work is to enable computing
the full NO×NO NTK quickly, if necessary, Structured derivatives can be combined
with theO = 1 approximations, and still provide an asymptotic speed-up and memory
savings relative to prior works.

G. Finite and infinite width NTK

In this work we focus on computing the finite width NTK Θθ (x1, x2), defined in Eq. (1),
that we repeat below with an addition of a batch size N:

F-NTK (finite width): Θθ(x1, x2)︸ ︷︷ ︸
NO×NO

:=
[
∂f(θ, x1)

/
∂θ
]︸ ︷︷ ︸

NO×P

[
∂f(θ, x2)

/
∂θ
]T︸ ︷︷ ︸

P×NO

. (8)

Another highly important object in deep learning theory is the infinite width NTKΘ(x1, x2),
introduced in the seminal work of Jacot et al. (2018):

I-NTK (infinite width): Θ(x1, x2)︸ ︷︷ ︸
NO×NO

:= lim
W→∞

Eθ∼N (0,IP)

Θθ (x1, x2)︸ ︷︷ ︸
NO×NO

 . (9)

A natural question to ask is what are the similarities and differences of F- and I-NTK, when
is one more applicable than the other, and what are their implementation and compute costs.

Applications. At a high level, F-NTK describes the local/linearized behavior of the
finite width NN f (θ, x) (Lee et al., 2019). In contrast, I-NTK is an approximation that is
exact only in the infinite width W limit, and only at initialization (θ ∼ N (0, IP)). As such,
the resulting I-NTK has no notion of width W, parameters θ, and cannot be computed
during draining, or in a transfer or meta-learning setting, where the parameters θ are

18

Fast Finite Width Neural Tangent Kernel

updated. As a consequence, any application to finite width networks (§E) is better served
by the F-NTK, and often impossible with the I-NTK.

In contrast, I-NTK describes the behavior of an infinite ensemble of infinitely wide NNs.
In certain settings this can be desirable, such as when studying the inductive bias of certain
NN architectures (Xiao et al., 2020) or uncertainty (Adlam et al., 2020), marginalizing away
the dependence on specific parameters θ. However, care should be taken when applying I-
NTK findings to the finite width realm, since many works have demonstrated substantial
finite width effects that cannot be captured by the I-NTK (Novak et al., 2019; Arora et al.,
2019b; Lee et al., 2019; Yaida, 2020; Hanin and Nica, 2020; Lee et al., 2020).

Mathematical scope. Another significant difference between F- and I-NTK is the
scope of their definitions in Eq. (8) and Eq. (9) and mathematical tractability.

The F-NTK is well-defined for any differentiable (w.r.t. θ) function f , and our methods
are respectively applicable to any differentiable functions. In fact, our work supports any
Tangent Kernels (not necessarily “Neural”), and is not specific to NNs at all.

In contrast, the I-NTK requires the function f to have the concept of width W (that
can be meaningfully taken to infinity) to begin with, and further requires f and θ to satisfy
many conditions in order for the I-NTK to be well-defined (Yang, 2019). In order for I-NTK
to be well-defined and computable in closed-form, f needs to be built out of a relatively
small, hand-selected number of primitives that admit certain Gaussian integrals to have
closed-form solutions. Examples of ubiquitous primitives that don’t allow a closed-form so-
lution include attention with standard parameterization (Hron et al., 2020b); max-pooling;
sigmoid, (log-)softmax, tanh, and many other nonlinearities; various kinds of normalization
(Yang et al., 2019); non-trivial weight sharing (Yang, 2020); and many other settings. Going
forward, it is unlikely that the I-NTK will scale to the enormous variety of architectures
introduced by the research community each year.

Implementation tractability. Above we have demonstrated that the I-NTK is defined
for a very small subset of functions admitting the F-NTK. A closed-form solution exists for
an even smaller subset. However, even when the I-NTK admits a closed-form solution, it is
important to consider the complexity of implementing it.

Our implementation for computing the F-NTK is applicable to any differentiable func-
tion f , and requires no extra effort when switching to a different function g. It is similar to
JAX’s highly-generic function transformations such as jax.jit or jax.vmap .

In contrast, there is no known way to compute the I-NTK for an arbitrary function
f , even if the I-NTK exists in closed form. The best existing solution to date is provided
by Novak et al. (2020), which allows to construct f out of the limited set of building
blocks provided by the authors. However, one cannot compute the I-NTK for a function
implemented in a different library such as Flax (Heek et al., 2020), or Haiku (Hennigan
et al., 2020), or bare-bone JAX. One would have to re-implement it using the primitives
provided by Novak et al. (2020). Further, for a generic architecture, the primitive set is
unlikely to be sufficient, and the function will need to be adapted to admit a closed-form
I-NTK.

Computational tractability. F-NTK and I-NTK have different time and memory
complexities, and a fully general comparison is an interesting direction for future work.
Here we provide discussion for deep FCNs and CNNs.

19

Novak Sohl-Dickstein Schoenholz

Networks having a fully-connected top (L) readout layer have a constant-block diagonal
I-NTK, hence its cost does not scale with O. The cost of computing the I-NTK for a deep
FCN scales as N2L for time and N2 for memory. A deep CNN without pooling costs N2DL
time and N2D memory (where D is the total number of pixels in a single input/activation;
D = 1 for FCNs). Finally, a deep CNN with pooling, or any other generic architecture that
leverages the spatial structure of inputs/activations, costs N2D2L time and N2D2 memory.
This applies to all models in Fig. 2 and Fig. 4, Graph Neural Networks (Du et al., 2019),
and the vast majority of other architectures used in practice.

The quadratic scaling of the I-NTK cost with D is especially burdensome, since, for
example, for ImageNet D2 = 2244 = 2, 517, 630, 976. As a result, it would be impossible
to evaluate the I-NTK on even a single (N = 1) pair of inputs with a V100 GPU for any
model for which we’ve successfully evaluated the F-NTK in Fig. 2 and Fig. 4.

The F-NTK time and memory only scale linearly with D (Table 2). However, the F-
NTK cost scales with other parameters such as width W or number of outputs O, and
in general the relative F- and I-NTK performance will depend on these parameters. As
a rough point of comparison, we consider the cost of evaluating the I-NTK of a 20-layer
binary classification ReLU CNN with pooling on a V100 GPU used by Arora et al. (2019b)
against the respective F-NTK with W = 128 also used by Arora et al. (2019b, Section B).
Arora et al. (2019b) and Novak et al. (2020) report from 0.002 to 0.003 seconds per I-NTK
entry on a pair of CIFAR-10 inputs. Using Structured derivatives, we can compute the
respective F-NTK entry on same hardware in at most 0.000014 seconds, i.e. at least 100
times faster than the I-NTK. In 0.002 – 0.003 seconds per NTK entry, we can compute the
F-NTK on a pair of ImageNet inputs (about 50x larger than CIFAR-10) for a 200-layer
ResNet (about 10x deeper than the model above) in Fig. 2 (top left).

Finally, we remark that efficient NTK-vector products without instantiating the entire
NO×NO NTK are only possible using the F-NTK (§F).

H. JVP and VJP costs

Here we provide intutition for why JVP and VJP are asymptotically equivalent in time to
the forward pass FP, as we mentioned in §2.1.2. See (Griewank and Walther, 2008, Section
3) for a rigorous treatment, and the JAX Autodiff Cookbook for a hands-on introduction.

JVP can be computed by traversing a computational graph of the same topology as
FP, except for primitive nodes in the graph need to be augmented to compute not only the
forward pass of the node, but also the JVP of the node (see Fig. 6). Due to identical topology
and order of evaluation, asymptotically time and memory costs remain unchanged. However,
constructing the augmented nodes in the JVP graph, and their consequent evaluation results
in extra time cost proportional to the size of the graph. Therefore in practice JVP costs
about 3× FP time and 2× FP memory.

VJP, as a linear function of cotangents fc, is precisely the transpose of the linear
function JVP. As such, it can be computed by traversing the transpose of the JVP graph
(Fig. 6, right), with each JVP node replaced by its transposition as well. This results in
identical time and memory costs, as long as node transpositions are implemented efficiently.
However, their evaluation requires primal outputs yk (now inputs to the transpose nodes),
which is why VJP necessitates an extra FP time cost to compute them (hence costlier than

20

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Fast Finite Width Neural Tangent Kernel

<latexit sha1_base64="mfaTk+kfvEjK6dc2xleFjt1f8Y8=">AAAEvnicnZJta9swEMcdL1277KndXu6NWBl0rISkdA90b8q2F6OULRtNUqhSI8lyolaSNVluE4S+yr7Xvs0U27RNnTLYgeH0v59Od+fDirPMdDp/GuG95sr91bUHrYePHj95ur7xbJCluSa0T1Ke6mOMMsqZpH3DDKfHSlMkMKdDfP55Hh9eUJ2xVB6ZmaIjgcaSJYwg46Voo/EbeIOYjpm09FdeyA5yhCn3572zCxVdnKlIICZdC1QGDZ0aLezBoOciCzlNzFay7eUJNWgbTKFm44l57fYqKTIAMgkFMhOM7U93aqFywJ9VZlIAE42IV5A2DHGQlPlqya6IMuLuTJ2m7iOAvpe4VvDg4F8FJxFZlvCqWPuf1brTo6W51fVU24UHqYyv/0S0vtlpdwoDdadbOZtBZb1oI1yFcUpyQaUhHGXZSbejzMjOiyGcuhbMM6oQOUdjeuJdiQTNRrbYJAdeeSUGSar9Jw0o1Js3LBJZNhPYk/Mmstuxubg0hrG49bRJPowskyo3VJLy5STnwI94vqcgZpoSw2feQUQzXzwgE+RHb/w239HEtOyi1YKSXpJUCORHCaU76YyshUXQqlwrPwYLcQK+OecW2ThegA1FvES/1FC1QGoau2LJcGJ7NdYv0E0Y87yq4HsNPTxcQFON5LiCD2vw5QJLZkiW5HBO+tXp3l6UujPYaXfftXd/7Gzuf6qWaC14EbwMtoJu8D7YD74GvaAfkHAlfBPuhm+b+82kKZppiYaN6s7zYMGa078uF5xr</latexit>

JVP(f,✓,x) : ✓t 2 RP 7! @f (✓, x)

@✓
✓t 2 RO; VJP(f,✓,x) : fc 2 RO 7! @f (✓, x)

@✓

T

fc 2 RP.

(1)

<latexit sha1_base64="AKtZnxEzhDGVGSyGt6gSLqBSg60=">AAAD0HicbZLNbhMxEMfdLB9l+WrhyMUiqsQBhU2FgAuiKhxARCUg0lTKRpXtnU2teO2V7W0SrVaIKxeucOYZeAYeAfE2ONlV1c1mJEujmd+M/zMamgpubBD822p5V65eu759w7956/aduzu7946NyjSDAVNC6RNKDAguYWC5FXCSaiAJFTCk09fL/PActOFKfraLFMYJmUgec0asCw3CSFlzutMOOsHKcNPpVk771R//Zfrrr98/3W39doUsS0BaJogxo26Q2nFOtOVMQOGHmYGUsCmZwMi5kiRgxvlKbYH3XCTCsdLuSYtX0csVOUmMWSTUkQmxZ2Y9twxuzFGarH1t4xfjnMs0syBZ+XOcCWwVXu4CR1wDs2LhHMI0d+IxOyOaMOs2tnGIxzg656mpBpqXE/l+KGHGVJIQGeWhLEbBOM/DVTJPM526leQhjfFRURR1NopqsAUiSvRNA01rpIaoCC3MLY3zfoNVqgZTkVUKPjTQXq+GKk3kpIJ7DXhWY9mCyJIcLkk/1HAZFjX4UKuZvJD83hVgjPfwUZZQ0FjFWJCF2zp+gk1GYe6O2CyP1nTqCgTf0HVaNXsnI5hf9Fpv1fHdoXfXz7rpHO93us86Tz8G7YNDVNo2eoAeokeoi56jA/QW9dEAMcTRd/QD/fQ+eXPvi/e1RFtbVc19VDPv23+we04y</latexit>. . .

<latexit sha1_base64="o/UpWIUO6HSRbcqlnkQF030Kc90=">AAAEMHicbZPNbhMxEMfdLh8lfLVw4ABCFlUkhKptghBwrAoHEFFJRdMUZUPk9c6mVrz2yvYmWVZ75MgV3oNTHwVOiCu8BN5sFHWTWrI0mvl5/J/RjB9zpk2j8Wtt3bl0+crVjWu16zdu3rq9uXXnWMtEUehQyaU68YkGzgR0DDMcTmIFJPI5dP3RqyLeHYPSTIojk8bQj8hQsJBRYqzrQ/qpOdjcbriN2cGrRnNubO89ODv89+XhWXuw5dzzAkmTCIShnGjdazZi08+IMoxyyGteoiEmdESG0LOmIBHofjbTmuO69QQ4lMpeYfDMe/5FRiKt08i3ZETMqV6OFc4LY74fLX1twpf9jIk4MSBo+XOYcGwkLjqBA6aAGp5ag1DFrHhMT4ki1Nh+XVjEDg7GLNbzgqZlRbWaJ2BCZRQREWSeyHuNfpZ5s2AWJyq2Lck8P8QHeZ5X2SCowAYIL9HXK2hcIRUEuWdgavwwa6+wUlZgnydzBe9X0FargkpFxHAOt1bgSYWlKREl2S3ImqfgPMwr8L6SE7GQ/M4+wBjX8UES+aCwDDEnqe063sU68WFqR1gXI6vdqgLOLsg6mid7KwKYLnItp1rKlFbr5mwMC3kfC3l1fCQN4diOAxvPlgVr9hl2MHPBxSKJBjGbAtf4STE1QljTtavUXF6cVeP4qdt87j47tDu1j8qzge6jR+gxaqIXaA+9QW3UQRQN0Vf0DX13fjg/nd/OnxJdX5u/uYsqx/n7H1PHdBE=</latexit>

y1

<latexit sha1_base64="MKcOnG3Q9/hyA/QnGBSg0cOwPwk=">AAAEMHicbZPNbhMxEMfdLh8lfLVw4ABCFlUkhKplUyHgWBUOIKKSiqYpyobI651NrXjtle1Nsqz2yJErvAenPgqcEFd4CbxJFHWTWrI0mvl5/J/RTJBwpo3n/Vpbdy5dvnJ141rt+o2bt25vbt051jJVFNpUcqlOAqKBMwFtwwyHk0QBiQMOnWD4qox3RqA0k+LIZAn0YjIQLGKUGOv6kH3a7W9ue643PXjVaMyN7b0HZ4f/vjw8a/W3nHt+KGkagzCUE627DS8xvZwowyiHouanGhJCh2QAXWsKEoPu5VOtBa5bT4gjqewVBk+951/kJNY6iwNLxsSc6uVY6bwwFgTx0tcmetnLmUhSA4LOfo5Sjo3EZSdwyBRQwzNrEKqYFY/pKVGEGtuvC4vYweGIJXpe0GRWUa3mCxhTGcdEhLkviq7Xy3N/GsyTVCW2JbkfRPigKIoqG4YV2ADhM/T1CppUSAVh4RuYmCDKWyuslBU44OlcwfsVtNmsoFIRMZjDzRV4XGFpRsSM7JRkzVdwHuYVeF/JsVhIfmcfYIzr+CCNA1BYRpiTzHYdP8U6DWBiR1iXI6vdqgLOLsg6nCd7K0KYLHItp1rKlFXr5mwEC3kfS3l1fCQN4diOAxtNlwVr9hl2MHPBxSKN+wmbANf4STk1QljTtavUWF6cVeN41208d58d2p3aR7Ozge6jR+gxaqAXaA+9QS3URhQN0Ff0DX13fjg/nd/Onxm6vjZ/cxdVjvP3P1eRdBI=</latexit>

y2

<latexit sha1_base64="4yr/Ai7kRtCGccLYSagAFdv/0Js=">AAAEMHicbZPNbhMxEMfdLh8lfLVw4ABCFlUkhKplAwg4VoUDiKikommKsiHyemdTK157ZXuTLKs9cuQK78GpjwInxBVeAm8SRd2kliyNZn4e/2c0EyScaeN5v9bWnQsXL13euFK7eu36jZubW7eOtEwVhTaVXKrjgGjgTEDbMMPhOFFA4oBDJxi+KuOdESjNpDg0WQK9mAwEixglxro+ZJ+e9je3PdebHrxqNObG9u6904N/X+6ftvpbzh0/lDSNQRjKidbdhpeYXk6UYZRDUfNTDQmhQzKArjUFiUH38qnWAtetJ8SRVPYKg6fesy9yEmudxYElY2JO9HKsdJ4bC4J46WsTvezlTCSpAUFnP0cpx0bishM4ZAqo4Zk1CFXMisf0hChCje3XuUXs4HDEEj0vaDKrqFbzBYypjGMiwtwXRdfr5bk/DeZJqhLbktwPIrxfFEWVDcMKbIDwGfp6BU0qpIKw8A1MTBDlrRVWygoc8HSu4P0K2mxWUKmIGMzh5go8rrA0I2JGdkqy5is4C/MKvKfkWCwkv7MPMMZ1vJ/GASgsI8xJZruOH2OdBjCxI6zLkdVuVQFn52QdzpO9FSFMFrmWUy1lyqp1czaChbyPpbw6PpSGcGzHgY2my4I1+ww7mLngYpHG/YRNgGv8qJwaIazp2lVqLC/OqnH0xG08d58d2J3aQ7Ozge6iB+ghaqAXaBe9QS3URhQN0Ff0DX13fjg/nd/Onxm6vjZ/cxtVjvP3P1tbdBM=</latexit>

y3

<latexit sha1_base64="pRjjAYufB5k/jPwDvCyfIfx0A+4=">AAAEMHicbZPNbhMxEMfdLh8lfLVw4ABCFlUkhKplgyrgWBUOIKKSiqYpyobI651NrXjtle1Nsqz2yJErvAenPgqcEFd4CbxJFHWTWrI0mvl5/J/RTJBwpo3n/Vpbdy5dvnJ141rt+o2bt25vbt051jJVFNpUcqlOAqKBMwFtwwyHk0QBiQMOnWD4qox3RqA0k+LIZAn0YjIQLGKUGOv6kH3a7W9ue643PXjVaMyN7b0HZ4f/vjw8a/W3nHt+KGkagzCUE627DS8xvZwowyiHouanGhJCh2QAXWsKEoPu5VOtBa5bT4gjqewVBk+951/kJNY6iwNLxsSc6uVY6bwwFgTx0tcmetnLmUhSA4LOfo5Sjo3EZSdwyBRQwzNrEKqYFY/pKVGEGtuvC4vYweGIJXpe0GRWUa3mCxhTGcdEhLkviq7Xy3N/GsyTVCW2JbkfRPigKIoqG4YV2ADhM/T1CppUSAVh4RuYmCDKWyuslBU44OlcwfsVtNmsoFIRMZjDzRV4XGFpRsSM7JRkzVdwHuYVeF/JsVhIfmcfYIzr+CCNA1BYRpiTzHYdP8U6DWBiR1iXI6vdqgLOLsg6nCd7K0KYLHItp1rKlFXr5mwEC3kfS3l1fCQN4diOAxtNlwVr9hl2MHPBxSKN+wmbANf4STk1QljTtavUWF6cVeP4mdt47u4e2p3aR7Ozge6jR+gxaqAXaA+9QS3URhQN0Ff0DX13fjg/nd/Onxm6vjZ/cxdVjvP3P18ldBQ=</latexit>

y4

<latexit sha1_base64="x9yPjYWuV6xFQUbC4HTa1VKyz+4=">AAAEMnicbZPNbhMxEMfdLh8lfLVw4ABCFlUkhKplgxBwrAoHEFFJpaYpyobI651NrXjtle1Nsqz2yJkrvAeHvgrcEEd4CLxJFHWTWLI0mvl5/J/RTJBwpo3n/dzYdC5dvnJ161rt+o2bt25v79w50TJVFNpUcqlOA6KBMwFtwwyH00QBiQMOnWD4uox3RqA0k+LYZAn0YjIQLGKUGOtqZ598zvrbu57rTQ9eNRpzY3f/wfnR3y8Pz1v9HeeeH0qaxiAM5UTrbsNLTC8nyjDKoaj5qYaE0CEZQNeagsSge/lUbYHr1hPiSCp7hcFT78UXOYm1zuLAkjExZ3o5VjrXxoIgXvraRK96ORNJakDQ2c9RyrGRuOwFDpkCanhmDUIVs+IxPSOKUGM7traIPRyOWKLnBU1mFdVqvoAxlXFMRJj7ouh6vTz3p8E8SVViW5L7QYQPi6KosmFYgQ0QPkPfrKBJhVQQFr6BiQmivLXCSlmBA57OFXxYQZvNCioVEYM53FyBxxWWZkTMyE5J1nwFF2FegQ+UHIuF5Pf2Aca4jg/TOACFZYQ5yWzX8VOs0wAmdoh1ObTarSrgbE3W4TzZOxHCZJFrOdVSpqxaN2cjWMj7WMqr42NpCMd2HNhoui5Ys8+wh5kLLhZp3E/YBLjGT8qpEcKarl2lxvLirBonz9zGC/f5kd2pAzQ7W+g+eoQeowZ6ifbRW9RCbUQRQ1/RN/Td+eH8cn47f2bo5sb8zV1UOc6//28zdSU=</latexit>

yk

<latexit sha1_base64="ASeFHdAL/YC/QMk5OaNpjybofI4=">AAAEQnicbZPNahRBEMc7GT/i+pWYgwdFCkMgyjLuiqgXIUQPiiEmkC/JrEtPT03SpKd76O7Z3XGYo8/hVd8gD+BL+Ap6Eq8e7NldlsxuGhqKql9X/6uoClPBjW21fs7Ne5cuX7m6cK1x/cbNW7cXl+7sG5VphntMCaUPQ2pQcIl7lluBh6lGmoQCD8LT11X8oIfacCV3bZ5iJ6HHksecUetc3cXl/FMg4BXEa4E9QUubMHjUXVxp+a3hgVmjPTZW1u+f7fz+8uBsu7vk3Q0ixbIEpWWCGnPUbqW2U1BtORNYNoLMYErZKT3GI2dKmqDpFEP1Jaw6TwSx0u5KC0Pv+RcFTYzJk9CRCbUnZjpWOS+MhWEy9bWNX3YKLtPMomSjn+NMgFVQ9QYirpFZkTuDMs2deGAnVFNmXQcvLKIJUY+nZlzQYFRRoxFI7DOVJFRGRSDLo1anKIJhsEgznbqWFEEYw1ZZlnU2imqwRSpG6JsZNK2RGqMysDiwYVxsz7BK1eBQZGMFH2bQzc0aqjSVx2N4cwbu11iWUzkiDyqyEWg8D4savKFVX04kv3cPAGAVtrIkRA0qBkFz13V4AiYLceCG2lRDbPy6AsEvyHo6TvZORjiY5JpONZUpr9cteA8n8j5W8lZhV1kqwI0D7w3XBwz/jE3gPvogs6Sb8gEKA4+rqZHSmb5bpfb04swa+0/99nP/2Y7bqQ0yOgvkHnlI1kibvCDr5C3ZJnuEkZx8Jd/Id++H98v74/0dofNz4zfLpHa8f/8BtDt54w==</latexit>

yK = f(✓, x)

<latexit sha1_base64="aRbShIfjfaOOaY5reRj7bP7e7gM=">AAAENXicbZPNbtNAEMe3NR/FfLVw4MBlRRQJocrYCAEXRFU4gKhKkNomKA7Rej1OVl3vWrvrfGD5JbjCjYfgEXgExIEb4sorsE6iqk4y0kqjmd/O/mc0G2WcaeP7vzY2nQsXL13euuJevXb9xs3tnVsnWuaKwjGVXKpORDRwJuDYMMOhkykgacShHZ2+rPLtESjNpDgy0wx6KRkIljBKjA11QjMEQz4G/e2G7/kzw6tOsHAaL364z7NvP91Wf8e5E8aS5ikIQznRuhv4mekVRBlGOZRumGvICD0lA+haV5AUdK+YCS5x00ZinEhljzB4Fj1/oyCp1tM0smRKzFAv56rg2lwUpUtPm+RZr2Aiyw0IOn85yTk2ElfjwDFTQA2fWodQxax4TIdEEWrs0NY2sYvjEcv0oqHJvCPXDQWMqUxTIuIiFGXX7xVFOEsWWa4yO5IijBJ8WJZlnY3jGmyA8Dn6agXNaqSCuAwNTEyUFK0VVsoaHPF8oeDdCnpwUEOlImKwgA9W4HGNpVMi5mS7It1QwXmY1+B9JcfiTPJbewFj3MSHeRqBwjLBnEzt1PFDrPMIJnaPdbW32qsr4GxN1dNFsTcihslZreVSS5Wm9b45G8GZvA+VvCY+koZwbNeBjWY/Bmv2CXYx88DDIk/7GZsA1/hBtTVCWNezXylY/jirzskjL3jiPX7vN/b20dy20F10D91HAXqK9tBr1ELHiCKOPqMv6Kvz3fnt/HH+ztHNjcWd26hmzr//HUN10g==</latexit>

✓1

<latexit sha1_base64="0FqLpraY0loD3legANMeCEgfDAk=">AAAENXicbZPNbtQwEMfdho8SPtrCgQMXi9VKCFUhWyHggqgKBxBVWaS2u6hZKseZbK06dmQ7+0GUl+AKNx6CR+AREAduiCuvgLMbrZpNR7I0mvl5/J/ROEw508b3f62sOpcuX7m6ds29fuPmrfWNzdtHWmaKwiGVXKp+SDRwJuDQMMOhnyogScihF569LPO9ESjNpDgw0xQGCRkKFjNKjA31A3MKhnzcPtlo+Z4/M9x0OpXTevHDfZ5+++l2Tzadu0EkaZaAMJQTrY87fmoGOVGGUQ6FG2QaUkLPyBCOrStIAnqQzwQXuG0jEY6lskcYPIuev5GTROtpEloyIeZUL+fK4IW5MEyWnjbxs0HORJoZEHT+cpxxbCQux4EjpoAaPrUOoYpZ8ZieEkWosUO7sIktHI1YqquGJvOOXDcQMKYySYiI8kAUx/4gz4NZMk8zldqR5EEY4/2iKOpsFNVgA4TP0VcNNK2RCqIiMDAxYZx3G6yUNTjkWaXgXQPd26uhUhExrOC9BjyusXRKxJzslaQbKDgP8xq8q+RYLCS/tRcwxm28nyUhKCxjzMnUTh0/wjoLYWL3WJd7q726As4uqHpWFXsjIpgsai2XWqo0rffN2QgW8j6U8tr4QBrCsV0HNpr9GKzZJ9jCzAMPiyw5SdkEuMYPy60Rwrqe/Uqd5Y/TdI62vc4T7/F7v7Wzi+a2hu6h++gB6qCnaAe9Rl10iCji6DP6gr46353fzh/n7xxdXanu3EE1c/79ByENddM=</latexit>

✓2

<latexit sha1_base64="dWkWhlY43CkdqKjrUvcBm9ixB60=">AAAENXicbZPNbhMxEMfdLh9l+WgLBw5cLKJICFXLBhBwQVSFA4ioBKltgrKh8npnEytee2V788FqX4Ir3HgIHoFHQBy4Ia68At4kirpJR7I0mvl5/J/ROEw508b3f21sOhcuXrq8dcW9eu36je2d3ZsnWmaKwjGVXKpOSDRwJuDYMMOhkyogScihHQ5flvn2CJRmUhyZaQq9hPQFixklxoY6gRmAIR8fne7UfM+fGV53Ggun9uKH+zz99tNtne46t4NI0iwBYSgnWncbfmp6OVGGUQ6FG2QaUkKHpA9d6wqSgO7lM8EFrttIhGOp7BEGz6Jnb+Qk0XqahJZMiBno1VwZPDcXhsnK0yZ+1suZSDMDgs5fjjOOjcTlOHDEFFDDp9YhVDErHtMBUYQaO7Rzm9jD0YiletHQZN6R6wYCxlQmCRFRHoii6/fyPJgl8zRTqR1JHoQxPiyKospGUQU2QPgcfbWGphVSQVQEBiYmjPPWGitlBQ55tlDwbg1tNiuoVET0F3BzDR5XWDolYk62S9INFJyFeQU+UHIslpLf2gsY4zo+zJIQFJYx5mRqp44fYJ2FMLF7rMu91V5VAWfnVB0uir0REUyWtVZLrVSaVvvmbARLeR9KeXV8JA3h2K4DG81+DNbsE+xh5oGHRZacpmwCXOP75dYIYV3PfqXG6sdZd04eeo0n3uP3fm3/AM1tC91Bd9E91EBP0T56jVroGFHE0Wf0BX11vju/nT/O3zm6ubG4cwtVzPn3HyTXddQ=</latexit>

✓3

<latexit sha1_base64="f3oaSkZXXL81JJG8/NbjXsyHxYY=">AAADz3icdZJbi9NAFMdnGy9rvO3qoy+DZcEHKaks6ou4qIhCWbtgt4tNXSaTk3bYuYSZybYlRHz13Vd98QP4MfwI4rdx2gTZNPVA4HDO79z+mSjlzNgg+LPV8i5dvnJ1+5p//cbNW7d3du8cG5VpCgOquNInETHAmYSBZZbDSaqBiIjDMDp7ucwPz0EbpuR7u0hhLMhEsoRRYl3oQ2inYMnH0LLTnXbQCVaGm063ctrPf/nP0h+//f7pbutnGCuaCZCWcmLMqBukdpwTbRnlUPhhZiAl9IxMYORcSQSYcb5aucB7LhLjRGn3SYtX0YsVORHGLETkSEHs1KznlsGNuSgSa6Nt8nScM5lmFiQtJycZx1bhpSA4Zhqo5QvnEKqZWx7TKdGEWifbxiMe4vicpaY6aF5e5PuhhBlVQhAZ56EsRsE4z8NVMk8znTpJ8jBK8GFRFHU2jmuwBcJL9FUDVaqGRjyrur5roL1eDVWayEkF9xrwrMbSBZElOWyQaY3UEBehhbmNkry/ZP1Qw0Xc1vDXGZ0aRv6VLBfBGO/hw0xEoLFKcOqkF+C0x+53GaVNpz7fso0dedXorYxh/p8+7ol31x900zl+1Ok+7uwfBe2DF6i0bXQP3UcPUBc9QQfoDeqjAaJIoq/oG/ruHXkz75P3uURbW1XNXVQz78tfkBhOZw==</latexit>

✓l

<latexit sha1_base64="YYS2mxh6NwvN0I38VLuNmoTYHCY=">AAADznicdZJbaxNBFMenWS91vbX66MtgKPggYSNFfRGLiiiEGsE0lWwss7Nnk6FzY2Y2TVgWX333VZ/8AH4MP4L4bZxkF+km9cDC4Zzfuf13Es2ZdVH0Z6sVXLp85er2tfD6jZu3bu/s3jmyKjcUBlRxZY4TYoEzCQPHHIdjbYCIhMMwOX25zA9nYCxT8oNbaBgLMpEsY5Q4H/oYuyk48il2JzvtqBOtDG863dppP/8VPtM/fof9k93WzzhVNBcgHeXE2lE30m5cEOMY5VCGcW5BE3pKJjDyriQC7LhYbVziPR9JcaaM/6TDq+j5ioIIaxci8aQgbmrXc8vghbkkEWujXfZ0XDCpcweSVpOznGOn8FIPnDID1PGFdwg1zC+P6ZQYQp1X7cIjHuJ0xrStD5pXF4VhLOGMKiGITItYlqNoXBTxKlno3GgvSREnGT4sy7LJpmkDdkB4hb7aQJVqoAnP667vNtBer4EqQ+Skhnsb8FmDpQsiK3K4QeoGaSAtYwdzl2RFf8mGsYHzuGvgr3M6tYz8K1kugjHew4e5SMBglWHtpRfgtcf+d1llbKc537ELO/K60VuZwvw/ffwT764/6E3n6FGn+7iz/z5qH7xAlW2je+g+eoC66Ak6QG9QHw0QRQJ9Rd/Q96AfzIIy+Fyhra265i5qWPDlLwJlTfQ=</latexit>

✓L

<latexit sha1_base64="AKtZnxEzhDGVGSyGt6gSLqBSg60=">AAAD0HicbZLNbhMxEMfdLB9l+WrhyMUiqsQBhU2FgAuiKhxARCUg0lTKRpXtnU2teO2V7W0SrVaIKxeucOYZeAYeAfE2ONlV1c1mJEujmd+M/zMamgpubBD822p5V65eu759w7956/aduzu7946NyjSDAVNC6RNKDAguYWC5FXCSaiAJFTCk09fL/PActOFKfraLFMYJmUgec0asCw3CSFlzutMOOsHKcNPpVk771R//Zfrrr98/3W39doUsS0BaJogxo26Q2nFOtOVMQOGHmYGUsCmZwMi5kiRgxvlKbYH3XCTCsdLuSYtX0csVOUmMWSTUkQmxZ2Y9twxuzFGarH1t4xfjnMs0syBZ+XOcCWwVXu4CR1wDs2LhHMI0d+IxOyOaMOs2tnGIxzg656mpBpqXE/l+KGHGVJIQGeWhLEbBOM/DVTJPM526leQhjfFRURR1NopqsAUiSvRNA01rpIaoCC3MLY3zfoNVqgZTkVUKPjTQXq+GKk3kpIJ7DXhWY9mCyJIcLkk/1HAZFjX4UKuZvJD83hVgjPfwUZZQ0FjFWJCF2zp+gk1GYe6O2CyP1nTqCgTf0HVaNXsnI5hf9Fpv1fHdoXfXz7rpHO93us86Tz8G7YNDVNo2eoAeokeoi56jA/QW9dEAMcTRd/QD/fQ+eXPvi/e1RFtbVc19VDPv23+we04y</latexit>. . .

<latexit sha1_base64="CjklhDjE7L0LxqxX9FDlbNh9jbg=">AAADz3icdZJLb9NAEIC3NY8SXi0cuaxaVeqhimyEKMcKEAIpKqlEmoo4ROv1OFl1H9buuklkGXHlzg3BX+B38BMQ/Bg2sYXqOIy01mjmm6cnSjkz1vd/bWx6167fuLl1q3X7zt1797d3HpwZlWkKPaq40ucRMcCZhJ5llsN5qoGIiEM/unix8PcvQRum5Ds7T2EoyFiyhFFinen9/ENwiN1nZEfbe37bXwpuKkGl7B3vHvz5ffTza3e0s/kjjBXNBEhLOTFmEPipHeZEW0Y5FK0wM5ASekHGMHCqJALMMF+2XOB9Z4lxorR70uKl9WpEToQxcxE5UhA7Mau+hXGtL4rESmmbPBvmTKaZBUnLyknGsVV4sRAcMw3U8rlTCNXMNY/phGhCrVvb2iEOcXzJUlMNNCsnarVCCVOqhCAyzkNZDPxhnodLZ55mOnUrycMowSdFUdTZOK7BFggv0ZcNVKkaGvGsyvq2gXY6NVRpIscV3GnA0xpL50SWZL9BpjVSQ1yEFmY2SvLugm2FGq7itoa/yujEMPIvZNEIxngfn2QiAo1VglO3egFu99j9LqO0adfrW7Y2I68SvZExzP6Tx514sHrQTeXscTt42n5y6m79OSplCz1Cu+gABegIHaPXqIt6iCKJvqBv6Lt36k29j96nEt3cqGIeopp4n/8CmdtOKA==</latexit>

y1, y1
t

<latexit sha1_base64="4TFTJHCjhQkzvtYaf+Gdg+yAzoY=">AAAD23icdZLLbtNAFIanMZcSbimwYzNqVamLKrIRoiwrQAikqASJNJViE43Hx8monhlrZtwmWF6xQ2xZsWELG56DR0DwMExig+o4jGTp1znfufqEacK0cd2fGy3n0uUrVzevta/fuHnrdmfrzrGWmaIwoDKR6iQkGhImYGCYSeAkVUB4mMAwPH268A/PQGkmxRszTyHgZCJYzCgx1jTu3PPNFAx56+3jv2psxp0dt+suH24KrxI7h9t7v38d/PjcH2+1vvuRpBkHYWhCtB55bmqCnCjDaAJF2880pISekgmMrBSEgw7yZfsF3rWWCMdS2U8YvLRejMgJ13rOQ0tyYqZ61bcwrvWFIV8pbeLHQc5EmhkQtKwcZwk2Ei+WgyOmgJpkbgWhitnmMZ0SRaixK1w7xD6Ozliqq4Fm5UTtti/gnErOiYhyXxQjN8hzf+nM00yldiW5H8b4qCiKOhtFNdgASUr0WQOVsoaGSVZlfdVAe70aKhURkwruNeDzGkvnRJTksEGmNVJBVPgGZiaM8/6CbfsKLuKmhj/P6FQz8i9k0QjGeBcfZTwEhWWMU7t6Dnb32P4uLZXu1usbtjZjUiV6KSKY/SePPXFv9aCb4vhB13vUffja3voTVL5NdB9toz3koQN0iF6gPhogit6hL+gr+uYEznvng/OxRFsbVcxdVHvOpz9gjVKv</latexit>

✓1, ✓1
t

<latexit sha1_base64="3qRKGO4uZfap4cak2bh8Poy3oHM=">AAADz3icdZJLb9NAEIC3MY8SXi0cuaxaVeqhihyKKMcKEAIpKqlEmoo4ROv1OFl1H9buuklkGXHlzg3BX+B38BMQ/Bg2sYXqOIy01mjmm6cnTDgz1vd/bTS8a9dv3Ny81bx95+69+1vbD86MSjWFHlVc6fOQGOBMQs8yy+E80UBEyKEfXrxY+PuXoA1T8p2dJzAUZCxZzCixzvR+/uHwALvPyI62dv2WvxRcV9qlsnu8s//n99HPr93RduNHECmaCpCWcmLMoO0ndpgRbRnlkDeD1EBC6AUZw8Cpkggww2zZco73nCXCsdLuSYuX1qsRGRHGzEXoSEHsxKz6Fsa1vjAUK6Vt/GyYMZmkFiQtKscpx1bhxUJwxDRQy+dOIVQz1zymE6IJtW5ta4c4wNElS0w50KyYqNkMJEypEoLIKAtkPvCHWRYsnVmS6sStJAvCGJ/keV5lo6gCWyC8QF/WUKUqaMjTMuvbGtrpVFCliRyXcKcGTyssnRNZkP0amVRIDVEeWJjZMM66C7YZaLiK2wr+KqUTw8i/kEUjGOM9fJKKEDRWMU7c6gW43WP3u4zSplWtb9najLxM9EZGMPtPHnfi7dWDritnj1vtp60np+7Wn6NCNtEjtIP2URsdoWP0GnVRD1Ek0Rf0DX33Tr2p99H7VKCNjTLmIaqI9/kvp3VOLA==</latexit>

y3, y3
t

<latexit sha1_base64="l8ImZHu3BDZupgkKBaqmwoxn0M4=">AAAD23icdZLLbtNAFIanMZcSbimwYzNqVamLKkqqirKsACGQohIk0lSKTTQeHyejzsWaGbcNllfsEFtWbNjChufgERA8DJPYoDoOI1n6dc53rj5hwpmxnc7PtYZ35eq16+s3mjdv3b5zt7Vx79ioVFMYUMWVPgmJAc4kDCyzHE4SDUSEHIbh6dO5f3gG2jAl39hZAoEgE8liRol1pnHrgW+nYMnbvV38V43tuLXVaXcWD9dFtxRbh5s7v38d/PjcH280vvuRoqkAaSknxoy6ncQGGdGWUQ55008NJISekgmMnJREgAmyRfs53naWCMdKu09avLBejsiIMGYmQkcKYqdm2Tc3rvSFoVgqbePHQcZkklqQtKgcpxxbhefLwRHTQC2fOUGoZq55TKdEE2rdClcOsYujM5aYcqCLYqJm05dwTpUQREaZL/NRJ8gyf+HMklQnbiWZH8b4KM/zKhtFFdgC4QX6rIYqVUFDnpZZX9XQXq+CKk3kpIR7Nfi8wtIZkQU5rJFJhdQQ5b6FCxvGWX/ONn0Nl3FbwZ+ndGoY+RcybwRjvI2PUhGCxirGiVu9ALd77H6XUdq0q/UtW5mRl4leyggu/pPHnXh3+aDr4niv3X3U3n/tbv0JKt46eog20Q7qogN0iF6gPhogit6hL+gr+uYF3nvvg/exQBtrZcx9VHnepz9nX1Kx</latexit>

✓2, ✓2
t

<latexit sha1_base64="ihr+wuW2/NFu/+AhC3u30ZZEW2A=">AAADz3icdZJbaxNBFICnWS813lp99GVoKfShhE0p1seiIgqhpmCaYjaG2dmzydC5LDOzTcKy4qvvvon+BX+HP0H0xzjJLtLNxgOzHM75znVPmHBmrO//2mh4N27eur15p3n33v0HD7e2H50blWoKPaq40hchMcCZhJ5llsNFooGIkEM/vHyx8PevQBum5Ds7T2AoyFiymFFinen9/MPhAXafkR1t7fotfym4rrRLZfdkZ//P7+OfX7uj7caPIFI0FSAt5cSYQdtP7DAj2jLKIW8GqYGE0EsyhoFTJRFghtmy5RzvOUuEY6XdkxYvrdcjMiKMmYvQkYLYiVn1LYxrfWEoVkrb+NkwYzJJLUhaVI5Tjq3Ci4XgiGmgls+dQqhmrnlMJ0QTat3a1g5xgKMrlphyoFkxUbMZSJhSJQSRURbIfOAPsyxYOrMk1YlbSRaEMT7N87zKRlEFtkB4gb6soUpV0JCnZda3NbTTqaBKEzku4U4NnlZYOieyIPs1MqmQGqI8sDCzYZx1F2wz0HAdtxX8VUonhpF/IYtGMMZ7+DQVIWisYpy41Qtwu8fudxmlTata37K1GXmZ6I2MYPafPO7E26sHXVfOD1vtp62jM3frz1Ehm+gJ2kH7qI2O0Ql6jbqohyiS6Av6hr57Z97U++h9KtDGRhnzGFXE+/wXoKhOKg==</latexit>

y2, y2
t

<latexit sha1_base64="Wq07mT8mvhuwBKCxBVe0qiPJoJs=">AAADz3icdZJbaxNBFICnWS813lp99GVoKfShhI2U1seiIgqhpmCaYjaG2dmzydC5LDOzTcKy4qvvvon+BX+HP0H0xzjJLtLNxgOzHM75znVPmHBmrO//2mh4N27eur15p3n33v0HD7e2H50blWoKPaq40hchMcCZhJ5llsNFooGIkEM/vHyx8PevQBum5Ds7T2AoyFiymFFinen9/MPhAXafkR1t7fotfym4rrRLZfdkZ//P7+OfX7uj7caPIFI0FSAt5cSYQdtP7DAj2jLKIW8GqYGE0EsyhoFTJRFghtmy5RzvOUuEY6XdkxYvrdcjMiKMmYvQkYLYiVn1LYxrfWEoVkrb+NkwYzJJLUhaVI5Tjq3Ci4XgiGmgls+dQqhmrnlMJ0QTat3a1g5xgKMrlphyoFkxUbMZSJhSJQSRURbIfOAPsyxYOrMk1YlbSRaEMT7N87zKRlEFtkB4gb6soUpV0JCnZda3NbTTqaBKEzku4U4NnlZYOieyIPs1MqmQGqI8sDCzYZx1F2wz0HAdtxX8VUonhpF/IYtGMMZ7+DQVIWisYpy41Qtwu8fudxmlTata37K1GXmZ6I2MYPafPO7E26sHXVfOn7baR63DM3frz1Ehm+gJ2kH7qI2O0Ql6jbqohyiS6Av6hr57Z97U++h9KtDGRhnzGFXE+/wXrkJOLg==</latexit>

y4, y4
t

<latexit sha1_base64="8XliarzPGvifY9qb9bOuLWFCChE=">AAAD23icdZLLbtNAFIanNZcSbimwYzNqVamLKkoKoiwrQAikqASJNJViE43Hx8moc7Fmxm2C5RU7xJYVG7aw4Tl4BAQPwyQ2qI7DSJZ+nfOdq0+YcGZsu/1zbd27dPnK1Y1rjes3bt663dy8c2xUqin0qeJKn4TEAGcS+pZZDieJBiJCDoPw9OncPzgDbZiSb+wsgUCQsWQxo8Q606h5z7cTsOTtgz38V43sqLndbrUXD9dFpxTbh1u7v38d/PjcG22uf/cjRVMB0lJOjBl22okNMqItoxzyhp8aSAg9JWMYOimJABNki/ZzvOMsEY6Vdp+0eGG9GJERYcxMhI4UxE7Msm9uXOkLQ7FU2saPg4zJJLUgaVE5Tjm2Cs+XgyOmgVo+c4JQzVzzmE6IJtS6Fa4cYg9HZywx5UDTYqJGw5dwTpUQREaZL/NhO8gyf+HMklQnbiWZH8b4KM/zKhtFFdgC4QX6rIYqVUFDnpZZX9XQbreCKk3kuIS7Nfi8wtIZkQU5qJFJhdQQ5b6FqQ3jrDdnG76Gi7it4M9TOjGM/AuZN4Ix3sFHqQhBYxXjxK1egNs9dr/LKG1a1fqWrczIy0QvZQTT/+RxJ95ZPui6ON5vdR61Hr52t/4EFW8D3UdbaBd10AE6RC9QD/URRe/QF/QVffMC7733wftYoOtrZcxdVHnepz9uMVKz</latexit>

✓3, ✓3
t

<latexit sha1_base64="vJZk4ebEQhHJ4+AZ4aO/KeI+epM=">AAAD4XicdZJLb9NAEMe3MY8SXinc4LJqVamHKnIqRDlWgBBIUQkSaSrFIVqvx8mq+7B2120iyxJXbohr71zL1+AjIPgwbGIL1XFYydJ/Z34zszOeMOHMWN//tdHwbty8dXvzTvPuvfsPHra2Hp0YlWoKfaq40qchMcCZhL5llsNpooGIkMMgPHu18A/OQRum5Ec7T2AkyESymFFinWncehLYKVjyKbBsH5c6c5d8bMetHb/tLw+ui04pdo629/78Pvx52RtvNa6CSNFUgLSUE2OGHT+xo4xoyyiHvBmkBhJCz8gEhk5KIsCMsmUTOd51lgjHSrtPWry0Xo/IiDBmLkJHCmKnZtW3MK71haFYKW3jF6OMySS1IGlROU45tgovRoQjpoFaPneCUM3c4zGdEk2odYNc28Q+js5ZYsqGZkVHzWYg4YIqIYiMskDmQ3+UZcHSmSWpTtxIsiCM8XGe51U2iiqwBcIL9HUNVaqChjwts76vod1uBVWayEkJd2vwRYWlcyILclAjkwqpIcoDCzMbxllvwTYDDddxW8HfpHRqGPkXsngIxngXH6ciBI1VjBM3egFu9tj9LqO0aVfru2Vdl5GXid7JCGb/yeNWvLO60HVxctDuPG8/++B2/SUqziZ6irbRHuqgQ3SE3qIe6iOKPqPv6Ar98Kj3xfvqfSvQxkYZ8xhVjnf5F8SbVfM=</latexit>

✓l, ✓l
t

<latexit sha1_base64="UfqXHdeu0JL9GBKiZ3tcCibmgIQ=">AAAEQXicbZPNbtQwEMfdho+yfLXlwIHLqFWlClVhFyHKsSocQFSlSG23qNmuHGfSWnXsyHa2G6I8CRJXeA9OPAKCF+CGuHLB2V2tmk0tRRnN/Dz+z2gmTAU3tt3+MTfvXbt+4+bCrdbtO3fv3V9cWj40KtMMD5gSSh+F1KDgEg8stwKPUo00CQV2w/OXVbw7QG24kvs2T7GX0FPJY86oda7+4nJ+Egi+AflJ4f5lv7Blf3G17bdHB5pGZ2Ksbq2s//q5+f3TXn/JexhEimUJSssENea4005tr6DaciawbAWZwZSyc3qKx86UNEHTK0biS1hznghipd0nLYy8l28UNDEmT0JHJtSemdlY5bwyFobJzNM2ftEruEwzi5KNX44zAVZB1RqIuEZmRe4MyjR34oGdUU2ZdQ28sogNiAY8NZOChuOKWq1A4gVTSUJlVASyPG73iiIYBYs006lrSRGEMeyWZVlno6gGW6RijL5qoGmN1BiVgcWhDeNir8EqVYNDkU0UvGugOzs1VGkqTyfwTgO+qLEsp3JMdiuyFWi8DIsavK3VhZxKfusuAMAa7GZJiBpUDILmruvwBEwW4tDNtKlm2Ph1BW5km1nPJ8neyAiH01yzqWYy5fW6BR/gVN6HSt4a7CtLBbhx4IPR9oDhH3EDuI8+yCzpp3yIwsDjamqkdKbvVqkzuzhN4/Cp33nuP3vvdmqbjM8CeURWyDrpkE2yRV6TPXJAGBmSz+QL+ep98357f7y/Y3R+bnLnAakd799/W7p7IA==</latexit>

yk, yk
t

<latexit sha1_base64="eitWn+ryjwO7mrh3V5ywMJKQ7Ww=">AAAD4XicdZLPaxNBFMenXX/U+CtV8KCXwVLwUEIioh5LFVEINQXTFLIxzM6+TYbOj2Vmtk0YFrx6E6/evUn9I/wnvPi3OMku0s3GgYEv733ee/PevCjlzNh2+/fGZnDl6rXrWzcaN2/dvnO3uX3v2KhMU+hTxZU+iYgBziT0LbMcTlINREQcBtHpq4V/cAbaMCU/2HkKI0EmkiWMEutN4+bD0E7Bko+h3cOldKHNx87f5k671V4eXBedUuzsPzj6w34c/OqNtzcvwljRTIC0lBNjhp12akeOaMsoh7wRZgZSQk/JBIZeSiLAjNyyiRzvekuME6X9lRYvrZcjHBHGzEXkSUHs1Kz6Fsa1vigSK6Vt8nLkmEwzC5IWlZOMY6vwYkQ4Zhqo5XMvCNXMPx7TKdGEWj/ItU3s4fiMpaZsaFZ01GiEEs6pEoLI2IUyH7ZHzoVLp0sznfqRuDBK8GGe51U2jiuwBcIL9HUNVaqCRjwrs76vod1uBVWayEkJd2vweYWlcyILclAj0wqpIc5DCzMbJa63YBuhhsu4reBvMjo1jPwLWTwEY7yLDzMRgcYqwakfvQA/e+y/yyhtWtX6lq3NyMtE72QMs//k8SveWV3oujh+2uo8bz078rt+gIqzhR6hx+gJ6qAXaB+9RT3URxR9Qt/RBfoZ0OBz8CX4WqCbG2XMfVQ5wbe/h8BV3g==</latexit>

✓L, ✓Lt

<latexit sha1_base64="o41T7+0ChaHoEJEGzXo0Cfs1qEk=">AAAEfnicbZNLb9NAEMe3NEAJrxYOHEBoRFXUouAmCEEvSFXhwKNqU6kvVKfRej1uV13vmt11GmP5yEdC6ldBXOHEl2CdRFGddCVLo5nfzM6M9x8kghvbbP6auTZbu37j5tyt+u07d+/dn194sG9UqhnuMSWUPgyoQcEl7lluBR4mGmkcCDwIzt6X8YMeasOV3LVZgp2YnkgecUatc3Xnt7NjX8A7iJZ9e4qWNqC/0gD/W0pDyI5zXxTd3BYO8C32rY7zz/tt51qOHDROKEbJXbvSnV9ses3BgWmjNTIW159c7Pz78fSi3V2YfeSHiqUxSssENeao1UxsJ6faciawqPupwYSyM3qCR86UNEbTyQeTF7DkPCFESrtPWhh4L2fkNDYmiwNHxtSemslY6bwyFgTxxNU2WuvkXCapRcmGN0epAKug3CuEXCOzInMGZZq75oGdUk2Zddu/cogGhD2emNFA/eFE9bov8ZypOKYyzH1ZHDU7ee4PgnmS6sStJPeDCLaKoqiyYViBLVIxRD9MoUmF1BgWg98bRHl7ilWqAgciHXWwPYVublZQpak8GcGbU/B5hWUZlUPyoCTrvsbLsKjAG1qdy3HLX1wCACzBVhoHqEFFIGjmtg6rYNIA+04QphSA8aodCH5F1bNRsU8yxP641mSpiUpZdW7Bezhu72vZ3hLsKksFuOfAewPpgeHfsQHcQw9kGncT3kdh4EX5aqR0puek1JoUzrSx/8prvfFe7zhNbZDhmSOPyTOyTFrkLVknH0mb7BFGfpLf5A/5WyO157WXtdUhem1mlPOQVE5t7T9W54yg</latexit>

yK = f(✓, x), yK
t = JVP(f,✓,x)(✓t)

<latexit sha1_base64="Pd/2OhIsmF4KMMfPtVpWe27w+jA=">AAADgXicdZLfbtMwFMa9Btgo/zq45CbahLQJVCUTAgQ3FXDBRQUF0XVSXSrbcVprjh3ZJ6yVlbfgoXiFvQS3cInbFLE0cKRIX875ffLx8aG5FBai6HKnFVy7fmN372b71u07d+919u+fWl0YxodMS23OKLFcCsWHIEDys9xwklHJR/T8zao++sqNFVp9hmXOJxmZKZEKRsCnph2aYslTOMIs0fAkXGAjZnM4fhlimHMgWCicEZhT6j6VXxzOS/+bW9DhH98a+2vcNmhdTjuHUTdaR9gU8UYc9g7w42+XveVgut/axYlmRcYVMEmsHcdRDhNHDAgmednGheU5YedkxsdeKpJxO3HrYZThI59JwlQb/ykI19mrDkcya5cZ9eSqUbtdWyX/WaM02zoa0hcTJ1ReAFesOjktZOinsxp1mAjDGcilF4QZ4ZsP2ZwYwsA/yH8usahu0W5jxS+YzjKiEodVOY4mzuF10eWFyf0YHKZp+L4syzqbJDUYOJEV+raB5jXS8KTEwBdAUzdosP4hr8JUFpsOPjTQfr+GakPUbAP3G/BFjWVLoipytCL96sTbi9IUpyfd+Fn36Ue/Q69RFXvoITpARyhGz1EPvUMDNEQMfUc/0E/0KwiC4yAKTiq0tbPxPEC1CF79Bm8HMCc=</latexit>

f (·, x) : ✓ 2 RP 7! f (✓, x) 2 RO

Figure 6: Visual demonstration for why JVP time and memory costs are asymp-
totically comparable to the forward pass (FP). Left: computational graph of the
forward pass f(θ, x). Right: computational graph of joint evaluation of the forward pass
f(θ, x) along with JVP(f,θ,x) (θt). Each node of the JVP graph accepts both primal and
tangent inputs, and returns primal and tangent outputs, but the topology of the graph and
order of execution remains identical to FP. As long as individual nodes of the JVP graph
do not differ significantly in time and memory from the FP nodes, time and memory of a
JVP ends up asymptotically equivalent to FP due to identical graph structure. However,
in order to create JVP nodes and evaluate them, the time cost does grow by a factor of
about 3 compared to FP. See §L.1 for discussion.

JVP, but still inconsequential asymptotically) and extra memory to store them, which can
generally increase asymptotic memory requirements.

I. Types of structured derivatives

Here we continue §2.4 and list the types of structures in primitive derivatives ∂y
/
∂θ that

allow linear algebra simplifications of the NTK expression. Analysis from the following
subsections is summarized in Table 4.

I.1. No structure

We first consider the default cost of evaluating a single summand in Eq. (5), denoting
individual matrix shapes underneath:

Θl,k1,k2
θ (f1, f2) :=

∂f1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f2

∂yk22

T

=:

O×O︷ ︸︸ ︷
∂f1
∂y1︸︷︷︸
O×Y

∂y1

∂θ︸︷︷︸
Y×P

∂y2
∂θ

T

︸ ︷︷ ︸
P×Y

∂f2
∂y2

T

︸ ︷︷ ︸
Y×O

(10)

21

Novak Sohl-Dickstein Schoenholz

Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ VJPs & JVPs: NO [FP] +N2O2P N2O [FP] Not possible

None w/ explicit matrices NOYP +N2O2P N2OYP +N2O2Y N2Y2P +N2OY2 +N2O2Y

Block-diagonal NOYP/C +N2O2P N2OYP/C +N2O2Y N2Y2P/C2 +N2OY2/C +N2O2Y

Constant block-diagonal NOYP/C +N2O2P N2OYP/C +N2O2Y N2Y2P/C3 +N2OY2/C +N2O2Y

Input block-tiled NOYP/C +N2O2P N2OYP/C +N2O2Y N2Y2P/C +N2OY2 +N2O2Y

Output block-tiled NOYP/C +N2O2P +NOY N2OYP/C +N2O2Y/C +NOY N2Y2P/C2 +N2OY2/C2 +N2O2Y/C+NOY

Block-tiled NOYP/C2 +N2O2P/C+NOY N2OYP/C2 +N2O2Y/C2 +NOY N2Y2P/C3 +N2OY2/C2 +N2O2Y/C+NOY

Table 4: Asymptotic time complexities of computing the contractions for NTK
summands Θ(fn1

1 , fn2
2) (θ0, . . . , θL)k1,k2l ∈ RO×O in Eq. (10), for all n1 and n2 from 1 to

N (resulting in a NO × NO NTK matrix). Time complexity of Structured derivatives is
the minimum (due to using np.einsum with optimal contraction order) of the row corre-

sponding to the structure present in in a pair of primitives yk11 and yk22 . How it compares
to Jacobian contraction and NTK-vector products (top row) depends on many variables,
including the cost of evaluating the primitive FP. See Table 2 and Table 3 for exact com-
parison in the case of convolution and matrix multiplication. See §B for legend.

We have dropped indices l, k1 and k2 on the right-hand side of Eq. (10) to avoid clutter,
and consider θ := θl, y1 := yk11 , y2 := yk22 until the end of this section. There are 3 ways of
contracting Eq. (10) that cost

(a) Outside-in: OYP+O2P

(b) Left-to-right and right-to-left: OYP+O2Y.

(c) Inside-out-left and inside-out-right: Y2P+OY2 +O2Y.

In the next sections, we look at how these costs are reduced given certain structure in
∂y
/
∂θ.

I.2. Block diagonal

Assume ∂y/∂θ = ⊕C
c=1∂y

c/∂θc, where ⊕ stands for direct sum of matrices, i.e. ∂y/∂θ is a
block diagonal matrix made of blocks {∂yc/∂θc}Cc=1, where ∂yc/∂θc have shapes (Y/C) ×
(P/C). Here {yc}Cc=1 and {θc}Cc=1 are partitions of y and θ respectively. In NNs this
structure is present in binary bilinear operations (on θ and another argument) such as
multiplication, division, batched matrix multiplication, or depthwise convolution. Then
Eq. (10) can be re-written as

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(11)

=
∂f1
∂y1

(
⊕C

c=1

∂yc1
∂θc

)(
⊕C

c=1

∂yc2
∂θc

)T ∂f2
∂y2

T

(12)

=
∂f1
∂y1

(
⊕C

c=1

[
∂yc1
∂θc

∂yc2
∂θc

T]) ∂f2
∂y2

T

(13)

=
C∑
c=1

∂f1
∂yc1

[
∂yc1
∂θc

∂yc2
∂θc

T] ∂f2
∂yc2

T

, (14)

22

https://en.wikipedia.org/wiki/Matrix_addition#Direct_sum
https://en.wikipedia.org/wiki/Partition_of_a_set

Fast Finite Width Neural Tangent Kernel

where we have applied the block matrix identity

[A1, . . . , AC]T
(
⊕C

c=1B
c
)
[D1, . . . , DC] =

C∑
c=1

AcBcDc.

We now perform a complexity analysis similar to Eq. (10):

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f1
∂yc1︸︷︷︸

O×(Y/C)

∂yc1
∂θc︸︷︷︸

(Y/C)×(P/C)

∂yc2
∂θc

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

In this case complexities of the three methods become

1. Outside-in: OYP/C+O2P.

2. Left-to-right and right-to-left: OYP/C+O2Y.

3. Inside-out-left and inside-out-right: Y2P/C2 +OY2/C+O2Y.

I.3. Constant-block diagonal

Assume ∂y
∂θ = IC⊗ ∂y1

∂θ1
, and ∂y1

∂θ1
has shape (Y/C)× (P/C). In NNs, this is present in fully-

connected, convolutional, locally-connected, attention, and many other layers that contain
a matrix multiplication along some axis. This is also present in all unary elementwise linear
operations on θ like transposition, negation, reshaping and many others. This is a special

case of §I.2 with ∂yc

∂θc
= ∂y1

∂θ1
for any c. Here a similar analysis applies, yielding

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f1
∂yc1︸︷︷︸

O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

and the same contraction complexities as in §I.2, except for the Inside-out order, where
the inner contraction term costs only Y2P/C3, since it is only contracted once instead of
C times as in Block-diagonal.

I.4. Input block-tiled

Assume ∂y
∂θ = 1(1,C) ⊗ ∂y

∂θ1
, where 1(1,C) is an all-ones matrix of shape 1 ×C, and ∂y

∂θ1
has

shape Y× (P/C). In this case

23

https://en.wikipedia.org/wiki/Matrix_of_ones

Novak Sohl-Dickstein Schoenholz

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(15)

=
∂f1
∂y1

(
1(1,C) ⊗

∂y1
∂θ1

)(
1(1,C) ⊗

∂y2
∂θ1

)T ∂f2
∂y2

T

(16)

=
∂f1
∂y1

(
C1(1,1) ⊗

[
∂y1
∂θ1

∂y2
∂θ1

T]) ∂f2
∂y2

T

(17)

= C
∂f1
∂y1

[
∂y1
∂θ1

∂y2
∂θ1

T] ∂f2
∂y2

T

. (18)

The matrix shapes are

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷
∂f1
∂y1︸︷︷︸
O×Y

∂y1
∂θ1︸︷︷︸

Y×(P/C)

∂y2
∂θ1

T

︸ ︷︷ ︸
(P/C)×Y

∂f2
∂y2

T

︸ ︷︷ ︸
Y×O

Which leads to the following resulting complexities:

1. Outside-in: OYP/C+O2P.

2. Left-to-right and right-to-left: OYP/C+O2Y.

3. Inside-out and inside-out-right: Y2P/C+OY2 +O2Y.

I.5. Output block-tiled

Assume ∂y
∂θ = 1(C,1)⊗ ∂y1

∂θ , where
∂y1

∂θ has shape (Y/C)×P. This occurs during broadcasting
or broadcasted arithmetic operations. In this case

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(19)

=
∂f1
∂y1

(
1(C,1) ⊗

∂y11
∂θ

)(
1(C,1) ⊗

∂y12
∂θ

)T
∂f2
∂y2

T

(20)

=
∂f1
∂y1

(
1(C,C) ⊗

[
∂y11
∂θ

∂y12
∂θ

T
])

∂f2
∂y2

T

(21)

=

(
C∑
c=1

∂f1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f2
∂yc2

T
)
, (22)

where we have used a block matrix identity

[A1, . . . , AC]T
(
1(C,C) ⊗B

)
[D1, . . . , DC] =

(
C∑
c=1

Ac

)
B

(
C∑
c=1

Dc

)
.

24

Fast Finite Width Neural Tangent Kernel

Finally, denoting the shapes,

Θl,k1,k2
θ (f1, f2) =

O×O︷ ︸︸ ︷(
C∑
c=1

∂f1
∂yc1

)
︸ ︷︷ ︸
O×(Y/C)

∂y11
∂θ︸︷︷︸

(Y/C)×P

∂y12
∂θ

T

︸ ︷︷ ︸
P×(Y/C)

(
C∑
c=1

∂f2
∂yc2

T
)

︸ ︷︷ ︸
(Y/C)×O

,

complexities of the three methods become (notice we add an OY term to perform the sums)

1. Outside-in: OYP/C+O2P+OY.

2. Left-to-right: OYP/C+O2Y/C+OY.

3. Inside-out: Y2P/C2 +OY2/C2 +O2Y/C+OY.

I.6. Block-tiled

Assume ∂y
∂θ = 1(C,C)⊗ ∂y1

∂θ1
, where ∂y1

∂θ1
has shape (Y/C)× (P/C). This occures for instance

when y is a constant. In this case

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(23)

=
∂f1
∂y1

(
1(C,C) ⊗

∂y11
∂θ1

)(
1(C,C) ⊗

∂y12
∂θ1

)T
∂f2
∂y2

T

(24)

=
∂f1
∂y1

(
C1(C,C) ⊗

[
∂y11
∂θ1

∂y12
∂θ1

T
])

∂f2
∂y2

T

(25)

= C

(
C∑
c=1

∂f1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f2
∂yc2

T
)
, (26)

This results in the following contraction:

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷(
C∑
c=1

∂f1
∂yc1

)
︸ ︷︷ ︸
O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

(
C∑
c=1

∂f2
∂yc2

T
)

︸ ︷︷ ︸
(Y/C)×O

,

with final complexities of

1. Outside-in: OYP/C2 +O2P+OY.

2. Left-to-right: OYP/C2 +O2Y/C2 +OY.

3. Inside-out: Y2P/C3 +OY2/C2 +O2Y/C+OY.

25

Novak Sohl-Dickstein Schoenholz

I.7. Batched NTK cost analysis

For simplicity, we have considered evaluating the NTK Θ(f1, f2) on a single pair of functions
f1 and f2. In practice one is almost always interested in computing the NTK for all pairs
of functions fn1

1 and fn2
2 from two batches {fn1

1 }N1

n1=1 and {fn2
2 }N2

n2=1, resulting in a N1O1×
N2O2 NTK matrix. In common NNs, this corresponds to having batches of N1 and N2

inputs x1 and x2 respectively, and having fni
1

(
θ0, . . . , θL

)
:= f

(
θ0, . . . , θL, xni

i

)
. In this

case the same argument as in previous section follows (given identical assumptions for all
n1 and n2), but the cost of contractions involving terms from different batches grow by
a multiplicative factor of N1N2, while all other costs grow by a factor of N1 or N2. To
declutter notation we consider N1 = N2 = N, and summarize resulting costs in Table 4.

I.8. Complex structure cost analysis

In previous sections we have considered ∂y1
/
∂θ and ∂y2

/
∂θ admitting the same, and at

most one kind of structure. While this is a common case, in general these derivatives may
admit multiple types of structures along multiple axes (for instance, addition is Constant
block-diagonal along non-broadcasted axes, and Output block-tiled along the broadcasted
axes), and ∂y1

/
∂θ and ∂y2

/
∂θ may have different types of structures and respective axes,

if the same weight θ is used in multiple different subexpressions of different kind. In such
cases, equivalent optimizations are possible (and are implemented in the code) along the
largest common subsets of axes for each type of structure that ∂y1

/
∂θ and ∂y2

/
∂θ have.

For example, let θ be a matrix in RW×W, y1 be multiplication by a scalar y1(θ) = 2θ, and
y2 be matrix-vector multiplication y2(θ) = θx, x ∈ RW. In this case ∂y1

/
∂θ = 2IW ⊗ IW,

i.e. it is Constant block-diagonal along axes both 1 and 2. ∂y2
/
∂θ = IW⊗xT , i.e. it is also

Constant block-diagonal, but only along axis 1. Hence, the NTK term containing ∂y1
/
∂θ

and ∂y2
/
∂θ will be computed with Constant block-diagonal simplification along axis 1.

There are probably more computationally optimal ways of processing different structure
combinations, as well as more types of structures to be leveraged for NTK computation,
and we intend to investigate it in future work.

I.9. Example

In §2.4 and previous sections we have demonstrated how structure in primitive derivatives
∂y
/
∂θ can be leveraged to reduce the cost of computing NTK. In this section we will

consider a simple example of applying the framework of structured derivatives to FCNs to
reproduce Table 3. See §N for equivalent application for CNNs.

As in §L.4, we consider a deep FCN with width W and O outputs. We assume the
network is deep and/or wide enough to ignore the size of inputs x, and we ignore biases.
In this case the number of parameters is quadratic in width P ∼ W2, and intermediate
primitive outputs have the same size as the width, Y = W. We recognize that individual
primitives yk,n (θk) = θlx

k,n, as matrix multiplications
(
θk ∈ RW×W, xk,n ∈ RW

)
admit

the Constant block-diagonal structure
(
∂yk,n/∂θk = IW ⊗ xk,n

T
)
with C = Y = W = J.

Finally, FP costs W2. Substituting all these equalities into Table 4 we get a simplified
Table 5, that confirms the benefits of NTK-vector products and Structured derivatives for
FCNs.

26

Fast Finite Width Neural Tangent Kernel

Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ JVPs and VJPs N2O2W2 N2OW2 Not possible

None NW3O+N2O2W2 N2OW3 +N2O2W N2W4 +NOW2 +N2O2W

Constant block-diagonal N2O2W2 N2OW2 +N2O2W N2O2W

Table 5: Asymptotic time complexities of computing a single fully-connected
layer NTK contribution. See §I.9 for discussion, Table 4 for a more general setting,
Table 3 for the case of deep networks, and §B for detailed legend.

J. Jacobian rules for structured derivatives

Here we discuss computing primitive ∂y/∂θ Jacobians as part of our implementation in §C.
We provide 4 options to compute them through arguments j_rules and fwd :

1. Forward mode, fwd = True , is equivalent to jax.jacfwd , forward mode Jacobian
computation, performed by applying the JVP to P columns of the IP identity matrix.
Best for P < Y.

2. Reverse mode, fwd = False , is equivalent to jax.jacrev , reverse mode Jacobian
computation, performed by applying the VJP to Y columns of the IY identity matrix.
Best for P > Y.

3. Automatic mode, fwd = None , selects forward or reverse mode for each primitive
based on parameters and output shapes.

4. Rule mode, j_rules = True , queries a dictionary of Jacobian rules (similar to the
dictionary of structure rules) with our custom implementations of primitive Jacobians,
instead of computing them through VJPs or JVPs. The reason for introducing custom
rules follows our discussion in §2.4: while JAX has computationally optimal VJP
and JVP rules, the respective Jacobian computations are not guaranteed to be most
efficient. In practice, we find our rules to be most often faster, however this effect
is not perfectly consistent (can occasionally be slower) and often negligible, requiring
further investigation.

The default setting is j_rules = True , fwd = None , i.e. a custom Jacobian implemen-
tation is preferred, and, if absent, Jacobian is computed in forward or reverse mode based
on parameters and output sizes. Note that in all settings, structure of ∂y/∂θ is used to
compute only the smallest Jacobian subarray necessary, and therefore most often inputs to
VJP/JVP will be smaller identity matrices IP/C or IY/C respectively, and all methods will
return a smaller Jacobian matrix of size (Y/C)× (P/C). If for any reason (for example de-
bugging) you want the whole ∂y/∂θ Jacobians computed, you can set the a_rules=False ,
i.e. disable structure rules.

K. Known issues

We will continue improving our function transformations in various ways after release, and
welcome bug reports and feature requests. Below are the missing features / issues at the
time of submission:

27

Novak Sohl-Dickstein Schoenholz

Transposable primitive in jax.ad.primitive_transposes Constant block-diagonal Block-diagonal Output block-tiled

add ✓ ✓
add any ✓ ✓
all gather

all to all

broadcast in dim ✓ ✓
call

complex ✓
concatenate

conj ✓
conv general dilated

convert element type ✓
cumsum

custom lin

custom linear solve

device put ✓
div ✓ ✓
dot general ✓ ✓
dynamic slice

dynamic update slice

fft

gather

imag ✓
linear call

mul ✓ ✓
named call

neg ✓
pad ✓
pdot

ppermute

psum

real ✓
reduce sum ✓
reduce window sum ✓
remat call

reshape ✓
rev ✓
scatter

scatter-add

scatter-mul

select

select and gather add

select and scatter add

sharding constraint

sharding constraint

slice

squeeze ✓
sub ✓ ✓
transpose ✓
triangular solve

while

xla call

xla pmap

xmap

zeros like ✓

Table 6: List of all linear primitives and currently implemented Structured
derivatives rules. In the future, more primitives and more rules can be supported, yet
at the time of writing even the small set currently covered enables dramatic speed-up and
memory savings in contemporary ImageNet models as in Fig. 2 and Fig. 4.

28

Fast Finite Width Neural Tangent Kernel

1. No support for complex differentiation.

2. Not tested on functions with advanced JAX primitives like parallel collectives (psum ,

pmean , etc.), gradient checkpointing (remat), compiled loops (scan ; Python loops
are supported).

3. Our current implementation of NTK-vector products relies on XLA’s common subex-
pression elimination (CSE) in order to reuse computation across different pairs of in-
puts x1 and x2, and, as shown in Fig. 1 and Fig. 3, can have somewhat unpredictable
wall-clock time performance and memory requirements. We believe this could corre-
spond to CSE not always working perfectly, and are looking into a more explicitly
efficient implementation.

L. Complexity analysis for fully-connected networks

This section presents our contributions in a simplified setting of fully-connected (FCN) net-
works. It can be read independently from §2, where a more general discussion is presented.

Setting. Consider an L-layer FCN f (θ, x) = θL ϕ
(
θL−1 . . . θ1 ϕ

(
θ0x
)
. . .
)
∈ RO, where

O is the number of logits. We denote individual weight matrices as θl with shapes W×W
(except for top-layer θL of shape O × W), where W is the width of the network, and
write the set of all parameters as θ = vec

[
θ0, . . . , θL

]
∈ RLW2+OW. We further define

xl := ϕ
(
yl−1

)
as post-activations (with x0 := x), and yl := θlxl as pre-activations with

yL = f (θ, x). See Fig. 5 for a visual schematic of these quantities. For simplicity, we
assume that inputs x also have width W, and O = O (LW), i.e. the number of logits is
dominated by the product of width and depth.

The NTK of f evaluated at two inputs x1 and x2 is an O×O matrix defined as

Θθ :=
∂f(θ, x1)

∂θ

∂f(θ, x2)

∂θ

T

=

L∑
l=0

∂f (θ, x1)

∂θl
∂f (θ, x2)

∂θl

T

=:

L∑
l=0

Θl
θ ∈ RO×O, (27)

where we have defined Θl
θ to be the summands. We omit dependence on x1, x2, and f for

brevity.
In §L.1 and §L.2 we describe the cost of several fundamental AD operations that we will

use as building blocks throughout the text. We borrow the nomenclature introduced by
Autograd (Maclaurin et al.) and describe Jacobian-vector products (JVP), vector-Jacobian
products (VJP), as well as the cost of computing the Jacobian ∂f(θ, x)

/
∂θ.

In §L.3, we describe the baseline complexity of evaluating the NTK, by computing two
Jacobians and contracting them. This approach is used in most (likely all) prior works, and
scales poorly with the NN width W and output size O.

In §L.4 we present our first contribution, that consists in observing that many interme-
diate operations on weights performed by NNs possess a certain structure, that can allow
linear algebra simplifications of the NTK expression, leading to a cheaper contraction and
smaller memory footprint.

In §L.5 we present our second contribution, where we rephrase the NTK computation as
instantiating itself row-by-row by applying the NTK-vector product function to columns of
an identity matrix. As we will show, this trades off Jacobian contraction for more forward
passes, which proves beneficial in many (but not all) settings.

29

https://www.tensorflow.org/xla

Novak Sohl-Dickstein Schoenholz

L.1. Jacobian-vector products and vector-Jacobian products

We begin by defining Jacobian-vector products and vector-Jacobian products:

JVP(f,θ,x) : θt ∈ RLW2+OW 7→ ∂f (θ, x)

∂θ
θt ∈ RO, (28)

VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RLW2+OW. (29)

The JVP can be understood as pushing forward a tangent vector in weight-space to a
tangent vector in the space of outputs; by contrast the VJP pulls back a cotangent vec-
tor in the space of outputs to a cotangent vector in weight-space. These elementary
operations correspond to forward- and reverse-mode AD respectively and serve as a ba-
sis for typical AD computations such as gradients, Jacobians, Hessians, etc. The time
cost5 of both operations is comparable to the forward pass (FP; see §H), i.e. [FP] =
[cost of all intermediate layers] + [cost of the top layer] =

[
LW2

]
+ [OW] ∼ LW2.

For a single input, the memory cost of computing both the JVP and the VJP are
respectively,

[all weights] + [activations at a single layer] =
[
LW2 +OW

]
+ [W+O] ∼ LW2,

[all weights] + [activations in all layers] =
[
LW2 +OW

]
+ [LW+O] ∼ LW2.

Despite the fact that the VJP requires more memory to store intermediate activations (which
is necessary for efficient backpropagation), we see that both computations are dominated
by the cost of storing the weights.

Batched inputs. If x is a batch of inputs of size N, the time cost of JVP and VJP
increases linearly to NLW2. The memory cost is slightly more nuanced. Since weights can
be shared across inputs, the memory cost of the JVP and VJP are respectively,

[all weights] +N [activations at a single layer]

=
[
LW2 +OW

]
+N [W+O] ∼ LW2 +NW+NO,

[all weights] +N [activations in all layers] +N [all weights]

=
[
LW2 +OW

]
+N [LW+O] +N

[
LW2 +OW

]
∼ NLW2.

The cost of the VJP is dominated by the cost of storing the cotangents in weight-space.
For the purposes of computing the NTK, we will be contracting Jacobians layerwise and so
we will only need to store one cotangent weight matrix, ∂f

/
∂θl, at a time. Thus, for the

purposes of this work we end up with the following costs:

• JVP costs NLW2 time and LW2 +NW+NO memory.

• VJP costs NLW2 time and LW2 +NLW+NW2 +NOW memory.

5. To declutter notation, we omit the O symbol to indicate asymptotic complexity in this work.

30

Fast Finite Width Neural Tangent Kernel

L.2. Jacobian computation

For neural networks, the Jacobian is most often computed by evaluating the VJP on rows
of the identity matrix IO, i.e.[

∂f (θ, x)
/
∂θ
]T

=
[
∂f (θ, x)

/
∂θ
]T

IO ∈ R(LW
2+OW)×O. (30)

It follows that computing the Jacobian takes O evaluations of the VJP. However, as above
we only need to store one ∂f

/
∂θl at a time and the weights and intermediate activations

are reused across evaluations. Thus, the time and memory costs to compute the Jacobian
are respectively,

ON ([cost of all intermediate layers] + [cost of the top layer])

= ON
([
LW2

]
+ [OW]

)
∼ NLOW2 +NO2W,

[all weights] +N [activations in all layers] +ON [a single weight matrix]

=
[
LW2 +OW

]
+N [LW+O] +ON

[
W2 +OW

]
∼ LW2 +NLW+NOW2 +NO2W.

Therefore, asymptotically,

Jacobian costs NLOW2 + NO2W time and LW2 + NLW + NOW2 + NO2W
memory.

L.3. Jacobian contraction

We now analyze the cost of computing the NTK, starting with the direct computation as
the product of two Jacobians. Consider a single summand from Eq. (2):

Θl
θ︸︷︷︸

O×O

=
∂f (θ, x1)

∂θl︸ ︷︷ ︸
O×(W×W)

∂f (θ, x2)

∂θl

T

︸ ︷︷ ︸
(W×W)×O

. (31)

The time cost of this contraction is O2W2, and the memory necessary to instantiate each
factor and the result is OW2 +O2. Repeating the above operation for each θl, we arrive
at LO2W2 time cost and unchanged memory, due to being able to process summands
sequentially.

Batched inputs. If we consider x1 and x2 to be input batches of size N, then the
resulting NTK is a matrix of shape NO × NO, and the time cost becomes N2LO2W2,
while memory grows to [NTK matrix size] + [factors size] = N2O2 +NOW2.

What remains is to account for the cost of computing and storing individual derivatives
∂f
/
∂θl, which is exactly the cost of computing the Jacobian described in §L.2. Adding the

costs up we obtain

Jacobian contraction costs N2LO2W2 time and N2O2+NOW2+NO2W+LW2+
NLW memory.

31

Novak Sohl-Dickstein Schoenholz

L.4. Leveraging structured derivatives for computing the NTK

We can rewrite Θl
θ in Eq. (31) using the chain rule and our pre- and post-activation notation

as:

Θl
θ =

[
∂f (θ, x1)

∂ylx1

∂ylx1

∂θl

][
∂f (θ, x2)

∂ylx2

∂ylx2

∂θl

]T
=

∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂ylx1

∂θl︸ ︷︷ ︸
W×(W×W)

∂ylx2

∂θl

T

︸ ︷︷ ︸
(W×W)×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

.

(32)

At face value, rewriting Eq. (31) in this way is unhelpful as it appears to have introduced
additional costly contractions. However, recall that yl = θlxl, and therefore

∂ylx1

∂θl
= IW ⊗ xl1

T
,

∂ylx2

∂θl
= IW ⊗ xl2

T
, (33)

where ⊗ is the Kronecker product. Plugging Eq. (33) into Eq. (32) we get

Θl
θ (x1, x2) =

∂f (θ, x1)

∂ylx1

(
IW ⊗ xl1

T
)(

IW ⊗ xl2
T
)T ∂f (θ, x2)

∂ylx2

T

= (34)

=
∂f (θ, x1)

∂ylx1

(
IW ⊗

[
xl1

T
xl2

]) ∂f (θ, x2)

∂ylx2

T

=
(
xl1

T
xl2

)[∂f (θ, x1)

∂ylx1

∂f (θ, x2)

∂ylx2

T
]
, (35)

where we were able to pull out
(
xl1

T
xl2

)
since it is a scalar. Therefore we obtain

Θl
θ =

xl1
T︸︷︷︸

1×W

xl2︸︷︷︸
W×1


∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

 , (36)

and observe that it takes only O2W time and OW +O2 memory. Accounting for depth,
time cost increases by a factor of depth L and becomes LO2W, while memory does not
change since the summands can be processed sequentially.

Batched inputs. In the batched setting, the time cost grows quadratically with the
size of the NTK to N2LO2W, while the memory cost increases to N2O2 +NOW to store
the result, Θl

θ(x1, x2), and factors, ∂f (θ, x)
/
∂ylx, respectively.

Finally, we need to account for the cost of computing the derivatives, ∂f
/
∂yl, and

post-activations, xl. Notice that both xl and ∂f
/
∂yl arises naturally when computing

the Jacobian as the primals and cotangents in layer l respectively. However, since we do
not need to compute the weight-space cotangents explicitly (in other words, we cut the
backpropagation algorithm short) the memory cost will be,

[all weights] +N [activations in all layers]

=
[
LW2 +OW

]
+N [LW+O] ∼ LW2 +NLW.

32

https://en.wikipedia.org/wiki/Kronecker_product

Fast Finite Width Neural Tangent Kernel

The extra time cost is asymptotically the cost of O forward-passes, NLOW2 which is the
same as the Jacobian. However, as we will see in experiments, in practice we’ll often compute
the NTK faster than the Jacobian. Putting everything together we find the following costs,

By leveraging Structured derivatives in NN computations, we have reduced the cost
of NTK to N2LO2W+NLOW2 time and N2O2+NOW+LW2+NLW memory.

The key insight was to leverage the constant-block diagonal structure of the pre-activation
derivatives ∂yl

/
∂θl. This idea is quite general; as we discuss in §2.4 and detail in the §I,

similar structure exists for many common operations such as convolutions, pooling, and
arithmetic. However, the improvements discussed in this section do not emerge automat-
ically in AD. While JAX and other libraries leverage structures analogous to Eq. (33) to
efficiently compute single evaluations of the VJP and JVP, this structure is lost once the
(structureless) Jacobian is instantiated (e.g. by composing the VJP with vectorization and
contraction). We discuss how we impose this structure to compute the NTK for general
neural networks in §I.

L.5. NTK via NTK-vector products

Computing the Jacobian contraction using Jacobian first instantiates the Jacobian using
using VJPs and then performs a contraction. Structured derivatives use a similar strategy,
but speed-up the contraction and avoid explicitly instantiating the weight-space cotangents.
In this section we avoid performing a contraction altogether at the cost of extra VJP/JVP
calls; this ends up being beneficial for FCNs.

We introduce the linear function performing the NTK-vector product: ΘVP : v ∈
RO 7→ Θθv ∈ RO. Applying this function to O columns of the identity matrix IO allows
us to compute the NTK, i.e. ΘθIO = Θθ. The cost of evaluating the NTK in this fashion
is equal to O times the cost of a single NTK-vector product evaluation ΘVP(v). We now
expand ΘVP(v) = Θθv as

∂f (θ, x1)

∂θ

∂f (θ, x2)

∂θ

T

v =
∂f (θ, x1)

∂θ
VJP(f,θ,x2) (v) = JVP(f,θ,x1)

[
VJP(f,θ,x2) (v)

]
, (37)

where we have observed that, if contracted from right to left, the NTK-vector product
can be expressed as a composition of a JVP and VJP of the underlying function f . The
cost of this operation is asymptotically equivalent to the cost of Jacobian, since it consists
of O VJPs followed by O (cheaper) JVPs. Therefore it costs LOW2 + O2W time and
LW2 +OW2 +O2W memory.

Batched inputs. In the batched setting Eq. (37) is repeated for each pair of inputs,
and therefore time increases by a factor of N2 to become N2LOW2 +N2O2W. However,
the memory cost grows linearly in N (except for the cost of storing the NTK of size N2O2),
since intermediate activations and derivatives necessary to compute the JVP and VJP can
be computed for each batch x1 and x2 separately; these quantities are then reused for
every pairwise combination resulting in a memory cost equal to the cost of computing the
Jacobian over a batch, i.e. N2O2 +

(
LW2 +NOW2 +NO2W+NLW

)
.

33

Novak Sohl-Dickstein Schoenholz

NTK computation as a sequence of NTK-vector products costs N2LOW2+N2O2W
time and N2O2 +NOW2 + LW2 +NLW memory.

M. Complexity analysis without the O = O (LW) assumption

Here we repeat the same analysis as in §L without the assumption of O = O (LW). This
results in Table 7, where Jacobian contraction and Structured derivatives gain an extra
N2O3W and N2O3 time terms respectively. This does not affect our main text conclusions.

M.1. JVP and VJP

As in §L.1, the time cost of both operations is comparable to the forward pass (FP), i.e.
[FP] = [cost of all intermediate layers] + [cost of the top layer] = LW2 +OW.

For a single input, the memory cost of computing both the JVP and the VJP are
respectively,

[all weights] + [activations at a single layer] =
[
LW2 +OW

]
+ [W+O] ∼ LW2 +OW,

[all weights] + [activations in all layers] =
[
LW2 +OW

]
+ [LW+O] ∼ LW2 +OW.

As in §L.1, despite the fact that the VJP requires more memory to store intermediate
activations (which is necessary for efficient backpropagation), we see that both computations
are dominated by the cost of storing the weights.

Batched inputs. If x is a batch of inputs of size N, the time cost of JVP and VJP
increases linearly to NLW2 + NOW. The memory cost is more nuanced. Since weights
can be shared across inputs, the memory cost of the JVP and VJP are respectively,

[all weights] +N [activations at a single layer]

=
[
LW2 +OW

]
+N [W+O] ∼ LW2 +OW+NW+NO,

[all weights] +N [activations in all layers] +N [all weights]

=
[
LW2 +OW

]
+N [LW+O] +N

[
LW2 +OW

]
∼ NLW2 +OW2 +NOW.

Recall from §L.1 we only need to store one cotangent weight matrix, ∂f
/
∂θl, at a time.

Therefore

• JVP costs NLW2 +NOW time and LW2 +OW+NW+NO memory.

• VJP costs NLW2+NOW time and LW2+NLW+NW2+NOW memory.

M.2. Jacobian

The time and memory costs to compute the Jacobian are identical to §2.1.3,

ON ([cost of all intermediate layers] + [cost of the top layer])

= ON
([
LW2

]
+ [OW]

)
∼ NLOW2 +NO2W,

[all weights] +N [activations in all layers] +ON [a single weight matrix]

=
[
LW2 +OW

]
+N [LW+O] +ON

[
W2 +OW

]
∼ LW2 +NLW+NOW2 +NO2W.

34

Fast Finite Width Neural Tangent Kernel

Therefore, asymptotically, the costs are identical to §2.1.3:

Jacobian costs NLOW2 + NO2W time and LW2 + NLW + NOW2 + NO2W
memory.

M.3. Jacobian contraction

The time cost of the contraction in Eq. (31) is O2W2 for l < L, but is O3W for the top
layer l = L. The memory necessary to instantiate each factor and the result is OW2 +O2

for l < L and O2W for the top layer l = L.

Accounting for all layers together, we arrive at LO2W2 +O3W time cost and OW2 +
O2W memory, due to being able to process summands sequentially.

Batched inputs. If we consider x1 and x2 to be input batches of sizeN, then the result-
ing NTK is a matrix of shape NO×NO, and the time cost becomes N2

(
LO2W2 +O3W

)
,

while memory grows to [NTK matrix size] + [factors size] = N2O2 +N
(
OW2 +O2W

)
.

Adding the cost of the Jacobian described in §M.2, we obtain

Jacobian contraction costs N2LO2W2 + N2O3W time and N2O2 + NOW2 +
NO2W+ LW2 +NLW memory.

M.4. Structured derivatives

The contraction in Eq. (36) takes O2W time and OW+O2 memory for l < L, and O3+W
time and O2 +W memory for l = L.

Accounting for all layers, time cost becomes LO2W+O3, and memory remains OW+
O2.

Batched inputs. In the batched setting, the time cost grows quadratically with the
size of the NTK to N2LO2W+N2O3, while the memory cost increases to N2O2+NOW.

Extra memory cost for computing the derivatives is

[all weights] +N [activations in all layers]

=
[
LW2 +OW

]
+N [LW+O] ∼ LW2 +OW+NLW.

The extra time cost is asymptotically the cost of O forward passes, NLOW2 + NO2W
which is the same as the Jacobian. Putting everything together we find the following costs,

By leveraging Structured derivatives in NN computations, we have reduced the cost
of NTK to N2LO2W+N2O3+NLOW2 time and N2O2+NOW+LW2+NLW
memory.

M.5. NTK-vector products

The cost analysis of NTK-vector products in §2.3 is not impacted by the O = O (LW)
assumption, hence it remains the same as in §2.3:

35

Novak Sohl-Dickstein Schoenholz

Method Time Memory Use when

Jacobian contraction N2LO2W2 +N2O3W NOW2 +N2O2 +NLW+ LW2 Don’t

NTK-vector products N2 O2W +N2LOW2 NOW2 +N2O2 +NLW+ LW2 O > W or N = 1

Structured derivatives N2LO2W +N LOW2 +N2O3 NOW +N2O2 +NLW+ LW2 O < W or L = 1

Table 7: Asymptotic time and memory cost of computing the NTK for an FCN
without assuming that O = O (LW). Costs are for a pair of batches of inputs of size N
each, and for L-deep, W -wide FCN with O outputs. Resulting NTK has shape NO×NO.
NTK-vector products allow a reduction of the time complexity, while Structured deriva-
tives reduce both time and memory complexity. Note: presented are asymptotic cost es-
timates; in practice, all methods incur large constant multipliers (e.g. at least 3x for time;
see §L.1). However, this generally does not impact the relative performance of different
methods. See Table 3 for a simplified cost summary under the assumption of O = O (LW)
(differing only by lacking the N2O3W and N2O3 terms in Jacobian contraction and Struc-
tured derivatives time costs respectively), Table 2 for CNN, and Table 1 for more generic
cost analysis.

NTK computation as a sequence of NTK-vector products costs N2LOW2+N2O2W
time and N2O2 +NOW2 + LW2 +NLW memory.

N. Complexity analysis for convolutional networks

Here we go through the same analysis as in §L for the case of convolution, where before the
top layer L global average pooling is applied. In this case the weights of the network θ are
expanded by the total filter size F, and inputs x, pre-activations yl and post-activations xl

become matrices of shape D × W, where D is the total number of pixels. See Fig. 5 for
visual depiction. We will again assume that O = O (LW).

N.1. JVP and VJP

Forward pass, JVP, and VJP costs [cost of all intermediate layers]+[cost of the top layer] =[
LDFW2

]
+ [OW] ∼ LDFW2 time. Forward pass and JVP require [all weights] +

[activations at a single layer] =
[
LFW2 +OW

]
+ [DW+O] ∼ LFW2 + DW mem-

ory. VJP requires [all weights] + [activations in all layers] + [a single weight matrix] =[
LFW2 +OW

]
+ [LDW+O] +

[
FW2 +OW

]
∼ LFW2 + LDW memory.

Batched inputs. Time cost of JVP and VJP increase linearly in N up to
NLDFW2. JVP memory cost becomes [all weights] + N [activations at a single layer] =[
LFW2 +OW

]
+ N [DW+O] ∼ LFW2 + NDW + NO. VJP memory cost becomes

[all weights]+N [activations in all layers]+N [a single weight matrix] =
[
LFW2 +OW

]
+

N [LDW+O] +N
[
FW2 +OW

]
∼ LFW2 +NLDW+NFW2 +NOW.

• JVP costs NLDFW2 time and LFW2 +NDW+NO memory.

• VJP costs NLDFW2 time and LFW2+NLDW+NFW2+NOW memory.

36

Fast Finite Width Neural Tangent Kernel

N.2. Jacobian

Computing the Jacobian costs O times the cost of VJP, hence
time is ON ([cost of all intermediate layers] + [cost of the top layer]) =
ON

([
LDFW2

]
+ [OW]

)
∼ NLODFW2 + NO2W. Memory is

[all weights] + N [activations in all layers] + ON [a single weight matrix] +
ON [activations in a single layer] =

[
LFW2 +OW

]
+ N [LDW+O] +

ON
[
FW2 +OW

]
+ON [DW] ∼ LW2 +NLDW+NODW+NOFW2 +NO2W

Jacobian costs NLODFW2 + NO2W time and LW2 + NOFW2 + NO2W +
NLDW+NODW memory.

N.3. Jacobian contraction

Since weight matrices are increased by F, the contraction cost goes up to N2LO2FW2 time
and N2O2+NOFW2 memory. The cost of computing the Jacobian is also modified (§N.2),
which results in N2LO2FW2 + NLODFW2 + NO2W ∼ N2LO2FW2 + NLODFW2

time and
(
N2O2 +NOFW2

)
+
(
LFW2 +NOFW2 +NO2W+NLDW+NODW

)
∼

N2O2 +NOFW2 +NO2W+NLDW+NODW+ LFW2 memory.

Jacobian contraction costs N2LO2FW2+NLODFW2 time and N2O2+NOFW2+
NO2W+NLDW+NODW+ LFW2 memory.

N.4. Structured derivatives

Convolution is Constant block-diagonal along the output channel axis with C = W,
P = FW2, Y = DW. Substituting this in Table 4, the cost of contraction is
the minimum of the costs from Table 8. If we exclude the Inside-out contraction
path from np.einsum (in practice it will always select the best out of three) for sim-
plicity, we can and conclude that for L layers, the time cost of the contraction is
at most N2LO2min

(
FW2,DW

)
+ DFNLOW2, as the minimum cost between the

Outside-in and Left-to-right. Note that this dominates the time cost of the Jaco-
bian from §N.2, so we don’t need to modify it further. Memory due to Jacobian com-
putation is [all weights] +N [activations in all layers] +NO [activations in a single layer] +
[size of primitive derivatives] =

[
LFW2 +OW

]
+N [LDW+O]+NO [DW]+N [DW] ∼

LFW2+NLDW+NODW. Again, as in §L.4, and unlike other methods, we do not need
to compute or store ∂f

/
∂θl derivatives, allowing to avoid the NOFW2 + NO2W extra

memory overhead. However, we need to add the cost of storing the (subarray of) primitive
Jacobians ∂y/∂θ, while have the size of J = YP/C2 = DFW, hence the extra cost is
NDFW.

Structured derivatives costN2LO2min(FW2,DW)+NLODFW2 time andN2O2+
NDFW+NLDW+NODW+ LFW2 memory.

37

Novak Sohl-Dickstein Schoenholz

Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

Constant block-diagonal NODFW2 +N2O2FW2 NODFW2 +N2O2DW N2D2FW2 +N2OD2W+N2O2DW

Table 8: Time complexity of contracting Θl,k1,k2
θ (f1, f2) corresponding to a CNN

primitive obtained by substituting Y = DW, C = W, and P = FW2 into Table 4.
The time cost of Structured derivatives are the minimum of the three entries due to using
optimal contraction path by np.einsum .

N.5. NTK-vector products

The cost of this approach is asymptotically equivalent to the cost of Jacobian (§N.2), since
it consists of O VJPs followed by O (cheaper) JVPs. Therefore it costs LODFW2+O2W
time and LFW2 +OFW2 +O2W+ LDW+ODW memory.

Batched inputs. In a batched setting Eq. (37) is repeated for each pair of inputs, and
therefore time increases by a factor of N2 to become N2LODFW2 + N2O2W. Memory
only grows linearly in N (except for storing the result of size N2O2), by similar argument
to §L.5, i.e. becomes N2O2 +

(
LFW2 +NOFW2 +NO2W+NLDW+NODW

)
total

memory.

NTK computation as a sequence of NTK-vector products costs N2LODFW2 +
N2O2W time and N2O2 +NOFW2 + LFW2 +NLDW+NODW memory.

O. Experimental details

All experiments were performed in JAX (Bradbury et al., 2018) using 32-bit precision.

Throughout this work we assume the cost of multiplying two matrices of shapes (M,K)
and (K,P) to be MKP . While there are faster algorithms for very large matrices, the
XLA compiler (used by JAX, among other libraries) does not implement them, so our
assumption is accurate in practice.

Hardware. CPU experiments were run on Dual 28-core Intel Skylake CPUs with at
least 240 GiB of RAM. NVIDIA V100 and NVIDIA P100 used a respective GPU with
16 GiB GPU RAM. TPUv3 and TPUv4 have 8 and 32 GiB of RAM respectively, and use
the default 16/32-bit mixed precision.

Fig. 1 and Fig. 3: a 10-layer, ReLU FCN was constructed with the Neural Tan-
gents (Novak et al., 2020) nt.stax API. Defeault settings (weight variance 1, no bias)
were used. Individual inputs x had size 3. Jacobian contraction was evaluated using
nt.empirical_ntk_fn with trace_axes=(), diagonal_axes=(), vmap_axes=0 . Jacobian

was evaluated using jax.jacobian with a vmap over inputs x. For time measurements,

all functions were jax.jit ted, and timing was measured as the average of 100 random
samples (compilation time was not included). For FLOPs, the function was not JITted,
and FLOPs were measured on CPU using the utils.get_flops function that is released

together with our code.6

6. The XLA team has let us know that if JITted, the FLOPs are currently correctly computed only on
TPU, but are incorrect on other platforms. Therefore we compute FLOPs of non-JITted functions.

38

https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla

Fast Finite Width Neural Tangent Kernel

Fig. 2 and Fig. 4: for ResNets, implementations from Flax (Heek et al., 2020) were
used, specifically flax.examples.imagenet.models . For WideResNets, the code sample

from Novak et al. (2020) was used.7 For all other models, we used implementations from
https://github.com/google-research/vision transformer. Inputs were random arrays
of shapes 224× 224× 3. All models were JITted. All reported values are averages over 10

random samples. For each setting, we ran a grid search over the batch size N in
{
2k
}9
k=0

,
and reported the best time divided by N2, i.e. best possible throughput in each setting.

7. We replaced stax.AvgPool((8, 8)), stax.Flatten() with stax.GlobalAvgPool() .

39

flax.examples.imagenet
https://github.com/google-research/vision_transformer

	Introduction
	Algorithms for fast NTK computation
	Preliminaries
	Notation
	Jacobian-vector products (JVP) and vector-Jacobian products (VJP)
	jaccJacobian

	jccJacobian contraction – the baseline
	ntvpc NTK-vector products – our first contribution
	sdcStructured derivatives – our second contribution

	Applications and benchmarks
	API
	Additional figures
	Glossary
	Implementation
	Leveraging JAX design for efficient NTK computation
	Comparison with specific related works
	Applications with a limited compute budget
	Finite and infinite width NTK
	JVP and VJP costs
	Types of structured derivatives
	No structure
	Block diagonal
	Constant-block diagonal
	Input block-tiled
	Output block-tiled
	Block-tiled
	Batched NTK cost analysis
	Complex structure cost analysis
	Example

	Jacobian rules for structured derivatives
	Known issues
	Complexity analysis for fully-connected networks
	Jacobian-vector products and vector-Jacobian products
	Jacobian computation
	Jacobian contraction
	Leveraging structured derivatives for computing the NTK
	NTK via NTK-vector products

	Complexity analysis without the blueO= O(FuchsiaLcyanW) assumption
	JVP and VJP
	[sec:jacobian]jaccJacobian
	[sec:vanilla]jccJacobian contraction
	[sec:strderivatives]sdcStructured derivatives
	[sec:implicit]ntvpcNTK-vector products

	Complexity analysis for convolutional networks
	JVP and VJP
	Jacobian
	Jacobian contraction
	Structured derivatives
	NTK-vector products

	Experimental details

