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Abstract

The rapid evolution of scientific fields intro-001
duces challenges in organizing and retriev-002
ing scientific literature. While expert-curated003
taxonomies have traditionally addressed this004
need, the process is time-consuming and ex-005
pensive. Furthermore, recent automatic tax-006
onomy construction methods either (1) over-007
rely on a specific corpus, sacrificing general-008
izability, or (2) depend heavily on the general009
knowledge of large language models (LLMs)010
contained within their pre-training datasets, of-011
ten overlooking the dynamic nature of evolv-012
ing scientific domains. Additionally, these ap-013
proaches fail to account for the multi-faceted014
nature of scientific literature, where a single re-015
search paper may contribute to multiple dimen-016
sions (e.g., methodology, new tasks, evaluation017
metrics, benchmarks). To address these gaps,018
we propose TaxoAdapt, a framework that dy-019
namically adapts an LLM-generated taxonomy020
to a given corpus across multiple dimensions.021
TaxoAdapt performs iterative hierarchical clas-022
sification, expanding both the taxonomy width023
and depth based on corpus’ topical distribution.024
We demonstrate its state-of-the-art performance025
across a diverse set of computer science confer-026
ences over the years to showcase its ability to027
structure and capture the evolution of scientific028
fields. As a multidimensional method, TaxoAd-029
apt generates taxonomies that are 26.51% more030
granularity-preserving and 50.41% more coher-031
ent than the most competitive baselines judged032
by LLMs.033

1 Introduction034

Driven by increased research interest and acces-035

sibility, the rapid proliferation of scientific litera-036

ture and subsequent creation of new branches of037

knowledge (e.g., the rise of generative models in038

the last five years) has made organizing and retriev-039

ing domain-specific knowledge increasingly chal-040

lenging (Bornmann et al., 2021; Aggarwal et al.,041

2022). Taxonomies enhance data organization,042

Corpus A → BERT: Pre-training of Deep 
Bidirectional Transformers, DistilBert, BioBERT, …

Corpus B → InstructGPT: Training LMs to follow 
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Figure 1: Each paper within a corpus contributes to
different dimensions of scientific literature. We show
how corpora from different eras of NLP (e.g., BERT-era;
RLHF-era) can influence their respective dimension-
specific taxonomies (we highlight certain subtrees).

support search engines, capture semantic relation- 043

ships, and aid discovery. While expert-curated and 044

crowdsourced taxonomies have traditionally struc- 045

tured topics into hierarchies (e.g., text classifica- 046

tion → spam detection), manual curation is time- 047

consuming and struggles to keep pace with rapidly 048

evolving fields (Bordea et al., 2016; Jurgens and 049

Pilehvar, 2016). 050

Prior efforts in automating taxonomy construc- 051

tion (ATC) fall into two categories: corpus-driven 052

methods that extract topics and relationships di- 053

rectly from text, and LLM-based approaches which 054

generate taxonomies based on pre-existing knowl- 055

edge. While corpus-driven methods effectively cap- 056

ture meaningful, domain-specific topics, they rely 057

on rigid approaches that are restricted to only terms 058

within the corpus vocabulary and lack extensive 059

background knowledge, given their pre-LLM ori- 060

gins (Liu et al., 2012; Shen et al., 2018; Shang et al., 061

2020; Zhang et al., 2018). Conversely, LLM-based 062

methods generate large-scale, general-purpose tax- 063

onomies but currently lack mechanisms to align 064
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them with specialized knowledge, solely relying on065

their background knowledge of domains and their066

key topics (Chen et al., 2023; Shen et al., 2024;067

Zeng et al., 2024; Sun et al., 2024).068

Moreover, as of now, both approaches over-069

look the multidimensional nature of scientific lit-070

erature. A research paper may study and/or con-071

tribute to multiple aspects of the scientific method072

(tasks, methods, applications, etc.), based on which073

we could organize papers differently. When new074

knowledge emerges, we must adapt existing tax-075

onomies. For example, in Figure 1, InstructGPT076

(Ouyang et al., 2022) introduces both “Instruction077

Following” as a novel NLP task and “Reinforce-078

ment Learning with Human Feedback” (RLHF)079

as an NLP method, highlighting the limitations of080

uni-dimensional taxonomies. Limiting ATC design081

to the task dimension is a critical oversight— ob-082

scuring the broader, evolving impacts of research.083

Ultimately, both corpus and LLM-based methods084

fail to provide a multidimensional view of scien-085

tific literature. To address these gaps, we propose086

TaxoAdapt, a framework that dynamically grounds087

LLM-based taxonomy construction to scientific088

corpora across multiple dimensions. TaxoAdapt089

operates on three core principles:090

Knowledge-augmented expansion leads to091

specialized, relevant taxonomies. State-of-the-092

art LLMs struggle to accurately model specialized093

taxonomies in domains like computer science (Sun094

et al., 2024), particularly leaf-level entities. Exist-095

ing LLM-based methods require pre-defined entity096

sets or are limited to entity-level context for taxon-097

omy construction (Zeng et al., 2024; Chen et al.,098

2023), critically limiting the degree of domain-099

specific knowledge which they can exploit. Al-100

ternatively, TaxoAdapt leverages document-level101

reasoning; by using each paper’s title and abstract,102

it identifies which dimensions a paper contributes103

to (e.g., methods, datasets) and how. For example,104

as shown in Figure 1, when expanding the “Trans-105

former” node under NLP methods, TaxoAdapt se-106

lectively analyzes papers centered on Transformer-107

based architectures (e.g., BERT)– helping to derive108

subcategories like “Encoder-Only”. Unlike min-109

ing important entities, this document-grounded ap-110

proach enhances taxonomic precision by aligning111

expansion with corpus knowledge specific to each112

dimension, layer, and node.113

Hierarchical text classification provides cru-114

cial signals for targeted exploration. Scientific115

fields evolve rapidly, with new subdomains emerg-116

ing and existing ones merging or fading (Singh 117

et al., 2022). Figure 1 illustrates this: Corpus 118

A (2018–2022) emphasizes BERT-like encoders, 119

while Corpus B (2022–present) highlights “RLHF” 120

as a training method and “Instruction Following” 121

as a key task behind InstructGPT and its succes- 122

sors. LLM-generated taxonomies often overlook 123

such trends, favoring concepts broadly represented 124

within the training data (e.g., high-level tasks like 125

text classification). To address this, TaxoAdapt 126

dynamically adapts the taxonomy by employing 127

hierarchical text classification to determine which 128

nodes should be expanded and how. A node with 129

a high density of papers (e.g., RLHF) indicates 130

further exploration and warrants depth expansion 131

(e.g., Reward Model Training, Policy Optimiza- 132

tion). Conversely, if a node has many unmapped 133

papers (e.g., if “Decoder-Only” did not exist under 134

“Transformer”), it signals parallel research to exist- 135

ing children (e.g., “Encoder-Only”), necessitating 136

width expansion. Nodes with minimal presence in 137

the corpus (e.g., LSTMs) will consequently not be 138

explored further. 139

Taxonomy-aware clustering enables mean- 140

ingful expansion. Multiple factors determine 141

which entities should be used to expand a given 142

node: (1) maintaining hierarchical, granular re- 143

lationships (e.g., identify a dimension-specific 144

child of “Transformer” and a sibling of “Encoder- 145

Only”), (2) prioritizing presence within the cor- 146

pus, and (3) minimizing redundancy. Recently, 147

LLMs have shown strong entity clustering abili- 148

ties (Viswanathan et al., 2023; Zhang et al., 2023). 149

Thus, TaxoAdapt utilizes its knowledge of the di- 150

mension, layer, and papers mapped to the spe- 151

cific node being expanded to determine granularity- 152

consistent candidate entities. It then utilizes this 153

information to guide the clustering of the candidate 154

entities, maximizing coverage while minimizing 155

redundancy during expansion. 156

Overall, TaxoAdapt aligns the multidimensional 157

taxonomy generation (and expansion) process to a 158

corpus. We summarize our contributions below: 159

• To the best of our knowledge, TaxoAdapt 160

is the first framework to ground LLM-based 161

taxonomy construction to a corpus and study 162

this task from multiple dimensions. 163

• We propose a novel classification-based ex- 164

pansion and clustering framework for targeted, 165

meaningful corpus exploration. 166

• Through quantitative experiments and real- 167
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world case studies, we show that TaxoAd-168

apt outperforms baselines in taxonomic cover-169

age, granular-consistency, and adaptability to170

emerging research trends.171

Reproducibility: Our dataset and code will be172

provided upon paper acceptance.173

2 Related Works174

Prior research on taxonomy construction can be175

broadly categorized into three types: manual,176

corpus-driven, and LLM-based methods.177

Manual Curation. Previous works (Bordea et al.,178

2016; Jurgens and Pilehvar, 2016; Yang et al.,179

2013) focused on extracting hand-crafted tax-180

onomies from candidate nodes or designing sys-181

tems to support the creation of human-assisted tax-182

onomies. These taxonomies involve mostly man-183

ual work, making them expensive both during the184

creation process and for future maintenance, espe-185

cially given the rapid evolution of scientific fields.186

Thus, ATC is highly needed.187

Corpus-driven Methods. A line of research (Lu188

et al., 2024; Lee et al., 2022a,b; Zhang et al., 2018;189

Huang et al., 2020) employed clustering to extract190

entities and their relationships from the corpus,191

identifying semantically coherent concept terms192

to complete a given seed taxonomy. Alternatively,193

NetTaxo (Shang et al., 2020) leveraged the meta-194

data of corpus documents as additional signals to195

construct taxonomies from scratch. Without clus-196

tering, HiExpan (Shen et al., 2018) utilized a rela-197

tion extraction module to perform depth expansion.198

Although these approaches maintain a high degree199

of specificity to the corpus, their lack of LLM us-200

age limits access to broader background knowl-201

edge, which is crucial for preserving hierarchical202

and granular node relationships.203

LLM-based Methods. Many recent works ex-204

plore the potential of leveraging LLMs for tax-205

onomy expansion or construction. Researchers206

aimed to answer whether LLMs are good replace-207

ment of traditional taxonomies and knowledge208

graphs, and they found that LLMs still could not209

capture the highly specialized knowledge of tax-210

onomies and leaf-level entities well (Sun et al.,211

2024). In terms of LLM usage, prompting with-212

out explicit fine-tuning on any data outperformed213

fine-tuning-based methods (Chen et al., 2023). Tax-214

oInstruct (Shen et al., 2024) unified three relevant215

tasks (entity set expansion, taxonomy expansion, 216

and seed-guided taxonomy construction) by un- 217

leashing the instruction-following capabilities of 218

LLMs. Although different iterative prompting ap- 219

proaches (Zeng et al., 2024; Gunn et al., 2024) have 220

been proposed, there does not exist an LLM-based 221

method that aligns well with the evolving scientific 222

corpus to the best our knowledge. This reinforces 223

our motivation of designing TaxoAdapt. 224

3 Methodology 225

As shown in Figure 2, TAXOADAPT aims to align 226

LLM taxonomy generation to a specific corpus, im- 227

proving adaptability to evolving research corpora. 228

3.1 Preliminaries 229

3.1.1 Problem Formulation 230

We assume that as input, the user provides a topic t 231

(e.g., natural language processing), a set of dimen- 232

sions D (e.g., tasks, datasets, methods, evaluation 233

metrics), and a scientific corpus P . We assume that 234

each paper p ∈ P is relevant to t and studies at least 235

one d ∈ D. TaxoAdapt aims to output a set of |D| 236

taxonomies Td∈D, maximizing the quantity of pa- 237

pers p ∈ P mapped across all nodes nd ∈ Td. The 238

topic t and dimension d ∈ D form the root topic n0 239

of each taxonomy Td (e.g., “natural language pro- 240

cessing tasks”). In order to provide an additional 241

level of flexibility, we define each taxonomy as a 242

directed acyclic graph (DAG) since certain nodes 243

may have two parents (e.g., the scientific question 244

answering (QA) task may be placed under both 245

“question_answering” and “scientific_reasoning”). 246

3.1.2 Initial LLM-Based Taxonomy 247

Construction 248

Recent works (Chen et al., 2023; Sun et al., 2024; 249

Zeng et al., 2024; Shen et al., 2024) have ex- 250

plored leveraging LLMs for taxonomy construc- 251

tion, showing their potential for generating high- 252

level, general-purpose taxonomies (although, these 253

are not guaranteed to be representative of a spe- 254

cific corpus). Given the difficulty of acquiring 255

expert-curated taxonomies across multiple domains 256

and the lack of methods addressing taxonomy con- 257

struction across multiple dimensions, we utilize 258

an LLM to generate |D| initial single-level tax- 259

onomies (Td∈D) for TaxoAdapt to expand. This 260

allows us to demonstrate TaxoAdapt’s effective- 261

ness while minimizing user input requirements. 262

Nonetheless, this taxonomy can also be replaced 263

by any specific taxonomy which the user desires. 264
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Figure 2: We propose TAXOADAPT, a framework which dynamically constructs a LLM-enhanced, corpus-specific
taxonomy using classification-based expansion signals. The diagram demonstrates a width expansion example, but
the same logic is applied to depth expansion (simply without the additional sibling context).

3.1.3 Taxonomy Expansion265

Taxonomy expansion involves both depth and266

width expansions of a provided taxonomy, Td. We267

formally define these below:268

Definition 1 (DEPTH EXPANSION) Expanding a269

leaf node ni,d ∈ Td by identifying a set of child270

entities ni
j,d ∈ N i

d, which topically falls under ni,d271

and contains equally granular entities (e.g., ni
1,d272

and ni
2,d should be equally topically specific).273

Definition 2 (WIDTH EXPANSION) Expanding274

the children of a non-leaf node ni,d, where275

its existing children ni
j,d ∈ N i

d represent an276

incomplete set of entities that need to be further277

completed by additional, unique sibling nodes,278

n′i
d ∈ N ′i

d. N ′i
d and N i

d are non-overlapping and279

at the same level of granularity.280

Note that we do not assume a user-provided set281

of entities for either, which has historically been282

the case (Zeng et al., 2024; Shen et al., 2018).283

3.2 Multi-Dimension Classification284

Scientific literature is inherently multifaceted, with285

individual papers often contributing to multiple as-286

pects of a domain– such as tasks, methodologies,287

and datasets. Thus, we must construct a set of tax-288

onomies Td∈D that captures the diverse aspects of289

scientific knowledge. TaxoAdapt seeks to align290

taxonomy Td’s construction with the dimension-291

specific contributions featured within a corpus.292

Thus, we study if and how to minimize the noise293

present from papers that do not make any contribu-294

tions towards dimension d. For example, a paper295

that only proposes a new text classification dataset,296

but still utilizes standard F1-metrics would intro-297

duce noise for constructing the “evaluation method”298

taxonomy and consequently, may be omitted. To 299

explore this, we partition the corpus based on the 300

dimensions each paper contributes to before we 301

perform taxonomy expansion. 302

We treat this task as a multi-label classification 303

problem. Recent works have shown that LLMs 304

are successful at fine-grained classification in a 305

multitude of domains (Zhang et al., 2024b,a). Thus, 306

we prompt the LLM to classify the paper p, where 307

in-context, we provide the dimension options and 308

their definitions. We define each dimension d ∈ D 309

with respect to the type of contribution we would 310

expect a paper pi,d to make. By default, we assume 311

each paper always falls under the task dimension. 312

We make this assumption because every work has 313

a contribution that is aligned to a specific goal/task. 314

Ultimately, we utilize the output labels for each 315

paper p ∈ P in order to partition the corpus P 316

into |D| potentially overlapping subsets: Pd ⊆ P . 317

Our definitions are summarized below (full-length 318

version in Appendix B): 319

• Task: Assume all papers are aligned to a task(s). 320

• Methodology: A paper that introduces, explains, 321

or refines a method or approach. 322

• Datasets: Introduces a new dataset. 323

• Evaluation Methods: A paper that assesses the 324

performance, limitations, or biases of models, 325

methods, or datasets. 326

• Real-World Domains: A paper that demon- 327

strates the use of techniques to solve real-world 328

problems or address specific domain challenges. 329

3.3 Top-Down Taxonomy Construction 330

An LLM-generated taxonomy may not sufficiently 331

capture all the topics within a corpus, especially in 332
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emerging research areas. These areas are underrep-333

resented in the LLMs’ general-purpose background334

knowledge but are highly represented within the335

input corpus (e.g., the node “RLHF” in Figure 1).336

Given that domain-specific trends are continually337

evolving in scientific literature, we must ensure338

that both the depth and breadth of the underlying339

research landscape are accurately represented.340

To determine which nodes require deeper ex-341

ploration, we employ hierarchical classification.342

Adapting an LLM-based text classification model343

(Zhang et al., 2024b), we enrich the taxonomy344

nodes (e.g., by adding keywords) to support top-345

down classification from ni,d to ni
j,d. Specifically,346

given a dimension-specific paper p mapped to ni,d,347

we adapt this model to determine whether p (based348

on its title and abstract) maps to any child node349

ni
j,d ∈ N i

d via multi-label classification using node350

labels and descriptions. We define ni,d’s density351

ρ(ni,d) as the number of papers |Pi,d| mapped to352

it, leveraging ρ(ni,d) to decide whether its children353

(or lack thereof) should be expanded.354

3.3.1 Depth & Width Expansion Signals355

When many papers accumulate at a given leaf node356

ni,d, as indicated by a high value of ρ(ni,d), it sug-357

gests that the topic represented by ni,d is being358

explored in greater depth within the corpus– which359

the current taxonomy does not adequately reflect.360

Longer taxonomy paths signify popular research361

topics within the corpus. Figure 1 illustrates this:362

the path to “bidirectional” is significantly deeper363

than to “rule-based”, reflecting the rise of bidi-364

rectional pre-trained language models in Corpus365

A and the subsequent decline of rule-based meth-366

ods. In this scenario, if ρ(ni,d) ≥ δ (user-specified367

threshold), TaxoAdapt performs depth expansion368

(Definition 1) by identifying a set of child entities369

N i
d that partition the topic into finer, granularity-370

consistent subtopics. For instance, as shown in371

Figure 1, if ρ(“encoder-only”) ≥ δ, this warrants372

further decomposition– such as deepening the path373

to include “pre-training techniques”– to capture374

the ongoing, specialized research in that area.375

A complementary signal is provided by the un-376

mapped density ρ̃(ni,d) of a non-leaf node. This377

arises when a node ni,d has a significant number378

of papers mapped to it (a high ρ(ni,d)) that are not379

allocated to any of its existing child nodes N i
d.380

Definition 3 (UNMAPPED DENSITY) Let Pi,d381

denote the set of all papers associated with node382

ni,d, and let nj,d ∈ N i
d denote the set of children383

under node ni,d. The unmapped density is then 384

given by: 385

ρ̃(ni,d) =

∣∣∣∣∣Pi,d −
|N i

d|⋃
j=0

Pj,d

∣∣∣∣∣ (1) 386

If ρ̃(ni,d) exceeds a predefined threshold τ , this 387

indicates that a significant portion of the corpus 388

within ni,d is not adequately represented by its 389

current children. In such cases, TaxoAdapt ini- 390

tiates width expansion by generating additional, 391

non-overlapping sibling nodes n′i
j,d ∈ N ′i

d to cover 392

the underrepresented research areas. For instance, 393

the “decoder-only” node in Figure 1, where a 394

high ρ̃(“NLP Methods”) signaled that the single 395

“encoder-only” node did not adequately capture the 396

surge in decoder-only architectures. Once node 397

ni,d is triggered for either depth or width expan- 398

sion, TaxoAdapt determines the new set of child 399

entities N ′i
d through a pseudo-label clustering pro- 400

cedure (Section 3.3.2). 401

3.3.2 Taxonomy-Aware Clustering 402

Assuming that node ni,d has been marked for ex- 403

pansion, we must identify a set of child entities 404

(N ′i
d if ni,d is a leaf node, otherwise N i

d) which 405

satisfy the following criteria: 406

1. Maintaining the hierarchical, granular relation- 407

ships which currently exist within the taxonomy 408

(parent-child and sibling-sibling relationships). 409

2. Maximizing presence within either the set of 410

unmapped papers ρ̃(ni,d) (width expansion), or 411

ρ(ni,d) (depth expansion). 412

3. Minimizing redundancy between the child enti- 413

ties N i
d ∪N ′i

d . 414

Subtopic Pseudo-Labeling. In order to main- 415

tain the hierarchical relationships within the taxon- 416

omy, we utilize the LLM to generate dimension and 417

granularity-preserving pseudo-labels based on each 418

paper pi,d ∈ Pi,d’s title and abstract. We prompt 419

the LLM to determine its dimensional subtopic rel- 420

ative to ni,d as its parent (ni,d’s label, dimension, 421

description, and path of ancestors) and ni,d’s exist- 422

ing children, if any. 423

Subtopic Clustering. Given that each pa- 424

per is represented by its corresponding pseudo- 425

label, clustering these pseudo-labels allows us 426

to maximize the number of papers (ρ̃(ni,d) or 427

ρ(ni,d)) represented. Moreover, effective cluster- 428

ing inherently minimizes redundancy as it aims to 429
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produce distinct, non-overlapping sets of papers.430

We specifically exploit LLM’s clustering abilities431

(Viswanathan et al., 2023; Zhang et al., 2023) as432

this allows us to easily integrate dimension and433

granularity-specific information into the context434

and preserve these features within our clusters. In-435

cluding the same context provided during Subtopic436

Pseudo-Labeling, in addition to the complete list437

of paper-subtopic pseudo-labels, we prompt an438

LLM to determine the primary sub-[dimension]439

topic clusters (e.g., sub-task, sub-methodology)440

that would best encompass the list of pseudo-labels,441

providing a label and description for each cluster.442

These generated clusters consequently form N ′i
d if443

ni,d is a leaf node (depth expansion) and otherwise444

N i
d (width expansion).445

We iteratively classify, identify expansion sig-446

nals, and perform taxonomy-aware clustering level-447

by-level. We provide the full top-down taxonomy448

construction algorithm in Algorithm 1 (Appendix449

D). Ultimately, this process ends when either no450

nodes are signaled for expansion or the maximum451

taxonomy depth is reached—outputting our final452

Td,∀d ∈ D.453

4 Experimental Design454

We explore TAXOADAPT’s performance using a455

hybrid of both open (Llama-3.1-8B-Instruct)456

and closed source (GPT-4o-mini) models. We457

do this to showcase how we can optimize the458

cost of the classification and pseudo-labeling steps459

(both run on Llama) while not needing to sacrifice460

performance. We construct initial, deterministic461

single-level taxonomies using GPT-4o-mini (Sec-462

tion 3.1.2). For all other modules of our framework,463

we sample from the top 1% of the tokens and set464

the temperature to 0.1. We set the density threshold465

δ = 40 papers and the maximum depth l = 2.466

4.1 Dataset467

In order to evaluate TAXOADAPT’s abilities to468

adapt to different corpora and reflect evolving re-469

search topics, we select several conferences span-470

ning different subdomains within computer science.471

These conferences and their respective sizes are472

shown in Table 1, where we collect the title and473

abstract for each paper. We choose to explore our474

method specifically within computer science such475

that our dimensions can remain consistent across476

all conferences: task, methodology, dataset, evalua-477

tion methods, and real-world domains. We also in-478

clude one conference from two different years (e.g., 479

EMNLP’22 and EMNLP’24) in order to showcase 480

how our method reflects the evolution of its respec- 481

tive field. 482

Table 1: Topic t and number of papers (size) per dataset.

Conference Size Topic t

EMNLP 2022 828 Natural Language ProcessingEMNLP 2024 2954

ICRA 2020 1000 Robotics

ICLR 2024 2260 Deep Learning

Total Papers 7,042

4.2 Baselines 483

TaxoAdapt aligns LLM-based taxonomy con- 484

struction to a specialized, multidimensional cor- 485

pus. Consequently, we choose to compare our 486

method with both corpus-driven and LLM-based 487

approaches. Note that all LLM-based baselines uti- 488

lize GPT-4o-mini as their underlying model. We 489

provide detailed information on each baseline in 490

Appendix A. 491

1. LLM-Only → Chain-of-Layer (Zeng et al., 492

2024): Given a set of entities, solely relies on 493

an LLM (no corpus) to select relevant candidate 494

entities for each taxonomy layer and construct 495

the taxonomy from top to bottom. 496
2. LLM + Corpus → Prompting-Based: An itera- 497

tive baseline which prompts the LLM to identify 498

relevant papers to the dimension, child nodes, 499

and their corresponding papers. 500
3. Corpus-Only → TaxoCom (Lee et al., 2022a): 501

A corpus-driven, handcrafted taxonomy com- 502

pletion framework that clusters terms from the 503

input corpus to recursively expand a handcrafted 504

seed taxonomy. 505
4. No-Dim and No-Clustering are TaxoAdapt abla- 506

tions which remove the dimension-specific par- 507

titioning and subtopic clustering respectively. 508

4.3 Evaluation Metrics 509

We design a thorough automatic evaluation suite 510

using GPT-4o and GPT-4o-mini to determine the 511

quality of our generated taxonomies, using both 512

node-level and taxonomy-level metrics. For each 513

judgment, we ask the LLM to provide additional 514

rationalization (all prompts are in Appendix E): 515

• (Node-Wise) Path Granularity: Does the path 516

to node ni,d preserve the hierarchical relation- 517

ships between its entities (is each child ni
j more 518
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Table 2: Comparison of models on all datasets, averaged across all dimensions. All values are normalized and
scaled by 100. The highest scores for each metric are bolded, and the second-highest scores are marked with a †.

Models EMNLP’22 EMNLP’24

Path Sib Dim Rel Cover Path Sib Dim Rel Cover

Chain-of-Layers 46.87 67.67 94.61 77.65 50.54 49.56 67.67† 92.56† 82.13 48.66
With-Corpus LLM 66.14 33.93 88.82 72.87 39.35 49.51 29.74 83.56 84.13† 39.20
TaxoCom 23.85 33.89 89.81 91.31 64.53 13.89 59.42 86.97 95.96 64.81

TaxoAdapt 81.09 82.92 100.00 82.69† 55.81† 83.04 77.86 98.04 88.76† 60.29†

- No Dim 88.47 82.30 99.49 81.46 62.26 89.98 76.97 99.05 86.23 66.42
- No Clustering 76.45† 69.33† 98.49† 81.63 50.38 65.15† 62.15 92.31 80.22 60.80

Models ICRA’20 ICLR’24

Path Sib Dim Rel Cover Path Sib Dim Rel Cover

Chain-of-Layers 52.92 43.46 95.06 95.00 55.96 40.75 43.16 95.92 69.66 48.50
With-Corpus LLM 74.58 32.54 97.34 94.18 45.50 70.44 29.70 88.37 67.78 33.62
TaxoCom 43.05 54.21 99.06† 96.28† 60.75† 30.00 67.00 91.27 86.88 56.25†

TaxoAdapt 86.69 91.59 100.00 97.82 52.09 78.93† 81.47 99.62† 71.99† 53.96
- No Dim 91.82 89.59† 100.00 92.95 67.97 86.32 76.45† 100.00 69.45 62.54
- No Clustering 87.74† 85.76 100.00 93.97 50.86 65.69 67.85 93.13 68.56 54.60

specific than the parent ni,d)? Scored 0 or 1 by519

GPT-4o.520

• (Level-Wise) Sibling Coherence: Determine521

whether a set of siblings nj ∈ N i of parent node522

ni,d form a coherent set with the same level of523

specificity and granularity. Scored from 0 to 1 by524

GPT-4o.525

• (Node-Wise) Dimension Alignment: Is the node526

ni,d relevant to the dimension d of the root topic527

t? Scored 0 or 1 by GPT-4o.528

• (Node-Wise) Paper Relevance: Is the node ni,d529

relevant to at least 5% of the corpus? Scored 0 or530

1 per node by GPT-4o-mini (due to longer paper531

context and thus, cost). Final score is averaged532

across all nodes.533

• (Level-Wise) Coverage: Given a set of siblings534

nj ∈ N i of parent node ni,d, determine what535

portion of relevant papers of ni,d are covered536

by (relevant to) at least one node in the siblings.537

Scored by GPT-4o-mini (due to longer paper538

context and thus, cost).539

In addition to this automatic evaluation, we also540

conduct a supplementary human evaluation for541

these evaluation metrics. We provide the LLM-542

human agreement analysis in Appendix C.543

Table 3: Standard deviation of model performance
across all datasets and dimensions.

Models Path Sib Dim Rel Cover

Chain-of-Layers 0.078 0.109 0.008 0.043 0.005
With-Corpus LLM 0.054 0.036 0.010 0.027 0.004
TaxoCom 0.041 0.035 0.039 0.016 0.022
TaxoAdapt 0.027 0.021 0.007 0.043 0.015

5 Experimental Results 544

Overall Performance & Analysis. Table 2 shows 545

the performance of TAXOADAPT compared with 546

the baselines on a wide variety of node, level, and 547

taxonomy-wise metrics. From the results, we can 548

see that TaxoAdapt’s taxonomies are 26.51% more 549

granularity-preserving, 50.41% more coherent, 550

5.16% more dimension-specific, 5.18% more rele- 551

vant to the corpus, and 9.07% more representative 552

of the corpus, compared to the most competitive 553

baseline across all datasets and dimensions. These 554

results indicate that TaxoAdapt is significantly bet- 555

ter at aligning to a corpus across multiple dimen- 556

sions, while still greatly improving the structural 557

integrity of the constructed taxonomies. Based on 558

our thorough set of experiments, we are able to 559

draw several interesting insights: 560

TAXOADAPT constructs well-balanced, co- 561

hesive taxonomies. We observe that the base- 562

lines tend to generate significantly imbalanced tax- 563

onomies, where several of the nodes have only a 564

single child. Furthermore, each level tends to have 565

an uncohesive mixture of granularities (e.g., “Sen- 566

timent Analysis”, “Emotion Detection” as siblings). 567

This is especially the case for TaxoCom, which 568

has a significantly low path granularity while hav- 569

ing the highest relevance and coverage score. This 570

is due to it selecting highly coarse-grained nodes 571

(e.g., NLP tasks → significant improvements → 572

closed source, out of domain, text based, . . . ). In 573

contrast, TaxoAdapt preserves the hierarchical re- 574

lationships between the topics of taxonomy with 575

7



(EMNLP'22) natural language processing tasks (828 papers)

dialogue systems (86) text generation (185) text summarization (64)language modeling (459) text classification (80)

few-shot text classification (29)

hierarchical text classification (14)

document classification (34)

hate speech detection (6)

sentiment classification (34)

abstractive (9)

extractive (36)

multi-document (9)

dialogue generation (26)

conditional text generation (143)

style transfer (8)

conversational question answering (9)

dialogue evaluation (21)

multimodal dialogue (6)

task-oriented dialogue systems (55)

multilingual language modeling (42)

sequence labeling (19)

multimodal language modeling (49)

knowledge graph reasoning (44)

masked language modeling (19)

language understanding (255)

question answering (151)

open-domain qa (75)

complex qa (42)

extractive qa (16)

domain-specific qa (21)

visual qa (14)

story generation (8)

text summarization (128)

abstractive (37)

extractive (12)

sentence simplification (17)

multimodal (18)

meeting summarization (10)

code summarization (9)

narrative summarization (13)

language modeling (2093)

multilingual language modeling (203)

instruction-based language modeling (193)

bias in language models (139)

multimodal language modeling (389)

contextual language modeling (156)

personalized language modeling (39)

adversarial language modeling (80)

language model fine-tuning (806)

(EMNLP'24) natural language processing tasks (2954 papers)

Legend:

User-Specified Root

Initial (initial LLM-generated taxonomy)

Width (node added during width expansion)

Depth (node added during depth expansion)

dialogue systems (245) question answering (416) text generation (758) text classification (274)

Figure 3: We show the evolution of NLP Tasks from EMNLP’22 to EMNLP’24. We highlight specific subtrees,
emphasizing nodes which reflect the most interesting research trends. We also show the number of papers that
TaxoAdapt maps to each of the nodes (Section 3.3) in parentheses.

cohesive sets of children for each non-leaf node,576

where the children ni
j ∈ N i of node ni have high577

relevance and coverage of ni’s corresponding set of578

papers Pi. Furthermore, each child node ni
j is rele-579

vant to at least 5% of the papers within the corpus580

P , reflected in increased path granularity, sibling581

cohesiveness, and coverage scores shown in Table582

2. We can attribute these gains to TaxoAdapt’s hi-583

erarchical classification and taxonomy-aware clus-584

tering steps based on the lower performance of585

ablation, No Clustering. We also note that TaxoAd-586

apt primarily uses Llama-3.1-8B as its backbone587

model for classification and clustering, which is588

a significantly weaker model than the baselines’589

complete dependence on GPT-4o-mini.590

TAXOADAPT is robust to different research591

dimensions. In addition to each of TaxoAdapt’s592

nodes ni,d ∈ Td better reflecting its corresponding593

dimension (Dim), TaxoAdapt exhibits robustness594

to the different research dimensions. Specifically,595

Table 3 showcases the standard deviation of each596

model’s scores averaged across all dimensions and597

datasets. We observe that TaxoAdapt features the598

lowest standard deviations across all granularity599

metrics, while simultaneously scoring the highest600

for each (Table 2). We further explore this finding601

through ablation “No-Dim”, which removes the ini-602

tial dimension-specific partitioning of the corpus603

P into Pd∈D ⊂ P (Section 3.2). We observe that604

partitioning the corpus improves granularity, but605

also negatively impacts relevance and coverage–606

only a narrowed, dimension-specific pool is con-607

sidered relevant for dimension-specific taxonomy608

construction.609

TAXOADAPT constructs taxonomies which re- 610

flect evolving research. In Figure 3, we demon- 611

strate how TaxoAdapt’s taxonomies adapt to cor- 612

pora from different eras of natural language pro- 613

cessing research (EMNLP’22 → EMNLP’24). 614

We showcase the task dimension, where due to 615

the rapid increase in EMNLP submissions and 616

accepted papers, features more nodes overall 617

(EMNLP’22: 62 nodes; EMNLP’24: 99 nodes). 618

Furthermore, between the two conference years, 619

we see certain nodes fall in research presence 620

(e.g., masked language modeling) and others signif- 621

icantly rise (e.g., language modeling, instruction- 622

based language models, bias in language models). 623

We also see certain research trends start to arise as 624

a result of performing width expansion based on 625

initially unmapped papers (e.g., personalized lan- 626

guage models). Overall, Figure 3 demonstrates the 627

power of considering classification-based signals 628

for knowledge-augmented expansion. 629

6 Conclusion 630

We introduce TaxoAdapt, a novel framework for 631

constructing multidimensional taxonomies aligned 632

with evolving research corpora using LLMs. 633

TaxoAdapt dynamically adapts to corpus-specific 634

trends and research dimensions. Our comprehen- 635

sive experiments demonstrate that TaxoAdapt sig- 636

nificantly outperforms existing methods in gran- 637

ularity preservation, dimensional specificity, and 638

corpus relevance. These results highlight TaxoAd- 639

apt’s capabilities as a scalable, multidimensional, 640

and dynamically adaptive method for organizing 641

scientific knowledge in rapidly evolving domains. 642
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7 Limitations643

TaxoAdapt relies on LLMs to classify papers into644

specific dimensions. Although existing works have645

shown the success of LLMs on fine-grained classi-646

fication, this classification relies on the parametric647

knowledge of LLMs, which could be a limitation648

when LLMs’ knowledge becomes outdated. For649

example, when a dataset paper proposes a new650

benchmark that has the same (or similar) name as651

an existing methodology, LLMs might incorrectly652

assign it to the methodology dimension. However,653

this is a rare edge case, and TaxoAdapt already gen-654

erates more dimension-specific taxonomies than655

baselines as discussed above.656

Moreover, although we show comprehensive ex-657

periments on corpus across various computer sci-658

ence conferences, it would be a nice extension to659

run TaxoAdapt on corpus outside of the computer660

science domain such as healthcare and chemistry.661
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A Baselines794

Our primary motivation for TaxoAdapt is to demon-795

strate its capabilities of aligning the LLM-based796

taxonomy construction to a specialized, multidi-797

mensional corpus. Consequently, we choose to798

compare our method with both corpus-driven and799

LLM-based approaches. Note that all LLM-based800

baselines utilize GPT-4o-mini as their underlying801

model.802

1. LLM-Only → Chain-of-Layer (Zeng et al., 803

2024): A method which is provided a set of en- 804

tities and solely relies on an LLM (no corpus) 805

to select relevant candidate entities for each tax- 806

onomy layer and gradually build the taxonomy 807

from top to bottom. We adapt this method to 808

use an LLM to suggest entities based on the root 809

topic t and dimension d. 810

2. LLM + Corpus → Prompting-Based: Given 811

that no methods currently exist which guide 812

LLM taxonomy construction based on a corpus, 813

we design our own prompting-based baseline. 814

Specifically, we conduct an iterative process, 815

where we first ask the LLM to identify relevant 816

papers to the dimension, relevant child nodes, 817

and their corresponding papers. We continue 818

this process until the maximum depth is reached. 819

3. Corpus-Only → TaxoCom (Lee et al., 2022a): 820

A corpus-driven taxonomy completion frame- 821

work that clusters terms from the input corpus 822

to recursively expand a handcrafted seed taxon- 823

omy. We use the same single-level taxonomy 824

from Section 3.1.2 as the seed input, but modify 825

the label names to similar concepts if they do 826

not already exist within the corpus. 827

B Dimension Type Definitions 828

We define each of our selected dimensions below: 829

• Task: We assume all papers are associated with a task. 830

• Methodology: A paper that introduces, explains, or 831
refines a method or approach, providing theoretical 832
foundations, implementation details, and empirical eval- 833
uations to advance the state-of-the-art or solve specific 834
problems. 835

• Datasets: Introduces a new dataset, detailing its cre- 836
ation, structure, and intended use, while providing anal- 837
ysis or benchmarks to demonstrate its relevance and 838
utility. It focuses on advancing research by addressing 839
gaps in existing datasets/performance of SOTA models 840
or enabling new applications in the field. 841

• Evaluation Methods: A paper that assesses the per- 842
formance, limitations, or biases of models, methods, 843
or datasets using systematic experiments or analyses. 844
It focuses on benchmarking, comparative studies, or 845
proposing new evaluation metrics or frameworks to pro- 846
vide insights and improve understanding in the field. 847

• Real-World Domains: A paper which demonstrates the 848
use of techniques to solve specific, real-world problems 849
or address specific domain challenges. It focuses on 850
practical implementation, impact, and insights gained 851
from applying methods in various contexts. Examples 852
include: product recommendation systems, medical 853
record summarization, etc. 854
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C LLM-Human Agreement Analysis855

Since our automatic evaluation suite is mainly us-856

ing GPT-4o and GPT-4o-mini, we conduct a small-857

scale human evaluation to test the reliability of our858

metrics. Using EMNLP’24, one human evaluator859

is responsible for validating the LLMs evaluation860

output on the task dimension of TaxoAdapt’s tax-861

onomy. We show the consensus percentage (the862

percentage of cases where both the LLM and the hu-863

man evaluator agree on an instance) on path granu-864

larity, sibling coherence, and dimension alignment865

metrics as defined in Section 4.3. For path gran-866

ularity, we select 30 random paths from TaxoAd-867

apt’s taxonomy and let the human evaluator make868

independent judgment about the hierarchical rela-869

tionships between entities (scored 0 or 1 by the870

evaluator). Similarly, we select 10 random sets of871

siblings with respect to parent nodes for the eval-872

uator to judge sibling coherence (scored 0.67 or873

1 by the evaluator for reasonable or strongest co-874

herence), and 30 random nodes are studied about875

their alignment to the task dimension (scored 0876

or 1 by the evaluator). As for (node-wise) paper877

relevance and (level-wise) coverage metrics, since878

they are about evaluating node-paper relevance, we879

randomly select 16 node-paper pairs (8 pairs are880

considered relevant while the other 8 are consid-881

ered irrelevant by GPT-4o-mini) for the evaluator882

to judge relevance in order to validate these two883

metrics.884

Consensus percentage is shown in Table 4. The885

agreement percentages between the LLMs and the886

human evaluator range from 70% to 90%, indicat-887

ing strong overall agreement. Thus, this human888

evaluation reinforces the validity of our metrics, so889

we decide to use them as our automatic evaluation890

metrics.891

D Top-Down Taxonomy Expansion892

Algorithm893

We include the high-level algorithm of TAXOAD-894

APT in Algorithm 1.895

E LLM Evaluation Prompts896

As described in Section 4.3, we show the LLM897

prompt that we use to generate evaluation output898

for computing automatic metrics in Figure 4.899

Algorithm 1 Top-Down Taxonomy Expansion
Require: Topic t, Dimension d ∈ D, Corpus P , den-

sity_thresh = δ, max_depth=l
1: Td ∈ T = initialize_taxonomy(t,D) {T .depth = 0}
2: Pd ⊆ P ← multi_dim_class(t,D) {Section 3.2}
3: q = queue(∀Td ∈ T )
4: while len(q) > 0 and T.depth ≤ l do
5: ni,d ← pop(q)
6: if isLeaf(ni,d) then
7: ni

j,d ∈ N i
d ← expand_depth(ni,d, t) {Section

3.3.2}
8: q.append(ni,d)
9: else

10: classify_children(ni,d, t, d) {Section 3.3.1}
11: if ρ̃(ni,d) > δ then
12: n′i

j,d ∈ N ′i
d ← expand_width(ni,d, t) {Section

3.3.2}
13: if |N ′i

d | > 0 then
14: classify_children(ni,d, t, d)
15: for ni

j,d ∈ N i
d do

16: if ni
j,d.level < l andρ(ni

j,d) > δ then
17: q.append(ni

j,d)
18: return T
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Table 4: Consensus percentages of path granularity, sib-
ling coherence, dimension alignment, and node-paper
relevance between LLMs and the human evaluator.

Granularity Coherence Alignment Relevance

0.900 0.700 0.700 0.875

Figure 4: LLM evaluation prompts used to compute path granularity, sibling coherence, dimension alignment, paper
relevance, and coverage.
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