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Abstract

We consider the problem of best arm identification in the multi-armed bandit model,
under fixed confidence. Given a confidence input δ, the goal is to identify the arm
with the highest mean reward with a probability of at least 1− δ, while minimizing
the number of arm pulls. While the literature provides solutions to this problem
under the assumption of independent arms distributions, we propose a more flexible
scenario where arms can be dependent and rewards can be sampled simultaneously.
This framework allows the learner to estimate the covariance among the arms
distributions, enabling a more efficient identification of the best arm. The relaxed
setting we propose is relevant in various applications, such as clinical trials, where
similarities between patients or drugs suggest underlying correlations in the out-
comes. We introduce new algorithms that adapt to the unknown covariance of the
arms and demonstrate through theoretical guarantees that substantial improvement
can be achieved over the standard setting. Additionally, we provide new lower
bounds for the relaxed setting and present numerical simulations that support their
theoretical findings.

1 Introduction and setting

Best arm identification (BAI) is a sequential learning and decision problem that refers to finding
the arm with the largest mean (average reward) among a finite number of arms in a stochastic
multi-armed bandit (MAB) setting. An MAB model ν is a set of K distributions in R: ν1, . . . , νK ,
with means µ1, . . . , µK . An "arm" is identified with the corresponding distribution index. The
observation consists in sequential draws ("queries" or "arm pulls") from these distributions, and each
such outcome is a "reward". The learner’s goal is to identify the optimal arm i∗ := ArgMaxi∈JKK µi,
efficiently. There are two main variants of BAI problems: The fixed budget setting [1, 8], where
given a fixed number of queries T , the learner allocates queries to candidates arms and provides a
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guess for the optimal arm. The theoretical guarantee in this case takes the form of an upper bound on
the probability pT of selecting a sub-optimal arm. The second variant is the fixed confidence setting
[14, 20], where a confidence parameter δ ∈ (0, 1) is given as an input to the learner, and the objective
is to output an arm ψ ∈ JKK, such that P(ψ = i∗) ≥ 1− δ, using the least number of arm pulls . The
complexity in this case corresponds to the total number of queries made before the algorithm stops
and gives a guess for the best arm that is valid with probability at least 1− δ according to a specified
stopping rule. In this paper we specifically focus on the fixed confidence setting.

The problem of best-arm identification with fixed confidence was extensively studied and is well
understood in the literature [16, 19, 20, 14]. However, in these previous works, the problem was
considered under the assumption that all observed rewards are independent. More precisely, in each
round t, a fresh sample (reward vector), independent of the past, (X1,t, . . . , XK,t) is secretly drawn
from ν by the environment, and the learner is only allowed to choose one arm At out of K (and
observe its reward XAt,t). We relax this setting by allowing simultaneous queries. Specifically, we
consider the MAB model ν as a joint probability distribution of the K arms, and in each round t the
learner chooses a subset Ct ⊂ JKK and observes the rewards (Xi,t)i∈Ct

(see the Game Protocol 1).
The high-level idea of our work is that allowing multiple queries per round opens up opportunities to
estimate and leverage the underlying structure of the arms distribution, which would otherwise remain
inaccessible with one-point feedback. This includes estimating the covariance between rewards at
the same time point. It is important to note that our proposed algorithms do not require any prior
knowledge of the covariance between arms.

Throughout this paper, we consider two cases: bounded rewards (in Section 4) and Gaussian rewards
(in Section 5), with the following assumptions:
Assumption 1 . Suppose that:

• IID assumption with respect to t: (Xt)t≥1 = (X1,t, . . . , XK,t)t≥1 are independent and
identically distributed variables following ν.

• There is only one optimal arm:
∣∣∣ArgMaxi∈JKK µi

∣∣∣ = 1.

Assumption 2 −B. Bounded rewards: The support of ν is in [0, 1]
K .

Assumption 2 −G. Gaussian rewards: ν is a multivariate normal distribution.

Protocol 1 The Game Protocol
Parameters: δ.
while [condition] do

Choose a subset C ⊆ JKK.
The environment reveals the rewards (Xi)i∈C .

end while
Output the selected arm: ψ.

A round corresponds to an iteration in Protocol 1. Denote by i∗ ∈ JKK the optimal arm. The learner
algorithm consists of: a sequence of queried subsets (Ct)t of JKK, such that subset Ct at round t is
chosen based on past observations, a halting condition to stop sampling (i.e. a stopping time written
τ ) and an arm ψ to output after stopping the sampling procedure. The theoretical guarantees take the
form of a high probability upper-bound on the total number N of queries made through the game:

N :=

τ∑
t=1

|Ct|. (1)

2 Motivation and main contributions
The query complexity of best arm identification with independent rewards, when arms distributions
are σ-sub-Gaussian is characterized by the following quantity:

H(ν) :=
∑

i∈JKK\{i∗}

σ2

(µi∗ − µi)2
. (2)

Some δ-PAC algorithms [16] guarantee a total number of queries satisfying τ = Õ(H(ν) log(1/δ))

(where Õ(.) hides a logarithmic factor in the problem parameters).
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Recall that the number of queries required for comparing the means of two variables, namely X1 ∼
N (µ1, 1) andX2 ∼ N (µ2, 1), within a tolerance error δ, is approximatelyO

(
log(1/δ)/(µ1 − µ2)

2
)
.

An alternative way to understand the sample complexity stated in equation (2) is to view the task of
identifying the optimal arm i∗ as synonymous with determining that the remaining arms JKK \ {i∗}
are suboptimal. Consequently, the cost of identifying the best arm corresponds to the sum of the
comparison costs between each suboptimal arm and the optimal one.

In practical settings, the arms distributions are not independent. This lack of independence can arise
in various scenarios, such as clinical trials, where the effects of drugs on patients with similar traits or
comparing drugs with similar components may exhibit underlying correlations. These correlations
provide additional information that can potentially expedite the decision-making process [18].

In such cases, Protocol 1 allows the player to estimate the means and the covariances of arms. This
additional information naturally raises the following question:

Can we accelerate best arm identification by leveraging
the (unknown) covariance between the arms?

We give two arguments for a positive answer to the last question: When allowed simultaneous queries
(more than one arm per round as in Protocol 1), the learner can adapt to the covariance between
variables. To illustrate, consider the following toy example for 2 arms comparison: X1 ∼ N (µ1, 1)
and X2 = X1 + Y where Y ∼ ϵN (1, 1) for some ϵ > 0. BAI algorithms in one query per
round framework require O((1 + ϵ)2 log(1/δ)/ϵ2) queries, which gives O(log(1/δ)/ϵ2) for small
ϵ. In contrast, when two queries per round are possible, the learner can perform the following test
H0 : “E[X1 −X2] > 0” againstH1 : “E[X1 −X2] ≤ 0”. Therefore using standard test algorithms
adaptive to unknown variances, such as Student’s t-test, leads to a number of queries of the order
O(Var(X1 − X2) log(1/δ)/ϵ

2) = O(log(1/δ)). Hence a substantial improvement in the sample
complexity can be achieved when leveraging the covariance. We can also go one step further to even
reduce the sample complexity in some settings. Indeed, we can establish the sub-optimality of an arm
i by comparing it with another sub-optimal arm j faster than when comparing it to the optimal arm
i∗. To illustrate consider the following toy example with K = 3: let X1 ∼ N (µ1, 1), X2 = X1 + Y
where Y ∼ ϵN (1, 1) and X3 ∼ N (µ1 + 2ϵ, 1), with X1, Y and X3 independent. X3 is clearly the
optimal arm. Eliminating X1 with a comparison with X3 requires O(log(1/δ)/ϵ2) queries, while
comparingX1 with the sub-optimal armX2 requiresO(Var(X1−X2) log(1/δ)/ϵ

2) = O(log(1/δ)).
The aforementioned arguments can be adapted to accommodate bounded variables, such as when
comparing correlated Bernoulli variables. These arguments suggest that by utilizing multiple queries
per round (as shown in Protocol 1), we can expedite the identification of the best arm compared to
the standard one-query-per-setting approach. Specifically, for variables bounded by 1, our algorithm
ensures that the cost of eliminating a sub-optimal arm i ∈ JKK is given by:

min
j∈JKK: µj>µi

{
Var(Xj −Xi)

(µj − µi)2
+

1

µj − µi

}
. (3)

The additional term 1/(µj − µi) arises due to the sub-exponential tail behavior of the sum of
bounded variables. To compare the quantity in (3) with its counterpart in the independent case,
it is important to note that the minimum is taken over a set that includes the best arm, and that
Var(Xi∗ − Xi) ≤ 2(Var(Xi∗) + Var(Xi)). Consequently, when the variables are bounded, the
quantity (3) is no larger than a numerical constant times H(ν) (its independent case counterpart
in 2), with potentially a significant improvements if there is positive correlation between an arm
j ∈ JKK with a higher mean and arm i (so that Var(Xj −Xi) is small). As a result, our algorithm
for bounded variables has a sample complexity, up to a logarithmic factor, that corresponds to the
sum of quantities (3) over all sub-optimal arms.

We expand our analysis to encompass the scenario where arms follow a Gaussian distribution. In this
context, our procedure ensures that the cost of eliminating a sub-optimal arm i ∈ JKK is given by:

min
j∈JKK:
µj>µi

{
Var(Xj −Xi)

(µj − µi)2
∨ 1

}
.

Similar to the setting with bounded variables, the aforementioned quantity is always smaller than its
counterpart for independent arms when all variables Xj have a unit variance.
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In Section 6, we present two lower bound results for the sample complexity of best arm identification
in our multiple query setting, specifically when the arms are correlated. Notably, these lower bounds
pinpoint how the optimal sample complexity may decrease with the covariance between arms, making
them the first of their kind in the context of best arm identification, to the best of our knowledge. The
presented lower bounds are sharp, up to a logarithmic factor, in the case where all arms are positively
correlated with the optimal arm. However, it remains an open question to determine a sharper lower
bound applicable to a more general class of distributions with arbitrary covariance matrices.

In Section B of the appendix, we introduce a new algorithm that differs from the previous ones by
performing comparisons between the candidate arm and a convex combination of the remaining arms,
rather than pairwise comparisons. We provide theoretical guarantees for the resulting algorithm.

Lastly, we conduct numerical experiments using synthetic data to assess the practical relevance of
our approach.

3 Related work
Best arm identification: BAI in the fixed confidence setting was studied by [11], [22], and [12],
where the objective is to find ϵ-optimal arms under the PAC (“probably approximately correct")
model. A summary of various optimal bounds for this problem is presented in [8, 20]. Prior works on
fixed confidence BAI [25] and [17] developed strategies adaptive to the unknown variances of the
arms. In contrast, our proposed algorithms demonstrate adaptability to all entries of the covariance
matrix of the arms. In particular, we establish that in the worst-case scenario, where the arms are
independent, our guarantees align with the guarantees provided by these previous approaches.

Covariance in the Multi-Armed Bandits model: Recently, the concept of leveraging arm de-
pendencies in the multi-armed bandit (MAB) model for best-arm identification was explored in
[15]. However, their framework heavily relies on prior knowledge, specifically upper bounds on
the conditional expectation of rewards from unobserved arms given the chosen arm’s reward. In a
similar vein, a game protocol that allows simultaneous queries was examined in [21]. However, their
objective differs from ours as their focus is on identifying the most correlated arms, whereas our
primary goal is to identify the arm with the highest mean reward.

The extension of the standard multi-armed bandit setting to multiple-point bandit feedback was also
considered in the stochastic combinatorial semi-bandit problem (2, 9, 10 and 13). At each round
t ≥ 1, the learner pulls m out of K arms and receives the sum of the pulled arms rewards. The
objective is to minimize the cumulative regret with respect to the best choice of arms subset. [27]
proposed an algorithm that adapts to the covariance of the covariates within the same arm. While this
line of research shares the intuition of exploiting the covariance structure with our paper, there are
essential differences between the two settings. In the combinatorial semi-bandit problem, the learner
receives the sum of rewards from all selected arms in each round and aims to minimize cumulative
regret, necessitating careful exploration during the game. In contrast, our approach does not impose
any constraint on the number of queried arms per round, and our focus is purely on exploration.

Simultaneous queries of multiple arms was also considered in the context of graph-based bandit
problems [7]. However, in these studies, it is assumed that the distributions of arms are independent.

Model selection racing: Racing algorithms for model selection refers to the problem of selecting
the best model out of a finite set efficiently. The main idea consists of early elimination of poorly
performing models and concentrating the selection effort on good models. This idea was seemingly
first exploited in [23] through Hoeffding Racing. It consists of sequentially constructing a confidence
interval for the generalization error of each (non-eliminated) model. Once two intervals become
disjoint, the corresponding sub-optimal model is discarded. Later [25] presented an adaptive stopping
algorithm using confidence regions derived with empirical Bernstein concentration inequality (3, 24).
The resulting algorithm is adaptive to the unknown marginal variances of the models. Similarly,
[4] presented a procedure centered around sequential hypothesis testing to make decisions between
two possibilities. In their setup, they assume independent samples and use Bernstein concentra-
tion inequality tailored for bounded variables to adapt to the variances of the two variables under
consideration.

While the idea of exploiting the possible dependence between models was shown [6, 26] to empirically
outperform methods based on individual performance monitoring, there is an apparent lack of
theoretical guarantees. This work aims to develop a control on the number of sufficient queries for
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reliable best arm identification, while being adaptive to the unknown correlation of the candidate
arms.

4 Algorithm and main theorem for bounded variables
In this section, we focus on the scenario where the arms are bounded by 1. Let us establish the
notation we will be using throughout. For each arm i ∈ JKK associated with the reward variable Xi,
we denote by µi the mean of Xi. Additionally, for any pair of arms i, j ∈ JKK, we denote Vij as the
variance of the difference between Xi and Xj , i.e., Vij := Var(Xi −Xj). We remind the reader that
the quantities Vij are unknown to the learner.

Algorithm 2 is developed based on the ideas introduced in Section 2, which involves conducting
sequential tests between every pair (i, j) ∈ JKK × JKK of arms. The key element to adapt to the
covariance between arms is the utilization of the empirical Bernstein’s inequality [24] for the sequence
of differences (Xi,t −Xj,t)t for i, j ∈ JKK. To that end, we introduce the following quantity:

∆̂ij(t, δ) := µ̂j,t − µ̂i,t −
3

2
α(t, δ)

√
2V̂ij,t − 9 α2(t, δ),

where, µ̂i,t represents the empirical mean of the samples obtained from arm i up to round t, and V̂ij,t
denotes the empirical variance associated with the difference variable (Xi −Xj) up to round t. The
term α(t, δ) is defined as α(t, δ) :=

√
log(1/δt)/(t− 1), and δt is given by δ/(2K2t(t+ 1)).

By leveraging the empirical Bernstein’s inequality (restated in Theorem K.1), we can establish that
if ∆̂ij(t, δ) > 0 at any time t, then with a probability of at least 1 − δ, we have µi < µj . This
observation indicates that arm i is sub-optimal. Furthermore, when µj > µi for i, j ∈ JKK, a
sufficient sample sizes ensuring that the quantity ∆̂ij(t, δ) is positive is proportional to:

Λij :=

(
Vij

(µi − µj)2
+

1

µj − µi

)
log

(
K

(µj − µi)δ

)
. (4)

Moreover, we show in Lemma E.5 in the appendix that the last quantity is necessary, up to a smaller
numerical constant factor, in order to have ∆̂ij(t, δ) > 0.

Algorithm 2 follows a successive elimination approach based on the tests ∆̂ij(t, δ) > 0. Our objective
is to ensure that any sub-optimal arm i is queried at most minj Λij times, where the minimum is
taken over arms with means larger than µi. However, this approach poses a challenge: the arm
j∗ that achieves the minimum of Λij may be eliminated early in the process, and the algorithm is
then constrained to compare arm i with other arms costing larger complexity Λij . To address this
limitation, it is useful to continue querying arms even after deciding their sub-optimality through the
pairwise tests.

In Algorithm 2, we introduce two sets at round t: St, which contains arms that are candidates to
be optimal, initialized as S1 = JKK, and Ct, which represents the set of arms queried at round t.
Naturally, Ct contains St and also includes arms that were freshly eliminated from St, as we hope
that these arms will help in further eliminating candidate arms from St more quickly.

An important consideration is how long the algorithm should continue sampling an arm that has been
eliminated from St. In Theorem E.2, we prove that when arm j is eliminated at round t, it is sufficient
to keep sampling it up to round 82t (the constant 82 is discussed in Remark 1). The rationale behind
this number of additional queries is explained in the sketch of the proof of Theorem 4.1. It suggests
that if arm j fails to eliminate another arm after round 82t, then the arm that eliminated j from St

can ensure faster eliminations for the remaining arms in St.
Theorem 4.1. Suppose Assumption 1 and 2 −B holds. Consider Algorithm 2, with input δ ∈ (0, 1).
We have with probability at least 1− δ: the algorithm identifies the best arm and the total number of
queries N satisfies:

N ≤ c log(KΛδ−1)
∑

i∈JKK\{i∗}

min
j∈JKK:
µj>µi

{
Vij

(µi − µj)2
+

1

µj − µi

}
, (5)

where Λ = maxi∈JKK minj∈JKK:
µj>µi

{
Vij

(µi−µj)2
+ 1

µj−µi

}
and c is a numerical constant.
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Algorithm 2 Pairwise-BAI

1: Input δ.
2: Initialization:
3: Query all arms for 2 rounds and compute the empirical means vector µ̂t, t← 3.
4: S ← JKK, /*Set of candidate arms*/
5: C ← JKK, /*Set of queried arms*/
6: while |S| > 1 do
7: Jointly query all arms in C.
8: Update µ̂t and compute maxj∈C ∆̂ij(t, δ) for each i ∈ S.
9: for i ∈ S do

10: if maxj∈C ∆̂ij(t, δ) > 0 then
11: Eliminate i from S: S ← S \ {i}. /* i is sub-optimal */
12: Mark i for elimination from C at round: 82 t.
13: end if
14: end for
15: Increment t.
16: end while
17: Return S.

Moreover, if we omit line 12 from Algorithm 2, that is we do not query non-candidate arms, we have
with probability at least 1− δ: the algorithm identifies the best arm and the total number of queries
N satisfies:

N ≤ c log(KΛδ−1)
∑

i∈JKK\{i∗}

{
Vii∗

(µi∗ − µi)2
+

1

µi∗ − µi

}
, (6)

where Λ is defined above and c is a numerical constant.

Summary of the proof for bound (5): Let i denote a sub-optimal arm and Υi := ArgMinj Λij .
First, we show that at round t, if i ∈ St then necessarily we have Υi ∩ Ct ̸= ∅. We proceed by
a contradiction argument: assume Υi ∩ Ct = ∅, let j denote the element of Υi with the largest
mean. Let k denote the arm that eliminated j from S at a round s < t. Lemma E.3 shows that, since
∆̂jk(s, δ) > 0, we necessarily have log(1/δ)Λjk/4 ≲ s. Moreover, j was kept up to round 82s and in
this last round we had ∆̂ij(82s, δ) ≤ 0, which gives by Lemma E.3: 82s ≲ (25/2) log(1/δ82s)Λij .
Combining the two bounds on s, gives: Λjk < Λij . Finally, we use the ultra-metric property
satisfied by the quantities Λuv (Lemma E.6), stating that: Λik ≤ max{Λij ,Λjk}. Combining the last
inequality with the latter, we get Λik ≤ Λij , which means that k ∈ Υi. The contradiction arises from
the fact that j is the element of the largest mean in Υi and arm k eliminated j (hence µk > µj). We
conclude that necessarily Υi ∩ Ct ̸= ∅, therefore by Lemma E.3, at a round of the order of minj Λij ,
we will necessarily have ∆̂ij(t, δ) > 0 for some j ∈ Ct.

Remark 1. From a practical standpoint, to keep sampling an arm eliminated at t for additional 81 t
rounds is a conservative approach. The stated value of 81 is determined by specifics of the proof, but
we believe that it can be optimized to a smaller constant based on the insights gained from numerical
simulations. Furthermore, even if we omit the oversampling step, as presented in Theorem 4.1, the
algorithm is still guaranteed to identify the best arm with probability 1−δ. Only the query complexity
guarantee is weaker, but the algorithm may still lead to effective arm elimination, although with
potentially slightly slower convergence.

Remark 2. The idea of successive elimination based on evaluating the differences between variables
was previously introduced in [28], in the context of model selection aggregation. Their analysis
allows having a bound slightly looser than bound (6) (with the distances between variables instead
of variances). On the other hand, Theorem 4.1 in our paper provides a sharper bound in (5).

First, it is important to note that bound (5) is always sharper (up to a numerical constant factor)
than bound (6) because the optimal arm is included in the set over which the minimum in bound
(5) is taken. On the other hand, bound (5) can be smaller than bound (6) by a factor of 1/K. This
situation can arise in scenarios where the K − 1 sub-optimal arms, which have close means, are
highly correlated, while the optimal arm is independent of the rest. In such a situation, the terms in
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the sum in (5) corresponding to the correlated sub-optimal arms are relatively small, except for the
arm (denoted as i) with the largest mean among the K − 1 correlated suboptimal rewards. That last
remaining arm will be eliminated by the optimal arm, incurring a potentially large cost, but for that
arm only. On the other hand, each term in the second bound (6) would be of the order of the last cost.

To provide perspective on our guarantees compared to those developed in the independent one query
per round setting, it is worth noting that the standard guarantees in that setting provide a sample
complexity corresponding to

∑
i ̸=i∗ log(1/δ)/(µi∗ − µi)

2. Since variables are bounded by 1, their
variances are bounded by 1. Therefore, in the worst case, we recover the previous guarantees with a
numerical constant factor of 2.

A refined adaptive algorithm presented in [25] also utilizes a successive elimination approach using
confidence intervals for the arm means based on the empirical Bernstein’s inequality. However, unlike
our algorithm, they use the concentration inequality to evaluate each arm’s mean independently of
the other arms. Their approach allows for adaptability to individual arm variances, and is particularly
beneficial are small, i.e., Var(Xi)≪ 1. The sample complexity of their algorithm is of the order of:

log(KΓδ−1)
∑
i ̸=i∗

Var(Xi) + Var(Xi∗)

(µi∗ − µi∗)2
,

where Γ := maxi̸=i∗(Var(Xi)+Var(Xi∗)/(µi∗ −µi∗)
2. Neglecting numerical constant factors, the

last bound is larger than both our bounds (5) and (6). This is because the variance of the differences
can be bounded as follows: Vii∗ ≤ 2(Var(Xi) + Var(Xi∗)).

5 Algorithms and main theorem for Gaussian distributions
In this section, we address the scenario where arms are assumed to follow a Gaussian distribution. We
consider a setting where the learner has no prior knowledge about the arms’ distribution parameters,
and we continue using the notation introduced in the previous section. The main difference between
this case and the bounded variables setting, other than the form of the sample complexity obtained, is
the behavior of the algorithm when variances of differences between variables tend to 0, displayed by
the second bound in Theorem 5.1.

Our algorithm relies on the empirical Bernstein inequality, which was originally designed in the
literature for bounded variables [3, 24]. We have extended this inequality to accommodate Gaussian
variables by leveraging existing Gaussian concentration results. Note that extending such inequalities
more generally for sub-Gaussian variables is a non-trivial task. One possible direction is to suppose
that arms follow a sub-Gaussian distribution and satisfy a Bernstein moment assumption (such
extensions were pointed by works on bounded variables e.g., ? ). Given the last class of distributions,
we can build on the standard Bernstein inequality with known variance, then plug in an estimate
of the empirical variance leveraging the concentration of quadratic forms (see 5). However, it
remains uncertain whether an extension for sub-Gaussian variables (without additional assumptions)
is practically feasible.

We extend the previous algorithm to the Gaussian case by performing sequential tests between pairs
of arms (i, j) ∈ JKK. We establish a confidence bound for the difference variables (Xi − Xj)
(Lemma D.1 in the appendix) and introduce the following quantity:

∆̂′
ij(t, δ) := µ̂j,t − µ̂i,t −

3

2
α(t, δ)

√
2f(α(t, δ)) V̂ij,t, (7)

where the f is defined by: f(x) = exp(2x+ 1) if x ≥ 1/3, and f(x) = 1/(1− 2x) otherwise.

Using the empirical confidence bounds on the differences between arms, we apply the same procedure
as in the case of bounded variables. We make one modification to Algorithm 2: we use the quantities
∆̂′

ij(t, δ) instead of ∆̂ij(t, δ).

By following the same analysis as in the bounded setting, we establish that the sample complexity
required for the comparison tests between arms i and j is characterized by the quantity Vij

(µi−µj)2
∨ 1.

The following theorem provides guarantees on the algorithm presented above:

Theorem 5.1. Suppose Assumptions 1 and 2 −G holds. Consider the algorithm described above,
with input δ ∈ (0, 1). We have with probability at least 1− δ: the algorithm identifies the best arm
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and the total number of queries N satisfies:

N ≤ c log(KΛδ−1)
∑

i∈JKK\{i∗}

min
j∈JKK:
µj>µi

{
Vij

(µi − µj)2
∨ 1

}
, (8)

where Λ = maxi∈JKK minj∈JKK:
µj>µi

{
Vij

(µi−µj)2
∨ 1
}

and c is a numerical constant.

Moreover, if we omit line 12 from Algorithm 2, that is we do not query non-candidate arms, we have
with probability at least 1− δ: the algorithm identifies the best arm and the total number of queries
N satisfies:

N ≤ 3K + c log

(
Kδ−1

log(1 + 1/Λ)

) ∑
i∈JKK\{i∗}

1

log
(
1 + (µi∗−µi)2

Vii∗

) , (9)

where Λ = maxi ̸=i∗ Vii∗/(µi∗ − µi)
2 is defined above and c is a numerical constant.

Remarks. On the sample complexity cost of being adaptive to the variance: If the sample size
is larger than log(1/δ), the cost of plugging in the empirical variance estimate into the Cher-
noff’s concentration inequality is only a multiplicative constant slightly larger than one (nearly
1 + 2

√
log(1/δ)/n). However, in the case of a small sample regime (n < log(1/δ)), the cost is a

multiplicative factor of exp(
√
log(1/δ)/n+ 1/2) due to the nature of the left tail of the chi-squared

distribution (see Sections D and K of the appendix for detailed calculations). For most natural
regimes, the number of queries made for each arm is larger than log(1/δ), hence the last described
effect does not arise. However, in some specific regimes (such as the case of very small variances
of the arms) an optimal algorithm should query less than log(1/δ) samples, which necessitates
introducing the exponential multiplicative term above into the concentration upper bound. This
translates into a different form of guarantee presented in Theorem 5.1, inequality (9). It is important
to note the cost in this regime cannot be avoided as highlighted by our lower bound presented in
Theorem 6.2.

Theorem 5.1 above shows that Algorithm 2 is applied to Gaussian distribution guarantees that each
sub-optimal arm i is eliminated after roughly minj V

2
ij/(µi − µj)

2 queries. Bounds (8) and (9)
derived from our algorithm are smaller than the standard complexity bound in the independent case,
which is given by

∑
i ̸=i∗ σ

2/(µi−µi∗)
2 when all arms have variances smaller than σ2. It is important

to note that unlike most existing procedures in the literature that achieve the standard complexity
bound, our algorithm does not require knowledge of the parameter σ2.

About the upper bound (9): This bound can be further bounded by log(δ−1)
∑

i ̸=i∗
Vii∗

(µi−µi∗ )2
∨ 1.

The form presented in Theorem 5.1 is particularly sharp when the variances Vii∗ tend to zero,
resulting in a constant upper bound. Recently, in the independent setting where variances are
unknown, [17] analyzed the comparison of two arms i and j. They derived a complexity of the order
1/ log

(
1 +

(µi−µj)
2

(σ2
i+σ2

j )

)
, where σ2

i and σ2
j are the variances of arms i and j, respectively. This result is

reflected in our bound (9), where instead of the sum of variances, our bound considers the variance
of the difference, leading to a sharper bound. In Section 6, we provide a lower bound that nearly
matches (9).

6 Lower bounds
In this section, we present lower bounds for the problem of best arm identification with multiple
queries per round, following Protocol 1. We provide lower bounds for both the bounded distributions
setting (Theorem 6.1) and the Gaussian distributions setting (Theorem 6.2). It is important to note
that our lower bounds are derived considering a class of correlated arm distributions. Therefore, the
results obtained in the standard one-query-per-round setting [20] do not hold in our setting.

Our first lower bound is derived for the case where arms follow a Bernoulli distribution. Let
µ = (µi)i∈JKK be a sequence of means in [1/4, 3/4], denote by i∗ the index of the largest mean.
Consider a sequence of positive numbers V = (Vii∗)i∈JKK. We define BK(µ,V ) as the set of
Bernoulli arm distributions such that: (i) E[Xi] = µi; (ii) Var(Xi −Xi∗) ≤ Vii∗ for all i ∈ JKK.
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For Bernoulli distributions, the variances and means are linked. Specifically, Lemma K.8 demonstrates
that for any pair of Bernoulli random variables (B1, B2) with means (b1, b2), the following inequality
holds: (b1 − b2)− (b1 − b2)2 ≤ Var(B1 −B2) ≤ min{2− (b1 + b2); b1 + b2} − (b1 − b2)2.

We assume that the sequences V and µ satisfy the aforementioned condition for (Xi, Xi∗)i∈JKK,
as otherwise the class BK(µ,V ) would be an empty set. Theorem 6.1 provides a lower bound on
the sample complexity required for best arm identification in the worst-case scenario over the class
BK(µ,V ).
Theorem 6.1. Let K ≥ 2 and δ ∈ (0, 1). For any δ-sound algorithm, we have

max
B∈BK(µ,V )

EB[N ] ≥ 1

8
log(1/4δ)

∑
i∈JKK\{i∗}

max

{
Vii∗

(µi∗ − µi)2
,

1

µi∗ − µi

}
,

where N is the total number of queries.

The presented lower bound takes into account the correlation between arms by incorporating the
quantities Vii∗ as upper bounds for the variances of the differences between arm i and the optimal
arm i∗. This lower bound indicates that for class BK(µ,V ), Algorithm 2 is nearly optimal.

Next, we provide a lower bound in the Gaussian case. Let µ = (µi)i∈JKK be a sequence of means,
where i∗ denotes the index of the largest mean. We also consider a sequence of positive numbers
V = (Vii∗)i∈JKK. We define GK(µ,V ) as the set of Gaussian arm distributions satisfying the
following conditions: (i) E[Xi] = µi, (ii) Var(Xi − Xi∗) = Vii∗ , and (iii) Var(Xi) ≥ 1 for all
i ∈ JKK. Theorem 6.2 provides a lower bound on the sample complexity required for best arm
identification in the worst-case scenario over the class GK(µ,V ).
Theorem 6.2. Let K ≥ 2 and δ ∈ (0, 1). For any δ-sound algorithm, we have

max
G∈GK(µ,V )

EG [N ] ≥ 2 log(1/4δ)
∑

i∈JKK\{i∗}

1

log
(
1 + (µi−µi∗ )2

V 2
ii∗

) ,
where N is the total number of queries.

Theorem 6.2 demonstrates that our algorithm achieves near-optimal performance over GK(µ,V ),
up to a logarithmic factor.

7 Numerical simulations
We consider the Gaussian rewards scenario. We compare our algorithm Pairwise-BAI (Algorithm 2)
to 3 benchmark algorithms: Hoeffding race [23], adapted to the Gaussian setting (consisting of
successive elimination based on Chernoff’s bounds) and LUCB [19], which is an instantiation of
the upper confidence bound (UCB) method. We assume that the last two algorithms have a prior
knowledge on the variances of the arms. The third benchmark algorithm consists of using a successive
elimination approach using the empirical estimates of the variances. We evaluated two variations of
our algorithm. The first one, Pairwise-BAI+, implemented Algorithm 2 for Gaussian variables. In
this instance, we modified line 12 by continuing to sample sub-optimal arms that were eliminated
at round t until round 2t instead of 82t. We stress that both variants guarantee a δ-sound decision
on the optimal arm (see Theorem 5.1). The second instance involved removing the last instruction,
meaning we directly stopped querying sub-optimal arms. Figure 1 displays the average sample
complexities for each considered algorithm. As expected, the larger the correlation between arms, the
better Pairwise-BAI performs.

The second experiment aims to demonstrate that Algorithm 2 adapts to the covariance between sub-
optimal arms, as indicated by bound (8) in Theorem 4.1,rather than solely adapting to the correlation
with the optimal arm as shown by (9). In this experiment, we consider that the arms are organized
into clusters, where each pair of arms within the same cluster exhibits a high correlation (close to 1),
while arms from different clusters are independent. According to bound (8) (see also discussion after
Theorem 4.1) we expect to observe a gain of up to a factor corresponding to the number of arms per
cluster compared to algorithms that do not consider covariance. (Since the total number of arms is
kept fixed, the number of arms per cluster scales as the inverse of the number of clusters.)

Figure 1 illustrates the results, showing that the performance of Pairwise-BAI improves as the number
of clusters decreases (indicating a larger number of correlated arms). This suggests that increasing
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Figure 1: Left figure: the average sample complexities, in 4 scenarios with K = 10 arms with means
µi = i/10. The covariance matrix C is defined as follows: for i ∈ JKK, Cii = 1 and for i ̸= j:
Cij = ρ. We consider 4 scenarios with the correlation: ρ ∈ {0, 0.5, 0.7, 0.9}. Right figure: the
average sample complexities with K = 16 arms with means µi = i/10. Arms in the same cluster
have a correlation of 0.99, and arms from different clusters are independent. We consider 4 scenarios
with different number of clusters: ncl ∈ {8, 4, 2, 1}. All clusters are of the same size.

the number of correlated sub-optimal arms, which are independent from the optimal arm, still leads
to significant performance improvement. These findings support the idea that Pairwise-BAI and
Pairwise-BAI+ exhibit behavior that aligns more closely with bound (8) in Theorem 4.1, rather than
bound (9).

In both experiments, we observe that Pairwise-BAI+ performs worse compared to Pairwise-BAI,
indicating that, empirically, in the given scenarios, continuing to sample sub-optimal arms does not
contribute to improved performance. While this modification provides better theoretical guarantees,
it may not lead to empirical performance improvements in general scenarios.

8 Conclusion and future directions
This work gives rise to several open questions. Firstly, the presented lower bounds take into account
partially the covariance between arms. It would be interesting to explore the development of a more
precise lower bound that can adapt to any covariance matrix of the arms. Additionally, in terms of
the upper bound guarantees, our focus has been on pairwise comparisons, along with an algorithm
that compares candidate arms with convex combinations of the remaining arms (Section B). An
interesting direction for further research would involve extending this analysis to an intermediate
setting, involving comparisons with sparse combinations.
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